:' frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

Qi Wang,
Jiangsu University, China

Kai Li,

The First Affiliated Hospital of China Medical
University, China

Anirban Ganguly,

All India Institute of Medical Sciences
Deoghar, India

Wen-Qing Tian,

Chongging University Cancer Hospital, China

Xinxin Wang
301wangxinx@sina.com

These authors have contributed
equally to this work and share
first authorship

18 March 2025
16 October 2025
04 November 2025

Liu S, Song Q, Chen R, Wu D and Wang X
(2025) Development and verification of
lymphangiogenesis score for prediction of
prognosis and immune landscape in gastric
cancer.

Front. Immunol. 16:1595592.

doi: 10.3389/fimmu.2025.1595592

© 2025 Liu, Song, Chen, Wu and Wang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Immunology

Original Research
04 November 2025
10.3389/fimmu.2025.1595592

Development and verification
of lymphangiogenesis score
for prediction of prognosis
and immune landscape

In gastric cancer

Shihe Liu', Qiying Song’, Runkai Chen', Di Wu
and Xinxin Wang*

Department of General Surgery, The First Medical Center of Chinese People's Liberation Army
General Hospital, Beijing, China

Background: Gastric cancer (GC) is a leading gastrointestinal malignancy
carrying a poor prognosis. Lymphangiogenesis (LYM) refers to the process of
forming new lymphatic vessels. This process facilitates tumor metastasis and
represents a promising therapeutic target in GC management. However, the
exact mechanisms of LYM in GC remain incompletely understood.

Method: The RNA-sequencing gene expression dataset and clinical
characteristics of GC patients were obtained from The Cancer Genome Atlas
(TCGA) and the Gene Expression Omnibus (GEO) database. The LASSO Cox
regression method was utilized to identify feature genes and construct a
Lymphangiogenesis Score (LYMS). A nomogram was constructed to assess the
predictive efficacy of LYMS in the prognosis of GC patients. The gene set
enrichment analysis (GSEA) employed to investigate different molecular
functions and pathways. The immune microenvironment analysis,
immunotherapy response analysis, and drug sensitivity were conducted to
elucidate the association between LYMS and both immune landscape and
immunotherapy response.

Results: This study selected six LYM-related genes (ADAMTS1, SVEP1, CAV1, NOX4,
NPTX1, and SPARC) to construct the LYMS. The results demonstrated that GC
patients with a high LYMS exhibited significantly poorer prognosis. Distinct
enrichment patterns of molecular functions and pathways were observed
between the high and low LYMS groups. Furthermore, marked differences in
immune landscape were identified. Immunotherapy response analysis and drug
sensitivity analysis further indicated that high-LYMS patients showed reduced benefit
to immunotherapy and diminished efficacy of certain chemotherapy agents.
Conclusion: Overall, this study confirmed that LYMS is an independent
prognostic risk factor in GC patients. The LYMS demonstrates significant
predictive ability for responses to immunotherapy, suggesting its potential to
guide future immunotherapy interventions for GC patients.
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1 Introduction

Gastric cancer (GC) is the fifth prevalent malignancy in the
world and the fourth most prevalent cause of cancer-associated
deaths (1). In spite of continuous advancements in therapeutic
strategies, GC patients prognosis remains suboptimal (2).
Advancing insights into the mechanisms underlying GC have
catalyzed the development of new therapeutic strategies, such as
immune checkpoint inhibitors (ICIs), cellular immunotherapy, and
cancer vaccines (3). GC is a kind of lymphatic metastatic tumor,
characterized by the spread of cancer cells to adjacent lymph nodes
via lymphatic vessels. This type of metastasis often occurs at an
early stage and may affect multiple lymph nodes (4). Therefore,
elucidating the potential mechanisms of GC and lymphatic
metastatic is crucial for effective prevention and treatment.

The lymphatic system plays a critical role in collecting and
transporting interstitial fluid, facilitating immune responses, and
serving as a significant pathway for tumor metastasis (5).
Lymphangiogenesis (LYM) refers to the formation of new
lymphatic vessels, which is a crucial process for tumor cells to
access the lymphatic system (6). Lymphangiogenesis is
indispensable for pre-metastatic niche formation (7). Lymphatic
vessels not only serve as a physical pathway for tumor cells but also
facilitate their metastasis. Vascular endothelial growth factor
(VEGF)-C and VEGF-D are critical factors in regulating
lymphatic vessel development and growth (8, 9). Tumors secrete
lymphangiogenesis factors, such as VEGF-C and VEGF-D, via
lymphatic pathways, which promote the formation of lymphatic
vessels and create favorable conditions for tumor metastasis,
facilitating the spread and dissemination of cancer cells (10, 11).
In GC, enhancing lymphangiogenesis and increasing lymphatic
vessel permeability promotes lymphatic metastasis (12). Research
has demonstrated that tumor-associated lymphangiogenesis is
closely correlated with lymph node metastasis and poor clinical
prognosis (13). And GC cells themselves can promote
lymphangiogenesis by targeting the Akt/mTOR pathway to
increase the protein expression of VEGF-C and VEGF-D (11).
Additionally, lymphatic vessels not only function as pathways for
the spread of tumor cells but also play a pivotal role in modulating
the host immune response. Macrophages are crucial participants in
lymphangiogenesis, as they secrete VEGF-C, VEGF-D, VEGFR3
and various inflammatory factors (14, 15). A wide variety of tumor-
associated immune cells, including mast cells, macrophages, cancer-
associated fibroblasts and lymphocytes, contribute to
lymphangiogenesis through the secretion of pro-lymphangiogenic
factors (16-18). LYM facilitates tumor metastasis and represents a
promising therapeutic target in GC management. However, the
exact mechanisms of LYM in GC remain incompletely understood.

In this study, we constructed LYMS signature and validated its
predictive efficacy for the prognosis of GC patients by utilizing
multiple databases and nomograms. Additionally, we investigated
its correlation with the immune profile and assessed the
effectiveness of immunotherapy through immune
microenvironment analysis and immunotherapy response
analysis. Furthermore, drug sensitivity analysis provides valuable
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references for the clinical treatment of GC patients. Our findings
offer new evidence for the role of LYM in the progression of GC.

2 Materials and methods
2.1 Data collection

The genes related with LYM were obtained from Human Gene
Database (GeneCards, https://www.genecards.org/) and relevant
review articles (19). A total of 466 LYM-related genes were
included in this study. The detailed list of these genes can be
found in Supplementary Table S1.

The training dataset comprised transcriptomic profiles and
corresponding clinical data for 412 GC patients and 36 control
subjects, sourced from the TCGA- STAD database. For external
validation, two independent cohorts were utilized: GSE84437
containing 433 GC patients and GSE84437 containing 357 GC
patients, both retrieved from the Gene Expression Omnibus (GEO).

2.2 Differential expression analysis

A total of 466 LYM-related genes were subjected to differential
expression analysis comparing 412 GC samples with 36 normal
tissue samples from the TCGA cohort. The “limma”R package was
used to identify differentially expressed genes (DEGs) associated
with LYM, and genes with an absolute log-fold change (|logFC]|) >1
and an adjusted p-value < 0.05 were classified as statistically
significant DEGs (20).

2.3 Pathways and function enrichment
analysis of DEGs

The R package “clusterProfiler” was utilized to conduct Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses to evaluate the potential biological
pathways associated with LYM-related DEGs (21). The GO
analysis comprised three categories: Biological Processes (BP),
Molecular Functions (MF), and Cellular Components (CC), with
statistical significance thresholds set at an adjusted p-value < 0.05
and g-value < 0.05.

2.4 Development and validation of LYM
score

Three independent cohorts comprising 385 GC patients from
TCGA, 433 from GSE84437, and 357 from GSE84433 with available
survival data were included in the analysis. Univariate Cox
regression analysis was performed on the above three databases to
identify genes with significant prognostic value (p < 0.05), and
common genes were determined through intersection. The least
absolute shrinkage and selection operator (LASSO) Cox regression
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method was employed to identify candidate genes, and the optimal
signature was constructed using the “glmnet” package.
Subsequently, the LYM score was calculated as follows: LYMS =%
(Bi Genei), where Bi denotes the risk coefficient, and Genei
represents the expression level of each gene. Patients were
stratified into high- and low-LYMS groups based on median
LYMS values. Kaplan Meier analysis was conducted using
“survival” and “survminer” R packages to assess the association
between LYMS and overall survival (OS). Finally, the LYMS was
further validated in the GSE84437 and GSE84433 datasets.

2.5 Construction of a nomogram

An innovative prognostic nomogram was developed by
integrating clinical characteristics, including age, TNM stages and
LYMS through multivariate Cox and stepwise regression analyses.
Calibration plots were used to evaluate the nomogram’s predictive
accuracy. Additionally, time-dependent the receiver operating
characteristic (ROC) curves, implemented via the R “timeroc”
package, were utilized to assess the area under the curve (AUC)
for the nomogram.

2.6 Gene set enrichment analysis

GSEA was conducted to identify differentially enriched
pathways between GC patients with high-LYMS and low-LYMS.
The “clusterProfiler” R package was utilized to conduct GSEA. In
accordance with established GSEA guidelines, statistically
significant results were defined as results meeting a significance
threshold of p<0.05 and FDR<0.25 (22).

2.7 Immune cell landscape and immune
microenvironment analysis

This study analyzed the association between the LYMS and
immune cell infiltration utilizing various algorithms, including the
CIBERSORT-ABS, EPIC, QUANTISEQ, TIMER, MCPCOUNTER,
XCELL, and EPIC algorithms. Additionally, the stromal score,
immune score, tumor purity, and ESTIMATE score were utilized to
compare the tumor microenvironment (TME) between GC patients
with high and low LYMS through the ESTIMATE algorithm (23).

2.8 Immunotherapy response analysis and
drug sensitivity

Additionally, we employed the Tumor Immune Dysfunction
and Exclusion (TIDE) algorithm (http://tide.dfciharvard.edu/) to
predict immunotherapy responses between LYMS groups (24).
Tumor mutation burden (TMB) between high- and low-LYMS
groups was compared using somatic mutation data analyzed with
the “maftools” package. Immunophenoscore (IPS), obtained from
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The Cancer Immunome Atlas (TCIA, https://tcia.at/home), was
used to assess responses to immunotherapy across different risk
groups. To evaluate drug sensitivity, the half maximal inhibitory
concentration (IC50) values were calculated using data of GC
obtained from Genomics of Drug Sensitivity in Cancer, with
predictions generated via the “oncoPredict” package (25).

2.9 Immunohistochemical (IHC) analysis

THC analysis leverages antigen-antibody specificity binding to
detect and localize target antigens in cellular and tissue contexts. We
evaluated the expression of key genes in GC and normal tissues
using THC data from the Human Protein Atlas (HPA) database
(http://www.proteinatlas.org/) (26).

2.10 Cell-line culture and quantitative real
time PCR

The GES1, AGS, HGC27 and MKN1 cell lines were obtained
from the General Surgery Laboratory of Chinese PLA General
Hospital. The cell culture conditions were as follows: RPMI 1640
(G4535A, Servicebio, China) + 10% FBS (G8003, Servicebio, China)
at 37 °C and 5% CO2. The steps of quantitative real-time PCR
(qQRTPCR) were as follows: Total RNA was isolated from the cells
using FreeZol reagent (R711, Vazyme, China), and the extracted
total RNA was reverse transcribed to cDNA using HiScript IV All-
in-one Ultra RT SuperMix reagent (R433, Vazyme, China), and
stained using SupRealQ Purple Universal SYBR qPCR Master mix
(Q412, Vazyme, China) for staining, and the expression levels of the
mRNAs of the 6 genes were detected according to the intensity of
the fluorescent signals. B-actin mRNA expression level was used as
an endogenous control. Three experiments were performed for each
sample, and the results were used to calculate the expression values
of the 4 genes according to Equation 2 AL The primer sequences
are shown in Supplementary Table S2.

2.11 Statistical analysis

Statistical analyses were performed in R (v4.3.0) and Free
Statistics software version 1.9.2. Group differences were analyzed
using Student t-test or Wilcoxon test. Survival outcomes associated
with categorical variables were assessed via Kaplan-Meier analysis.
Statistically significant difference was defined as p<0.05.

3 Results

3.1 Differentially expressed genes analysis
and enrichment analysis

In the TCGA-STAD cohort, 128 DEGs were identified between
normal samples and gastric tumor samples using the limma
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analysis. This included 58 upregulated genes and 70 downregulated
genes (Figure 1A, Supplementary Table S3). The expression
patterns of DEGs were illustrated in the heatmap presented
in Figure 1B.

Then, we conducted GO and KEGG enrichment analysis based
on the 128 DEGs. GO analysis results displayed the top 10 results in
BP, MF and CC (Figure 1C). Based on the results of CC, DEGs
related to LYM were predominantly enriched in the collagen-
containing extracellular matrix (ECM). Interactions between the
ECM and lymphatics, as well as the biophysical characteristics of
the stroma, influence tumor formation, growth, and metastasis (27).
ECM stiffness stimulates the expression of globin transcription
factor (GATA) binding protein 2 and GATA2-dependent
VEGFR-3, mediating the growth and migration of lymphatic
endothelial cell in vivo (28). The results of the BP analysis
indicated that the DEGs were closely associated to the
chemotactic process, including cell chemotaxis, regulation of
chemotaxis, and chemokine-mediated signaling pathway. The
results of the MF analysis indicated that LYM was closely
associated with cytokine activity. VEGFs are key cytokines
involved in the LYM process, particularly VEGF-C and VEGF-D,
which are known to be the main mediators of lymphatic endothelial
cell proliferation and migration (29).

The results of KEGG analysis suggested that the LYM-related
DEGs were significantly enriched in the following pathways:
cytokine-cytokine receptor interaction, PI3K—AKT signaling
pathway, proteoglycans in cancer, chemokine signaling pathway
and focal adhesion (Figure 1D). These results provided novel
insights in the mechanisms of LYM.

3.2 Constructing the LYM score

This study collected survival data from GC patients and
performed further analyses. Univariate Cox regression analysis
was employed to identify prognosis-associated genes across three
gene databases. The analysis revealed significant associations
between genes expression and OS in GC patients across three
cohorts: 52 genes in TCGA (p < 0.05), 34 genes in GSE84437 (p
< 0.05), and 28 genes in GSE84433 (p < 0.05). 16 genes were
identified as common among TCGA, GSE84437, and GSE84433
cohorts (Figure 2A, Supplementary Figure S1). Then, LASSO-Cox
regression analysis was conducted on these genes to select the
optimal penalty parameter (lambda value A =0.025). The results of
this analysis identified six genes: a disintegrin and metalloprotease
with thrombospondin motifs 1 (ADAMTS1), sushi, von Willebrand
factor type A, EGF and pentraxin domain containing 1 (SVEPI1),
caveolin-1 (CAV1), NADPH oxidase 4 (NOX4), neuronal
pentraxin 1 (NPTX1), and secreted protein acidic and rich in
cysteine (SPARC) (Figures 2B, C). Kaplan-Meier analysis
demonstrated that each model gene exhibited a significant
association with OS in GC patients (p<0.05, Supplementary
Figure S2), indicating that these genes served as risk factors (HR
> 1, p < 0.05). Finally, regression coefficients were calculated for
each of the 6 genes. A patient’s risk score was determined utilizing
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the following formula: LYMS = 0.0797 * ADAMTS1 + 0.0078 *
SVEP1 + 0.1338 * NOX4 + 0.0095 * CAV1 + 0.0336 * SPARC +
0.1071 * NPTXI.

3.3 Validation of the LYMS model

According to the median LYMS (median=2.193), all GC
patients in the TCGA database were divided into two groups:
high-LYMS and low-LYMS. The distribution of risk scores,
survival outcomes and differential expression of six signature
genes between the two groups were visualized in Figure 2D.
Kaplan-Meier survival analysis demonstrated a significantly
poorer prognosis for high-LYMS patients compared to the low-
LYMS group (p<0.001, Figure 2E). Time-dependent ROC curve
analysis showed that the LYMS predicted OS with AUC values of
0.627 (1-year), 0.660 (3-years), and 0.680 (5-years) (Figure 2F).

To validate the LYMS constructed from the TCGA cohort,
patients in the GSE84437 and GSE84433 were also classified into
high-LYMS and low-LYMS groups according to the median LYMS.
Consistent with the training cohort, the high-LYMS group exhibited
a significantly poorer prognosis than the low-LYMS group in both
validation cohorts (p<0.001) (Supplementary Figures S3A, B). The
distribution of risk scores and survival outcomes for samples in the
validation cohort were illustrated in Supplementary Figures S3C, D,
along with the differential expression of six genes in two groups.
Additionally, the time-dependent ROC curves were presented in
Supplementary Figures S3E, F.

VEGFs are key cytokines involved in the LYM process,
particularly VEGF-C and VEGEF-D, which are known to be the
main mediators of lymphatic endothelial cell proliferation and
migration (29). Further elucidating the relationship between
LYMS and VEGFs helps to better understand LYMS. We
analyzed the correlation between LYMS and VEGFs
(Supplementary Figures S4A-E). The results revealed that LYMS
exhibited positive correlations with VEGFB, VEGFC and VEGFD,
but a negative correlation with VEGFA.

3.4 Development of a nomogram based on
LYMS

This study explored the association of the LYMS with clinical
futures, including the T, M, TNM stage and OS in GC patients. The
results were presented in Supplementary Figure S5. Patients with
poor prognosis, advanced T stage, and high TNM stage exhibited
higher LYM scores.

We further investigated the prognostic significance of LYMS in
GC patients. Univariate Cox regression analysis demonstrated that
LYMS served as a significant risk factor (HR = 3.82, 95% CI 2.01-
7.26, p<0.001, Figure 3A). Multivariate Cox regression analysis
further identified LYMS as an independent prognostic risk factor
(HR = 4.62, 95% CI 2.30-9.19, p<0.001, Figure 3B). Next, we
incorporated factors such as LYMS, age, and TNM stage to
develop a nomogram for the TCGA cohort. We employed
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multivariate Cox and stepwise regression analysis to predict the OS
of GC patients (Figure 3C). The total points were negatively
correlated with the survival rates of patients. Kaplan-Meier
survival analysis indicated that GC patients with high total points
on the nomogram had a worse prognosis compared to those with a
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low point (p<0.001, Figure 3D). The calibration curves
demonstrated the nomogram’s robust predictive performance for
OS at 1, 3, and 5 years (Figure 3E). Additionally, when predicting 1,
3-, and 5-years OS in GC patients, the nomogram demonstrated
strong ability with AUC values of 0.675, 0.743, and 0.815,

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1595592
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al. 10.3389/fimmu.2025.1595592
A B
0.254
— ADAMTS! — NOX4
— AGTRl ~ — NPTX1
28000
E — CAVI — NR2F1
S — COL3Al — PDGFRB
& —FGF2  — SPARC
8 — FNDCl = SVEPI
-0.254 JAM3 — THBS2
— LPARl  — TIMP3
-0.50 : :
-7 -6 -5 -4 -3
Lambda (log scale)
C D .
0] . -
- 1 = . -
12.6 OptlmalLambda—|04025 g 05 : = Risk Group
R 1 2 0o _Z_—_ * High Risk
Q 1 2 —_— * Low Risk
§14 I C o5l :
3 1 -0 vars =e= 3 vars 5
,e ! o= | vars -e= 4 vars g 10.04 - . .
é 122 o 12 vars-e- 5 vars _g 75 Status
= o= 13 vars-e= 6 vars F 50 © Alive
ﬁ 120 o~ 14 vars o~ 7 vars .g 25 + Dead
= o~ 15 vars-e= 8 vars 5 0o )
5 16 vars - 9 vars ® - Risk _Grou;.)
a [— | I High Risk
11.8 4 NPTX1 ‘ ‘ ” H Low Risk
SPARC l Exp:"ession
116 . . . B i CAVI ‘ ‘ ‘ ‘ Iz
-7 -6 =5 —4 -3 NOX4
Log Lambda H
SVEP1 ‘ B
ADAMTSI1
E F
100% LYMS 1.00 |
== Low
—~ High
:'\o\ 75% g 0.75 4
5 :
>
£ £
E: 50% §_ 0.50 4
— D
s =
g ; 0.25
4 ears .62
25% . AUC at 1 years = 0.627
AUC at 3 years = 0.660
HR= 1.676 (1.219-2.304)
AUC at 5 years = 0.680
Log-rank p <0.001 0.00 4
0%
0.00 0.25 0.50 0.75 1.00
0 2.5 5 7.5 10 o
Time (Years) False positive rate
FIGURE 2
Construction and validation of a prognostic gene signature for GC patients. (A) Venn diagram representing common LYM-related DEGs with
potential significant prognostic value across the three databases. (B) LASSO coefficient profiles of 16 common genes (C) Cross-validation of the
constructed signature. (D) Distribution of risk score, survival status and heatmap of LYMS including 6 genes in TCGA cohort. (E) The KM analysis of
LYMS predicting the OS of patients in TCGA cohort. (F) The ROC curves evaluating the predictive accuracy of LYMS at 1-,3- and 5-years in TCGA
cohort. LYMS, lymphangiogenesis score; KM, Kaplan-Meier; AUCs, areas under the curve.

respectively (Figures 3F). The nomogram showed superior
predictive accuracy for OS compared to individual parameters,
including age, TNM stage, and LYMS alone (Supplementary
Figure $6). Finally, external validation using the GSE84437 and
GSE84433 databases confirmed the nomogram’s robust predictive
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performance (Supplementary Figure S7). These findings suggest the
nomogram holds significant potential for clinical prognostication in
GC, particularly for long-term (5-year) survival outcomes.
Clinically, LYMS can predict the prognosis of gastric cancer and
serves as an independent risk factor.
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on the nomogram in TCGA cohort. (E) The calibration curve of the nomogram in TCGA cohort. (F) The ROC curves at 1-, 3-, and 5-years of
nomogram in TCGA cohort. LYMS, lymphangiogenesis score; AUCs, areas under the curves.

3.5 Immunological features of LYMS

To investigate the association between LYMS and tumor immune
features, we examined the immune cell infiltration within the TME.
Given the complexity of the TME, we conducted comprehensive
analyses including tumor-associated stroma content (Stromalscore),
immune cell infiltration levels (Immunescore), tumor purity and the
overall characteristics of the tumor microenvironment
(Estimatescore) to ensure rigorous and multidimensional
evaluation. Compared with CIBERSORT (Figure 4A), the results of

Frontiers in Immunology

07

(Figure 4B), EPIC (Figure 4C), QUANTISEQ (Figure 4D), TIMER
(Figure 4E), MCPCOUNTER (Figure 4F), and XCELL (Figure 4G)
indicated that the high LYMS group exhibited a higher proportion of
B cells, CD8+ T cells, natural killer (NK) cells, macrophages, and
other immune cells. However, the results of CIBERSORT (Figure 4A)
indicated no significant difference or even presented contrary results
in T cells and NK cells between two groups. The observed
phenomenon may be attributed to the elevated stromal cell
abundance within in the TME of the high LYMS group, including
fibroblasts, endothelial cells, and matrix components, as
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The correlations between LYMS and immune landscape. (A-F) Immune cell infiltration between Low-LYMS and High-LYMS groups based on
CIBERSORT, CIBERSORT_ABS, EPIC, quanTlseq, TIMER and MCP-counter algorithms. (G) Correlation of LYMS with immune cell infiltration based on
xCell algorithms. (H-K) The difference in tumor microenvironment between two groups based on Estimate algorithms. LYMS, lymphangiogenesis

score. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.

demonstrated in Figure 4G. An increased stromal cell proportion
could diminish the relative representation of specific immune cells.
TME analysis further demonstrated reduced tumor purity scores in
the high-LYMS group, whereas stromal, immune, and estimate scores

were significantly elevated (Figures 4H-K).
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3.6 Gene set enrichment analysis of LYMS

To further elucidate functional differences of LYMS, this article
performed GSEA on patients with GC. The GSEA results indicated
that cell adhesion molecules (CAMs), ECM receptor interactions,
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GSEA enrichment analyses between high LYMS group and low LYMS group. (A) Upregulated GSEA pathways in the high LYMS. (B) Downregulated
GSEA pathways in the high LYMS. GSEA, Gene set enrichment analysis; LYMS, lymphangiogenesis score.

and focal adhesion were significantly activated in the high LYMS
group (Figure 5A). In contrast, DNA replication, nitrogen
metabolism, oxidative phosphorylation, and ribosome were
inhibited in the high LYMS group (Figure 5B). These differential
pathways may suggest the potential mechanisms underlying
differences between two LYMS groups.

3.7 The correlation between LYMS and
immunotherapy

To further explore the role of LYMS in guiding GC
immunotherapy, we performed correlation analyses between
LYMS and three immunotherapeutic-related biomarkers: TIDE
score, TMB, and IPS. TIDE results demonstrated that patients
with elevated LYMS exhibited higher TIDE score (Figures 6A, B).
High TIDE scores generally indicate that tumors possess robust

Frontiers in Immunology

immune evasion mechanisms, which suggests that patients with
high LYMS may experience limited benefits from immunotherapy.
To further elucidate the role of LYMS in predicting immunotherapy
responsiveness, we conducted TIDE predictive analysis. The results
demonstrated that GC patients who were responsive to therapy
showed lower LYMS levels than non-responders (Figure 6C).
Collectively, these findings indicated that GC patients with low-
LYMS derived enhanced clinical benefits from immunotherapy
relative to high-LYMS patients, which was in accordance with the
TIDE results.

Subsequently, we examined the differences in TMB between two
groups. Analysis indicated that the low LYMS group exhibited
higher mutation frequency, including TTN, TP53, and LRP1B
(Figures 6D, E). The TMB in the low LYMS group was
significantly higher than that in the high LYMS group
(Figure 6F). TMB exhibited a significant negative correlation with
LYMS, with a correlation coefficient of -0.27 (Figure 6G).
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The correlation of LYMS with immunotherapy efficacy. (A) The difference in TIDE scores between high and low LYMS groups. (B) The correlation
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Furthermore, survival analysis further demonstrated that patients
with high TMB exhibited a markedly improved prognosis
compared to those with low TMB (Figure 6H). Finally, this study
assessed the IPS of GC patients across different risk subgroups
(Figures 61-L, Supplementary Figure S8). Higher IPS score correlate
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with stronger sample immunogenicity (30). The results indicated
that in the cytotoxic T-lymphocyte-associated protein 4 (CTLA4)
-positive and programmed death receptor 1 (PD1) -negative
subgroup, the low-LYMS group exhibited significantly elevated
IPS scores compared to the high-LYMS group. Clinically, these
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findings indicated that GC patients with low-LYMS might derive
enhanced clinical benefits from ICIs.

3.8 Drug sensitivity analysis

To investigate the correlation between LYMS and sensitivity to
antitumor drugs in GC, we conducted a drug sensitivity analysis.
The results indicated that the IC50 values of common drugs
including afatinib, gefitinib, dabrafenib, and lapatinib
(Figures 7A-D) were positively correlated with LYMS. This
indicated that patients with high LYMS exhibited insensitivity to
these drugs. Conversely, dasatinib, JQ1, NU7441, JAK8517,
OTX015 and alpelisib (Figures 7E-]) demonstrated a negative
correlation with LYMS, indicating that patients with high LYMS
were more sensitive to these antitumor drugs, providing references
for clinical drug selection.

3.9 Validation of the expression of featured
genes

THC was employed to validate the expression of LYMS model
genes in GC tissues. Compared to normal tissues, ADAMTSI and
SVEP1 expression levels were significantly downregulated in GC
tissues, whereas SPARC expression was markedly upregulated
(Figure 8). There were no significant differences for CAV1 and
NPTXI. Additionally, HPA database lacks information on NOX4
expression in GC. Nevertheless, previous studies have reported
significant upregulation of NOX4 in GC tissues compared to
normal counterparts (31).

The qRT-PCR analysis revealed distinct expression profiles of
six signature genes across gastric cancer cell lines (Supplementary
Figure S9). ADAMTS1 demonstrated significantly higher
expression levels in HGC27 cells (Supplementary Figure S9A).
Both NPTX1 and SPARC exhibited consistently low expression
across all three cell lines (HGC27, AGS, and MKN1)
(Supplementary Figures S9B, C). While CAV1 showed elevated
expression in HGC27, its expression was markedly reduced in
MKN1 (Supplementary Figure S9D). Notably, NOX4 displayed
substantial upregulation in all tested cell lines (HGC27, AGS, and
MKN1) (Supplementary Figure S9E). SVEP1 elevated expression
was observed in HGC27 and MKN1 (Supplementary Figure S9OF).
The differential expression patterns of these six signature genes
between gastric cancer cells and normal gastric mucosal cells further
validate the feasibility of the LYMS.

4 Discussion

Lymphangiogenesis is a crucial process that enables tumor cells
to infiltrate the lymphatic system and plays a key role in tumor
metastasis. However, there are limited clinical researches focused on
the clinical characteristics, treatment, and prognosis of LYM in GC
patients. In this study, we developed a LYMS model (ADAMTSI,
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SVEP1, CAV1, NOX4, NPTXI1, and SPARC) using data from the
TCGA cohorts and validated its robust efficacy in the GSE84437
and GSE84433 cohorts. Subsequently, patients were divided into
two groups according to the median of LYMS. A nomogram model
that integrated clinical futures with LYMS was established,
demonstrating strong predictive performance for OS in GC
patients. We further investigated the impact of LYMS on the
tumor microenvironment and elucidated the relationship between
LYMS and the response to immunotherapy, and sensitivity to
chemotherapy drugs. Our findings indicated that patients with
high LYMS might not benefit from immunotherapy; however,
they exhibited higher sensitivity to drugs such as dasatinib and
alpelisib. Clinically, LYMS can predict the prognosis of gastric
cancer and serves as an independent risk factor. It assists in
determining the benefits of immunotherapy, with patients in the
high-LYMS group deriving limited benefits from ICIs. Additionally,
it indicates drug sensitivity, providing references for clinical drug
selection (e.g., dasatinib). In summary, LYMS enhances our
understanding of the mechanisms underlying GC metastasis and
progression, holding significant potential for prognostic prediction
and guiding treatment decisions for GC patients.

ADAMTS]I, a member of the matrix metalloproteinase family,
is recognized for its role in inhibiting angiogenesis (32). In GC,
elevated expression levels of ADAMTSI were significantly linked to
lymph node metastasis in primary tumors (33). Chien et al.
reported that the activation of epidermal growth factor receptor
mediated by the ADAMTS1/L1 cell adhesion molecule axis
promoted the progression of epithelial-mesenchymal transition
(EMT), thereby enhancing the invasive abilities of cancer cells
(34). SVEP1 is a large ECM protein that plays a key role in
regulating intercellular adhesion (35) and embryonic lymphatic
development (36). SVEP1 has been shown to exhibit a significant
association with poor prognosis in GC patients (37). Chen et al.
found that abnormal expression of SVEP1 could promote tumor
cell migration, chemotaxis, invasion, and proliferation (38). NOX4,
a substrate of NADPH, is significantly upregulated in GC tissues
and functions as a standalone indicator of unfavorable outcomes
(31). Gao et al. revealed that NOX4 promoted GC metastasis by
inducing EMT through the downstream JAK/STAT signaling
pathway (39). Additionally, Nox4 has been shown to promote
LYM via reactive oxygen species (ROS)/extracellular regulated
protein kinases (ERK)/CCL21 pathway (40). The abnormal
expression of NPTX1 promotes the invasion and proliferation of
GC cells (41). Peng et al. discovered that NPTX1 suppressed cancer
cell proliferation by regulating the retinoblastoma protein-E2F
transcription factor signaling pathway via repression of cyclin A2
and cyclin-dependent kinases 2 (CDK2) expression (42). Moreover,
NPTX1 has been shown to enhance chemotherapy sensitivity (43).
SPARC, part of the ECM glycoprotein family, is significantly
expressed in GC and correlates with depth of tumor invasion,
lymph node metastasis, TNM staging (44), and poor OS (45).
Huang et al. revealed that the LCN2/24p3R/JNK/c-Jun/SPARC
axis drived GC malignant progression (46). CAV1, an oncogenic
membrane protein linked to extracellular matrix organization, cell
migration, and signaling, contributes to peritoneal metastasis in GC
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via the ROCK1/CAV1/Rabll axis (47). Additionally, CAV1 is
implicated in chemotherapy resistance in GC (48).
LYM contributes to gastric cancer progression and prognosis.
Specifically, peritumoral lymphovascular density plays a critical role
in lymph node metastasis, while intratumoral lymphovascular

Frontiers in Immunology

density is more strongly associated with tumor invasion depth
(49). VEGFs are key cytokines involved in the LYM process,
particularly VEGF-C and VEGF-D, which are known to be the
main mediators of lymphatic endothelial cell proliferation and
migration (29). Our results revealed that LYMS exhibited positive
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FIGURE 8
The protein expression levels of model genes. (A) ADAMTSI, (B) CAV1, (C) NPTX1, (D) SPARC, (E) SVEP1 in gastric normal tissues and gastric cancers
from HPA online database.

correlations with VEGFC and VEGFD. The LYMS genes are
functionally connected to the VEGFs. SPARC regulates the
expression of VEGF-C and VEGF-D in ovarian cancer, thereby
affecting angiogenesis and lymphangiogenesis (50). Conversely,
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VEGF can also induce the expression of SPARC (51). The
interaction between VEGF and SPARC jointly affects
lymphangiogenesis. ADAMTS1 inhibits lymphangiogenesis by
attenuating phosphorylation of the lymphatic endothelial cell-
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specific VEGF receptor (32). Conversely, VEGF significantly
induces ADAMTSI1 expression in endothelial cells in a protein
kinase C-dependent way (52). CAV-1 regulates the expression of
downstream VEGFs. Studies have shown that CAV-1
downregulation reduces insulin like growth factor-1-induced
VEGFA secretion (53). CAV-1 modulates VEGF-stimulated
VEGFR2 autophosphorylation and downstream angiogenic
signaling (54). Additionally, the NOX4/ROS/VEGF pathway is
involved in the regulation of VEGF expression (55). However,
SVEP1, as a binding ligand of Tiel, affects specific aspects of
lymphatic development in a VEGFC-independent manner (56).

Pathway enrichment analysis of 128 DEGs related to LYM
between normal tissues and gastric tumor samples identified
significant enrichment in the PI3K/AKT signaling pathway,
Proteoglycan in cancer, RAP1(ras-related protein) signaling
pathway and MAPK signaling pathway. Notably, PI3K/AKT
inhibition suppresses EMT and LYM, thereby attenuating tumor
invasion and metastasis (57). Proteoglycans exhibit diverse roles in
tumor -associated LYM. Syndecan-4, a key lymphatic proteoglycan,
acts as a key co-receptor for VEGF-C-mediated pathological LYM
(58). In contrast, decorin interactes with VEGFR3 to suppress
lymphatic vessel sprouting (59). RAP1 maintains lymphatic
permeability, drives normal lymphatic development, and is
essential for embryonic LYM and the maintenance of lymphatic
junctions in adulthood (60). MAPK activation promotes LYM via
the ERK/NF-xB pathway, increasing lymphatic vessel permeability
and migratory capacity (61). Collectively, LYM is a multifactorial
process regulated by multiple signaling pathways, and our findings
elucidate novel mechanistic aspects of LYM.

GSEA revealed significant enrichment of cancer-related
pathways in the high-LYMS group, including CAMs, ECM
receptor interactions, and focal adhesion. Notably, CAMs play a
vital role in cell-cell interactions, immune response modulation,
and tumor cell migration. In GC, CAM-associated signaling is
hyperactivated and strongly correlates with adverse clinical
outcomes (62). Discoidin domain receptor 1 (DDR1) is a major
ECM receptor. The upregulation of DDRI in GC cells enhanced the
metastatic ability of GC by promoting actin cytoskeleton
reorganization (63). Focal adhesion drives tumor progression by
regulating cell adhesion and migration, signal transduction,
cytoskeletal reorganization and microenvironment interactions
(64, 65). These pathways may reveal the potential mechanisms
involved in the differences between high and low LYMS groups.

Tumor-infiltrating immune cells within the tumor
microenvironment critically modulate tumor angiogenesis and
LYM. Our findings demonstrated elevated immune cell
infiltration in the high LYMS group, including macrophages,
neutrophils, B cells, CD8+ T cells and mast cells. Notably,
macrophages serve as direct structural contributors to the walls of
lymphatic endothelial cells and secrete VEGF-C, VEGF-D, and
VEGF-A to trigger LYM initiation in inflamed or tumor tissues
(66). Tumor-associated neutrophils infiltrate tumor sites, where
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they secrete elevated levels of VEGF-A and MMPY, thereby driving
tumor LYM and lymph node metastasis (67). B cells produce
lymphangiogenic factors such as VEGF-A and VEGF-C, through
synergistic signaling via B cell activating factor and IL-4 (68).
VEGE-A produced by effector CD8+ T cells enhances T cell
infiltration, tumor vascularization, and tumor progression (69).
Furthermore, VEGF-A regulates CD8+ T cells by enhancing the
expression of PD-1 and other inhibitory checkpoints involved in
CD8+ T cell exhaustion (70). Mast cells also synthesize pro-
lymphangiogenic factors VEGF-C and VEGF-D and pro-
angiogenic factors VEGF-A, VEGF-B (71).

The tumor immune microenvironment plays a crucial role in
tumor immunotherapy. Using the TIDE algorithm, we evaluated
the function of immune cells in tumor microenvironment and their
association with immunotherapy response. Elevated TIDE score
usually indicates stronger immune evasion mechanisms in the
tumor and poorer immunotherapy efficacy (72), which is
associated with reduced response rate to immunotherapies such
as PD-1/PD-L1 inhibitors and CTLA-4 inhibitors. TMB is also used
to assess the response to immunotherapy. Emerging evidence
indicates that tumor with elevated TMB generates increased
neoantigens, which enhances T cell recognition and correlates
with better outcomes following ICIs (such as PD-1/PD-L1 and
CTLA-4 inhibitors) (73). This is consistent with our results, as the
high LYMS group exhibited higher TIDE scores, lower TMB scores
and lower IPS scores. These data collectively suggested that
malignancies with high-LYMS had a greater potential for immune
evasion, and patients in the high LYMS group might experience
poorer outcomes with ICIs, which could explain the poor overall
survival observed in high-LYMS patients. Overall, LYMS is a
valuable indicator for predicting the response to immunotherapy
in GC patients.

The drug sensitivity analysis indicated that patients in the high
LYMS group showed resistance to common antitumor drugs (such
as afatinib, gefitinib, dabrafenib, and lapatinib), but exhibited
heightened sensitivity to antitumor drugs like dasatinib, NU7441,
JAK8517, JQ1, OTX015 and alpelisib. Dasatinib, a SRC family
kinases inhibitor, has shown efficacy in GC due to the
overexpression of SRC. Choi et al. revealed that dasatinib
modulated cellular energy homeostasis in GC and specifically
targeted p90RSK (74). Additionally, dasatinib significantly
enhances the cytotoxic effects of cisplatin by PI3K/AKT pathway
(75) and oxaliplatin by suppressing Src activity triggered by
oxaliplatin (76). NU7441, a DNA-dependent protein kinase
inhibitor, can hinder the repair of DNA. Geng et al. found that
NU7441 enhanced the susceptibility of radioresistant GC cells to
radiotherapy by activating the caspase3/yH2AX signaling pathway
(77). JQ1 and OTXO015 are both small molecule inhibitors of the
bromodomain and extraterminal. JQI suppresses the malignant
progression of GC through reducing chromatin accessibility and
inhibiting the RUNX2/NID1 signaling pathway (78). Alpelisib
inhibites the proliferation of certain gastric cancer cells by
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suppressing PI3Ko. (79). Furthermore, the combination of alpelisib
and paclitaxel exhibits a synergistic anti-proliferative effect (80).
Overall, drug sensitivity analysis offers guidance for clinical
therapies, especially regarding antitumor drugs like dasatinib and
alpelisib, which demonstrates enhanced therapeutic efficacy in GC
patients with high levels of LYMS.

This study demonstrated that LYMS possessed promising
predictive value for OS and provided guidance for clinical
strategies in GC patients. Nonetheless, it is important to
acknowledge the inherent limitations associated with retrospective
studies, including selection bias and confounding bias. Therefore, it
is important to carry out additional multicenter randomized
controlled trials to validate these results. Therefore, conducting
more multicenter randomized controlled trials and further
validating these results in different patient cohorts and
prospective studies is crucial. Additionally, the correlation
between lymphangiogenesis and tumor metastasis is not a linear
phenomenon, and tumor metastasis is also associated with various
intrinsic factors of the tumor (such as EMT) and environmental
factors. Our LYMS integrates gene expression from tissue
transcriptomes. These transcriptomes contain a mixture of tumor
cells, stromal cells, and immune infiltrating cells from both tumor
and surrounding areas, making it spatially unable to distinguish
between intratumoral and peritumoral lymphangiogenesis. Future
studies integrating spatial transcriptomics may further elucidate the
spatial specificity of LYMS. Future studies integrating spatial
transcriptomics may further elucidate the spatial specificity of
LYMS. In subsequent steps, we will further explore the
interaction mechanisms between lymphangiogenesis and the
tumor immune microenvironment, investigate the LYMS gene in
particular cell lines and patient-derived xenograft models, and
mechanistically clarify the association of LYMS with drug
sensitivity. Overall, this research provides novel insights into the
impact of LYM in the onset and development of GC, highlighting
the need for further foundational studies to deepen our
understanding of GC.

5 Conclusion

This article developed a LYMS model consisting of six genes,
which showed good efficacy in forecasting the outcomes for GC
patients. Additionally, we demonstrated the correlation of LYMS
with the immune microenvironment and the immune therapy
response in GC patients. Overall, LYMS operates as a forecast of
risk for GC patients and can be utilized as a valuable tool in guiding

immunotherapy decisions.
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