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Introduction: This study aims to explore the prognostic significance of

necroptosis-related genes in pancreatic cancer.

Methods: First, clustering analysis was performed on 15 necroptosis-related

genes, which led to the identification of two distinct NRG subtypes. Differential

expression analysis revealed 495 genes associated with prognosis, which were

subsequently used for a second round of clustering. Next, a prognostic model

was constructed using seven key genes, and patients were classified into high-

risk and low-risk groups. External cohort data were used to validate the

prognostic model. Spearman correlation analysis was conducted to examine

the relationship between themost important biomarker, CHST11, and the 15 NRG

genes. Additionally, three single-cell datasets, along with Mendelian

randomization and spatial transcriptomics analyses, were utilized to further

investigate the associations between CHST11, immune therapy, immune cells,

and malignant epithelial cells.
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Results: NRGcluster A and geneCluster B largely overlapped, with most patients

classified into the low-risk group. Among the 15 NRG genes, 11 exhibited

significant expression differences between the high-risk and low-risk groups.

CHST11 was identified as the most important prognostic biomarker and showed

significant correlations with 13 NRG genes. Further analysis revealed potential

mechanisms of action for CHST11.

Discussion: This study, through multi-omics data, reveals that CHST11 may be

associated with necroptosis and is closely related to the malignant prognosis of

pancreatic cancer.
KEYWORDS

carbohydrate sulfotransferase 11, multi-omics, necrotizing apoptosis, pancreatic
cancer, spatial transcriptomics
1 Introduction

According to data from the Global Cancer Observatory

(GLOBOCAN) 2022 (1), there were 510,992 new cases of

pancreatic cancer and 467,409 deaths due to this disease

worldwide in 2022. Pancreatic cancer is characterized by a very

poor prognosis, with a persistently high mortality rate.

Immune checkpoint inhibitors (ICIs) have shown significant

benefits in the treatment of certain cancer types, such as lung cancer

and melanoma, but face numerous limitations in the treatment of

pancreatic cancer (2). However, the discovery of necroptosis may

open new avenues for the development of innovative treatment

strategies (3). Cell death plays a crucial role in removing damaged

cells to maintain physiological homeostasis, and it can also occur as

an abnormal pathological response to damaging stimuli (4). When

caspase-8 activity is lost, activation of tumor necrosis factor

receptor (TNFR) family proteins (such as TNFR, FAS, TRAILR,

and DR6) can trigger necroptosis, which subsequently activates

receptor-interacting protein kinase 1-3 (RIPK1–RIPK3) (5–9).

Among these, RIPK3 initiates the activation of mixed lineage

kinase domain-like protein (MLKL). Once activated, MLKL

aggregates and translocates to the plasma membrane, where it

forms large pores, ultimately leading to necroptotic cell death. A

clinical study of breast cancer tissue specimens showed that

compared to adjacent non-cancerous tissues, the mRNA and

protein expression levels of tumor necrosis factor alpha (TNFa),
RIPK1, RIPK3, and MLKL were significantly elevated in breast

cancer tissues.

Numerous studies have focused on the analysis of gene and

non-coding RNA expression profiles to construct tumor

classification systems and prognostic indicators to predict cancer

patient survival outcomes and response to immunotherapy. In a

recent study, researchers used necroptosis-related long non-coding

RNA (lncRNA) to predict the prognosis of gastric cancer patients

and classify molecular subtypes, successfully distinguishing "cold

tumors" from "hot tumors" (10). Another team identified 12
02
necroptosis-related genes (NRGs) from a database and developed

a prognostic evaluation tool for bladder urothelial carcinoma

patients. These genes not only have important prognostic value

but are also associated with immune subtypes and tumor stemness

characteristics, providing valuable references for selecting optimal

chemotherapy and immunotherapy regimens (11). Additionally, a

recent study constructed a model based on necroptosis-related

lncRNAs to predict and identify "cold tumors" and "hot tumors"

in bladder urothelial carcinoma (12).

To date, numerous studies have focused on the role of necroptosis

in pancreatic cancer; however, most current mechanistic research still

centers around classical targets such as MLKL and RIPK3. Although

some studies have explored necroptosis-related targets in pancreatic

cancer using bioinformatics approaches from a clinical perspective, the

mechanisms involved exhibit high complexity in clinical scenarios.

Therefore, in-depth research into these mechanisms must be based on

comprehensive exploration of relevant targets and extensive clinical

correlation analysis. Current research has yet to provide sufficient

candidate targets to fully explain this issue. This study aims to identify

necroptosis-related targets and determine potential candidate targets

closely associated with both necroptosis and pancreatic cancer

prognosis, providing more directions and options for future research.

In our study, we first collected 67 necroptosis-related genes from

previous literature and selected 15 common necroptosis genes. Based

on these 15 genes, we performed consistency clustering analysis and

divided the patients into two NRGclusters. We further identified

differentially expressed genes, ultimately obtaining 495 genes

associated with prognosis. Through a second consistency clustering

analysis, we divided the patients into two geneClusters. Then, we

selected 7 model genes from the 495 genes and constructed a

prognostic model, dividing the patients into high-risk and low-risk

groups based on the median risk score in the training set. We reviewed

the correlation of features from the three rounds of grouping and found

that NRGcluster A and geneCluster B exhibited a high degree of

overlap and were almost entirely classified as the low-risk group.

Additionally, among the high-risk and low-risk groups, 11 out of the
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15 genes showed significant expression differences. We then used an

external validation set to explore the prognostic characteristics of the 7

model genes, focusing on the most significant prognostic feature,

CHST11. We first verified the significant positive correlation between

CHST11 and the 15 genes (including GATA3 and FAS) through

Spearman correlation analysis. We then analyzed immune treatment

responses, the relationship between immune cells and non-immune

cells, and the expression characteristics of CHST11 across three single-

cell datasets. During this process, we also applied Mendelian

randomization to screen for genes associated with pancreatic cancer

from the differentially expressed genes and analyzed the prognostic

characteristics of these genes and their association with CHST11 using

transcriptome datasets. Finally, we visualized the spatial distribution

characteristics of CHST11 and CTSC genes through spatial

transcriptomics. In summary, this study used two rounds of

consistency clustering analysis and a continuous biological screening

system, ensuring that each extraction of prognostic features was

associated with the 15 necroptosis-related genes, thus alleviating the

feature dilution problem present in previous studies. Moreover, we

revealed the prognostic role of CHST11 in pancreatic cancer through

multi-omics analysis and explored its potential synergistic effects with

immune regulation, cellular exhaustion, and CTSC.
2 Methods

2.1 Copy number variation of necroptosis
genes

A total of 67 necroptosis genes were screened via GeneCards

database (https://www.genecards.org) (Supplementary Table 1).

Pancreatic adenocarcinoma (PAAD) CNV data were retrieved

from TCGA, and gene-level annotation was conducted using

CNTools (v1.64.0) (13) to obtain copy number values of 67 genes

in 171 tumor samples. Genes were classified by log2 (copy number

ratio): log2 ratio > 0.3 for copy number gain, and log2 ratio < -0.3 for

copy number loss. The gain/loss frequencies of each gene across

samples were calculated; ggplot2 (14) was used to visualize CNV

frequencies (gain in red, loss in green) via scatter plots, showing

population-level CNV distribution of different genes.
2.2 Dataset merging, batch effect removal
and survival analysis of necroptosis genes

Raw count matrices of PAAD were downloaded from TCGA-

PAAD and GSE62452 databases, with shared genes retained for

merging. Batch effects were removed using the ComBat function

(15), and the processed data were subjected to log2 transformation

and normalization. Combining survival information and

transcriptome data of 243 PAAD patients from TCGA-PAAD

and GSE62452, 15 common genes were screened from 67 NRGs

within the gene intersection of the two datasets. Univariate Cox

regression analysis was then performed on these 15 genes.
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2.3 Consensus clustering analysis of
necroptosis genes

Consensus clustering of 15 NRGs was performed via the

ConsensusClusterPlus package (16); patients were divided into

two NRGClusters based on the result with the highest intra-group

and lowest inter-group correlation. Prognostic differences between

clusters were compared using the Kaplan-Meier (KM) method.

Principal component analysis (PCA) was used to reduce the

dimensionality of NRG expression matrices for verifying grouping

reliability. DESeq2 (17) was applied for differential gene analysis

(absolute FC > 1, P < 0.05), identifying 930 differential genes. GSVA

(18) evaluated preset functional gene set enrichment, while single-

sample GSVA (ssGSEA) (19) calculated infiltrating immune cell

abundance and immune pathway activity. GO (20) and KEGG (21)

analyses of the 930 differential genes were conducted using the

clusterProfiler package.
2.4 Screening of prognostic genes and
secondary clustering analysis

To further screen prognostic genes, 930 differentially expressed

genes were first subjected to univariate COX regression analysis,

with 495 candidate genes identified using P < 0.05 as the threshold.

To verify the association between these 495 genes and 15

necroptosis genes, a second consensus clustering analysis was

performed based on the expression levels of candidate genes.

Patients were divided into two geneCluster groups according to

the result with the highest intra-group correlation and most

significant inter-group difference. Prognostic differences between

the two groups were compared using the KM method. Subsequent

differential expression analysis of 15 NRGs between geneCluster

groups identified 13 genes with significant differential expression.
2.5 Screening of signature genes and
construction of prognostic model for
pancreatic cancer patients

Given the potential association between 495 candidate genes

and 15 NRGs, least absolute shrinkage and selection operator

(LASSO) regression was performed to screen 7 genes for

constructing a prognostic signature, simplifying the model and

extracting core features. Risk scores were calculated via

multivariate Cox regression based on the expression levels of

these 7 genes; patients were divided into high- and low-risk

groups using the median risk score of the training cohort as the

cutoff. The KM analysis was used to assess survival differences

between the two groups, and receiver operating characteristic

(ROC) curve with area under the curve (AUC) verified the

predictive performance of the model. Additionally, a nomogram

was constructed to predict survival probability by integrating

patients’ tumor stage, grade, and risk score.
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2.6 Association of prognostic model with
two clustering results and necroptosis-
related genes

To explore the association between prognostic risk scores, dual

clustering results, and NRGs, the ggalluvial package (22) was used

to generate a Sankey diagram, visualizing connections among NRG

groups, geneCluster groups, risk stratification (high/low-risk

groups), and survival status. Wilcoxon test was then applied to

compare risk score differences between NRGCluster and

geneCluster, as well as to assess expression differences of 15

NRGs between high- and low-risk groups.
2.7 External validation of survival analysis
and pathway correlation analysis

To further validate the reliability of the survival analysis results,

we independently validated the seven signature genes in an external

validation set. The external validation data were sourced from the

integration of GEO data by Máté Posta et al., including 12 GEO

datasets such as GSE84219, GSE78229, and GSE179351, as well as

four pancreatic cancer datasets from the International Cancer

Genome Consortium (ICGC) data portal (23). In a total of 1237

clinical samples, we used the median expression value of each gene

as the grouping threshold to perform single - gene Kaplan–Meier

survival analysis respectively. Considering the potential bias

brought by the integrated dataset itself, we selected the CHST11

gene with the most significant prognostic difference and divided the

high- and low-expression groups using the median expression of

CHST11 as the threshold in the pancreatic cancer datasets

GSE85916, GSE28735, and GSE57495, performing Kaplan–Meier

survival analysis. In addition, to further explore the prognostic value

of the seven signature genes, we integrated the TCGA pancreatic

cancer expression matrix and the GTEx pancreatic tissue expression

matrix, and compared their expression differences in 179 pancreatic

cancer samples and 171 normal tissues (24). Subsequently, we used

Spearman correlation analysis to explore the association between

the CHST11 gene with the most significant prognostic

characteristics and the 15 NRGs.
2.8 Evaluation of tumor microenvironment
in high- and low-risk groups

To explore the relationship between risk score and TME, the

CIBERSORT (25) was first used for immune infiltration analysis of

transcriptome data from high- and low-risk groups, quantifying the

abundance distribution of 22 immune cell subsets; Spearman

correlation analysis was applied to explore the association

between 22 immune cells and risk score. Correlations between

immune cell abundance and 7 signature genes were calculated to

assess potential links between gene expression and immune

microenvironment. The ESTIMATE (26) was used to obtain

StromalScore, ImmuneScore, Tumor Purity, and EstimateScore
Frontiers in Immunology 04
for each sample. PCA was then applied for dimensionality

reduction and visualization of TME features to compare

distribution differences between high- and low-risk groups, while

Wilcoxon rank-sum test was used to evaluate inter-group TME

differences. The maftools package (27) was used to generate

Mutation Annotation Format (MAF) files from mutation data,

based on which Tumor Mutation Burden (TMB) scores were

calculated. Tumor stem cell characteristics were characterized by

downloading ssRNA from TCGA. Finally, Pearson correlation

coefficients between risk score and TMB/ssRNA were calculated.
2.9 Drug sensitivity analysis

IC50 (half-maximal inhibitory concentration), an important

pharmacological indicator for measuring drug activity, refers to the

drug concentration required to inhibit 50% of cancer cell growth.

The pRRophetic package (28) was used to predict and calculate the

IC50 values of multiple chemotherapeutic drugs in high- and low-

risk group samples, so as to evaluate the potential relationship

between risk score and chemotherapeutic drug sensitivity.
2.10 Single-cell analysis of pancreatic
cancer immunotherapy group

Single-cell analysis of the immunotherapy group was performed on

the OmniBrowser platform (https://omnibrowser.abiosciences.cn).

Relevant data of GSE150176 were retrieved on the platform, and

the platform's differential expression analysis tool was used to

compare the expression changes of signature genes in different

cell subsets and before/after immunotherapy in pancreatic

cancer tissues. All analysis steps were completed in the same

platform environment.
2.11 Single-cell analysis of pancreatic
cancer patients

The GSE155698 dataset was downloaded from the GEO

database, containing single-cell transcriptome sequencing data

from 16 pancreatic cancer tissue samples and 3 normal pancreatic

tissue samples. All analyses were performed in R (v4.3.3). The

Seurat (v4.3.0) package (29) was used to read and preprocess the

sequencing matrix. Cells with fewer than 250 or more than 2,500

detected genes, fewer than 500 UMIs, or over 15% mitochondrial

gene content were removed. In addition, cells with more than 3%

ribosomal and less than 0.1% hemoglobin gene proportions were

retained to eliminate blood contamination and ensure high-quality,

transcriptionally active cells. Data were then normalized using the

NormalizeData function. In feature selection, highly variable genes

were identified using the vst method in FindVariableFeatures; data

were scaled with ScaleData, regressing out cell cycle scores to

eliminate cell cycle effects. PCA was performed via RunPCA, with

principal components accounting for 90% cumulative variance
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explained selected for downstream analysis. The Harmony

algorithm was used to integrate and correct batch effects between

samples. After batch effect correction, FindNeighbors was used to

construct a cell neighbor graph, and Louvain clustering was

performed using FindClusters. Combined with marker genes, cells

were annotated into 13 subpopulations. Based on CHST11

expression, naïve T cells and T cells were further divided into

positive and negative cells, with expression differences of 15

NRGs compared between groups. Additionally, CellChat (v2.1.2)

(30) was used with Seurat-processed expression matrices and cell

annotations for cell-cell communication analysis; Monocle2 (31)

combined with Seurat was used for pseudotime analysis to infer

dynamic trajectories of cell state transitions.
2.12 Mendelian randomization

We used the FindMarkers function in the Seurat (v4.3.0)

package to perform differential expression analysis using the

Wilcoxon test, and set the threshold as: the absolute value of log2

fold change (FC) was greater than 0.25 and the p-adjust was less

than 0.05. Based on this, the differentially expressed genes in

positive/negative T cells and positive/negative naïve T cells were

screened out respectively. Then, we selected the eQTL data (P < 5 ×

10-8) that were significantly associated with gene expression within

the ±1 Mb region upstream and downstream of the target gene. To

ensure the independence of instrumental variables, we performed

LD (linkage disequilibrium) pruning, setting r² < 0.01 and the

window size as 1000 kb, and screened strong instrumental variables

by calculating the F-statistic, retaining the instrumental variables

with F > 10. Subsequently, we extracted the pancreatic cancer-

related outcome datasets from the OPENGWAS database (https://

opengwas.io/), including BBJ-140, IEU-822, GCST90018673, and

GCST90018893. Finally, the TwoSampleMR (v0.6.12) (32) package

was used to perform Mendelian Randomization (MR) analysis, and

the validity of instrumental variables was evaluated through

heterogeneity and pleiotropy tests. We screened genes with a P-

value < 0.05 of the IVW method as the significance threshold.

Subsequently, the Pearson correlation coefficients between these

genes and the CHST11 gene in the TCGA dataset were calculated

through the GEPIA2 database (33), and the prognostic values of the

genes significantly associated with CHST11 were further explored

in the GSE71729, TCGA-PAAD, and GSE62452 datasets.
2.13 Protein-protein interaction and RNA-
binding protein analysis

To explore the interaction among candidate genes, the STRING

database (34) was used to construct a PPI network. During the

analysis, the minimum interaction confidence threshold was set to

0.4 (medium confidence), and isolated nodes were removed to

obtain a biologically meaningful interaction network. The PPI

network was then visualized using Cytoscape software (v3.9.1)

(35) to further demonstrate the potential interaction relationships
Frontiers in Immunology 05
among these genes. Meanwhile, to explore the potential regulatory

relationship between candidate genes and RBPs, interaction data

between RBPs and target genes were retrieved from ENCORI

(StarBase) data (36), and an RBP–mRNA interaction network was

constructed using Cytoscape.
2.14 Single-cell analysis of non-immune
cells and spatial transcriptomics in
pancreatic cancer tissues

The single-cell dataset of non-immune cells in pancreatic cancer

tissues (GSE194247) was preprocessed following the aforementioned

pancreatic cancer immune cell single-cell analysis procedure. Marker

genes from previous literature (37) were used for subpopulation

annotation; the above-described method was applied to screen

differential genes of malignant epithelial cells, followed by another

Mendelian randomization analysis. For spatial transcriptomics

(GSE235315), Seurat (v4.3.0) was used for data processing. After

normalization via SCTransform, dimensionality reduction and

clustering were performed with RunPCA, FindNeighbors,

FindClusters, and RunUMAP; spatially variable genes were

screened using FindSpatiallyVariableFeatures. In single-cell

deconvolution, the GSE194247 single-cell reference dataset was

loaded to extract cell type annotations. FindTransferAnchors

established anchors between single-cell and spatial data, and

TransferData mapped cell type labels to spatial transcriptomic data

for predicting spatial cell type distribution.
2.15 Molecular docking

We downloaded the drug-gene association files from the Drug

SIGnatures DataBase (38), and performed enrichment analysis

based on a custom gene set using the enricher() function of the R

package clusterProfiler (v4.12.0) (39). A double screening criterion

was adopted, with the p-value (pvalueFilter=0.05) and the adjusted

p-value (adjPvalFilter=0.05). Subsequently, we downloaded the

three-dimensional structures of the corresponding drugs from the

Pubchem database (40), predicted the protein structure of CHST11

in the ALPHAFOLD database (41), and finally performed online

molecular docking using CB-DOCK2 (42).
2.16 qPCR and immunohistochemistry

We extracted RNA from normal pancreatic cells HPDE6-C7

and pancreatic cancer cells CFPAC-1, respectively. We took 1 μg of

RNA and used a reverse transcription kit (Takara Biomedical

Technology, China) for reverse transcription. After synthesizing

cDNA, it was diluted for later use. For qPCR, the SYBR Green

fluorescent dye system (Takara Biomedical Technology, China) was

used. The 20 μL reaction system included 10 μL of SYBR Green

Master Mix, 0.6 μL of forward primer (10 μM), 0.6 μL of reverse

primer (10 μM), 2 μL of diluted cDNA template, and RNase-free
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water was added to make up to 20 μL. After the PCR amplification

was completed, a melting curve analysis was performed to verify the

specificity of the amplification products. The primer sequences are

in the Supplementary Table 2. The immunohistochemistry (IHC)

data were obtained from the Human Protein Atlas (HPA) database

(https://www.proteinatlas.org).
3 Results

3.1 Prognostic correlation study of
pancreatic cancer patients based on
necroptosis genes

The copy number variation (CNV) data of pancreatic cancer

patients were obtained from The Cancer Genome Atlas (TCGA)

database. In this study, the correlation between 67 necroptosis-

related genes (NRGs) and patient prognosis was first analyzed. The

results of CNV frequency analysis (Figure 1A) showed that among

the 67 genes, the amplification of MYC gene was the most common,

followed by SIRT2, STST3 and TNF genes, while the copy number

deletion of CDKN2A, RIPK1 and TNFRSF1A genes was

widespread. Subsequently, the GSE62452 dataset (including 69

tumor samples and 61 normal control samples) was merged with

TCGA data in this study, and 15 NRGs shared by the two datasets

were screened for subsequent analysis. Univariate Cox analysis was

performed on 243 pancreatic cancer patients with complete survival

information. The results showed that among the 15 NRGs, 5 were

significantly correlated with patient prognosis (Figure 1B).
3.2 Consensus clustering analysis based on
15 NRGs

Clustering analysis was performed using the expression data of

15 necroptosis-related genes (NRGs). The optimal number of

clusters (k value) was determined by progressively increasing k,

with the highest intra-cluster correlation and lowest inter-cluster

correlation observed at k=2 (Supplementary Figure S1).

Accordingly, pancreatic cancer patients were divided into two

groups: NRGCluster A and NRGCluster B (Figure 1C).

Kaplan-Meier survival analysis demonstrated that patients in

NRG Cluster A had longer overall survival and higher survival

probability than those in Cluster B (p=0.026) (Figure 1D). Principal

component analysis (PCA) further (Figure 1E) confirmed a clear

separation between the two NRG clusters in the 2D coordinate

space. The heatmap (Figure 1F) illustrated the relationships among

NRG clusters, clinical characteristics of pancreatic cancer patients,

and the expression pattern of 15 NRGs, indicating significant

differences between Cluster A and Cluster B.

Gene Set Variation Analysis (GSVA) results (Figure 1G)

demonstrated that NRG Cluster B was significantly enriched in

immune regulation and inflammation-related signaling pathways,

including leukocyte transendothelial migration, Fcg receptor-

mediated phagocytosis, T cell receptor signaling, Toll-like
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receptor signaling, and chemokine signaling pathways. Further

validation using Single Sample Gene Set Enrichment Analysis

(ssGSEA) (Figure 1H) revealed that Cluster B exhibited a

generally higher degree of immune cell infiltration, particularly in

activated B cells, activated CD4+T cells, activated CD8+ cells,

activated dendritic cells, macrophages, natural killer (NK) cells,

and regulatory T cells. However, the infiltration levels of some

immune cells (CD56dim NK cells, eosinophils, and plasmacytoid

dendritic cells) were lower in Cluster B than in Cluster A.
3.3 Consensus clustering analysis of
prognosis-related differentially expressed
genes based on NRG clusters

A total of 930 differentially expressed genes (DEGs) were identified

between the two NRG clusters (Supplementary Table 3). Gene

Ontology (GO) enrichment analysis of these 930 DEGs (Figure 2A)

showed that the DEGs were involved in biological processes (BPs) such

as extracellular matrix organization, extracellular structure

organization, and external encapsulating structure organization. In

terms of molecular functions (MFs), the DEGs were significantly

associated with extracellular matrix structural constituent, calcium-

dependent protein binding, and immunoglobulin binding. Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis further revealed that these DEGs were enriched in the

hematopoietic cell lineage, complement and coagulation cascades,

and NOD-like receptor signaling pathways (Figure 2B).

Subsequently, 495 prognostic DEGs (PRDEGs) associated with

pancreatic cancer prognosis were identified via univariate Cox

regression analysis (Supplementary Table 4).

Based on the expression data of 495 PRDEGs, k=2 was selected

as the optimal clustering variable (Supplementary Figure S2), and

pancreatic cancer patients were divided into two groups:

geneCluster A and geneCluster B (Figure 2C). Kaplan-Meier

curves showed that the survival rate of patients in geneCluster B

was significantly higher than that in geneCluster A (Figure 2D).

Examination of NRG expression levels in the two gene clusters

revealed that among the 15 necroptosis-related genes (NRGs), the

expression levels of FADD, FAS, FASLG, MAPK8, TNFRSF1A,

TNFRSF1B, PANX1, DIABLO, GATA3, IPMK, and TARDBP were

increased in geneCluster B, while the expression levels of SIRT3 and

BNIP3 were decreased (Figure 2E). A comprehensive heatmap

illustrated the associations among the gene clusters, patients'

clinical characteristics, PRDEG expression levels, and NRG

clusters, highlighting distinct transcriptional and clinical profiles

between geneCluster A and geneCluster B. (Figure 2F).
3.4 Construction and validation of risk
model based on prognostic differentially
expressed genes

To construct a prognostic model, LASSO regression was applied

to the 495 PRDEGs (Figures 2G-H), ultimately identifying seven
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key genes (CHST11, SLC16A1, RHOF, ANO6, PAH, MAN1C1,

SPRR1B) for inclusion in the risk scoring model. Subsequently, risk

score differences between NRGcluster and geneCluster groups were

compared. Boxplots showed that in NRGcluster, the risk score of

cluster A was lower than that of cluster B; in geneCluster, the risk

score of geneCluster A was higher than that of geneCluster B, with

all differences reaching statistically significant (Figures 2I-J).
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A Sankey diagram was used to show the relationships among

NRGcluster, geneCluster, high/low-risk groups, and survival

status. The distributions of patients in NRGcluster A and

geneCluster B were nearly identical, both corresponding to the

low-risk group, suggesting a potential association between the seven

model genes and the 15 necroptosis-related genes (Figure 2K).

Further analysis of NRG expression between high- and low-risk
FIGURE 1

Clustering analysis of necroptosis-related genes (NRGs) in pancreatic cancer patients and the survival and clinical characteristics among different
clusters. (A) Copy number variation (CNV) amplification and deletion frequencies of 67 necroptosis-related genes (NRGs) in TCGA pancreatic cancer
cohort; (B) Among 15 NRGs used for clustering analysis, five showed statistical significance (p < 0.05) in univariate Cox analysis; (C) Consensus
clustering identified two NRG clusters (NRGcluster A/B); (D) Kaplan-Meier curves showed that patients in NRGcluster A had longer survival time and
higher survival probability than those in cluster B (p = 0.026); (E) Principal component analysis (PCA) revealed distinct separation between the two
NRG clusters; (F) Heatmap displaying associations among NRG clusters, clinical features, and NRG expression levels in pancreatic cancer patients;
(G) Gene set variation analysis (GSVA) revealed enriched pathways in different NRG clusters; (H) Single-sample gene set enrichment analysis (ssGSEA)
indicated differences in immune cell infiltration between NRG clusters (***p < 0.001).
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FIGURE 2

Clustering analysis of geneClusters and construction of the prognostic model. (A) Gene Ontology (GO) enrichment analysis revealed biological
processes (BP), cellular components (CC), and molecular functions (MF) associated with differentially expressed genes (DEGs) between two
NRGclusters; (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis identified pathways enriched by DEGs;
(C) Based on expression levels of 495 PRDEGs (prognosis-related DEGs identified by univariate Cox regression), two geneClusters were established;
(D) Kaplan-Meier curves indicated higher survival rates in cluster B compared with cluster A (p < 0.001); (E) Expression levels of 13 out of 15 NRGs
differed significantly between the two geneClusters; (F) Heatmap showing relationships among NRGcluster, geneCluster, risk, and s expression;
(G) K-fold cross-validation for LASSO parameter optimization (x-axis: log l; y-axis: partial likelihood deviance); (H) LASSO coefficient profiles (x-axis:
log l; y-axis: gene coefficients); (I–J) Differences in risk scores between two NRGclusters (I) and two geneClusters (J); (K) Sankey diagram
illustrating relationships among NRGcluster, geneCluster, risk score, and survival status; (L) Among 15 NRGs, 11 showed significantly different
expression levels between high- and low-risk groups (*p < 0.05, **p < 0.01, ***p < 0.001).
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groups revealed significant differences in 11 of the 15 genes.

Specifically, PANX1, FADD, TNFRSF1A, GATA3, IPMK, and

FAS were highly expressed in the high-risk group, while BNIP3

and FASLG were highly expressed in the low-risk group (Figure 2L).
3.5 Model performance validation

Patients were ranked by risk scores (Figures 3C, H) and divided

into high- and low-risk groups using the median score of the

training set. Kaplan–Meier analysis revealed significantly poorer

overall survival in the high-risk group across both training

and combined cohorts (P < 0.001, Figures 3A, F). As risk scores

increased, mortality also rose, with survivors clustering

predominantly in the low-risk group (Figures 3D, I). Heatmaps

revealed consistent trends: CHST11, SLC16A1, RHOF, ANO6, and

SPRR1B were upregulated in the high-risk group, while PAH and

MAN1C1 showed the opposite pattern (Figures 3E, J). ROC curves

demonstrated strong predictive ability, with AUCs of 0.827,

0.864, and 0.900 for 1-, 3-, and 5-year survival in the training

cohort, respectively, and similar results in the overall dataset

(Figures 3B, G).

To assess model applicability across clinical subgroups, Kaplan–

Meier analyses were performed in grade I–II vs. III–IV and stage I–

II vs. III–IV subsets. The model effectively distinguished prognoses

in all subgroups. Notably, staging alone failed to show significant

survival differences (P = 0.34), but when combined with the risk

score, four distinct prognostic groups emerged (P = 0.001),

highlighting the model’s added prognostic value (Figures 3K–M).

A nomogram integrating stage, grade, and risk score was

developed to predict individual survival probabilities, where total

points estimated survival at specific time points (Figure 3N).

Calibration curves demonstrated excellent concordance between

predicted and observed outcomes (Figure 3O).

To evaluate the independent prognostic value of the seven

feature genes, survival analysis was performed for 1,237

pancreatic cancer cases using the Kaplan–Meier Plotter database.

Based on median expression levels, CHST11, SLC16A1, RHOF,

ANO6, MAN1C1, and SPRR1B were significantly associated with

overall survival. Among these, MAN1C1 predicted a favorable

prognosis, whereas the others correlated with poor outcomes

(Figures 4A–F), consistent with model-based trends. Integrated

analysis of GTEx (normal, n = 171) and TCGA (tumor, n = 179)

datasets revealed higher expression of CHST11, SLC16A1, RHOF,

MAN1C1, SPRR1B, and ANO6 in tumors (Figures 4G–L). In

contrast, PAH expression was significantly lower in tumor tissues

compared with normal counterparts (Figure 4M). Across the

GSE85916, GSE28735, and GSE57495 datasets, high CHST11

expression consistently correlated with worse survival

(Figures 4N–P). Spearman correlation further indicated that

CHST11 expression was positively associated with multiple

NRGs, suggesting a potential mechanistic link between

necroptosis and pancreatic cancer progression (Figure 4Q).
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3.6 Analysis of tumor microenvironment
and drug sensitivity in high- and low-risk
groups

The correlation between immune cell infiltration and the risk score

was analyzed (Figures 5A–H). Results showed that the abundances of

naive B cells, M2 macrophages, resting mast cells, monocytes, and

resting CD4 memory T cells were negatively correlated with the risk

score, while activated dendritic cells, activated mast cells, and

neutrophils were positively correlated. Further analysis revealed the

correlation between 22 immune cells and 7 risk model genes

(Figure 5I). In somatic mutation analysis of 158 pancreatic cancer

patients (Figure 5J), the tumor mutation burden (TMB) in the high-

risk group was significantly higher than that in the low-risk group

(Figure 5K). Comparison of tumor microenvironment (TME) scores

between the two groups showed no significant differences in

StromalScore, ImmuneScore, or ESTIMATEScore (Figure 5L), nor in

tumor purity (Supplementary Figures S3, S4). Additionally, RNA

Stemness Score was significantly positively correlated with risk score

(Figure 5M). Drug sensitivity analysis based on the pRRophetic

algorithm showed significant differences in 70 drugs between the two

groups (P < 0.05). Among them, Gemcitabine, Cisplatin, Paclitaxel,

Docetaxel, Doxorubicin, Vinorelbine, and Erlotinib had significantly

lower IC50 values in the high-risk group (Figures 5N–T), suggesting

these drugs may be more suitable for high-risk patients. Other

differential drugs are shown in Supplementary Figure S5.
3.7 Single-cell transcriptome analysis of
mouse immunotherapy group

Single-cell RNA sequencing (scRNA-seq) analysis of the mouse

immunotherapy cohort identified 14 cell subsets, including

macrophages, monocytes, and monocytic myeloid-derived suppressor

cells (mMDSCs). t-SNE plots visualized the expression distribution of 6

model genes across cell subsets (Figures 6A–C). Box plots further

showed these genes' expression characteristics (Figure 6D). Violin plots

revealed high CHST11 expression in T cells, NK cells, MDSCs, and

cDC1s (Figure 6E). Additionally, CHST11 expression was significantly

higher in the CD40 agonist group and combined therapy group than in

the untreated group (Figures 6F–G).
3.8 Single-cell analysis of pancreatic
cancer patients

Single-cell data from tumor tissues of 17 pancreatic cancer

patients and adjacent normal pancreatic tissues of 3 patients were

preprocessed, and the expression distribution of 7 model genes

across different cell subsets was visualized (Supplementary Figure

S6). Combined with marker genes, cells were divided into 15 subsets

(Figures 7A, B). In pancreatic cancer tissues, CHST11 expression

was predominantly observed in T cells, macrophages, and
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FIGURE 3

Validation and performance evaluation of the prognostic model in pancreatic cancer (PAAD). (A, F) Kaplan-Meier survival curves comparing high-
and low-risk groups in the training set (A) and entire cohort (F); (B, G) Time-dependent ROC curves for predicting 1-, 3-, and 5-year overall survival
in training (B) and full (G) datasets (AUC values shown); (C, H) Distribution of risk scores in ascending order for patients in training (C) and full
(H) datasets; (D, I) Distribution of survival status according to risk score in training (D) and full (I) datasets; (E, J) Heatmaps of the seven model genes
in high- and low-risk groups, training (E) and full (J); (K–M) Kaplan-Meier analyses stratified by Grade 1–2 vs. Grade 3–4 (K), Stage I/II vs. Stage III/IV
(L), and combined stage and risk groups (M); (N) Nomogram integrating risk score and clinical variables to predict overall survival; (O) Calibration
curves showing agreement between predicted and observed survival probabilities.
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neutrophils (Figure 7D), while in adjacent normal tissues, it was

mainly expressed in T cells (Figure 7C).

Subsequently, we focused on characteristic analysis of T cells

and naive T cells. Based on CHST11 expression, T cells were divided
Frontiers in Immunology 11
into CHST11+ T cells and CHST11- T cells, and naive T cells into

CHST11+ naive T cells and CHST11- naive T cells. In CHST11+ T

cells, the expression proportion and average expression level of

GATA3, TNFRSF1A, and FASLG among 15 NRGs were
FIGURE 4

External validation of prognostic model genes. (A–F) Kaplan-Meier curves from Kaplan-Meier Plotter database showing associations between
expression levels of CHST11, SLC16A1, RHOF, ANO6, MAN1C1, and SPRR1B (split by median expression) and survival outcomes of 1,237 pancreatic
cancer patients; (G–M) Scatter plots comparing expression of CHST11, SLC16A1, RHOF, MAN1C1, SPRR1B, ANO6, and PAH in normal pancreatic
tissues (GTEx, n = 171) and tumor tissues (TCGA, n = 179) (*p < 0.01); (N–P) Kaplan-Meier curves from GSE85916, GSE28735, and GSE57495 datasets
showing survival differences between high and low CHST11 expression groups; (Q) Spearman correlations identifying 12 NRGs associated with
CHST11.
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significantly upregulated; the average expression level of FAS,

TRIM11, DIABLO, and MAPK8 also increased (Figure 7E). In

CHST11+ naive T cells, the expression proportion and average

expression level of GATA3 were significantly elevated (Figure 7F).

Pseudotime analysis showed that CHST11+ naive T cells were

mainly distributed in State 1–4 (Figures 7G, H) and exhibited

higher cell density in the early stage of Pseudotime (Figure 7J).

Figure 7I shows the dynamic changes of five core genes in
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Pseudotime. Additionally, we compared cell communication

patterns between CHST11+ and CHST11- naive T cells, as well as

between CHST11+ and CHST11- T cells (Figures 7K–N). Results

showed that CHST11+ naive T cells had significantly higher

communication intensity in MIF and MHC-I pathways than the

negative group (Figure 7O); CHST11+ T cells also had significantly

upregulated communication intensity in MHC-I, CLEC, CD99,

MIF, ANNEXIN, and MHC-II pathways (Figure 7P).
FIGURE 5

Prognostic characteristics of the model. (A–H) Correlations between infiltration levels of various immune cells and risk scores; (I) Correlations
between 22 immune cell types and seven model genes (*p < 0.05, **p < 0.01, ***p < 0.001); (J) Waterfall plot of somatic mutations in 158 patients;
(K) Tumor mutation burden (TMB) comparison between risk groups; (L) Violin plots show StromalScore, ImmuneScore, and ESTIMATEScore between
groups; (M) Correlation analysis between RNA stemness score and risk score; (N–T) Boxplots show IC50 differences for Gemcitabine, Cisplatin,
Paclitaxel, Docetaxel, Doxorubicin, Vinorelbine, and Erlotinib between high- and low-risk groups.
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FIGURE 6

Single-cell transcriptomic analysis of the immunotherapy cohort in pancreatic cancer.(A) t-SNE plot of 14 cellular subclusters; (B) Overall expression
of six model genes across all cells; (C) Expression of six model genes in specific cell subclusters; (D) Boxplot showing overall expression levels of the
six model genes in immune cells; (E) Violin plot of CHST11 expression across cell types; (F) CHST11 expression significantly upregulated in CD40
agonist-treated group versus untreated (p < 0.001); (G) CHST11 expression significantly elevated in CD40 agonist, anti–PD-1+, and anti–CTLA-4
combination groups versus untreated (p < 0.001).
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3.9 Mendelian randomization

Differentially expressed genes (DEGs) were identified between

CHST11-positive and -negative subsets of T cells and naïve T cells.

Expression quantitative trait loci (eQTLs) significantly associated

with these differential genes were used as exposure variables, and
Frontiers in Immunology 14
BBJ-140, IEU-822, GCST90018673, and GCST90018893 as

outcomes for Mendelian randomization analyses. Ten pancreatic

cancer-related genes were screened using the inverse variance

weighted (IVW) method with P < 0.05 (Supplementary Table 5).

Subsequently, Pearson correlation analysis was performed in

pancreatic adenocarcinoma (PAAD) patients from The Cancer
FIGURE 7

Single-cell transcriptomic analysis of pancreatic cancer patients. (A) UMAP plots identifying 15 cell subtypes based on marker genes; (B) Average
expression and proportion of marker genes within each subtype; (C) UMAP of CHST11 expression in adjacent normal tissue; (D) UMAP showing
CHST11 expression mainly in T cells, macrophages, and neutrophils in tumor tissue; (E, F) Expression of 15 NRGs in CHST11+ and CHST11- T cells
and naïve T cells; (G, H) Pseudotime analysis showing state distribution of naïve T cells with different CHST11 expression levels; (I) Dynamic
expression changes of five core genes along pseudotime; (J) Cell density distribution of naïve T cells along pseudotime; (K–N) Bubble plots of
ligand–receptor communication in CHST11+/- naïve T and T cells; (O) Differences in communication strength within MIF, MHC-I, and CD99
pathways between CHST11+ and CHST11- naïve T-cell subsets;(P) Differences in communication strength within CD99, MHC-I, and CLEC pathways
between CHST11+ and CHST11- T-cell subsets.
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Genome Atlas (TCGA) to explore correlations between these 10

genes and CHST11. Five genes (CTSC, FHIT, PDE4D, RORA, and

TNFRSF9) were selected with P < 0.05. Figures 8A–H visualized

Mendelian randomization results with FHIT/CTSC as exposures

and the pancreatic cancer GWAS dataset ebi-a-GCST90018673 as

the outcome.

FHIT was identified as a protective factor for pancreatic cancer

via Mendelian randomization, showing a significant negative

correlation with CHST11 in TCGA (R = -0.23) and lower

expression in naïve T cell_ CHST11pos than in naïve T cell_

CHST11neg (Figures 8I–J, L). Survival analysis revealed better

survival in patients with high FHIT expression (Figures 8P–Q).

In contrast, CTSC was a risk factor for pancreatic cancer via

Mendelian randomization, with a significant positive correlation

with CHST11 in TCGA (R = 0.44) and higher expression in naïve T

cell_pos than in naïve T cell_neg (Figures 8I–K). Patients with low

CTSC expression had better survival (Figure 8R).

RNA-binding protein (RBP) interaction analysis was conducted

for 15 genes including CTSC, FHIT, MLKL, FAS, and CHST11.

Forty-two RBPs potentially bound to over 10 genes; among these, 5

RBPs (DDX3X, ELAVL1, HNRNPA2B1, IGF2BP3, and TARDBP)

showed significant correlations with 14 genes, suggesting their key

roles in post-transcriptional regulation of candidate genes

(Figure 8S; detailed interactions in Supplementary Table 6).

Protein–Protein Interaction (PPI) analysis was performed with a

confidence threshold > 0.4. BID and CTSC showed high binding

strength (combined score = 0.908); strong interactions were also

observed between BID–FAS (combined score = 0.873) and BID–

FASLG (combined score = 0.867). Additionally, proteins such as

GATA3, RORA, and CTSC had high connectivity in the network,

indicating their key roles in candidate gene-related signaling

pathways (detailed interactions in Figure 8T; Supplementary Table 7).
3.10 Single-cell analysis of non-immune
cells in pancreatic cancer patients

Based on the GSE194247 dataset (focused on non-immune cell

subsets of pancreatic cancer patients), we preprocessed and

annotated cell subsets into six types (including Stellate) using

marker genes from Seongryong Kim et al. (37) (Supplementary

Figures S7A–D). Fibroblasts were further extracted, batch-corrected

by Harmony, and re-clustered into seven subtypes using marker-

based annotation (Supplementary Figures S7E–H).

Given Seongryong Kim et al.’s indication that malignant cells

are mainly in epithelial cells, we focused on CHST11 expression in

Epithelial cells. For annotation stability, Epithelial cells were re-

corrected by Harmony and divided into 24 characteristic subsets.

Dot plots were generated using the original marker genes; cell

subset annotation and division were finalized by integrating dot

plots and UMAP expression distributions of core genes (e.g.,

VGLL1, KRT6A) (Supplementary Figure S8), resulting in 19 cell

subsets (Figure 9A).

Dot plots and UMAP showed CHST11 was mainly expressed in

cancer-associated fibroblasts (Figures 9B, C) and in Ep_KRT6A/
Frontiers in Immunology 15
Ep_VGLL1 cells among malignant epithelial cells (Figures 9D–F).

Differentially expressed genes (DEGs) between CHST11-positive

and -negative cells of these two cell types were screened; Mendelian

randomization (MR) was used to identify prognosis-related DEGs

(Supplementary Table 8). MR-based screening of DEGs in

Ep_VGLL1 and Ep_KRT6A cells confirmed higher CTSC

expression in CHST11-positive cells of both malignant cell types

(Figures 9G, H).
3.11 Spatial transcriptome analysis

Spatial transcriptomics (ST) analysis was conducted using

matched data from five pancreatic cancer patients in the

GSE194247 dataset. Results showed that CHST11 had high

overall expression in pancreatic cancer tissues (Figures 10A-E)

and shared significant co-expression regions with CTSC in spatial

distribution (Figures 10F-J). Additionally, CHST11 exhibited

obvious expression in both Ep_KRT6A (Figures 10K-O) and

Ep_VGLL1 (Figures 10P-S), with significantly higher expression

in Ep_KRT6A than in Ep_VGLL1.
3.12 Molecular docking

Using p.adjust < 0.05 as the screening threshold, 7 drugs with

significant interactions with the CHST11 gene were identified:

Puromycin aminonucleoside, Chondroitin, Pioglitazone, Alpha-

GalNAc, 1,4-Chrysenequinone, Celastrol, and 15-Delta

prostaglandin J2 (Figures 11A, B). Additionally, AlphaFold-based

structure prediction showed high overall confidence for the

CHST11 protein (Figures 11C, D).

Molecular docking analysis was then performed to examine the

binding of 6 of these drugs to the CHST11 protein. As shown in

Figures 11E-J, the docking results included Pioglitazone (Vina

score = –8.4), Puromycin aminonucleoside (Vina score = –7.5),

Chondroitin (Vina score = –8.4), Alpha-GalNAc (Vina score = –

6.0), Celastrol (Vina score = –8.8), and 1,4-Chrysenequinone (Vina

score = –9.2).
3.13 qPCR and immunohistochemistry

In this study, normal pancreatic cell line HPDE6-C7 and

pancreatic cancer cell line CFPAC-1 were selected, and qPCR was

performed on 7 model genes to compare their expression

differences between normal pancreatic and pancreatic cancer

tissues. Results showed significant differences in 6 genes: AN06,

SPRR1B, CHST11, PAH and RHOF were significantly upregulated,

while MAN1C1 was significantly downregulated (Figures 12A-F).

Further, immunohistochemical expression of these 7 genes was

analyzed in the HPA database. SLC16A1 was undetectable in 2

normal pancreatic samples, but expressed in 11 out of 12 pancreatic

cancer patients (6 with moderate-high expression, 1 with high

expression) (Figures 12G-J). For CHST11, low expression was
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observed in 3 normal pancreatic tissues, while differential

expression was found in pancreatic cancer tissues: of 8 patients, 2

were negative, 3 had weak expression, and 3 had moderate

expression (Figures 12K-N).
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4 Discussion

In previous bioinformatics studies, researchers often began with

known gene sets associated with specific biological features and
FIGURE 8

Mendelian randomization analysis and validation. (A–D) Mendelian randomization results for FHIT (exposure) and ebi-a-GCST90018673 (outcome);
(E–H) MR results for CTSC (exposure) with ebi-a-GCST90018673 (outcome); (I–J) Violin and bubble plots showing differential expression of
significant MR genes between CHST11+/- naïve T cells; (K–O) Pearson correlations between CHST11 and five genes in TCGA-PAAD dataset;
(P–R) Survival analyses stratified by FHIT and CTSC median expression levels; (S) RBP interaction network of 15 genes; (T) Protein–protein
interaction (PPI) analysis with confidence score > 0.4.
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identified overlapping genes related to prognosis for further

investigation—for example, the studies by Jinsong Liu et al. (43)

and Peikai Ding et al. (44). In studies related to necroptosis in

pancreatic cancer, researchers also typically adopted a similar

approach. For instance, Longchen Yu et al. performed RNA

sequencing on 5 pairs of pancreatic cancer and adjacent normal

tissues to identify differentially expressed genes (DEGs), then

integrated necroptosis-related genes to screen potential targets

(45). Comparable approaches were adopted by Haichuan Liu

et al. (46) and Hanna Belfrage et al. (47). In this study, we

performed unsupervised clustering on 15 necroptosis-related

genes in an integrated dataset to screen for potential key genes

closely associated with necroptosis in pancreatic cancer.
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Previous studies commonly used unsupervised clustering to

classify molecular subgroups, screen DEGs, and further identify

signature genes via prognostic analysis. For example, Cheng

Zeng et al. divided patients into two LMF subgroups by

unsupervised clustering, then used LASSO regression to screen

prognosis-related genes from subgroup DEGs and explored their

roles in patient prognosis (48). Similar strategies were applied by

Cheng Zeng et al. (49)and ZhangPing Yu et al. (50). Although

unsupervised clustering combined with differential analysis

effectively identifies signature-related genes, single clustering

often generates numerous DEGs. Previous studies typically used

LASSO or univariate Cox regression to select a few prognostic

signatures from hundreds of candidates for model construction.
FIGURE 9

Single-cell analysis of non-immune cells in pancreatic cancer. (A) UMAP of 19 cellular subclusters; (B) Bubble plot of CHST11 expression across cell
types; (C) UMAP of CHST11 distribution in fibroblasts; (D) UMAP of eight malignant epithelial subclusters; (E, F) Bubble and UMAP plots of CHST11
expression in malignant epithelial subclusters; (G–H) Violin plots of differential gene expression between CHST11+ and CHST11- cells in Ep_KRT6A
and Ep_VGLL1 subtypes.
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While this extracts core prognostic factors, it often ignores

associations with clustering features and lacks analyses verifying

biological relevance. In our study, we continuously traced the

association between core factors (extracted stepwise via prognostic

features) and the 15 necroptosis-related genes. Specifically, we first

clustered samples into two NRGclusters based on the 15 genes and

screened their DEGs. Next, 495 prognosis-related genes were selected

from these DEGs via univariate Cox analysis, followed by a second

clustering. Sankey diagram analysis evaluated signature similarity

between subtypes from the two clusterings. Further LASSO

regression identified 7 key prognostic genes, dividing patients into

high- and low-risk groups. Results showed 11 of the 15 necroptosis-

related genes had significant expression differences between risk

groups; NRGclusterA highly overlapped with geneClusterB, both

corresponding to the low-risk group. Focusing on CHST11 (the

most significant prognostic gene), we found it correlated with most

necroptosis-related genes, and necroptosis genes were highly

expressed in CHST11-positive T cells. Unlike previous studies

focusing solely on prognostic signatures, we verified associations
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with necroptosis genes after each screening and modeling step,

ensuring biological consistency and mechanistic relevance of the

selected signatures.

We found CHST11 correlated with poor prognosis in multiple

pancreatic cancer prognostic datasets. Additionally, PCR, combined

TCGA-GTEx analysis, and immunohistochemistry confirmed

higher CHST11 expression in pancreatic cancer tissues and cells.

Previous studies reported CHST11 overexpression in various

cancers, typically correlating with poor prognosis. For example,

high CHST11 protein expression is an independent poor prognostic

factor in ovarian cancer (51); in clear cell renal cell carcinoma

(ccRCC), recent studies linked high CHST11 to clinical stage,

immune microenvironment features, and poor survival, and in

vitro experiments showed it promotes tumor cell proliferation,

migration, and invasion (52). Few studies have explored

CHST11’s prognostic role and mechanisms in pancreatic cancer.

Our study first performed immune infiltration analysis, finding

CHST11 significantly correlated with macrophages, T cells, and

dendritic cells. Consistent with this, CHST11 was highly expressed
FIGURE 10

Spatial transcriptomics. (A-E) CHST11 expression across tumor sections from five pancreatic cancer patients (blue to red, 0–1.6); (F-J) Co-expression
regions of CHST11 and CTSC (expression > 0.5) shown as red dots; (K-O) CHST11 expression in Ep-KRT6A cells; (P-S) CHST11 expression in Ep-
VGLL1 cells.
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in T cells, NK cells, MDSCs, and cDC1s in mouse pancreatic cancer

tissues. Furthermore, CHST11 expression was significantly higher

in immunotherapy-treated groups than in untreated groups.

We found that in both naïve T cell_CHST11+ and T

cell_CHST11+ populations, the average expression levels of
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necroptosis-related genes GATA3 and FAS were higher than those

in CHST11- cells, and the proportion of GATA3+ cells was

significantly increased. Previous studies have demonstrated that

GATA3 is a key transcription factor for Th2 cell differentiation,

which inhibits Th1 differentiation by suppressing IL-12Rb2
FIGURE 11

Structural prediction of CHST11 protein and molecular docking analysis of candidate drugs. (A, B) Enrichment results identifying seven candidate
drugs predicted to interact with CHST11 (adjusted p < 0.05; bar/bubble plots); (C) Predicted 3D structure of CHST11 from AlphaFold, with confidence
indicated by pLDDT scores; (D) Predicted alignment error (PAE) map showing positional uncertainty between residues; overall, CHST11 structure
exhibited high confidence; (E–J) Molecular docking results showing binding modes of six candidate drugs with CHST11, with left panels showing
overall binding sites and right panels showing magnified binding pockets.
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expression and maintains the Th2 phenotype through a positive

feedback mechanism (53). These findings suggest that may

participate in the regulation of naïve T-cell differentiation by

modulating the expression of key genes such as GATA3.

Additionally, T cell_CHST11+ populations showed significantly

upregulated FASLG, GATA3, and TNFRSF1A, with a rising trend

in FAS. Previous studies reported high-molecular-weight sulfated

polysaccharides (e.g., heparin, heparan sulfate, dextran sulfate)

enhance Fas-mediated T cell death (54). As CHST11 is a key

enzyme for glycosaminoglycan sulfation, these results suggest

CHST11+ naive T cells in pancreatic cancer may have "Th2
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differentiation tendency" and promote T cell exhaustion by

enhancing apoptosis sensitivity via the FAS/FASLG pathway.

We further explored CHST11’s association with non-immune

cells in pancreatic cancer, finding it mainly localized to fibroblasts

and epithelial cells. Numerous studies link CHST11 to fibroblasts:

primary fibroblasts from Costello syndrome patients show reduced

chondroitin-4-sulfate (C4S) and lower CHST11 mRNA/protein

expression; oncogenic HRAS expression in normal fibroblasts

inhibits CHST11, while interfering with oncogenic HRAS signaling

in Costello syndrome fibroblasts upregulates CHST11 (55).

Additionally, CHST11 promotes tumor malignancy and the
FIGURE 12

qPCR and immunohistochemistry analyses. (A–F) qPCR results showing differential expression of ANO6, SPRR1B, CHST11, PAH, RHOF, and MAN1C1
between normal pancreatic cell line HPDE6-C7 and pancreatic cancer cell line CFPAC-1 (**p < 0.01, ***p < 0.001); (G–J) Immunohistochemistry of
SLC16A1 showing absent in in normal pancreatic tissue but moderate–high in pancreatic cancer; (K–N) Immunohistochemistry of CHST11 showing
low expression in normal pancreas and moderate expression in pancreatic cancer tissues.
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production of fibrosis activators; TGF-b and INF-g induce CHST11
expression in fibrosis models and regulate CHST11-related

molecules, indicating CHST11-fibroblast associations in pulmonary

fibrosis (56). In our study, we focused on pancreatic cancer malignant

epithelial cells and found CHST11 was highly expressed in

Ep_KRT6A and Ep_VGLL1 cells. High CTSC expression was

observed in naive T cell_CHST11+, Ep_KRT6A_CHST11+, and

Ep_VGLL1_CHST11+ cells. Mendelian randomization identified

CTSC as an adverse factor for pancreatic cancer; TCGA data

showed CTSC was significantly positively correlated with CHST11

and associated with poor prognosis. Previous studies reported

increased CTSC expression in myeloid cells from normal pancreas

to pancreatic squamous cell carcinoma (57) and its key role in islet

carcinogenesis (58). Spatial transcriptomics analysis showed high

CHST11 expression in Ep_KRT6A and significant co-localization

between CHST11 and CTSC, suggesting they may synergistically

promote pancreatic cancer progression.

In summary, one core innovation of this study is the

establishment of a feature screening system combining "two

consensus cluster analyses + continuous biological tracing."

Verifying associations with necroptosis-related genes after each

screening step alleviates the "signature dilution" issue common in

previous studies that "directly combine survival analysis with single

consensus clustering." Additionally, to our knowledge, this study is

the first to systematically explore CHST11’s prognostic features in

pancreatic cancer via single-cell omics, showing immunotherapy

may upregulate CHST11 expression. It also preliminarily suggests

CHST11 may regulate T cell differentiation and promote exhaustion.

Meanwhile, CHST11 and CTSC may synergistically promote

pancreatic cancer progression. Despite optimized design, this study

has limitations: (1) External validation of CHST11’s prognostic

features relied mainly on public databases, with potential selection

bias due to pancreatic cancer heterogeneity and incomplete

pathological subtype coverage; future studies should include

subgroup and pathological subtype-specific analyses. (2) Despite

batch effect correction, platform differences between TCGA and

GEO and inherent technical noise in single-cell sequencing may

introduce minor measurement errors. (3) External validation only

focused on gene expression, lacking clinical variables and multi-

center data, limiting external validity. (4) Although multi-omics

provided clues for associations between CHST11 and GATA3/

CTSC/FAS, conclusions rely mainly on bioinformatics correlation

analyses; cellular and animal experiments are needed to validate core

mechanisms and supplement causal evidence.
5 Conclusion

By means of multi-omics approaches, this study reveals that

CHST11 is associated with necroptosis. Meanwhile, it identifies that

this gene is linked to poor prognosis of pancreatic cancer, and this

prognostic association is closely related to the role of CHST11 in T

cells and malignant epithelial cells.
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SUPPLEMENTARY FIGURE 1

Unsupervised clustering of necroptosis-related genes (NRGs). (A–I) Consensus
matrix heatmaps for cluster numbers (k) = 1–9; (J) Cumulative distribution

function (CDF) plot for k = 1–9; (K) Delta area plot of relative changes in CDF
curve area; (L) Tracking plot of sample classification at different k values.

SUPPLEMENTARY FIGURE 2

Gene clustering based on prognosis-related differentially expressed genes

(PRDEGs).(A–I) Consensus matrix heatmaps for k = 1–9; (J) CDF plot for k =
1–9; (K)Delta area plot of relative changes in CDF curve area; (L) Tracking plot

of sample distribution at different k values.
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SUPPLEMENTARY FIGURE 3

Tumor purity. No significant difference in tumor purity between high- and
low-risk groups.

SUPPLEMENTARY FIGURE 4

TME-based PCA. Principal component analysis (PCA) based on tumor
microenvironment (TME) features showed partial separation between high-

risk (red circles) and low-risk (blue triangles) groups, with some overlap.

SUPPLEMENTARY FIGURE 5

Drug sensitivity. Drugs showing significantly different IC50 values between
low- and high-risk groups.

SUPPLEMENTARY FIGURE 6

Preprocessing and clustering of single-cell data in pancreatic cancer

tissues.(A) Data preprocessing; (B) PCA-based dimensionality reduction;

(C) UMAP visualization of clusters; (D) UMAP distribution of the seven
model genes.

SUPPLEMENTARY FIGURE 7

Single-cell analysis of non-immune cells.(A–D) Preprocessing, harmony

reduction, UMAP visualization of 16 clusters, and bubble plots of marker
genes; (E–D) Fibroblast reclustering and fibroblast marker gene expression

across seven fibroblast subclusters.

SUPPLEMENTARY FIGURE 8

Single-cell analysis of epithelial cells.(A–C) Harmony-based reclustering,

UMAP visualization of 25 epithelial subclusters, and bubble plots of marker
genes; (D) Distribution of key marker genes such as VGLL1 across

epithelial subclusters.
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