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General Hospital, Beijing, China
Background: Gastric cancer (GC) is a leading gastrointestinal malignancy

carrying a poor prognosis. Lymphangiogenesis (LYM) refers to the process of

forming new lymphatic vessels. This process facilitates tumor metastasis and

represents a promising therapeutic target in GC management. However, the

exact mechanisms of LYM in GC remain incompletely understood.

Method: The RNA-sequencing gene expression dataset and clinical

characteristics of GC patients were obtained from The Cancer Genome Atlas

(TCGA) and the Gene Expression Omnibus (GEO) database. The LASSO Cox

regression method was utilized to identify feature genes and construct a

Lymphangiogenesis Score (LYMS). A nomogram was constructed to assess the

predictive efficacy of LYMS in the prognosis of GC patients. The gene set

enrichment analysis (GSEA) employed to investigate different molecular

functions and pathways. The immune microenvironment analysis,

immunotherapy response analysis, and drug sensitivity were conducted to

elucidate the association between LYMS and both immune landscape and

immunotherapy response.

Results: This study selected six LYM-related genes (ADAMTS1, SVEP1, CAV1, NOX4,

NPTX1, and SPARC) to construct the LYMS. The results demonstrated that GC

patients with a high LYMS exhibited significantly poorer prognosis. Distinct

enrichment patterns of molecular functions and pathways were observed

between the high and low LYMS groups. Furthermore, marked differences in

immune landscape were identified. Immunotherapy response analysis and drug

sensitivity analysis further indicated that high-LYMS patients showed reduced benefit

to immunotherapy and diminished efficacy of certain chemotherapy agents.

Conclusion: Overall, this study confirmed that LYMS is an independent

prognostic risk factor in GC patients. The LYMS demonstrates significant

predictive ability for responses to immunotherapy, suggesting its potential to

guide future immunotherapy interventions for GC patients.
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1 Introduction

Gastric cancer (GC) is the fifth prevalent malignancy in the

world and the fourth most prevalent cause of cancer-associated

deaths (1). In spite of continuous advancements in therapeutic

strategies, GC patients prognosis remains suboptimal (2).

Advancing insights into the mechanisms underlying GC have

catalyzed the development of new therapeutic strategies, such as

immune checkpoint inhibitors (ICIs), cellular immunotherapy, and

cancer vaccines (3). GC is a kind of lymphatic metastatic tumor,

characterized by the spread of cancer cells to adjacent lymph nodes

via lymphatic vessels. This type of metastasis often occurs at an

early stage and may affect multiple lymph nodes (4). Therefore,

elucidating the potential mechanisms of GC and lymphatic

metastatic is crucial for effective prevention and treatment.

The lymphatic system plays a critical role in collecting and

transporting interstitial fluid, facilitating immune responses, and

serving as a significant pathway for tumor metastasis (5).

Lymphangiogenesis (LYM) refers to the formation of new

lymphatic vessels, which is a crucial process for tumor cells to

access the lymphatic system (6). Lymphangiogenesis is

indispensable for pre-metastatic niche formation (7). Lymphatic

vessels not only serve as a physical pathway for tumor cells but also

facilitate their metastasis. Vascular endothelial growth factor

(VEGF)-C and VEGF-D are critical factors in regulating

lymphatic vessel development and growth (8, 9). Tumors secrete

lymphangiogenesis factors, such as VEGF-C and VEGF-D, via

lymphatic pathways, which promote the formation of lymphatic

vessels and create favorable conditions for tumor metastasis,

facilitating the spread and dissemination of cancer cells (10, 11).

In GC, enhancing lymphangiogenesis and increasing lymphatic

vessel permeability promotes lymphatic metastasis (12). Research

has demonstrated that tumor-associated lymphangiogenesis is

closely correlated with lymph node metastasis and poor clinical

prognosis (13). And GC cells themselves can promote

lymphangiogenesis by targeting the Akt/mTOR pathway to

increase the protein expression of VEGF-C and VEGF-D (11).

Additionally, lymphatic vessels not only function as pathways for

the spread of tumor cells but also play a pivotal role in modulating

the host immune response. Macrophages are crucial participants in

lymphangiogenesis, as they secrete VEGF-C, VEGF-D, VEGFR3

and various inflammatory factors (14, 15). A wide variety of tumor-

associated immune cells, including mast cells, macrophages, cancer-

associated fibroblasts and lymphocytes, contribute to

lymphangiogenesis through the secretion of pro-lymphangiogenic

factors (16–18). LYM facilitates tumor metastasis and represents a

promising therapeutic target in GC management. However, the

exact mechanisms of LYM in GC remain incompletely understood.

In this study, we constructed LYMS signature and validated its

predictive efficacy for the prognosis of GC patients by utilizing

multiple databases and nomograms. Additionally, we investigated

its correlation with the immune profile and assessed the

e ff e c t i v en e s s o f immuno th e r apy t h r ough immune

microenvironment analysis and immunotherapy response

analysis. Furthermore, drug sensitivity analysis provides valuable
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references for the clinical treatment of GC patients. Our findings

offer new evidence for the role of LYM in the progression of GC.
2 Materials and methods

2.1 Data collection

The genes related with LYM were obtained from Human Gene

Database (GeneCards, https://www.genecards.org/) and relevant

review articles (19). A total of 466 LYM-related genes were

included in this study. The detailed list of these genes can be

found in Supplementary Table S1.

The training dataset comprised transcriptomic profiles and

corresponding clinical data for 412 GC patients and 36 control

subjects, sourced from the TCGA- STAD database. For external

validation, two independent cohorts were utilized: GSE84437

containing 433 GC patients and GSE84437 containing 357 GC

patients, both retrieved from the Gene Expression Omnibus (GEO).
2.2 Differential expression analysis

A total of 466 LYM-related genes were subjected to differential

expression analysis comparing 412 GC samples with 36 normal

tissue samples from the TCGA cohort. The “limma”R package was

used to identify differentially expressed genes (DEGs) associated

with LYM, and genes with an absolute log-fold change (|logFC|) >1

and an adjusted p-value < 0.05 were classified as statistically

significant DEGs (20).
2.3 Pathways and function enrichment
analysis of DEGs

The R package “clusterProfiler” was utilized to conduct Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses to evaluate the potential biological

pathways associated with LYM-related DEGs (21). The GO

analysis comprised three categories: Biological Processes (BP),

Molecular Functions (MF), and Cellular Components (CC), with

statistical significance thresholds set at an adjusted p-value < 0.05

and q-value < 0.05.
2.4 Development and validation of LYM
score

Three independent cohorts comprising 385 GC patients from

TCGA, 433 from GSE84437, and 357 from GSE84433 with available

survival data were included in the analysis. Univariate Cox

regression analysis was performed on the above three databases to

identify genes with significant prognostic value (p < 0.05), and

common genes were determined through intersection. The least

absolute shrinkage and selection operator (LASSO) Cox regression
frontiersin.org
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method was employed to identify candidate genes, and the optimal

signature was constructed using the “glmnet” package.

Subsequently, the LYM score was calculated as follows: LYMS =∑

(bi Genei), where bi denotes the risk coefficient, and Genei

represents the expression level of each gene. Patients were

stratified into high- and low-LYMS groups based on median

LYMS values. Kaplan Meier analysis was conducted using

“survival” and “survminer” R packages to assess the association

between LYMS and overall survival (OS). Finally, the LYMS was

further validated in the GSE84437 and GSE84433 datasets.
2.5 Construction of a nomogram

An innovative prognostic nomogram was developed by

integrating clinical characteristics, including age, TNM stages and

LYMS through multivariate Cox and stepwise regression analyses.

Calibration plots were used to evaluate the nomogram’s predictive

accuracy. Additionally, time-dependent the receiver operating

characteristic (ROC) curves, implemented via the R “timeroc”

package, were utilized to assess the area under the curve (AUC)

for the nomogram.
2.6 Gene set enrichment analysis

GSEA was conducted to identify differentially enriched

pathways between GC patients with high-LYMS and low-LYMS.

The “clusterProfiler” R package was utilized to conduct GSEA. In

accordance with established GSEA guidelines, statistically

significant results were defined as results meeting a significance

threshold of p<0.05 and FDR<0.25 (22).
2.7 Immune cell landscape and immune
microenvironment analysis

This study analyzed the association between the LYMS and

immune cell infiltration utilizing various algorithms, including the

CIBERSORT-ABS, EPIC, QUANTISEQ, TIMER, MCPCOUNTER,

XCELL, and EPIC algorithms. Additionally, the stromal score,

immune score, tumor purity, and ESTIMATE score were utilized to

compare the tumor microenvironment (TME) between GC patients

with high and low LYMS through the ESTIMATE algorithm (23).
2.8 Immunotherapy response analysis and
drug sensitivity

Additionally, we employed the Tumor Immune Dysfunction

and Exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu/) to

predict immunotherapy responses between LYMS groups (24).

Tumor mutation burden (TMB) between high- and low-LYMS

groups was compared using somatic mutation data analyzed with

the “maftools” package. Immunophenoscore (IPS), obtained from
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The Cancer Immunome Atlas (TCIA, https://tcia.at/home), was

used to assess responses to immunotherapy across different risk

groups. To evaluate drug sensitivity, the half maximal inhibitory

concentration (IC50) values were calculated using data of GC

obtained from Genomics of Drug Sensitivity in Cancer, with

predictions generated via the “oncoPredict” package (25).
2.9 Immunohistochemical (IHC) analysis

IHC analysis leverages antigen-antibody specificity binding to

detect and localize target antigens in cellular and tissue contexts. We

evaluated the expression of key genes in GC and normal tissues

using IHC data from the Human Protein Atlas (HPA) database

(http://www.proteinatlas.org/) (26).
2.10 Cell-line culture and quantitative real
time PCR

The GES1, AGS, HGC27 and MKN1 cell lines were obtained

from the General Surgery Laboratory of Chinese PLA General

Hospital. The cell culture conditions were as follows: RPMI 1640

(G4535A, Servicebio, China) + 10% FBS (G8003, Servicebio, China)

at 37 °C and 5% CO2. The steps of quantitative real-time PCR

(qRTPCR) were as follows: Total RNA was isolated from the cells

using FreeZol reagent (R711, Vazyme, China), and the extracted

total RNA was reverse transcribed to cDNA using HiScript IV All-

in-one Ultra RT SuperMix reagent (R433, Vazyme, China), and

stained using SupRealQ Purple Universal SYBR qPCR Master mix

(Q412, Vazyme, China) for staining, and the expression levels of the

mRNAs of the 6 genes were detected according to the intensity of

the fluorescent signals. b-actin mRNA expression level was used as

an endogenous control. Three experiments were performed for each

sample, and the results were used to calculate the expression values

of the 4 genes according to Equation 2-△△Ct. The primer sequences

are shown in Supplementary Table S2.
2.11 Statistical analysis

Statistical analyses were performed in R (v4.3.0) and Free

Statistics software version 1.9.2. Group differences were analyzed

using Student t-test or Wilcoxon test. Survival outcomes associated

with categorical variables were assessed via Kaplan-Meier analysis.

Statistically significant difference was defined as p<0.05.
3 Results

3.1 Differentially expressed genes analysis
and enrichment analysis

In the TCGA-STAD cohort, 128 DEGs were identified between

normal samples and gastric tumor samples using the limma
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analysis. This included 58 upregulated genes and 70 downregulated

genes (Figure 1A, Supplementary Table S3). The expression

patterns of DEGs were illustrated in the heatmap presented

in Figure 1B.

Then, we conducted GO and KEGG enrichment analysis based

on the 128 DEGs. GO analysis results displayed the top 10 results in

BP, MF and CC (Figure 1C). Based on the results of CC, DEGs

related to LYM were predominantly enriched in the collagen-

containing extracellular matrix (ECM). Interactions between the

ECM and lymphatics, as well as the biophysical characteristics of

the stroma, influence tumor formation, growth, and metastasis (27).

ECM stiffness stimulates the expression of globin transcription

factor (GATA) binding protein 2 and GATA2-dependent

VEGFR-3, mediating the growth and migration of lymphatic

endothelial cell in vivo (28). The results of the BP analysis

indicated that the DEGs were closely associated to the

chemotactic process, including cell chemotaxis, regulation of

chemotaxis, and chemokine-mediated signaling pathway. The

results of the MF analysis indicated that LYM was closely

associated with cytokine activity. VEGFs are key cytokines

involved in the LYM process, particularly VEGF-C and VEGF-D,

which are known to be the main mediators of lymphatic endothelial

cell proliferation and migration (29).

The results of KEGG analysis suggested that the LYM-related

DEGs were significantly enriched in the following pathways:

cytokine-cytokine receptor interaction, PI3K−AKT signaling

pathway, proteoglycans in cancer, chemokine signaling pathway

and focal adhesion (Figure 1D). These results provided novel

insights in the mechanisms of LYM.
3.2 Constructing the LYM score

This study collected survival data from GC patients and

performed further analyses. Univariate Cox regression analysis

was employed to identify prognosis-associated genes across three

gene databases. The analysis revealed significant associations

between genes expression and OS in GC patients across three

cohorts: 52 genes in TCGA (p < 0.05), 34 genes in GSE84437 (p

< 0.05), and 28 genes in GSE84433 (p < 0.05). 16 genes were

identified as common among TCGA, GSE84437, and GSE84433

cohorts (Figure 2A, Supplementary Figure S1). Then, LASSO-Cox

regression analysis was conducted on these genes to select the

optimal penalty parameter (lambda value l =0.025). The results of

this analysis identified six genes: a disintegrin and metalloprotease

with thrombospondin motifs 1 (ADAMTS1), sushi, vonWillebrand

factor type A, EGF and pentraxin domain containing 1 (SVEP1),

caveolin-1 (CAV1), NADPH oxidase 4 (NOX4), neuronal

pentraxin 1 (NPTX1), and secreted protein acidic and rich in

cysteine (SPARC) (Figures 2B, C). Kaplan-Meier analysis

demonstrated that each model gene exhibited a significant

association with OS in GC patients (p<0.05, Supplementary

Figure S2), indicating that these genes served as risk factors (HR

> 1, p < 0.05). Finally, regression coefficients were calculated for

each of the 6 genes. A patient’s risk score was determined utilizing
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the following formula: LYMS = 0.0797 * ADAMTS1 + 0.0078 *

SVEP1 + 0.1338 * NOX4 + 0.0095 * CAV1 + 0.0336 * SPARC +

0.1071 * NPTX1.
3.3 Validation of the LYMS model

According to the median LYMS (median=2.193), all GC

patients in the TCGA database were divided into two groups:

high-LYMS and low-LYMS. The distribution of risk scores,

survival outcomes and differential expression of six signature

genes between the two groups were visualized in Figure 2D.

Kaplan-Meier survival analysis demonstrated a significantly

poorer prognosis for high-LYMS patients compared to the low-

LYMS group (p<0.001, Figure 2E). Time-dependent ROC curve

analysis showed that the LYMS predicted OS with AUC values of

0.627 (1-year), 0.660 (3-years), and 0.680 (5-years) (Figure 2F).

To validate the LYMS constructed from the TCGA cohort,

patients in the GSE84437 and GSE84433 were also classified into

high-LYMS and low-LYMS groups according to the median LYMS.

Consistent with the training cohort, the high-LYMS group exhibited

a significantly poorer prognosis than the low-LYMS group in both

validation cohorts (p<0.001) (Supplementary Figures S3A, B). The

distribution of risk scores and survival outcomes for samples in the

validation cohort were illustrated in Supplementary Figures S3C, D,

along with the differential expression of six genes in two groups.

Additionally, the time-dependent ROC curves were presented in

Supplementary Figures S3E, F.

VEGFs are key cytokines involved in the LYM process,

particularly VEGF-C and VEGF-D, which are known to be the

main mediators of lymphatic endothelial cell proliferation and

migration (29). Further elucidating the relationship between

LYMS and VEGFs helps to better understand LYMS. We

analyzed the corre lat ion between LYMS and VEGFs

(Supplementary Figures S4A–E). The results revealed that LYMS

exhibited positive correlations with VEGFB, VEGFC and VEGFD,

but a negative correlation with VEGFA.
3.4 Development of a nomogram based on
LYMS

This study explored the association of the LYMS with clinical

futures, including the T, M, TNM stage and OS in GC patients. The

results were presented in Supplementary Figure S5. Patients with

poor prognosis, advanced T stage, and high TNM stage exhibited

higher LYM scores.

We further investigated the prognostic significance of LYMS in

GC patients. Univariate Cox regression analysis demonstrated that

LYMS served as a significant risk factor (HR = 3.82, 95% CI 2.01-

7.26, p<0.001, Figure 3A). Multivariate Cox regression analysis

further identified LYMS as an independent prognostic risk factor

(HR = 4.62, 95% CI 2.30-9.19, p<0.001, Figure 3B). Next, we

incorporated factors such as LYMS, age, and TNM stage to

develop a nomogram for the TCGA cohort. We employed
frontiersin.org
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multivariate Cox and stepwise regression analysis to predict the OS

of GC patients (Figure 3C). The total points were negatively

correlated with the survival rates of patients. Kaplan-Meier

survival analysis indicated that GC patients with high total points

on the nomogram had a worse prognosis compared to those with a
Frontiers in Immunology 05
low point (p<0.001, Figure 3D). The calibration curves

demonstrated the nomogram’s robust predictive performance for

OS at 1, 3, and 5 years (Figure 3E). Additionally, when predicting 1,

3-, and 5-years OS in GC patients, the nomogram demonstrated

strong ability with AUC values of 0.675, 0.743, and 0.815,
FIGURE 1

Differential expression analysis and enrichment of LYM-related genes. (A) Volcano map of the LYM-related DEGs between GC and normal tissues
from TCGA cohort. (B) Heatmap of the LYM-related DEGs between GC and normal tissues from TCGA cohort. (C) GO enrichment analyses based
on the DEGs. (D) KEGG enrichment analyses based on the DEGs.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1595592
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1595592
respectively (Figures 3F). The nomogram showed superior

predictive accuracy for OS compared to individual parameters,

including age, TNM stage, and LYMS alone (Supplementary

Figure S6). Finally, external validation using the GSE84437 and

GSE84433 databases confirmed the nomogram’s robust predictive
Frontiers in Immunology 06
performance (Supplementary Figure S7). These findings suggest the

nomogram holds significant potential for clinical prognostication in

GC, particularly for long-term (5-year) survival outcomes.

Clinically, LYMS can predict the prognosis of gastric cancer and

serves as an independent risk factor.
FIGURE 2

Construction and validation of a prognostic gene signature for GC patients. (A) Venn diagram representing common LYM-related DEGs with
potential significant prognostic value across the three databases. (B) LASSO coefficient profiles of 16 common genes (C) Cross-validation of the
constructed signature. (D) Distribution of risk score, survival status and heatmap of LYMS including 6 genes in TCGA cohort. (E) The KM analysis of
LYMS predicting the OS of patients in TCGA cohort. (F) The ROC curves evaluating the predictive accuracy of LYMS at 1-,3- and 5-years in TCGA
cohort. LYMS, lymphangiogenesis score; KM, Kaplan-Meier; AUCs, areas under the curve.
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3.5 Immunological features of LYMS

To investigate the association between LYMS and tumor immune

features, we examined the immune cell infiltration within the TME.

Given the complexity of the TME, we conducted comprehensive

analyses including tumor-associated stroma content (Stromalscore),

immune cell infiltration levels (Immunescore), tumor purity and the

overall characteristics of the tumor microenvironment

(Estimatescore) to ensure rigorous and multidimensional

evaluation. Compared with CIBERSORT (Figure 4A), the results of
Frontiers in Immunology 07
(Figure 4B), EPIC (Figure 4C), QUANTISEQ (Figure 4D), TIMER

(Figure 4E), MCPCOUNTER (Figure 4F), and XCELL (Figure 4G)

indicated that the high LYMS group exhibited a higher proportion of

B cells, CD8+ T cells, natural killer (NK) cells, macrophages, and

other immune cells. However, the results of CIBERSORT (Figure 4A)

indicated no significant difference or even presented contrary results

in T cells and NK cells between two groups. The observed

phenomenon may be attributed to the elevated stromal cell

abundance within in the TME of the high LYMS group, including

fibroblasts, endothelial cells, and matrix components, as
FIGURE 3

Construction and assessment of the nomogram survival model based on LYMS. (A, B) The univariate and multivariate analysis of LYMS and the
clinical characteristics. (C) A nomogram was established based LYMS and clinical characteristics. (D) Kaplan-Meier analyses for the two groups based
on the nomogram in TCGA cohort. (E) The calibration curve of the nomogram in TCGA cohort. (F) The ROC curves at 1-, 3-, and 5-years of
nomogram in TCGA cohort. LYMS, lymphangiogenesis score; AUCs, areas under the curves.
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demonstrated in Figure 4G. An increased stromal cell proportion

could diminish the relative representation of specific immune cells.

TME analysis further demonstrated reduced tumor purity scores in

the high-LYMS group, whereas stromal, immune, and estimate scores

were significantly elevated (Figures 4H–K).
Frontiers in Immunology 08
3.6 Gene set enrichment analysis of LYMS

To further elucidate functional differences of LYMS, this article

performed GSEA on patients with GC. The GSEA results indicated

that cell adhesion molecules (CAMs), ECM receptor interactions,
FIGURE 4

The correlations between LYMS and immune landscape. (A-F) Immune cell infiltration between Low-LYMS and High-LYMS groups based on
CIBERSORT, CIBERSORT_ABS, EPIC, quanTIseq, TIMER and MCP-counter algorithms. (G) Correlation of LYMS with immune cell infiltration based on
xCell algorithms. (H-K) The difference in tumor microenvironment between two groups based on Estimate algorithms. LYMS, lymphangiogenesis
score. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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and focal adhesion were significantly activated in the high LYMS

group (Figure 5A). In contrast, DNA replication, nitrogen

metabolism, oxidative phosphorylation, and ribosome were

inhibited in the high LYMS group (Figure 5B). These differential

pathways may suggest the potential mechanisms underlying

differences between two LYMS groups.
3.7 The correlation between LYMS and
immunotherapy

To further explore the role of LYMS in guiding GC

immunotherapy, we performed correlation analyses between

LYMS and three immunotherapeutic-related biomarkers: TIDE

score, TMB, and IPS. TIDE results demonstrated that patients

with elevated LYMS exhibited higher TIDE score (Figures 6A, B).

High TIDE scores generally indicate that tumors possess robust
Frontiers in Immunology 09
immune evasion mechanisms, which suggests that patients with

high LYMS may experience limited benefits from immunotherapy.

To further elucidate the role of LYMS in predicting immunotherapy

responsiveness, we conducted TIDE predictive analysis. The results

demonstrated that GC patients who were responsive to therapy

showed lower LYMS levels than non-responders (Figure 6C).

Collectively, these findings indicated that GC patients with low-

LYMS derived enhanced clinical benefits from immunotherapy

relative to high-LYMS patients, which was in accordance with the

TIDE results.

Subsequently, we examined the differences in TMB between two

groups. Analysis indicated that the low LYMS group exhibited

higher mutation frequency, including TTN, TP53, and LRP1B

(Figures 6D, E). The TMB in the low LYMS group was

significantly higher than that in the high LYMS group

(Figure 6F). TMB exhibited a significant negative correlation with

LYMS, with a correlation coefficient of -0.27 (Figure 6G).
FIGURE 5

GSEA enrichment analyses between high LYMS group and low LYMS group. (A) Upregulated GSEA pathways in the high LYMS. (B) Downregulated
GSEA pathways in the high LYMS. GSEA, Gene set enrichment analysis; LYMS, lymphangiogenesis score.
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Furthermore, survival analysis further demonstrated that patients

with high TMB exhibited a markedly improved prognosis

compared to those with low TMB (Figure 6H). Finally, this study

assessed the IPS of GC patients across different risk subgroups

(Figures 6I-L, Supplementary Figure S8). Higher IPS score correlate
Frontiers in Immunology 10
with stronger sample immunogenicity (30). The results indicated

that in the cytotoxic T-lymphocyte-associated protein 4 (CTLA4)

-positive and programmed death receptor 1 (PD1) -negative

subgroup, the low-LYMS group exhibited significantly elevated

IPS scores compared to the high-LYMS group. Clinically, these
FIGURE 6

The correlation of LYMS with immunotherapy efficacy. (A) The difference in TIDE scores between high and low LYMS groups. (B) The correlation
between TIDE Score and LYMS. (C) The difference in LYMS between the Responders and Non-responders. (D) TMB in the high LYMS group. (E) TMB
in the low LYMS group. (F) The difference in TMB between high and low LYMS groups. (G) The correlation between TMB and LYMS. (H) The KM
analysis in low-TMB and high-TMB groups. (I–L) The differences of Immunophenoscores (IPS) in four subgroups. TIDE, Tumor Immune Dysfunction
and Exclusion; TMB, tumor mutational burden; LYM, lymphangiogenesis. **p<0.01; ****p<0.0001.
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findings indicated that GC patients with low-LYMS might derive

enhanced clinical benefits from ICIs.
3.8 Drug sensitivity analysis

To investigate the correlation between LYMS and sensitivity to

antitumor drugs in GC, we conducted a drug sensitivity analysis.

The results indicated that the IC50 values of common drugs

including afatinib, gefitinib, dabrafenib, and lapatinib

(Figures 7A–D) were positively correlated with LYMS. This

indicated that patients with high LYMS exhibited insensitivity to

these drugs. Conversely, dasatinib, JQ1, NU7441, JAK8517,

OTX015 and alpelisib (Figures 7E–J) demonstrated a negative

correlation with LYMS, indicating that patients with high LYMS

were more sensitive to these antitumor drugs, providing references

for clinical drug selection.
3.9 Validation of the expression of featured
genes

IHC was employed to validate the expression of LYMS model

genes in GC tissues. Compared to normal tissues, ADAMTS1 and

SVEP1 expression levels were significantly downregulated in GC

tissues, whereas SPARC expression was markedly upregulated

(Figure 8). There were no significant differences for CAV1 and

NPTX1. Additionally, HPA database lacks information on NOX4

expression in GC. Nevertheless, previous studies have reported

significant upregulation of NOX4 in GC tissues compared to

normal counterparts (31).

The qRT-PCR analysis revealed distinct expression profiles of

six signature genes across gastric cancer cell lines (Supplementary

Figure S9). ADAMTS1 demonstrated significantly higher

expression levels in HGC27 cells (Supplementary Figure S9A).

Both NPTX1 and SPARC exhibited consistently low expression

across all three cell l ines (HGC27, AGS, and MKN1)

(Supplementary Figures S9B, C). While CAV1 showed elevated

expression in HGC27, its expression was markedly reduced in

MKN1 (Supplementary Figure S9D). Notably, NOX4 displayed

substantial upregulation in all tested cell lines (HGC27, AGS, and

MKN1) (Supplementary Figure S9E). SVEP1 elevated expression

was observed in HGC27 and MKN1 (Supplementary Figure S9F).

The differential expression patterns of these six signature genes

between gastric cancer cells and normal gastric mucosal cells further

validate the feasibility of the LYMS.
4 Discussion

Lymphangiogenesis is a crucial process that enables tumor cells

to infiltrate the lymphatic system and plays a key role in tumor

metastasis. However, there are limited clinical researches focused on

the clinical characteristics, treatment, and prognosis of LYM in GC

patients. In this study, we developed a LYMS model (ADAMTS1,
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SVEP1, CAV1, NOX4, NPTX1, and SPARC) using data from the

TCGA cohorts and validated its robust efficacy in the GSE84437

and GSE84433 cohorts. Subsequently, patients were divided into

two groups according to the median of LYMS. A nomogram model

that integrated clinical futures with LYMS was established,

demonstrating strong predictive performance for OS in GC

patients. We further investigated the impact of LYMS on the

tumor microenvironment and elucidated the relationship between

LYMS and the response to immunotherapy, and sensitivity to

chemotherapy drugs. Our findings indicated that patients with

high LYMS might not benefit from immunotherapy; however,

they exhibited higher sensitivity to drugs such as dasatinib and

alpelisib. Clinically, LYMS can predict the prognosis of gastric

cancer and serves as an independent risk factor. It assists in

determining the benefits of immunotherapy, with patients in the

high-LYMS group deriving limited benefits from ICIs. Additionally,

it indicates drug sensitivity, providing references for clinical drug

selection (e.g., dasatinib). In summary, LYMS enhances our

understanding of the mechanisms underlying GC metastasis and

progression, holding significant potential for prognostic prediction

and guiding treatment decisions for GC patients.

ADAMTS1, a member of the matrix metalloproteinase family,

is recognized for its role in inhibiting angiogenesis (32). In GC,

elevated expression levels of ADAMTS1 were significantly linked to

lymph node metastasis in primary tumors (33). Chien et al.

reported that the activation of epidermal growth factor receptor

mediated by the ADAMTS1/L1 cell adhesion molecule axis

promoted the progression of epithelial-mesenchymal transition

(EMT), thereby enhancing the invasive abilities of cancer cells

(34). SVEP1 is a large ECM protein that plays a key role in

regulating intercellular adhesion (35) and embryonic lymphatic

development (36). SVEP1 has been shown to exhibit a significant

association with poor prognosis in GC patients (37). Chen et al.

found that abnormal expression of SVEP1 could promote tumor

cell migration, chemotaxis, invasion, and proliferation (38). NOX4,

a substrate of NADPH, is significantly upregulated in GC tissues

and functions as a standalone indicator of unfavorable outcomes

(31). Gao et al. revealed that NOX4 promoted GC metastasis by

inducing EMT through the downstream JAK/STAT signaling

pathway (39). Additionally, Nox4 has been shown to promote

LYM via reactive oxygen species (ROS)/extracellular regulated

protein kinases (ERK)/CCL21 pathway (40). The abnormal

expression of NPTX1 promotes the invasion and proliferation of

GC cells (41). Peng et al. discovered that NPTX1 suppressed cancer

cell proliferation by regulating the retinoblastoma protein-E2F

transcription factor signaling pathway via repression of cyclin A2

and cyclin-dependent kinases 2 (CDK2) expression (42). Moreover,

NPTX1 has been shown to enhance chemotherapy sensitivity (43).

SPARC, part of the ECM glycoprotein family, is significantly

expressed in GC and correlates with depth of tumor invasion,

lymph node metastasis, TNM staging (44), and poor OS (45).

Huang et al. revealed that the LCN2/24p3R/JNK/c-Jun/SPARC

axis drived GC malignant progression (46). CAV1, an oncogenic

membrane protein linked to extracellular matrix organization, cell

migration, and signaling, contributes to peritoneal metastasis in GC
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via the ROCK1/CAV1/Rab11 axis (47). Additionally, CAV1 is

implicated in chemotherapy resistance in GC (48).

LYM contributes to gastric cancer progression and prognosis.

Specifically, peritumoral lymphovascular density plays a critical role

in lymph node metastasis, while intratumoral lymphovascular
Frontiers in Immunology 12
density is more strongly associated with tumor invasion depth

(49). VEGFs are key cytokines involved in the LYM process,

particularly VEGF-C and VEGF-D, which are known to be the

main mediators of lymphatic endothelial cell proliferation and

migration (29). Our results revealed that LYMS exhibited positive
FIGURE 7

Efficacy of LYMS in predicting drug sensitivity. (A-J) The comparison of IC50 of drugs between high and low LYMS groups, and correlation between
the IC50 and LYMS in GC patients. (A) Afatinib, (B) Gefitiinib, (C) Dabrafenib, (D) Lapatinib, (E) Dasatinib, (F) JQ1, (G) NU7441, (H) JAK8517, (I) OTX015,
(J) Alpelisib. LYM, lymphangiogenesis. ****p<0.0001.
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correlations with VEGFC and VEGFD. The LYMS genes are

functionally connected to the VEGFs. SPARC regulates the

expression of VEGF-C and VEGF-D in ovarian cancer, thereby

affecting angiogenesis and lymphangiogenesis (50). Conversely,
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VEGF can also induce the expression of SPARC (51). The

interaction between VEGF and SPARC jointly affects

lymphangiogenesis. ADAMTS1 inhibits lymphangiogenesis by

attenuating phosphorylation of the lymphatic endothelial cell-
FIGURE 8

The protein expression levels of model genes. (A) ADAMTS1, (B) CAV1, (C) NPTX1, (D) SPARC, (E) SVEP1 in gastric normal tissues and gastric cancers
from HPA online database.
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specific VEGF receptor (32). Conversely, VEGF significantly

induces ADAMTS1 expression in endothelial cells in a protein

kinase C-dependent way (52). CAV-1 regulates the expression of

downstream VEGFs. Studies have shown that CAV-1

downregulation reduces insulin like growth factor-1-induced

VEGFA secretion (53). CAV-1 modulates VEGF-stimulated

VEGFR2 autophosphorylation and downstream angiogenic

signaling (54). Additionally, the NOX4/ROS/VEGF pathway is

involved in the regulation of VEGF expression (55). However,

SVEP1, as a binding ligand of Tie1, affects specific aspects of

lymphatic development in a VEGFC-independent manner (56).

Pathway enrichment analysis of 128 DEGs related to LYM

between normal tissues and gastric tumor samples identified

significant enrichment in the PI3K/AKT signaling pathway,

Proteoglycan in cancer, RAP1(ras-related protein) signaling

pathway and MAPK signaling pathway. Notably, PI3K/AKT

inhibition suppresses EMT and LYM, thereby attenuating tumor

invasion and metastasis (57). Proteoglycans exhibit diverse roles in

tumor -associated LYM. Syndecan-4, a key lymphatic proteoglycan,

acts as a key co-receptor for VEGF-C-mediated pathological LYM

(58). In contrast, decorin interactes with VEGFR3 to suppress

lymphatic vessel sprouting (59). RAP1 maintains lymphatic

permeability, drives normal lymphatic development, and is

essential for embryonic LYM and the maintenance of lymphatic

junctions in adulthood (60). MAPK activation promotes LYM via

the ERK/NF-kB pathway, increasing lymphatic vessel permeability

and migratory capacity (61). Collectively, LYM is a multifactorial

process regulated by multiple signaling pathways, and our findings

elucidate novel mechanistic aspects of LYM.

GSEA revealed significant enrichment of cancer-related

pathways in the high-LYMS group, including CAMs, ECM

receptor interactions, and focal adhesion. Notably, CAMs play a

vital role in cell-cell interactions, immune response modulation,

and tumor cell migration. In GC, CAM-associated signaling is

hyperactivated and strongly correlates with adverse clinical

outcomes (62). Discoidin domain receptor 1 (DDR1) is a major

ECM receptor. The upregulation of DDR1 in GC cells enhanced the

metastatic ability of GC by promoting actin cytoskeleton

reorganization (63). Focal adhesion drives tumor progression by

regulating cell adhesion and migration, signal transduction,

cytoskeletal reorganization and microenvironment interactions

(64, 65). These pathways may reveal the potential mechanisms

involved in the differences between high and low LYMS groups.

Tumor-infi l trating immune cells within the tumor

microenvironment critically modulate tumor angiogenesis and

LYM. Our findings demonstrated elevated immune cell

infiltration in the high LYMS group, including macrophages,

neutrophils, B cells, CD8+ T cells and mast cells. Notably,

macrophages serve as direct structural contributors to the walls of

lymphatic endothelial cells and secrete VEGF-C, VEGF-D, and

VEGF-A to trigger LYM initiation in inflamed or tumor tissues

(66). Tumor-associated neutrophils infiltrate tumor sites, where
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they secrete elevated levels of VEGF-A and MMP9, thereby driving

tumor LYM and lymph node metastasis (67). B cells produce

lymphangiogenic factors such as VEGF-A and VEGF-C, through

synergistic signaling via B cell activating factor and IL-4 (68).

VEGF-A produced by effector CD8+ T cells enhances T cell

infiltration, tumor vascularization, and tumor progression (69).

Furthermore, VEGF-A regulates CD8+ T cells by enhancing the

expression of PD-1 and other inhibitory checkpoints involved in

CD8+ T cell exhaustion (70). Mast cells also synthesize pro-

lymphangiogenic factors VEGF-C and VEGF-D and pro-

angiogenic factors VEGF-A, VEGF-B (71).

The tumor immune microenvironment plays a crucial role in

tumor immunotherapy. Using the TIDE algorithm, we evaluated

the function of immune cells in tumor microenvironment and their

association with immunotherapy response. Elevated TIDE score

usually indicates stronger immune evasion mechanisms in the

tumor and poorer immunotherapy efficacy (72), which is

associated with reduced response rate to immunotherapies such

as PD-1/PD-L1 inhibitors and CTLA-4 inhibitors. TMB is also used

to assess the response to immunotherapy. Emerging evidence

indicates that tumor with elevated TMB generates increased

neoantigens, which enhances T cell recognition and correlates

with better outcomes following ICIs (such as PD-1/PD-L1 and

CTLA-4 inhibitors) (73). This is consistent with our results, as the

high LYMS group exhibited higher TIDE scores, lower TMB scores

and lower IPS scores. These data collectively suggested that

malignancies with high-LYMS had a greater potential for immune

evasion, and patients in the high LYMS group might experience

poorer outcomes with ICIs, which could explain the poor overall

survival observed in high-LYMS patients. Overall, LYMS is a

valuable indicator for predicting the response to immunotherapy

in GC patients.

The drug sensitivity analysis indicated that patients in the high

LYMS group showed resistance to common antitumor drugs (such

as afatinib, gefitinib, dabrafenib, and lapatinib), but exhibited

heightened sensitivity to antitumor drugs like dasatinib, NU7441,

JAK8517, JQ1, OTX015 and alpelisib. Dasatinib, a SRC family

kinases inhibitor, has shown efficacy in GC due to the

overexpression of SRC. Choi et al. revealed that dasatinib

modulated cellular energy homeostasis in GC and specifically

targeted p90RSK (74). Additionally, dasatinib significantly

enhances the cytotoxic effects of cisplatin by PI3K/AKT pathway

(75) and oxaliplatin by suppressing Src activity triggered by

oxaliplatin (76). NU7441, a DNA-dependent protein kinase

inhibitor, can hinder the repair of DNA. Geng et al. found that

NU7441 enhanced the susceptibility of radioresistant GC cells to

radiotherapy by activating the caspase3/gH2AX signaling pathway

(77). JQ1 and OTX015 are both small molecule inhibitors of the

bromodomain and extraterminal. JQ1 suppresses the malignant

progression of GC through reducing chromatin accessibility and

inhibiting the RUNX2/NID1 signaling pathway (78). Alpelisib

inhibites the proliferation of certain gastric cancer cells by
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suppressing PI3Ka (79). Furthermore, the combination of alpelisib

and paclitaxel exhibits a synergistic anti-proliferative effect (80).

Overall, drug sensitivity analysis offers guidance for clinical

therapies, especially regarding antitumor drugs like dasatinib and

alpelisib, which demonstrates enhanced therapeutic efficacy in GC

patients with high levels of LYMS.

This study demonstrated that LYMS possessed promising

predictive value for OS and provided guidance for clinical

strategies in GC patients. Nonetheless, it is important to

acknowledge the inherent limitations associated with retrospective

studies, including selection bias and confounding bias. Therefore, it

is important to carry out additional multicenter randomized

controlled trials to validate these results. Therefore, conducting

more multicenter randomized controlled trials and further

validating these results in different patient cohorts and

prospective studies is crucial. Additionally, the correlation

between lymphangiogenesis and tumor metastasis is not a linear

phenomenon, and tumor metastasis is also associated with various

intrinsic factors of the tumor (such as EMT) and environmental

factors. Our LYMS integrates gene expression from tissue

transcriptomes. These transcriptomes contain a mixture of tumor

cells, stromal cells, and immune infiltrating cells from both tumor

and surrounding areas, making it spatially unable to distinguish

between intratumoral and peritumoral lymphangiogenesis. Future

studies integrating spatial transcriptomics may further elucidate the

spatial specificity of LYMS. Future studies integrating spatial

transcriptomics may further elucidate the spatial specificity of

LYMS. In subsequent steps, we will further explore the

interaction mechanisms between lymphangiogenesis and the

tumor immune microenvironment, investigate the LYMS gene in

particular cell lines and patient-derived xenograft models, and

mechanistically clarify the association of LYMS with drug

sensitivity. Overall, this research provides novel insights into the

impact of LYM in the onset and development of GC, highlighting

the need for further foundational studies to deepen our

understanding of GC.
5 Conclusion

This article developed a LYMS model consisting of six genes,

which showed good efficacy in forecasting the outcomes for GC

patients. Additionally, we demonstrated the correlation of LYMS

with the immune microenvironment and the immune therapy

response in GC patients. Overall, LYMS operates as a forecast of

risk for GC patients and can be utilized as a valuable tool in guiding

immunotherapy decisions.
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