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Introduction: This study aims to explore the prognostic significance of
necroptosis-related genes in pancreatic cancer.

Methods: First, clustering analysis was performed on 15 necroptosis-related
genes, which led to the identification of two distinct NRG subtypes. Differential
expression analysis revealed 495 genes associated with prognosis, which were
subsequently used for a second round of clustering. Next, a prognostic model
was constructed using seven key genes, and patients were classified into high-
risk and low-risk groups. External cohort data were used to validate the
prognostic model. Spearman correlation analysis was conducted to examine
the relationship between the most important biomarker, CHST11, and the 15 NRG
genes. Additionally, three single-cell datasets, along with Mendelian
randomization and spatial transcriptomics analyses, were utilized to further
investigate the associations between CHST11, immune therapy, immune cells,
and malignant epithelial cells.
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Results: NRGcluster A and geneCluster B largely overlapped, with most patients
classified into the low-risk group. Among the 15 NRG genes, 11 exhibited
significant expression differences between the high-risk and low-risk groups.
CHST11 was identified as the most important prognostic biomarker and showed
significant correlations with 13 NRG genes. Further analysis revealed potential
mechanisms of action for CHST11.

Discussion: This study, through multi-omics data, reveals that CHST11 may be
associated with necroptosis and is closely related to the malignant prognosis of
pancreatic cancer.

carbohydrate sulfotransferase 11, multi-omics, necrotizing apoptosis, pancreatic

cancer, spatial transcriptomics

1 Introduction

According to data from the Global Cancer Observatory
(GLOBOCAN) 2022 (1), there were 510,992 new cases of
pancreatic cancer and 467,409 deaths due to this disease
worldwide in 2022. Pancreatic cancer is characterized by a very
poor prognosis, with a persistently high mortality rate.

Immune checkpoint inhibitors (ICIs) have shown significant
benefits in the treatment of certain cancer types, such as lung cancer
and melanoma, but face numerous limitations in the treatment of
pancreatic cancer (2). However, the discovery of necroptosis may
open new avenues for the development of innovative treatment
strategies (3). Cell death plays a crucial role in removing damaged
cells to maintain physiological homeostasis, and it can also occur as
an abnormal pathological response to damaging stimuli (4). When
caspase-8 activity is lost, activation of tumor necrosis factor
receptor (TNFR) family proteins (such as TNFR, FAS, TRAILR,
and DR6) can trigger necroptosis, which subsequently activates
receptor-interacting protein kinase 1-3 (RIPKI1-RIPK3) (5-9).
Among these, RIPK3 initiates the activation of mixed lineage
kinase domain-like protein (MLKL). Once activated, MLKL
aggregates and translocates to the plasma membrane, where it
forms large pores, ultimately leading to necroptotic cell death. A
clinical study of breast cancer tissue specimens showed that
compared to adjacent non-cancerous tissues, the mRNA and
protein expression levels of tumor necrosis factor alpha (TNFa),
RIPK1, RIPK3, and MLKL were significantly elevated in breast
cancer tissues.

Numerous studies have focused on the analysis of gene and
non-coding RNA expression profiles to construct tumor
classification systems and prognostic indicators to predict cancer
patient survival outcomes and response to immunotherapy. In a
recent study, researchers used necroptosis-related long non-coding
RNA (IncRNA) to predict the prognosis of gastric cancer patients
and classify molecular subtypes, successfully distinguishing "cold
tumors" from "hot tumors" (10). Another team identified 12
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necroptosis-related genes (NRGs) from a database and developed
a prognostic evaluation tool for bladder urothelial carcinoma
patients. These genes not only have important prognostic value
but are also associated with immune subtypes and tumor stemness
characteristics, providing valuable references for selecting optimal
chemotherapy and immunotherapy regimens (11). Additionally, a
recent study constructed a model based on necroptosis-related
IncRNAs to predict and identify "cold tumors" and "hot tumors"
in bladder urothelial carcinoma (12).

To date, numerous studies have focused on the role of necroptosis
in pancreatic cancer; however, most current mechanistic research still
centers around classical targets such as MLKL and RIPK3. Although
some studies have explored necroptosis-related targets in pancreatic
cancer using bioinformatics approaches from a clinical perspective, the
mechanisms involved exhibit high complexity in clinical scenarios.
Therefore, in-depth research into these mechanisms must be based on
comprehensive exploration of relevant targets and extensive clinical
correlation analysis. Current research has yet to provide sufficient
candidate targets to fully explain this issue. This study aims to identify
necroptosis-related targets and determine potential candidate targets
closely associated with both necroptosis and pancreatic cancer
prognosis, providing more directions and options for future research.

In our study, we first collected 67 necroptosis-related genes from
previous literature and selected 15 common necroptosis genes. Based
on these 15 genes, we performed consistency clustering analysis and
divided the patients into two NRGclusters. We further identified
differentially expressed genes, ultimately obtaining 495 genes
associated with prognosis. Through a second consistency clustering
analysis, we divided the patients into two geneClusters. Then, we
selected 7 model genes from the 495 genes and constructed a
prognostic model, dividing the patients into high-risk and low-risk
groups based on the median risk score in the training set. We reviewed
the correlation of features from the three rounds of grouping and found
that NRGcluster A and geneCluster B exhibited a high degree of
overlap and were almost entirely classified as the low-risk group.
Additionally, among the high-risk and low-risk groups, 11 out of the

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1592231
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liao et al.

15 genes showed significant expression differences. We then used an
external validation set to explore the prognostic characteristics of the 7
model genes, focusing on the most significant prognostic feature,
CHST11. We first verified the significant positive correlation between
CHST11 and the 15 genes (including GATA3 and FAS) through
Spearman correlation analysis. We then analyzed immune treatment
responses, the relationship between immune cells and non-immune
cells, and the expression characteristics of CHST11 across three single-
cell datasets. During this process, we also applied Mendelian
randomization to screen for genes associated with pancreatic cancer
from the differentially expressed genes and analyzed the prognostic
characteristics of these genes and their association with CHST11 using
transcriptome datasets. Finally, we visualized the spatial distribution
characteristics of CHST11 and CTSC genes through spatial
transcriptomics. In summary, this study used two rounds of
consistency clustering analysis and a continuous biological screening
system, ensuring that each extraction of prognostic features was
associated with the 15 necroptosis-related genes, thus alleviating the
feature dilution problem present in previous studies. Moreover, we
revealed the prognostic role of CHST11 in pancreatic cancer through
multi-omics analysis and explored its potential synergistic effects with
immune regulation, cellular exhaustion, and CTSC.

2 Methods

2.1 Copy number variation of necroptosis
genes

A total of 67 necroptosis genes were screened via GeneCards
database (https://www.genecards.org) (Supplementary Table 1).
Pancreatic adenocarcinoma (PAAD) CNV data were retrieved
from TCGA, and gene-level annotation was conducted using
CNTools (v1.64.0) (13) to obtain copy number values of 67 genes
in 171 tumor samples. Genes were classified by log, (copy number
ratio): log, ratio > 0.3 for copy number gain, and log, ratio < -0.3 for
copy number loss. The gain/loss frequencies of each gene across
samples were calculated; ggplot2 (14) was used to visualize CNV
frequencies (gain in red, loss in green) via scatter plots, showing
population-level CNV distribution of different genes.

2.2 Dataset merging, batch effect removal
and survival analysis of necroptosis genes

Raw count matrices of PAAD were downloaded from TCGA-
PAAD and GSE62452 databases, with shared genes retained for
merging. Batch effects were removed using the ComBat function
(15), and the processed data were subjected to log, transformation
and normalization. Combining survival information and
transcriptome data of 243 PAAD patients from TCGA-PAAD
and GSE62452, 15 common genes were screened from 67 NRGs
within the gene intersection of the two datasets. Univariate Cox
regression analysis was then performed on these 15 genes.
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2.3 Consensus clustering analysis of
necroptosis genes

Consensus clustering of 15 NRGs was performed via the
ConsensusClusterPlus package (16); patients were divided into
two NRGClusters based on the result with the highest intra-group
and lowest inter-group correlation. Prognostic differences between
clusters were compared using the Kaplan-Meier (KM) method.
Principal component analysis (PCA) was used to reduce the
dimensionality of NRG expression matrices for verifying grouping
reliability. DESeq2 (17) was applied for differential gene analysis
(absolute FC > 1, P < 0.05), identifying 930 differential genes. GSVA
(18) evaluated preset functional gene set enrichment, while single-
sample GSVA (ssGSEA) (19) calculated infiltrating immune cell
abundance and immune pathway activity. GO (20) and KEGG (21)
analyses of the 930 differential genes were conducted using the
clusterProfiler package.

2.4 Screening of prognostic genes and
secondary clustering analysis

To further screen prognostic genes, 930 differentially expressed
genes were first subjected to univariate COX regression analysis,
with 495 candidate genes identified using P < 0.05 as the threshold.
To verify the association between these 495 genes and 15
necroptosis genes, a second consensus clustering analysis was
performed based on the expression levels of candidate genes.
Patients were divided into two geneCluster groups according to
the result with the highest intra-group correlation and most
significant inter-group difference. Prognostic differences between
the two groups were compared using the KM method. Subsequent
differential expression analysis of 15 NRGs between geneCluster
groups identified 13 genes with significant differential expression.

2.5 Screening of signature genes and
construction of prognostic model for
pancreatic cancer patients

Given the potential association between 495 candidate genes
and 15 NRGs, least absolute shrinkage and selection operator
(LASSO) regression was performed to screen 7 genes for
constructing a prognostic signature, simplifying the model and
extracting core features. Risk scores were calculated via
multivariate Cox regression based on the expression levels of
these 7 genes; patients were divided into high- and low-risk
groups using the median risk score of the training cohort as the
cutoff. The KM analysis was used to assess survival differences
between the two groups, and receiver operating characteristic
(ROC) curve with area under the curve (AUC) verified the
predictive performance of the model. Additionally, a nomogram
was constructed to predict survival probability by integrating
patients’ tumor stage, grade, and risk score.

frontiersin.org


https://www.genecards.org
https://doi.org/10.3389/fimmu.2025.1592231
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liao et al.

2.6 Association of prognostic model with
two clustering results and necroptosis-
related genes

To explore the association between prognostic risk scores, dual
clustering results, and NRGs, the ggalluvial package (22) was used
to generate a Sankey diagram, visualizing connections among NRG
groups, geneCluster groups, risk stratification (high/low-risk
groups), and survival status. Wilcoxon test was then applied to
compare risk score differences between NRGCluster and
geneCluster, as well as to assess expression differences of 15
NRGs between high- and low-risk groups.

2.7 External validation of survival analysis
and pathway correlation analysis

To further validate the reliability of the survival analysis results,
we independently validated the seven signature genes in an external
validation set. The external validation data were sourced from the
integration of GEO data by Maté Posta et al., including 12 GEO
datasets such as GSE84219, GSE78229, and GSE179351, as well as
four pancreatic cancer datasets from the International Cancer
Genome Consortium (ICGC) data portal (23). In a total of 1237
clinical samples, we used the median expression value of each gene
as the grouping threshold to perform single - gene Kaplan-Meier
survival analysis respectively. Considering the potential bias
brought by the integrated dataset itself, we selected the CHST11
gene with the most significant prognostic difference and divided the
high- and low-expression groups using the median expression of
CHSTI11 as the threshold in the pancreatic cancer datasets
GSE85916, GSE28735, and GSE57495, performing Kaplan-Meier
survival analysis. In addition, to further explore the prognostic value
of the seven signature genes, we integrated the TCGA pancreatic
cancer expression matrix and the GTEx pancreatic tissue expression
matrix, and compared their expression differences in 179 pancreatic
cancer samples and 171 normal tissues (24). Subsequently, we used
Spearman correlation analysis to explore the association between
the CHSTI11 gene with the most significant prognostic
characteristics and the 15 NRGs.

2.8 Evaluation of tumor microenvironment
in high- and low-risk groups

To explore the relationship between risk score and TME, the
CIBERSORT (25) was first used for immune infiltration analysis of
transcriptome data from high- and low-risk groups, quantifying the
abundance distribution of 22 immune cell subsets; Spearman
correlation analysis was applied to explore the association
between 22 immune cells and risk score. Correlations between
immune cell abundance and 7 signature genes were calculated to
assess potential links between gene expression and immune
microenvironment. The ESTIMATE (26) was used to obtain
StromalScore, ImmuneScore, Tumor Purity, and EstimateScore

Frontiers in Immunology

10.3389/fimmu.2025.1592231

for each sample. PCA was then applied for dimensionality
reduction and visualization of TME features to compare
distribution differences between high- and low-risk groups, while
Wilcoxon rank-sum test was used to evaluate inter-group TME
differences. The maftools package (27) was used to generate
Mutation Annotation Format (MAF) files from mutation data,
based on which Tumor Mutation Burden (TMB) scores were
calculated. Tumor stem cell characteristics were characterized by
downloading ssRNA from TCGA. Finally, Pearson correlation
coefficients between risk score and TMB/ssRNA were calculated.

2.9 Drug sensitivity analysis

IC50 (half-maximal inhibitory concentration), an important
pharmacological indicator for measuring drug activity, refers to the
drug concentration required to inhibit 50% of cancer cell growth.
The pRRophetic package (28) was used to predict and calculate the
IC50 values of multiple chemotherapeutic drugs in high- and low-
risk group samples, so as to evaluate the potential relationship
between risk score and chemotherapeutic drug sensitivity.

2.10 Single-cell analysis of pancreatic
cancer immunotherapy group

Single-cell analysis of the immunotherapy group was performed on
the OmniBrowser platform (https://omnibrowser.abiosciences.cn).
Relevant data of GSE150176 were retrieved on the platform, and
the platform's differential expression analysis tool was used to
compare the expression changes of signature genes in different
cell subsets and before/after immunotherapy in pancreatic
cancer tissues. All analysis steps were completed in the same
platform environment.

2.11 Single-cell analysis of pancreatic
cancer patients

The GSE155698 dataset was downloaded from the GEO
database, containing single-cell transcriptome sequencing data
from 16 pancreatic cancer tissue samples and 3 normal pancreatic
tissue samples. All analyses were performed in R (v4.3.3). The
Seurat (v4.3.0) package (29) was used to read and preprocess the
sequencing matrix. Cells with fewer than 250 or more than 2,500
detected genes, fewer than 500 UMIs, or over 15% mitochondrial
gene content were removed. In addition, cells with more than 3%
ribosomal and less than 0.1% hemoglobin gene proportions were
retained to eliminate blood contamination and ensure high-quality,
transcriptionally active cells. Data were then normalized using the
NormalizeData function. In feature selection, highly variable genes
were identified using the vst method in FindVariableFeatures; data
were scaled with ScaleData, regressing out cell cycle scores to
eliminate cell cycle effects. PCA was performed via RunPCA, with
principal components accounting for 90% cumulative variance
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explained selected for downstream analysis. The Harmony
algorithm was used to integrate and correct batch effects between
samples. After batch effect correction, FindNeighbors was used to
construct a cell neighbor graph, and Louvain clustering was
performed using FindClusters. Combined with marker genes, cells
were annotated into 13 subpopulations. Based on CHSTI11
expression, naive T cells and T cells were further divided into
positive and negative cells, with expression differences of 15
NRGs compared between groups. Additionally, CellChat (v2.1.2)
(30) was used with Seurat-processed expression matrices and cell
annotations for cell-cell communication analysis; Monocle2 (31)
combined with Seurat was used for pseudotime analysis to infer
dynamic trajectories of cell state transitions.

2.12 Mendelian randomization

We used the FindMarkers function in the Seurat (v4.3.0)
package to perform differential expression analysis using the
Wilcoxon test, and set the threshold as: the absolute value of log2
fold change (FC) was greater than 0.25 and the p-adjust was less
than 0.05. Based on this, the differentially expressed genes in
positive/negative T cells and positive/negative naive T cells were
screened out respectively. Then, we selected the eQTL data (P < 5
107®) that were significantly associated with gene expression within
the £1 Mb region upstream and downstream of the target gene. To
ensure the independence of instrumental variables, we performed
LD (linkage disequilibrium) pruning, setting r* < 0.01 and the
window size as 1000 kb, and screened strong instrumental variables
by calculating the F-statistic, retaining the instrumental variables
with F > 10. Subsequently, we extracted the pancreatic cancer-
related outcome datasets from the OPENGWAS database (https://
opengwas.io/), including BBJ-140, IEU-822, GCST90018673, and
GCST90018893. Finally, the TwoSampleMR (v0.6.12) (32) package
was used to perform Mendelian Randomization (MR) analysis, and
the validity of instrumental variables was evaluated through
heterogeneity and pleiotropy tests. We screened genes with a P-
value < 0.05 of the IVW method as the significance threshold.
Subsequently, the Pearson correlation coefficients between these
genes and the CHST11 gene in the TCGA dataset were calculated
through the GEPIA2 database (33), and the prognostic values of the
genes significantly associated with CHST11 were further explored
in the GSE71729, TCGA-PAAD, and GSE62452 datasets.

2.13 Protein-protein interaction and RNA-
binding protein analysis

To explore the interaction among candidate genes, the STRING
database (34) was used to construct a PPI network. During the
analysis, the minimum interaction confidence threshold was set to
0.4 (medium confidence), and isolated nodes were removed to
obtain a biologically meaningful interaction network. The PPI
network was then visualized using Cytoscape software (v3.9.1)
(35) to further demonstrate the potential interaction relationships
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among these genes. Meanwhile, to explore the potential regulatory
relationship between candidate genes and RBPs, interaction data
between RBPs and target genes were retrieved from ENCORI
(StarBase) data (36), and an RBP-mRNA interaction network was
constructed using Cytoscape.

2.14 Single-cell analysis of non-immune
cells and spatial transcriptomics in
pancreatic cancer tissues

The single-cell dataset of non-immune cells in pancreatic cancer
tissues (GSE194247) was preprocessed following the aforementioned
pancreatic cancer immune cell single-cell analysis procedure. Marker
genes from previous literature (37) were used for subpopulation
annotation; the above-described method was applied to screen
differential genes of malignant epithelial cells, followed by another
Mendelian randomization analysis. For spatial transcriptomics
(GSE235315), Seurat (v4.3.0) was used for data processing. After
normalization via SCTransform, dimensionality reduction and
clustering were performed with RunPCA, FindNeighbors,
FindClusters, and RunUMAP; spatially variable genes were
screened using FindSpatiallyVariableFeatures. In single-cell
deconvolution, the GSE194247 single-cell reference dataset was
loaded to extract cell type annotations. FindTransferAnchors
established anchors between single-cell and spatial data, and
TransferData mapped cell type labels to spatial transcriptomic data
for predicting spatial cell type distribution.

2.15 Molecular docking

We downloaded the drug-gene association files from the Drug
SIGnatures DataBase (38), and performed enrichment analysis
based on a custom gene set using the enricher() function of the R
package clusterProfiler (v4.12.0) (39). A double screening criterion
was adopted, with the p-value (pvalueFilter=0.05) and the adjusted
p-value (adjPvalFilter=0.05). Subsequently, we downloaded the
three-dimensional structures of the corresponding drugs from the
Pubchem database (40), predicted the protein structure of CHST11
in the ALPHAFOLD database (41), and finally performed online
molecular docking using CB-DOCK2 (42).

2.16 qPCR and immunohistochemistry

We extracted RNA from normal pancreatic cells HPDE6-C7
and pancreatic cancer cells CFPAC-1, respectively. We took 1 pg of
RNA and used a reverse transcription kit (Takara Biomedical
Technology, China) for reverse transcription. After synthesizing
cDNA, it was diluted for later use. For qPCR, the SYBR Green
fluorescent dye system (Takara Biomedical Technology, China) was
used. The 20 pL reaction system included 10 pL of SYBR Green
Master Mix, 0.6 pL of forward primer (10 pM), 0.6 pL of reverse
primer (10 uM), 2 uL of diluted cDNA template, and RNase-free
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water was added to make up to 20 pL. After the PCR amplification
was completed, a melting curve analysis was performed to verify the
specificity of the amplification products. The primer sequences are
in the Supplementary Table 2. The immunohistochemistry (IHC)
data were obtained from the Human Protein Atlas (HPA) database
(https://www.proteinatlas.org).

3 Results

3.1 Prognostic correlation study of
pancreatic cancer patients based on
necroptosis genes

The copy number variation (CNV) data of pancreatic cancer
patients were obtained from The Cancer Genome Atlas (TCGA)
database. In this study, the correlation between 67 necroptosis-
related genes (NRGs) and patient prognosis was first analyzed. The
results of CNV frequency analysis (Figure 1A) showed that among
the 67 genes, the amplification of MYC gene was the most common,
followed by SIRT2, STST3 and TNF genes, while the copy number
deletion of CDKN2A, RIPK1 and TNFRSF1A genes was
widespread. Subsequently, the GSE62452 dataset (including 69
tumor samples and 61 normal control samples) was merged with
TCGA data in this study, and 15 NRGs shared by the two datasets
were screened for subsequent analysis. Univariate Cox analysis was
performed on 243 pancreatic cancer patients with complete survival
information. The results showed that among the 15 NRGs, 5 were
significantly correlated with patient prognosis (Figure 1B).

3.2 Consensus clustering analysis based on
15 NRGs

Clustering analysis was performed using the expression data of
15 necroptosis-related genes (NRGs). The optimal number of
clusters (k value) was determined by progressively increasing k,
with the highest intra-cluster correlation and lowest inter-cluster
correlation observed at k=2 (Supplementary Figure SI).
Accordingly, pancreatic cancer patients were divided into two
groups: NRGCluster A and NRGCluster B (Figure 1C).

Kaplan-Meier survival analysis demonstrated that patients in
NRG Cluster A had longer overall survival and higher survival
probability than those in Cluster B (p=0.026) (Figure 1D). Principal
component analysis (PCA) further (Figure 1E) confirmed a clear
separation between the two NRG clusters in the 2D coordinate
space. The heatmap (Figure 1F) illustrated the relationships among
NRG clusters, clinical characteristics of pancreatic cancer patients,
and the expression pattern of 15 NRGs, indicating significant
differences between Cluster A and Cluster B.

Gene Set Variation Analysis (GSVA) results (Figure 1G)
demonstrated that NRG Cluster B was significantly enriched in
immune regulation and inflammation-related signaling pathways,
including leukocyte transendothelial migration, Fcy receptor-
mediated phagocytosis, T cell receptor signaling, Toll-like
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receptor signaling, and chemokine signaling pathways. Further
validation using Single Sample Gene Set Enrichment Analysis
(ssGSEA) (Figure 1H) revealed that Cluster B exhibited a
generally higher degree of immune cell infiltration, particularly in
activated B cells, activated CD4"T cells, activated CD8" cells,
activated dendritic cells, macrophages, natural killer (NK) cells,
and regulatory T cells. However, the infiltration levels of some
immune cells (CD56dim NK cells, eosinophils, and plasmacytoid
dendritic cells) were lower in Cluster B than in Cluster A.

3.3 Consensus clustering analysis of
prognosis-related differentially expressed
genes based on NRG clusters

A total of 930 differentially expressed genes (DEGs) were identified
between the two NRG clusters (Supplementary Table 3). Gene
Ontology (GO) enrichment analysis of these 930 DEGs (Figure 2A)
showed that the DEGs were involved in biological processes (BPs) such
as extracellular matrix organization, extracellular structure
organization, and external encapsulating structure organization. In
terms of molecular functions (MFs), the DEGs were significantly
associated with extracellular matrix structural constituent, calcium-
dependent protein binding, and immunoglobulin binding. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis further revealed that these DEGs were enriched in the
hematopoietic cell lineage, complement and coagulation cascades,
and NOD-like receptor signaling pathways (Figure 2B).
Subsequently, 495 prognostic DEGs (PRDEGs) associated with
pancreatic cancer prognosis were identified via univariate Cox
regression analysis (Supplementary Table 4).

Based on the expression data of 495 PRDEGs, k=2 was selected
as the optimal clustering variable (Supplementary Figure S2), and
pancreatic cancer patients were divided into two groups:
geneCluster A and geneCluster B (Figure 2C). Kaplan-Meier
curves showed that the survival rate of patients in geneCluster B
was significantly higher than that in geneCluster A (Figure 2D).
Examination of NRG expression levels in the two gene clusters
revealed that among the 15 necroptosis-related genes (NRGs), the
expression levels of FADD, FAS, FASLG, MAPKS, TNFRSFIA,
TNFRSF1B, PANXI, DIABLO, GATA3, IPMK, and TARDBP were
increased in geneCluster B, while the expression levels of SIRT3 and
BNIP3 were decreased (Figure 2E). A comprehensive heatmap
illustrated the associations among the gene clusters, patients'
clinical characteristics, PRDEG expression levels, and NRG
clusters, highlighting distinct transcriptional and clinical profiles
between geneCluster A and geneCluster B. (Figure 2F).

3.4 Construction and validation of risk
model based on prognostic differentially
expressed genes

To construct a prognostic model, LASSO regression was applied
to the 495 PRDEGs (Figures 2G-H), ultimately identifying seven
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Clustering analysis of necroptosis-related genes (NRGs) in pancreatic cancer patients and the survival and clinical characteristics among different
clusters. (A) Copy humber variation (CNV) amplification and deletion frequencies of 67 necroptosis-related genes (NRGs) in TCGA pancreatic cancer
cohort; (B) Among 15 NRGs used for clustering analysis, five showed statistical significance (p < 0.05) in univariate Cox analysis; (C) Consensus
clustering identified two NRG clusters (NRGcluster A/B); (D) Kaplan-Meier curves showed that patients in NRGcluster A had longer survival time and
higher survival probability than those in cluster B (p = 0.026); (E) Principal component analysis (PCA) revealed distinct separation between the two
NRG clusters; (F) Heatmap displaying associations among NRG clusters, clinical features, and NRG expression levels in pancreatic cancer patients;
(G) Gene set variation analysis (GSVA) revealed enriched pathways in different NRG clusters; (H) Single-sample gene set enrichment analysis (ssGSEA)
indicated differences in immune cell infiltration between NRG clusters (***p < 0.001).

key genes (CHST11, SLC16A1, RHOF, ANO6, PAH, MANI1CI, A Sankey diagram was used to show the relationships among
SPRR1B) for inclusion in the risk scoring model. Subsequently, risk ~ NRGcluster, geneCluster, high/low-risk groups, and survival
score differences between NRGcluster and geneCluster groups were  status. The distributions of patients in NRGcluster A and
compared. Boxplots showed that in NRGcluster, the risk score of  geneCluster B were nearly identical, both corresponding to the
cluster A was lower than that of cluster B; in geneCluster, the risk  low-risk group, suggesting a potential association between the seven
score of geneCluster A was higher than that of geneCluster B, with ~ model genes and the 15 necroptosis-related genes (Figure 2K).
all differences reaching statistically significant (Figures 2I-J).  Further analysis of NRG expression between high- and low-risk
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groups revealed significant differences in 11 of the 15 genes.
Specifically, PANX1, FADD, TNFRSF1A, GATA3, IPMK, and
FAS were highly expressed in the high-risk group, while BNIP3
and FASLG were highly expressed in the low-risk group (Figure 2L).

3.5 Model performance validation

Patients were ranked by risk scores (Figures 3C, H) and divided
into high- and low-risk groups using the median score of the
training set. Kaplan-Meier analysis revealed significantly poorer
overall survival in the high-risk group across both training
and combined cohorts (P < 0.001, Figures 3A, F). As risk scores
increased, mortality also rose, with survivors clustering
predominantly in the low-risk group (Figures 3D, I). Heatmaps
revealed consistent trends: CHST11, SLC16A1, RHOF, ANO6, and
SPRR1B were upregulated in the high-risk group, while PAH and
MANI1CI showed the opposite pattern (Figures 3E, J). ROC curves
demonstrated strong predictive ability, with AUCs of 0.827,
0.864, and 0.900 for 1-, 3-, and 5-year survival in the training
cohort, respectively, and similar results in the overall dataset
(Figures 3B, G).

To assess model applicability across clinical subgroups, Kaplan—
Meier analyses were performed in grade I-II vs. III-IV and stage I-
IT vs. IIT-IV subsets. The model effectively distinguished prognoses
in all subgroups. Notably, staging alone failed to show significant
survival differences (P = 0.34), but when combined with the risk
score, four distinct prognostic groups emerged (P = 0.001),
highlighting the model’s added prognostic value (Figures 3K-M).

A nomogram integrating stage, grade, and risk score was
developed to predict individual survival probabilities, where total
points estimated survival at specific time points (Figure 3N).
Calibration curves demonstrated excellent concordance between
predicted and observed outcomes (Figure 30).

To evaluate the independent prognostic value of the seven
feature genes, survival analysis was performed for 1,237
pancreatic cancer cases using the Kaplan-Meier Plotter database.
Based on median expression levels, CHST11, SLC16A1, RHOF,
ANO6, MANI1CI1, and SPRR1B were significantly associated with
overall survival. Among these, MAN1CI1 predicted a favorable
prognosis, whereas the others correlated with poor outcomes
(Figures 4A-F), consistent with model-based trends. Integrated
analysis of GTEx (normal, n = 171) and TCGA (tumor, n = 179)
datasets revealed higher expression of CHST11, SLC16A1, RHOF,
MANI1CI1, SPRR1B, and ANO6 in tumors (Figures 4G-L). In
contrast, PAH expression was significantly lower in tumor tissues
compared with normal counterparts (Figure 4M). Across the
GSE85916, GSE28735, and GSE57495 datasets, high CHST11
expression consistently correlated with worse survival
(Figures 4N-P). Spearman correlation further indicated that
CHST11 expression was positively associated with multiple
NRGs, suggesting a potential mechanistic link between
necroptosis and pancreatic cancer progression (Figure 4Q).
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3.6 Analysis of tumor microenvironment
and drug sensitivity in high- and low-risk
groups

The correlation between immune cell infiltration and the risk score
was analyzed (Figures 5A-H). Results showed that the abundances of
naive B cells, M2 macrophages, resting mast cells, monocytes, and
resting CD4 memory T cells were negatively correlated with the risk
score, while activated dendritic cells, activated mast cells, and
neutrophils were positively correlated. Further analysis revealed the
correlation between 22 immune cells and 7 risk model genes
(Figure 5I). In somatic mutation analysis of 158 pancreatic cancer
patients (Figure 5]), the tumor mutation burden (TMB) in the high-
risk group was significantly higher than that in the low-risk group
(Figure 5K). Comparison of tumor microenvironment (TME) scores
between the two groups showed no significant differences in
StromalScore, ImmuneScore, or ESTIMATEScore (Figure 5L), nor in
tumor purity (Supplementary Figures S3, S4). Additionally, RNA
Stemness Score was significantly positively correlated with risk score
(Figure 5M). Drug sensitivity analysis based on the pRRophetic
algorithm showed significant differences in 70 drugs between the two
groups (P < 0.05). Among them, Gemcitabine, Cisplatin, Paclitaxel,
Docetaxel, Doxorubicin, Vinorelbine, and Erlotinib had significantly
lower IC50 values in the high-risk group (Figures 5N-T), suggesting
these drugs may be more suitable for high-risk patients. Other
differential drugs are shown in Supplementary Figure S5.

3.7 Single-cell transcriptome analysis of
mouse immunotherapy group

Single-cell RNA sequencing (scRNA-seq) analysis of the mouse
immunotherapy cohort identified 14 cell subsets, including
macrophages, monocytes, and monocytic myeloid-derived suppressor
cells (mMDSCs). t-SNE plots visualized the expression distribution of 6
model genes across cell subsets (Figures 6A-C). Box plots further
showed these genes' expression characteristics (Figure 6D). Violin plots
revealed high CHST11 expression in T cells, NK cells, MDSCs, and
cDCls (Figure 6E). Additionally, CHST11 expression was significantly
higher in the CD40 agonist group and combined therapy group than in
the untreated group (Figures 6F-G).

3.8 Single-cell analysis of pancreatic
cancer patients

Single-cell data from tumor tissues of 17 pancreatic cancer
patients and adjacent normal pancreatic tissues of 3 patients were
preprocessed, and the expression distribution of 7 model genes
across different cell subsets was visualized (Supplementary Figure
S6). Combined with marker genes, cells were divided into 15 subsets
(Figures 7A, B). In pancreatic cancer tissues, CHST11 expression
was predominantly observed in T cells, macrophages, and
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Validation and performance evaluation of the prognostic model in pancreatic cancer (PAAD). (A, F) Kaplan-Meier survival curves comparing high-
and low-risk groups in the training set (A) and entire cohort (F); (B, G) Time-dependent ROC curves for predicting 1-, 3-, and 5-year overall survival
in training (B) and full (G) datasets (AUC values shown); (C, H) Distribution of risk scores in ascending order for patients in training (C) and full

(H) datasets; (D, 1) Distribution of survival status according to risk score in training (D) and full (I) datasets; (E, J) Heatmaps of the seven model genes
in high- and low-risk groups, training (E) and full (J); (K—M) Kaplan-Meier analyses stratified by Grade 1-2 vs. Grade 3-4 (K), Stage I/l vs. Stage Ill/IV
(L), and combined stage and risk groups (M); (N) Nomogram integrating risk score and clinical variables to predict overall survival; (O) Calibration
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External validation of prognostic model genes. (A—F) Kaplan-Meier curves from Kaplan-Meier Plotter database showing associations between
expression levels of CHST11, SLC16A1, RHOF, ANO6, MAN1C1, and SPRR1B (split by median expression) and survival outcomes of 1,237 pancreatic
cancer patients; (G—M) Scatter plots comparing expression of CHST11, SLC16A1, RHOF, MAN1C1, SPRR1B, ANO6, and PAH in normal pancreatic
tissues (GTEx, n = 171) and tumor tissues (TCGA, n = 179) (*p < 0.01); (N—P) Kaplan-Meier curves from GSE85916, GSE28735, and GSE57495 datasets
showing survival differences between high and low CHST11 expression groups; (Q) Spearman correlations identifying 12 NRGs associated with

CHSTI11.

neutrophils (Figure 7D), while in adjacent normal tissues, it was

mainly expressed in T cells (Figure 7C).

Subsequently, we focused on characteristic analysis of T cells
and naive T cells. Based on CHST11 expression, T cells were divided
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into CHST11* T cells and CHST11" T cells, and naive T cells into
CHST11" naive T cells and CHST11  naive T cells. In CHST11" T
cells, the expression proportion and average expression level of
GATA3, TNFRSF1A, and FASLG among 15 NRGs were
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FIGURE 5

Prognostic characteristics of the model. (A—H) Correlations between infiltration levels of various immune cells and risk scores; (I) Correlations
between 22 immune cell types and seven model genes (*p < 0.05, **p < 0.01, ***p < 0.001); (J) Waterfall plot of somatic mutations in 158 patients;
(K) Tumor mutation burden (TMB) comparison between risk groups; (L) Violin plots show StromalScore, ImmuneScore, and ESTIMATEScore between
groups; (M) Correlation analysis between RNA stemness score and risk score; (N=T) Boxplots show IC50 differences for Gemcitabine, Cisplatin,

Paclitaxel, Docetaxel, Doxorubicin, Vinorelbine, and Erlotinib between high- and low-risk groups.

significantly upregulated; the average expression level of FAS,
TRIM11, DIABLO, and MAPKS also increased (Figure 7E). In
CHST11" naive T cells, the expression proportion and average
expression level of GATA3 were significantly elevated (Figure 7F).
Pseudotime analysis showed that CHST11" naive T cells were
mainly distributed in State 1-4 (Figures 7G, H) and exhibited
higher cell density in the early stage of Pseudotime (Figure 7]).
Figure 71 shows the dynamic changes of five core genes in
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Pseudotime. Additionally, we compared cell communication
patterns between CHST11* and CHST11™ naive T cells, as well as
between CHST11" and CHST11™ T cells (Figures 7K-N). Results
showed that CHST11" naive T cells had significantly higher
communication intensity in MIF and MHC-I pathways than the
negative group (Figure 70); CHST11" T cells also had significantly
upregulated communication intensity in MHC-I, CLEC, CD99,
MIF, ANNEXIN, and MHC-II pathways (Figure 7P).

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1592231
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

10.3389/fimmu.2025.1592231

Liao et al.
A tSNE Macrages sanll
Varopes s e
mMDSCs (monocyti myskod deived suppressar cat) 4,176 Il .
Non<onventonal Monocytes szl
CD4+ TCels.
Guyes
OB e s
‘GMOSCs (ganudocyi mysd-derved spgressar ol 21
[ T——— s
I
scsros
[ — 8
aces
C SPRR1B MAN1C1
-40 -20 0 20 40 -40 -20 20 40 -40 -20
40 40 In(TPM+1)
" 8
20 o’ - 20
0 0 °
=20 =20 4
-40 -40 2
SLC16A1
-40 =20 o 20 40 o
40 40
20 20
0 . o
-20 20
-40 -40
The Average Expression of SPRR1B MAN1C1 ANO6 RHOF SLC16A1 CHST11 The Expression of Chst11
D F-statistic: 165908  Pr(>F): <1.00e-14 F-statistic: 119,602 Pr(>F): <1.00e-14
s N
.
u
H o
H 5
£ 3
H £,
"
:
vL/
L N, S G o fa,‘%hafﬂ?
\'%\5%@@“@% % PR R D
\ v N %\
F The Expression of Chst11 G The Expression of Chst11
F-statistic: 234.488 Pr(>F): <1.00e-14 F-statistic: 22.351 Pr(>F): 2.30e-06
.
'
,
,
. .
5 : I
s s
: 2
' |
. A—A;
PO, 4 CTLA . and 40 agis o) fisrit (resed
FIGURE 6

Single-cell transcriptomic analysis of the immunotherapy cohort in pancreatic cancer.(A) t-SNE plot of 14 cellular subclusters; (B) Overall expression
of six model genes across all cells; (C) Expression of six model genes in specific cell subclusters; (D) Boxplot showing overall expression levels of the
six model genes in immune cells; (E) Violin plot of CHST11 expression across cell types; (F) CHST11 expression significantly upregulated in CD40
agonist-treated group versus untreated (p < 0.001); (G) CHST11 expression significantly elevated in CD40 agonist, anti—PD-1+, and anti—-CTLA-4
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Single-cell transcriptomic analysis of pancreatic cancer patients. (A) UMAP plots identifying 15 cell subtypes based on marker genes; (B) Average
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3.9 Mendelian randomization

Differentially expressed genes (DEGs) were identified between
CHST11-positive and -negative subsets of T cells and naive T cells.
Expression quantitative trait loci (eQTLs) significantly associated
with these differential genes were used as exposure variables, and
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BBJ-140, IEU-822, GCST90018673, and GCST90018893 as
outcomes for Mendelian randomization analyses. Ten pancreatic
cancer-related genes were screened using the inverse variance
weighted (IVW) method with P < 0.05 (Supplementary Table 5).
Subsequently, Pearson correlation analysis was performed in
pancreatic adenocarcinoma (PAAD) patients from The Cancer
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Genome Atlas (TCGA) to explore correlations between these 10
genes and CHST11. Five genes (CTSC, FHIT, PDE4D, RORA, and
TNFRSF9) were selected with P < 0.05. Figures 8A-H visualized
Mendelian randomization results with FHIT/CTSC as exposures
and the pancreatic cancer GWAS dataset ebi-a-GCST90018673 as
the outcome.

FHIT was identified as a protective factor for pancreatic cancer
via Mendelian randomization, showing a significant negative
correlation with CHSTI11 in TCGA (R = -0.23) and lower
expression in naive T cell CHST1lpos than in naive T cell_
CHST11neg (Figures 8I-J, L). Survival analysis revealed better
survival in patients with high FHIT expression (Figures 8P-Q).

In contrast, CTSC was a risk factor for pancreatic cancer via
Mendelian randomization, with a significant positive correlation
with CHST11 in TCGA (R = 0.44) and higher expression in naive T
cell_pos than in naive T cell_neg (Figures 81-K). Patients with low
CTSC expression had better survival (Figure 8R).

RNA-binding protein (RBP) interaction analysis was conducted
for 15 genes including CTSC, FHIT, MLKL, FAS, and CHST11.
Forty-two RBPs potentially bound to over 10 genes; among these, 5
RBPs (DDX3X, ELAVL1, HNRNPA2BI, IGF2BP3, and TARDBP)
showed significant correlations with 14 genes, suggesting their key
roles in post-transcriptional regulation of candidate genes
(Figure 8S; detailed interactions in Supplementary Table 6).

Protein-Protein Interaction (PPI) analysis was performed with a
confidence threshold > 0.4. BID and CTSC showed high binding
strength (combined score = 0.908); strong interactions were also
observed between BID-FAS (combined score = 0.873) and BID-
FASLG (combined score = 0.867). Additionally, proteins such as
GATA3, RORA, and CTSC had high connectivity in the network,
indicating their key roles in candidate gene-related signaling
pathways (detailed interactions in Figure 8T; Supplementary Table 7).

3.10 Single-cell analysis of non-immune
cells in pancreatic cancer patients

Based on the GSE194247 dataset (focused on non-immune cell
subsets of pancreatic cancer patients), we preprocessed and
annotated cell subsets into six types (including Stellate) using
marker genes from Seongryong Kim et al. (37) (Supplementary
Figures S7A-D). Fibroblasts were further extracted, batch-corrected
by Harmony, and re-clustered into seven subtypes using marker-
based annotation (Supplementary Figures S7E-H).

Given Seongryong Kim et al.’s indication that malignant cells
are mainly in epithelial cells, we focused on CHST11 expression in
Epithelial cells. For annotation stability, Epithelial cells were re-
corrected by Harmony and divided into 24 characteristic subsets.
Dot plots were generated using the original marker genes; cell
subset annotation and division were finalized by integrating dot
plots and UMAP expression distributions of core genes (e.g.,
VGLL1, KRT6A) (Supplementary Figure S8), resulting in 19 cell
subsets (Figure 9A).

Dot plots and UMAP showed CHST11 was mainly expressed in
cancer-associated fibroblasts (Figures 9B, C) and in Ep_KRT6A/
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Ep_VGLLI cells among malignant epithelial cells (Figures 9D-F).
Differentially expressed genes (DEGs) between CHST11-positive
and -negative cells of these two cell types were screened; Mendelian
randomization (MR) was used to identify prognosis-related DEGs
(Supplementary Table 8). MR-based screening of DEGs in
Ep_VGLLI and Ep_KRT6A cells confirmed higher CTSC
expression in CHST11-positive cells of both malignant cell types
(Figures 9G, H).

3.11 Spatial transcriptome analysis

Spatial transcriptomics (ST) analysis was conducted using
matched data from five pancreatic cancer patients in the
GSE194247 dataset. Results showed that CHST11 had high
overall expression in pancreatic cancer tissues (Figures 10A-E)
and shared significant co-expression regions with CTSC in spatial
distribution (Figures 10F-J). Additionally, CHST11 exhibited
obvious expression in both Ep_KRT6A (Figures 10K-O) and
Ep_VGLL1 (Figures 10P-S), with significantly higher expression
in Ep_KRT6A than in Ep_VGLLI.

3.12 Molecular docking

Using p.adjust < 0.05 as the screening threshold, 7 drugs with
significant interactions with the CHST11 gene were identified:
Puromycin aminonucleoside, Chondroitin, Pioglitazone, Alpha-
GalNAc, 1,4-Chrysenequinone, Celastrol, and 15-Delta
prostaglandin J2 (Figures 11A, B). Additionally, AlphaFold-based
structure prediction showed high overall confidence for the
CHST11 protein (Figures 11C, D).

Molecular docking analysis was then performed to examine the
binding of 6 of these drugs to the CHST11 protein. As shown in
Figures 11E-], the docking results included Pioglitazone (Vina
score = —-8.4), Puromycin aminonucleoside (Vina score = -7.5),
Chondroitin (Vina score = -8.4), Alpha-GalNAc (Vina score = -
6.0), Celastrol (Vina score = -8.8), and 1,4-Chrysenequinone (Vina
score = -9.2).

3.13 gPCR and immunohistochemistry

In this study, normal pancreatic cell line HPDE6-C7 and
pancreatic cancer cell line CFPAC-1 were selected, and qPCR was
performed on 7 model genes to compare their expression
differences between normal pancreatic and pancreatic cancer
tissues. Results showed significant differences in 6 genes: ANO6,
SPRR1B, CHST11, PAH and RHOF were significantly upregulated,
while MAN1CI was significantly downregulated (Figures 12A-F).

Further, immunohistochemical expression of these 7 genes was
analyzed in the HPA database. SLC16A1 was undetectable in 2
normal pancreatic samples, but expressed in 11 out of 12 pancreatic
cancer patients (6 with moderate-high expression, 1 with high
expression) (Figures 12G-J). For CHST11, low expression was
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Mendelian randomization analysis and validation. (A—D) Mendelian randomization results for FHIT (exposure) and ebi-a-GCST90018673 (outcome);
(E=H) MR results for CTSC (exposure) with ebi-a-GCST90018673 (outcome); (1-J) Violin and bubble plots showing differential expression of
significant MR genes between CHST11*/™ naive T cells; (K-0O) Pearson correlations between CHST11 and five genes in TCGA-PAAD dataset;

(P—R) Survival analyses stratified by FHIT and CTSC median expression levels; (S) RBP interaction network of 15 genes; (T) Protein—protein

interaction (PPI) analysis with confidence score > 0.4.

observed in 3 normal pancreatic tissues, while differential

4 Discussion

expression was found in pancreatic cancer tissues: of 8 patients, 2

were negative, 3 had weak expression, and 3 had moderate In previous bioinformatics studies, researchers often began with

expression (Figures 12K-N). known gene sets associated with specific biological features and
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identified overlapping genes related to prognosis for further
investigation—for example, the studies by Jinsong Liu et al. (43)
and Peikai Ding et al. (44). In studies related to necroptosis in
pancreatic cancer, researchers also typically adopted a similar
approach. For instance, Longchen Yu et al. performed RNA
sequencing on 5 pairs of pancreatic cancer and adjacent normal
tissues to identify differentially expressed genes (DEGs), then
integrated necroptosis-related genes to screen potential targets
(45). Comparable approaches were adopted by Haichuan Liu
et al. (46) and Hanna Belfrage et al. (47). In this study, we
performed unsupervised clustering on 15 necroptosis-related
genes in an integrated dataset to screen for potential key genes
closely associated with necroptosis in pancreatic cancer.
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Previous studies commonly used unsupervised clustering to
classify molecular subgroups, screen DEGs, and further identify
signature genes via prognostic analysis. For example, Cheng
Zeng et al. divided patients into two LMF subgroups by
unsupervised clustering, then used LASSO regression to screen
prognosis-related genes from subgroup DEGs and explored their
roles in patient prognosis (48). Similar strategies were applied by
Cheng Zeng et al. (49)and ZhangPing Yu et al. (50). Although
unsupervised clustering combined with differential analysis
effectively identifies signature-related genes, single clustering
often generates numerous DEGs. Previous studies typically used
LASSO or univariate Cox regression to select a few prognostic
signatures from hundreds of candidates for model construction.
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While this extracts core prognostic factors, it often ignores
associations with clustering features and lacks analyses verifying
biological relevance. In our study, we continuously traced the
association between core factors (extracted stepwise via prognostic
features) and the 15 necroptosis-related genes. Specifically, we first
clustered samples into two NRGclusters based on the 15 genes and
screened their DEGs. Next, 495 prognosis-related genes were selected
from these DEGs via univariate Cox analysis, followed by a second
clustering. Sankey diagram analysis evaluated signature similarity
between subtypes from the two clusterings. Further LASSO
regression identified 7 key prognostic genes, dividing patients into
high- and low-risk groups. Results showed 11 of the 15 necroptosis-
related genes had significant expression differences between risk
groups; NRGclusterA highly overlapped with geneClusterB, both
corresponding to the low-risk group. Focusing on CHSTI1 (the
most significant prognostic gene), we found it correlated with most
necroptosis-related genes, and necroptosis genes were highly
expressed in CHST11-positive T cells. Unlike previous studies
focusing solely on prognostic signatures, we verified associations
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with necroptosis genes after each screening and modeling step,
ensuring biological consistency and mechanistic relevance of the
selected signatures.

We found CHST11 correlated with poor prognosis in multiple
pancreatic cancer prognostic datasets. Additionally, PCR, combined
TCGA-GTEx analysis, and immunohistochemistry confirmed
higher CHST11 expression in pancreatic cancer tissues and cells.
Previous studies reported CHST11 overexpression in various
cancers, typically correlating with poor prognosis. For example,
high CHST11 protein expression is an independent poor prognostic
factor in ovarian cancer (51); in clear cell renal cell carcinoma
(ccRCQC), recent studies linked high CHSTI1 to clinical stage,
immune microenvironment features, and poor survival, and in
vitro experiments showed it promotes tumor cell proliferation,
migration, and invasion (52). Few studies have explored
CHST11’s prognostic role and mechanisms in pancreatic cancer.
Our study first performed immune infiltration analysis, finding
CHST11 significantly correlated with macrophages, T cells, and
dendritic cells. Consistent with this, CHST11 was highly expressed
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FIGURE 11

Structural prediction of CHST11 protein and molecular docking analysis of candidate drugs. (A, B) Enrichment results identifying seven candidate
drugs predicted to interact with CHST11 (adjusted p < 0.05; bar/bubble plots); (C) Predicted 3D structure of CHST11 from AlphaFold, with confidence
indicated by pLDDT scores; (D) Predicted alignment error (PAE) map showing positional uncertainty between residues; overall, CHST11 structure
exhibited high confidence; (E-J) Molecular docking results showing binding modes of six candidate drugs with CHST11, with left panels showing
overall binding sites and right panels showing magnified binding pockets.

in T cells, NK cells, MDSCs, and ¢cDCls in mouse pancreatic cancer  necroptosis-related genes GATA3 and FAS were higher than those
tissues. Furthermore, CHST11 expression was significantly higher ~ in CHST11™ cells, and the proportion of GATA3" cells was
in immunotherapy-treated groups than in untreated groups. significantly increased. Previous studies have demonstrated that

We found that in both naive T cell CHST11" and T  GATA3 is a key transcription factor for Th2 cell differentiation,
cell_CHST11" populations, the average expression levels of  which inhibits Thl differentiation by suppressing IL-12RB2
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FIGURE 12

gPCR and immunohistochemistry analyses. (A—F) qPCR results showing differential expression of ANO6, SPRR1B, CHST11, PAH, RHOF, and MAN1C1
between normal pancreatic cell line HPDE6-C7 and pancreatic cancer cell line CFPAC-1 (**p < 0.01, ***p < 0.001); (G-J) Immunohistochemistry of
SLC16A1 showing absent in in normal pancreatic tissue but moderate—high in pancreatic cancer; (K=N) Immunohistochemistry of CHST11 showing
low expression in normal pancreas and moderate expression in pancreatic cancer tissues.
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expression and maintains the Th2 phenotype through a positive
feedback mechanism (53). These findings suggest that may
participate in the regulation of naive T-cell differentiation by
modulating the expression of key genes such as GATA3.
Additionally, T cell CHST11" populations showed significantly
upregulated FASLG, GATA3, and TNFRSF1A, with a rising trend
in FAS. Previous studies reported high-molecular-weight sulfated
polysaccharides (e.g., heparin, heparan sulfate, dextran sulfate)
enhance Fas-mediated T cell death (54). As CHST11 is a key
enzyme for glycosaminoglycan sulfation, these results suggest
CHST11" naive T cells in pancreatic cancer may have "Th2

Frontiers in Immunology

differentiation tendency" and promote T cell exhaustion by
enhancing apoptosis sensitivity via the FAS/FASLG pathway.

We further explored CHST11’s association with non-immune
cells in pancreatic cancer, finding it mainly localized to fibroblasts
and epithelial cells. Numerous studies link CHST11 to fibroblasts:
primary fibroblasts from Costello syndrome patients show reduced
chondroitin-4-sulfate (C4S) and lower CHST11 mRNA/protein
expression; oncogenic HRAS expression in normal fibroblasts
inhibits CHST11, while interfering with oncogenic HRAS signaling
in Costello syndrome fibroblasts upregulates CHST11 (55).
Additionally, CHST11 promotes tumor malignancy and the
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production of fibrosis activators; TGF-f3 and INF-y induce CHST11
expression in fibrosis models and regulate CHST11-related
molecules, indicating CHST11-fibroblast associations in pulmonary
fibrosis (56). In our study, we focused on pancreatic cancer malignant
epithelial cells and found CHST11 was highly expressed in
Ep_KRT6A and Ep_VGLLI cells. High CTSC expression was
observed in naive T cell CHST11", Ep_KRT6A_CHST11", and
Ep_VGLL1_CHST11" cells. Mendelian randomization identified
CTSC as an adverse factor for pancreatic cancer; TCGA data
showed CTSC was significantly positively correlated with CHST11
and associated with poor prognosis. Previous studies reported
increased CTSC expression in myeloid cells from normal pancreas
to pancreatic squamous cell carcinoma (57) and its key role in islet
carcinogenesis (58). Spatial transcriptomics analysis showed high
CHST11 expression in Ep_KRT6A and significant co-localization
between CHST11 and CTSC, suggesting they may synergistically
promote pancreatic cancer progression.

In summary, one core innovation of this study is the
establishment of a feature screening system combining "two
consensus cluster analyses + continuous biological tracing."
Verifying associations with necroptosis-related genes after each
screening step alleviates the "signature dilution” issue common in
previous studies that "directly combine survival analysis with single
consensus clustering." Additionally, to our knowledge, this study is
the first to systematically explore CHST11’s prognostic features in
pancreatic cancer via single-cell omics, showing immunotherapy
may upregulate CHST11 expression. It also preliminarily suggests
CHST11 may regulate T cell differentiation and promote exhaustion.
Meanwhile, CHST11 and CTSC may synergistically promote
pancreatic cancer progression. Despite optimized design, this study
has limitations: (1) External validation of CHST11’s prognostic
features relied mainly on public databases, with potential selection
bias due to pancreatic cancer heterogeneity and incomplete
pathological subtype coverage; future studies should include
subgroup and pathological subtype-specific analyses. (2) Despite
batch effect correction, platform differences between TCGA and
GEO and inherent technical noise in single-cell sequencing may
introduce minor measurement errors. (3) External validation only
focused on gene expression, lacking clinical variables and multi-
center data, limiting external validity. (4) Although multi-omics
provided clues for associations between CHST11 and GATA3/
CTSC/FAS, conclusions rely mainly on bioinformatics correlation
analyses; cellular and animal experiments are needed to validate core
mechanisms and supplement causal evidence.

5 Conclusion

By means of multi-omics approaches, this study reveals that
CHST11 is associated with necroptosis. Meanwhile, it identifies that
this gene is linked to poor prognosis of pancreatic cancer, and this
prognostic association is closely related to the role of CHST11 in T
cells and malignant epithelial cells.
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SUPPLEMENTARY FIGURE 1

Unsupervised clustering of necroptosis-related genes (NRGs). (A—I) Consensus
matrix heatmaps for cluster numbers (k) = 1-9; (J) Cumulative distribution
function (CDF) plot for k = 1-9; (K) Delta area plot of relative changes in CDF
curve area; (L) Tracking plot of sample classification at different k values.

SUPPLEMENTARY FIGURE 2

Gene clustering based on prognosis-related differentially expressed genes
(PRDEGs).(A-1) Consensus matrix heatmaps for k = 1-9; (J) CDF plot for k =
1-9; (K) Delta area plot of relative changes in CDF curve area; (L) Tracking plot
of sample distribution at different k values.
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