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Antibodies and cryptographic
hash functions: quantifying
the specificity paradox
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The specificity of the immune response is critical to its biological function, yet the

generality of immune recognition implies that antibody binding is multispecific or

degenerate. The current work explores and quantifies this paradox through a

systems analysis approach that incorporates set theoretic ideas and an

application of structural and statistical modeling to prior experimental

immunological and biochemical data. Order-of-magnitude estimates are

computed for the average degeneracies and specificities of antibodies and

epitopes using a chemico-spatial model for epitope diversity and a binary

model for antibody-antigen binding. The results illustrate and quantify how the

humoral immune system achieves both high specificity and high degeneracy

simultaneously by effectively decoupling the two properties, similarly to

programs in cryptography called secure hash algorithms (SHAs), which display

the same paradoxical features. In addition, an antibody-epitope interaction

probability model is used to help show how newly formed antibodies may

avoid cross-reactivity with self-antigens despite their high degree of

multispecificity and how the requirement of polyclonal binding likely improves

the overall specificity of the immune response. Because they describe the

relationships between various statistical parameters in humoral immunity, the

models developed here may also have predictive utility.
KEYWORDS

antibodies, adaptive immune system, receptors, antigens, epitopes, degeneracy,
polyspecificity, polyreactivity
1 Introduction

Human antibodies (Abs) behave as specific to their cognate antigens (Ags) under many

clinical and experimental conditions. For example, a monoclonal antibody’s specificity (1)

is often critical to its therapeutic (2, 3) or diagnostic (4–6) utility. Such antibodies have

commonly been referred to as “monospecific” or “monoreactive” (7–10). Early

immunological thinking was, in fact, that one antibody or receptor implied one

specificity (11, 12), in what has been referred to as the “one antibody, one antigen”

dogma, rule or paradigm (13–15). The specificity of antibodies depends on the broad

chemical and structural diversity in their variable or binding regions, which arises from a
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more-or-less random recombination of their coding immune gene

segments (16, 17), together with several other secondary

mechanisms (18–24).

Yet despite the large degree of diversity among immune cell

receptors and antibodies, we know that their binding to antigens

must still be highly multispecific, cross-reactive or degenerate (25–

30). This is because immune recognition is thought to be inclusive

of all types of antigen-sized molecules and molecular fragments

(31–36)– an observation termed the postulate of antigenic totality in

the present work– and while the immune repertoire of an individual

is large, it is small compared to chemical space. In the language of

set theory, the relation (“mapping”) of distinct antigens– or, more

precisely, the parts of their structures called epitopes–to antibody

species that can bind them must be many-to-one, at least

on average.

The current work is an attempt to quantify and shed light on

this specificity paradox. How can antibodies be both specific and

multispecific? The topic has been discussed for decades with respect

to both antibodies (37) and T-cells (28, 38), and estimates of T-cell

receptor degeneracy have been given (25, 29). Sewell hypothesized

that the capacity of T-cell receptors to retain some specificity for

particular antigens despite high levels of cross-reactivity related to

the sizes of their repertoires and those of their presenting peptides

(28). With respect to antibodies, the current thinking is that they

likely span a range of specificities, and that at least some antibodies

produced late in the immune response are highly specific to their

cognate antigens (39–41).

However, there has not been a formal, systematic attempt to

describe the statistics of antibody-epitope interactions and to

clarify–in mathematical terms–the paradoxical capacity of the

adaptive immune response to display features of both

multispecificity, or degeneracy, and specificity. The current study

illustrates how these two properties are, in fact, distinct and

statistically uncoupled. It does so by applying some set theoretic

constructs and a quantitative though approximate (order-of-

magnitude) systems analysis to the question. The study defines

operational specificity (OpS) of antibodies precisely as how unlikely

it is for an antibody to cross-react with an antigen that did not elicit

it (i.e., a non-cognate antigen). It derives mathematical expressions

for this quantity in regard to individual antibodies, their averages,

and the antibody repertoire as a whole (systemic OpS), in terms of

the other properties of the system. A binary, statistical model of

antibody-antigen binding is developed (i.e., a pair either binds or it

does not) and applied to prior experimental data to arrive at

conservative, lower-bound estimates for antibody and epitope

degeneracy, as well as cross-reactive probabilities and OpS. A

related model (AEIP) is used to confirm the results and explore

the frequency of antibody interaction with self-antigens, as well as

the effect of polyclonality on self-interaction.

The main findings in the study are as follows:
Fron
1. A conservative, lower bound estimate for the average

binding degeneracy of a human antibody is in the range

of 1073 to 1076 epitopes, of which at least at least ≈1018

represent protein or peptide epitopes.
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To arrive at these estimates, a peptide-epitope chemico-

spatial (PECS) model of epitope diversity is developed and

combined with prior experimental data (Methods Section

2.1 and Results Sections 3.1 and 3.2).

2. An estimate for the average operational specificity (OpS) of

human antibodies across a single individual’s antibody

repertoire is approximately 1-10–7 to 1-10-12 (Results

Section 3.3.1).

3. The systemic OpS–i.e. the specificity of an individual’s antibody

repertoire as a whole, Sc–varies as Sc ≈ 1 − Dih i2
N (Var(Rj) + 1),

where ⟨Di⟩ is the average epitope degeneracy, Rj is the

distribution of normalized antibody degeneracies, and N is

the size of the repertoire. (Results Section 3.3.3 and Appendix

Section 6.2.3).

4. Numerical estimates of human systemic antibody OpS are in

the range of ≈1-10–7 to 1-10–14. (Results Section 3.3.3.)

5. The specificity of individual epitopes for their cognate

antigens is quite high: in the range of 1 − 10−14 to 1 −

10−8, but epitope space is so large that it virtually

guarantees, statistically, that two randomly chosen

antibodies in an immune repertoire will share many

common epitopes in their binding spaces–conservatively,

≈ 106 to 1016 protein or peptide epitopes, on average

(Results Section 3.5), although this is a very small fraction

of the total size of the relevant epitope space.

6. The average number of self-antigens to which a newly

formed antibody will be complementary is in the range of

10−3 to 1, assuming 10,000 self-antigens and an average

epitope degeneracy of 1 (see Results Section 3.7). This is

consistent with experimental data.

7. The total number of antigens complementary to a polyclonal

response of n antibodies increases approximately linearly

with n, but the number of antigens having complementarity

to multiple members (m) of that set of antibodies falls

exponentially with m. (Results Section 3.8) This illustrates

how the requirement of polyclonal binding in the immune

response likely improves its overall specificity.
Further, it is illustrated here that the mathematical structure

underlying immune specificity and degeneracy closely mirrors that

of cryptographic hash functions (see ref (42) for review), also

known as secure hash algorithms (SHAs). These functions take

digital files as their input and generate relatively short alphanumeric

codes called hash values, a.k.a. message digests, that are then

attached to the files for security purposes. They are used in many

types of digital security protocols, such as those generating digital

signatures (43, 44). The Bitcoin mining protocol (45, 46) uses the

hash algorithm SHA-256 (47, 48), which generates hash values of

256 bits in length. Mathematically, hash values and electronic files

are the cryptographic counterparts of antibodies and epitopes,

respectively, and they give rise to the same type of specificity

paradox. Hash functions must be capable of handling any digital

input, which means their outputs or digests must be highly
frontiersin.org
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degenerate (49), yet they must be specific enough to their

originating or “cognate”1 files to ensure digital security. In

addition, although an SHA is a total, single-valued function and

the relation of epitopes to antibodies in a repertoire is not, we show

that the latter approximates the former in behavior (see, e.g., Results

Section 3.6). To illustrate the parallels between the systems,

cryptanalytic data from a single case is compared to immunologic

experimental data. The example case used is an electronic file that is

4000 bits (250 16-bit words) in size, which was approximately the

size of the average Bitcoin transaction over most the 2010’s (50, 51).

By integrating experimental data into a newly developed

mathematical framework that describes the relationships among

key immune system properties or parameters, such as size and

specificity, the present work aims to improve our understanding of

the statistics of antibody-antigen complementarity. It shows that

antibodies, at least on average, must have very high binding

degeneracies or multispecificities and illustrates how they are able

to maintain high clinical and laboratory specificity despite this. It

further demonstrates how this capability relies on a statistical

decoupling of specificity and multispecificity, similar to the case

in cryptographic hash systems. The findings here also suggest that

human immune system parameters have been evolutionarily

optimized to permit universal antigen recognition while limiting

cross- and self-reactivity. The study focuses on the statistics of

humoral immunity–i.e., B-cell receptors and antibodies–but many

of the general principles are applicable to T-cell receptors as well.
2 Methods

2.1 Peptide/protein epitope chemico-
spatial model

We define an epitope here as that portion of a molecular

structure or set of structures (e.g., a set of amino acids) in a

particular 3-D conformation, allowing for local fluctuations, that is

involved in close interactions with an antibody. (See Glossary in

Supplementary Material 2 for the definitions of terms used in this

work.) Further, “epitopes” in this work generally refers to distinct

epitopes, as opposed to copies, unless otherwise indicated.2 The size

of epitope space depends not only on varying amino acid sequences,

but also on conformational diversity, because antibodies can

discriminate conformation (52, 53). Modeling this can be

complex, but the approach is simplified here by use of a peptide/

protein epitope chemico-spatial (PECS) model. In this model, each

amino acid in a protein or peptide epitope can occur in any of q
1 Here, we extend the notion of cognate, which denotes a primary (or

causal) and unique pairing between an epitope and an antibody, to the

general case of any system containing problem and solution elements that

can be identified as having such a relationship, including cryptographic

hash systems.

2 The same is true for “antibodies”, which refers to a set of unique antibody

species–more specifically, unique variable regions, as well as the terms

“solution elements”, “problem elements”, “hash values”, and “digital files”.
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distinct (x,y) positions, where the hypothetical (x,y) plane is defined

as roughly parallel to the paratope-epitope (Ab-Ag) interface. See

Figure 1. In addition, each residue can occur at different depths, or

z-positions, relative to the plane. The z-coordinate is decomposed

into the position of the protein surface relative to the plane and that

of the residue (as defined by its alpha-carbon) relative to the surface.

The decomposition is important because the set of amino acids in

an epitope is not necessarily continuous on the protein polypeptide

chain (54). Most epitopes, in fact, are of the discontinuous or

“conformational” type (55–59). This also suggests that the z-

positions of the residues be considered as mutually independent.

Hence, if Nr amino acid types can occur at any one of d depths (z-

positions) relative to the interfacial plane, the number of possible

chemico-spatial configurations is Mprot = (Nrd)
q. Because we are

seeking a conservative, lower bound estimate for epitope diversity,

the PECS model intentionally underestimates the total number of

distinct protein/peptide epitopes (see also Appendix, Section 6.1).
2.2 Degeneracy and operational specificity

2.2.1 Problem and solution element degeneracy
Consider finite sets F and Y containing M and N elements,

respectively, and the relation

H ⊆F�Y : (1)

We refer to F as the problem set, its elements fi as problem
elements, Y as the solution set, and its elements yj as solution

elements. For simplicity and symmetry, throughout this work, the

“i” subscripts–i.e., inputs–are reserved for problem elements and

the “j” subscripts for solution elements.

As illustrated in Figure 2, FH is the preimage of the H relation,

Y is considered both the image and codomain of H and is

embedded in a larger set of elements, YC, the analysis of which is

beyond the scope of the present study. In the immunologic context,

F is the set of all possible epitopes,Y is the set of all antibodies in an

individual’s repertoire, FH is the set of epitopes that are

complementary to (would bind to) at least 1 antibody (variable

region) inY, andYC is the set of all possible human antibodies (“Y
complete”). In the cryptographic context,F andY are the sets of all

possible input files (in this work, of size 4000 bits) and all possible

SHA-generated hash values (here, of 256 bits in length),

respectively. FH is the preimage of the SHA function, which is

equal to F, and YC is the space of possible hash values producible

by any SHA function. In both contexts, we assume that H is

surjective–in other words, there is no need to consider the subset

of Y called YH because all codomain elements (antibodies, hash

values) are involved in the relation.3

For convenience, we define the relationsHB andHK as instances

of the H relation (Equation 1) corresponding to immune

recognition and SHAs, respectively. HK is a total, single-valued
3 It is highly probable that all (fully formed) antibodies bind at least one

epitope. Similarly, all hash values are thought to have at least one possible

originating file, although this has not been proven.
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function, whereas this study explores the extent to which HB is or

is not.

We also define the N × M relation matrix Rij according to

whether the element fi in F is associated with the element yj inY as

Rij =
1,     if yes      

0,     if no :      
 

(

See also Figure 3. The degeneracy,Dj, of solution element j is the

number of correspondences or “yeses” across all problem elements4:

Dj = R*,j =oM
i=1Rij, and the average degeneracy5 across all solution

elements is Dj

� �
=oN

j=1Dj=N . See Table 1 for a list of the variables

used in this work and their definitions. Similarly, the degeneracy of

problem element i is Di = Ri,* =oN
j=1Rij, and the average

degeneracy across all problem elements is Dih i =oM
i=1Di=M. In

immunity, Dj is the binding degeneracy of antibody j across all

epitopes, and Di that of epitope i across all antibodies in the

repertoire. Since double sums over all Rij in the system can be

carried out in either order without changing the result, we know

that oM
i=1Di =oN

j=1Dj, and hence M Dih i = N Dj

� �
,  which is the

relation size, or the sum of all the “1”s in Rij. In immunity, this is the

total number of possible epitope-Ab pairs involving an individual

immune repertoire. Then, Dj

� �
= Dih iM=N .

The probability, P0j, that a randomly chosen problem element will

be associated with solution element j is P0j =oM
i=1Rij=M = Dj=M: In

immunity, the probability that a randomly chosen epitope will bind to
4 The degree of the element, in set theory. This is similar to the preimage

cardinality of the element under H but degeneracy (or degree) is a property

that extends to all domain or codomain elements, including those with

degeneracy 0.

5 The units here are problem elements, or, e.g., epitopes, but we will ignore

units for conciseness in most of this work.
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(i.e., be complementary to) antibody j is the degeneracy of that Ab as a

fraction of the number of possible epitopes. The normalized

degeneracy of each solution element can be given as the degeneracy

relative to the mean, Rj = Dj= Dj

� �
, so that P0j = Rj Dj

� �
=M = Rj Dih i

=N . Similarly, the normalized degeneracies of the problem elements are

Ri = Di= Dih i, and the probability that a randomly chosen Ab will bind

to epitope i is P0i =oN
j=1Rij=N = Di=N = Ri Dih i=N = Ri Dj

� �
=M :

2.2.2 Operational specificity
If an antigen contains ei epitopes, Ei = {i1,i2,…iei}, then the

number of Ab interactions it will have is mi =oei
k=11 Dik

=1f g.
Assuming Di is usually 0 or 1 for most epitopes (see Section 4.2.2),

then Dih i < 1 and, very approximately, mi  ≈ Dih iei, Over all

antigens, the average number of Ab interactions per antigen, mh i,
will more closely approximate mh i ≈ Dih i eh i. Hence, for Dih i < 1, a

fair approximation is Dih i ≈ mh i= eh i.
To define operational specificity, or OpS, we first establish the idea

of primary or cognate pairs, which are problem element-solution

element pairs that we define to be elements of a “special” or primary

subset of the overall relation and that are uniquely paired. By “uniquely

paired”, we mean they form a partial bijection or a bijective subset of

the overall relation. Namely, they are a subset, H′, of H:

H0 = (fg(j),yj) j ∈ 1, 2, 3,…Nf gj g,�
where g:Y→Fcog is a bijection (unique pairing) andFcog is the

subset of F for which each element is cognate to a corresponding

element in Y. This assumes that M ≥ N. See Figure 2. The set of

pairs of tested epitopes and their cognate antibodies is a cognate

subset, as is the set of pairs of digital messages to be secured and

their corresponding hash values.

As shown in Table 2, there are three possible relationships

between a cognate ordered pair (fi1 ,  yj1 )  and any other ordered

pair (fi2 , yj2 ). For simplicity, the table assumes that g(j) = j. That is,
FIGURE 1

Peptide/protein epitope chemico-spatial (PECS) model. Ab–antibody; red border–region of antibody interfacing with epitopes; a1 through a6–6
possible (x, y)-positions for epitope amino acids; red discs–a carbons of amino acids; z1 through z5–5 possible z-positions for the a-carbons. The
(hypothetical) interfacial plane, and additional ak positions, extend from the x-axis in the y-dimension, which would run perpendicular to the page.
The a carbons can occur at any of three depths within each amino acid, and the local epitope surface can, itself, occur at one of three depths
relative to the interfacial plane. The model intentionally undercounts the total number of epitopes by ignoring amino acid side chain and backbone
conformational diversity, as well as possible shifts in amino acid (ak) position in the (x, y) plane.
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the indices of cognate problem and solution elements are equal. 1) If

i1 ≠ i2,   j1 = j2, the pairs share only the same solution element, and we

call the relationship a collision or cross-reaction (solid, black arrows in

Figure 2); 2) If i1 = i2,   j1 ≠ j2, the pairs share only the problem

element, and the relationship is an anticollision (dashed, black arrow

in Figure 2; see also Section 3.5). Finally, 3) If i1 ≠ i2,   j1 ≠ j2, the pairs

share neither element and participate in a non-collision. Throughout

this work, the term “collision” will be assumed to include the idea of

antibody cross-reaction with non-cognate epitopes, and “specificity”

will refer to collision specificity, rather than anticollision specificity,

unless otherwise stated. Notably, there are no anticollisions in SHA

algorithms; the present study explores how close humoral immunity

comes to this, if at all.

The operational specificity of an element, S, measures how

unlikely it is for the element to participate in a collision or cross-

reaction. For individual elements or their averages, S = 1 − P, where

P is the probability of a collision6. If Pj = 0 and Sj = 1, then no non-
6 Technically, a second preimage, in cryptography.
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cognate problem elements point to solution element j, and it has

perfect specificity for its cognate problem element. In immunity,

this would mean an antibody is truly monospecific. In

cryptography, no alternative files would hash to primary or

originating message digest j. Conversely, Sj = 0 implies that all

problem elements collide: all non-cognate epitopes cross-react with

antibody j and all alternative files hash to message digest j. This is

illustrated in Figure 4.

Collision probabilities and OpS can be considered in the context

of individual antibodies, Pj, Sj, or system averages, ⟨Pj⟩, ⟨Sj⟩. In

addition, the systemic probability of a collision, Pc, is the probability

of a cross-reaction between a solution element and one non-cognate

problem element anywhere across the entire solution space, and the

systemic OpS, Sc, is the corresponding specificity.

For individual solution elements and  Dj ≫ 1, Pj ≈
Dj

M = P0j
and Sj ≈ 1 −

Dj

M . Hence, as depicted in Figure 4, the specificity is a

function of the degeneracy and the size of the problem space. The

latter expression is similar in form, though not exactly the same, as

the measure called specificity used in binary medical tests (60).7
FIGURE 2

Diagram of relations associating problem and solution elements in the current study. Green trapezoid (F)–the set of all epitopes (problem elements,
domain), f1, f2,   f3,…f12f g; red oval (Y )–one individual’s Ab (variable region) repertoire (solution elements, codomain, image of H), y1,y2,y3f g; H
(ring)–the relation associating F and Y ; grey oval (FH)–the subset of F that is related to Y by H–i.e., the preimage of H– which is the set of

epitopes that bind to at least one Ab in Y ; orange oval (YC)–set of all possible human Ab species, of which Y is a subset; arrows–complementary

(f,yC) pairs, yC ∈ YC; blue arrows–primary or cognate (f,y ) pairs; solid, black arrows–potential collisions, i.e., (f,y ) pairs involving non-cognate f;
yellow arrows– (f,yC) pairs involving Abs outside of Y ; solid, yellow arrows–pairs involving epitopes that bind only to Abs outside of Y . The subset
of problem elements, here f1, f7, f12f g, involved in cognate pairs (blue arrows) is called Fcog (see text). The dashed arrows represent pairs potentially

involved in anticollisions: dashed, yellow–potential extra-repertoire anticollisions; dashed, black–a potential intra-repertoire anticollision (y1, f7,y2).
The (f7,y1) pair also gives rise to a potential collision (f1,y1, f7). See text for the definitions of these variables in the cryptographic context. In both
contexts, FH is many orders of magnitude larger than Y (not drawn to scale), and the H relation is presumed to be “onto”–i.e., covers the entire
codomain Y .
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Similarly, For Dj ≫ 1, averages across the system are

Pj
� �

≈
Dj

� �
M

=
Dih i
N

(2)

and Sj
� �

is 1 minus those quantities.

For large problem/solution spaces, systemic OpS is generally

Sc ≈ e−Pc, which reduces to S ≈ 1 − Pc for Pc ≪ 1. The forms for Pc
and Sc in terms of other system variables, as well as all derivations, are

provided in the Appendix (Section 6.2) and Supplementary Material 3.

2.2.3 Phenomenological simulations related to
systemic OpS

In this set of calculations, N antibodies in the system were assigned

degeneracies (Dj’s) conforming to a positive-valued Gaussian

distribution. Then, Dj epitopes were randomly associated with each

antibody, j, one Ab per epitope (Di =1). Pairs of epitopes were then

selected at random–the first representing the cognate epitope in an

antibody-epitope pair. If the second happened to bind the same

antibody as the first, then the epitope pairing was counted as an Ab

cross-reaction. This was repeated for the entire set of epitopes, so that

there were amaximum of 100,000 ×99,999/2 ≈ 5 x 109 epitope pairs per

trial. The probability of cross-reaction was calculated as the number of

positive cross-reactions divided by the total number of epitope pairs,

and this was compared to the theoretical result. A number of trials were

carried out, varying the spread of the degeneracies (s of the Gaussian

distribution). The actual number of epitope pairs per trial varied

between 2 and 5 billion, because of the effect of truncating the

Gaussian (at Dj=0), which varied with the spread parameter.
2.3 Antibody-epitope interaction
probability model

2.3.1 AEIP model form
The above models do not take into account sampling of subsets

of antibodies from larger pools, as occurs in polyclonal immune

responses to an antigen. To guarantee the generation of accurate
7 Specificity = 1 − false +ð Þ=cond −ð Þð Þ, where “false +ð Þ” is the number of

individuals in a population testing falsely positive and “cond −ð Þ” the number

who do not have the illness or condition.
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statistics for multi-epitope, multi-antibody interactions involving

such sampling across all size scales, the antibody-epitope

interaction probability (AEIP) model was developed. This model

generates the probability, P(e, m, n, N), of an antigen having e
epitopes that will participate in m interactions with a set of n

distinct antibodies or B-cell clones selected from a larger pool of N

clones in the immune repertoire. The total number of expected

complementary interactions, or “matches,” ⟨W⟩, given A tested

antigens, is then simply ⟨W⟩ = AP. The assumptions are that 1) HB

is total (no unassigned epitopes), 2) HB is random; 3) the antigens

are each assigned random epitopes, 4) duplicate epitope-antibody

matches for a given antigen are not allowed (no combinatoric

replacement), and 5) the antigenic binding spaces of the Abs are

of the same size (all Dj are equal). This last condition is why the Ab

degeneracies do not appear explicitly in the model. Conditions 2, 3,

and 5 imply that the antigenic space is apportioned more-or-less

evenly among the N antibodies.

The probability is the product of four terms:

P(e,m, n,N), = SeCnT1T2 (3)

where

Se =
e !

(e −m) !
,  Cn =

n !
(n −m) !m !

,  T1 =
(N − n) !

(N − n − e +m) !
,  T2 =

(N − e) !
N !

,

provided that the arguments of the factorials are all greater than

zero–i.e., N ≥ {e,n} ≥m, and N ≥ n + e −m. This expression is exact,

in the sense that statistical results will converge to it over a large

number of trials.

In the special case of n =1 (a single selected or tested Ab), the

number of cross-reactive matches, m, can be either 0 or 1, and the

probability reduces to

P(e ,m, 1,N) = 1 − e=N      if   m = 0,
e=N             if   m = 1,

n

and ⟨W⟩ = Ae/N for a single match. Since ⟨Di⟩ = 1 in the AEIP

model, from Equation 2 the average probability of collision for an

individual Ab is ⟨Pj⟩ ≈ 1/N and ⟨W⟩ = Ae⟨Pj⟩, as in the example

given in Results Section 3.7.

As discussed in the Appendix (Section 6.3), for arbitrary n ≥ e ≥
m > 0 and N ≫ {n,e,m}, the probability simplifies to P(e,m,n,N) ≈

SeCn/N
m.
FIGURE 3

Relation matrix R. fi and yj–problem and solution elements as described in Figure 2; Di and Dj– the degeneracies for problem element i and
solution element j, respectively. For each possible (fi,yj) pair, the corresponding matrix value indicates whether fi associates with yj (in which case,
Rij =1), or not (Rij =0). For example, problem element f1 associates with solution element y1 but not with y2. The primary or cognate pairs are
indicated with a blue”1”. The matrix elements excluding the Di =0 columns (f2,f10, and f11) correspond to the H relation described in Figure 2. In
real-world humoral immunity, many, and perhaps most, of the Di’s are 0 (e.g., solid yellow arrows in Figure 2; see Results Section 3.2.2). By contrast,
in SHA algorithms, Di is always 1. The rows and columns of the matrix have been transposed here for illustration purposes.
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Various other approximations to the exact model are derived

and other details are also provided in the Appendix (Section 6.3).
2.3.2 Phenomenological simulations related to
the AEIP model

Several sets of trial calculations, or phenomenological

simulations, were carried out to quantify the probabilities of

interaction between sets of selected antibodies and arbitrary

antigens, and the results were compared to the theoretical

estimates from the AEIP model. For each calculation, a set of n

antibodies was randomly selected out of a larger pool of N Abs,

which also correspond to the N partitions into which epitope

space was subdivided. Then, e epitopes were randomly selected

from those partitions and assigned to a test antigen and checked

for complementarity with the n selected Abs. The number of non-

redundant matches was then tabulated for each of A test antigens.

The results were compared with the theoretical results, using the

exact formulation (log form of Equation 3) and either of four

approximations for the probabilities, which are described in the

Appendix (Section 6.3). For most trials, e = 5 was used, because

that is a typical number of immunodominant epitopes involved in

an immune response (61, 62) and it also allows for smaller

repertoire sizes to be explored, given the constraint N > e. In
one set of trials (see Figure 5), e =1000, which is a high-end

estimate of the number of recognizable epitopes on an antigen

(Supplementary Material 4).
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3 Results

3.1 Size of the problem domains, F

3.1.1 The size of electronic file space
The size of digital file space grows exponentially with file size.

The contents of a 4000-bit input file can be arranged in 24000 or

approximately 101204 ways, and hence the size of the file space,

M = 101024. For comparison, the number of particles in the known

universe is very approximately 1080.

3.1.2 The size of peptide/protein epitope space
The number of possible epitopes that the humoral immune

system could be tasked with recognizing also grows roughly

exponentially with molecular or fragment size. As described in

Methods, the PECS model gives a lower-bound estimate for the size

of epitope space asMprot = (Nrd)
q, where Nr is the number of residue

types, q is the number of (x,y) positional “slots” for the amino acids

across the binding interface and d is the number of possible z-

positions, which are the depths of the a-carbons relative to the

binding interface.

This is illustrated in Figure 1. As to an estimate of q, multiple

studies have shown that the average protein or peptide epitope–i.e.,

the set of amino acids interacting at the antibody-antigen interface–

consists of about 15–25 residues (58, 59, 63), and many epitope

interfaces contain 30 amino acids or more. Because a reasonable

lower bound is sought here, we choose 15 as the maximal number of
FIGURE 4

Dependence of specificity (OpS) on degeneracy. The operational specificity, Sj, of a solution element (e.g., an antibody or hash value) for its cognate
problem element (e.g., epitope or digital file), relative to a randomly selected problem element, is plotted on the vertical axis as a function of its
degeneracy, Dj. The various lines represent different sizes, M, for the problem space, which determine the line’s slope. The point (Dj,Sj) = (1,1), labeled
the “point of monospecificity,” is the only point where the solution element is absolutely specific for its cognate problem element. It is also where
the specificity is independent of the size of problem space. When Dj = M, (e.g., Dj =10,000 for M =10,000), the specificity is zero.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1585421
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Petrella 10.3389/fimmu.2025.1585421
amino acids and, in addition, we limit the number of positional slots

to the number of amino acids, so that q =15. Since any of 20 possible

amino acid types can occur at each of those (x,y) slots, Nr =20. To

estimate d, we partition the depth of residues relative to the

hypothetical interfacial plane into a number of regions, as shown

in the figure. The great majority of epitope amino acids are centered

at a Chakravarty depth (distance of an atom from the nearest

surface water molecule) of 8Å or less, and most are between 3.5 Å
Frontiers in Immunology 08
and 6 Å (64). Hence, we can reasonably discretize the problem by

allowing the a-carbon of an amino acid to occupy any one of three

depths relative to the epitope surface, each separated by roughly 2.0-

2.5Å. This separation is large enough to capture typical local

fluctuations, as measured, for example, by RMS deviations of a-
carbons in MD simulations of stable structures (65, 66), or between

homologous a-carbons in conserved regions of different

proteins (67).
TABLE 2 Examples of the three types of relationships between a cognate ordered pair and other ordered pairs (assuming i = j for cognate ordered
pairs).

Relationship Cognate ordered pair Other ordered pair Example

collision (f1, y1)
(f2, y1)
(non-cognate pair)

an antibody that cross-reacts with a non-cognate
epitope

anticollision (f1, y1)
(f1, y2)
(non-cognate pair)

an epitope that cross-reacts with a non-cognate
antibody

non-collision (f1, y1)
(f2, y2) (cognate pair) or (f2, y3) (non-cognate
pair)

two antibody-antigen pairs
which are distinct in both
elements
TABLE 1 The main variables used in this work.

Component or variable type Problem space variable Solution space variable

name of space F Y

element types epitopes, digital files antibodies, hash values

cardinality of the space M N

degeneracy of an element Di Dj

average degeneracy of elements ⟨Di⟩ ⟨Dj⟩

normalized degeneracy of an element Ri Rj

collision/anticollision probability for an individual
element

Pi Pj

average collision/anticollision probability across all
elements

⟨Pi⟩ ⟨Pj⟩

systemic collision/anticollision probability Pa Pc

operational specificity (OpS), element Si Sj

average element OpS across elements ⟨Si⟩ ⟨Sj⟩

systemic OpS Sa Sc

distribution coefficient Ka Kc

distribution coefficient, high mean Ka† Kc†

average multiplicity of H relation mult(H)

coverage fraction of H relation fH = |FH|/|F|

number of:

interactions per antigen m

tested solution elements n

epitopes per antigen e

tested antigens A

antigens cross-reacting with Ab W
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The depth of the epitope surface, itself, can also vary relative to

the interfacial plane. Since, again, we are erring on the side of

undercounting possible configurations, we suppose only three

different possible depths for the surface at each amino acid

position and assume the separation to be roughly equal to that

between the possible depths of the amino acids relative to the

surface. Hence, each residue can be at any of d =5 depths relative to

the plane (any of 3 possible positions relative to the surface, with

two possible shifts of the surface). Further, since epitopes can be

discontinuous, the model assumes the amino acid positions are all

independent of each other. Hence, the overall estimate arising from

the model is Mprot ≈ (20 · 5)15, or 1030. For multiple reasons cited

above and in the Appendix (Section 6.1), this is likely a very

conservative lower-bound estimate for the number of possible

protein epitopes that the adaptive immune response must be

capable of recognizing/binding.
8 As mentioned, the “i” subscripts here always correspond to problem

elements (e.g., epitopes) and the “j” subscripts to solution elements (e.g., Abs).
3.1.3 The size of hapten space
In addition to proteins and peptides, the immune system

recognizes any number of molecular types, including sugars, lipids,

carbohydrates, drugs and small molecules. These molecules can

function as immunogens, provided they are coupled with carrier

proteins. It is estimated that there are about 1063 possible small

organic compounds of molecular weight 500 Da or less that are

stable in water at room temperature, if only C, H, O, N, P, S and

halide atom types are included (68). Restricting our analysis to

molecules of this size and assuming only one conformation per

molecule, we can set 1063 as the lower bound for the number of

possible haptens that the immune system is tasked with recognizing.

Further, assuming that carrier proteins contribute up to 10 amino acids

to the combined hapten/protein epitope and using the PECS model

described above for the chemical and conformational diversity of the
Frontiers in Immunology 09
amino acids, the total number of possible, distinct structures comprised

of hapten and protein isM ≈ 1063 × (20 · 5)10or about 1083. This likely

represents a very conservative, lower-bound estimate of the number of

possible molecular structures to which the immune system could be

challenged to respond, because 1) larger haptens (e.g., digoxin at a

M.W. of 781 Da) (69), haptens containing different atom types (70, 71),

and larger protein epitopes (72) are known to exist, and 2) the estimate

does not take into account the conformational diversity of the haptens.

In addition,M or |F| is likely to be significantly larger than the number

of structures, because humoral immunity generally recognizes multiple

epitopes on each hapten-carrier conjugate. Put another way, although

antigenic totality suggestsM is at least as large as the number of hapten/

carrier protein structures, it could be larger (see also Glossary,

Supplementary Material 2).
3.2 Size of the repertoires (Y) and the
degeneracies of yj

As described in Methods (Section 2.2), the average degeneracy

of solution elements (e.g., Abs) is ⟨Dj⟩ = ⟨Di⟩ M/N, where M = |F|

and N = |Y| are the problem and solution set sizes, and ⟨Di⟩ is the

average degeneracy of the problem elements (e.g., epitopes).8 When

⟨Di⟩< 1, it can be considered a measure of the coverage fraction of

the H relation, fH = |FH|/|F| –that is, the “completeness” of the

binding repertoire. On the other hand, when ⟨Di⟩ > 1, it is a

measure of the “multivalued-ness” or multiplicity of H–e.g., the

binding space overlap of the antibodies.
FIGURE 5

Log plot of the probability of interaction between antibodies raised in a polyclonal response to a non-self antigen and the set of all self-antigens in the
human body, according to the AEIP model. W–the average number of self-antigens, out of 10000, that will likely interact with any of 10 selected
antibodies, assuming 1000 epitopes per Ag, for various sizes of antibody repertoires (base-10 log plot). m–the number of cross-reactions per antigen. It
is unlikely for even one self-antigen to find two Ab matches, and the probabilities decrease exponentially from there with the number of matches.
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3.2.1 A hash function’s repertoire
In the cryptographic case, ⟨Di⟩ is the average degeneracy of all

files or messages, and because hash functions (HK) behave as total

mathematical functions–i.e., each digital file maps to one and only

one hash value– Di = ⟨Di⟩ = 1, and the average degeneracy of the

hash values reduces to ⟨Dj⟩ = M/N. For our example case involving

SHA-256, M ≈ 101204, the size of the solution domain is N = 2256 ≈

1077, and ⟨Dj⟩≈ 101204/1077 = 101127. Hence, the HK relation (here,

SHA-256) is highly many-to-one or non-injective. In this absolute

sense, hash values are not at all specific to a given file.

3.2.2 The antibody repertoire
Analogously to the cryptographic case, if M is the number of

(distinct) epitopes, N the number of (distinct) antibodies or cellular

receptors, and ⟨Di⟩ the average degeneracy of epitopes with respect

to an individual’s immune repertoire, then the average Ab

degeneracy in the system is ⟨Dj⟩ = ⟨Di⟩ M/N. The estimate for M

was given above. Now, we estimate N and ⟨Di⟩.

There are ≈ 1011 to 1012 T and B cells in the human body (73,

74) and because there tend to be multiple copies of each cellular

clone, the number of chemically distinct antibodies/immune

receptors in an individual–i.e., the size an individual’s immune

repertoire, N–is thought to be9 in the range of 107 to 1010 (75–78).

As described in Methods (Section 2.2), a fair estimate of ⟨Di⟩

is ≈⟨m⟩/⟨e⟩, where m is the number of antibody interactions per

antigen and e is the number of epitopes per antigen. It is known that

different antibodies can bind similar epitopes (79–84), but in this

work, an epitope is defined such that similar, but distinct chemical

compounds are counted as different epitopes. We know that Di is

often< 1, since individual immune responses tend not to produce

antibodies against all epitopes on an antigen (85–89). As discussed

in Section 3.7 below and in Supplementary Material 4, a generous

estimate for ⟨e⟩ is 1000, and individual immune responses typically

generate antibodies to a few tens of epitopes (⟨m⟩), so a reasonable

lower bound for ⟨Di⟩ is ≈ 10/1000=1/100. For simplicity,

throughout this work ⟨Di⟩ = 1 is often used as a first

approximation for the immunologic case.

Combining estimates for M, N, and ⟨Di⟩, a conservative lower

bound estimate for ⟨Dj⟩ is a range of ≈ (1/100) × 1083/1010 = 1071 to

1 × 1083/107 = 1076. This is a very low-end estimate of the number of

epitopes, as defined here, that each Ab species, on average, is tasked

with being able to bind. The number of protein/peptide epitopes is

likely to be at least ⟨Dj,prot⟩ ≈ (1/100) × 1030/1010 to 1 × 1030/107 =

1018 to 1023. Hence, theHB relation is highly many-to-one as well, at

least on average.

These are fairly robust results. Using a much more restrictive

approximation of the size of chemical space (90, 91) for the size of

the hapten domain changes the conclusions quantitatively but

not qualitatively.
9 This is significantly less than the upper limit of diversity that can, in theory,

arise from immune cell gene recombination (21, 194, 195), illustrating that

only a small fraction of total possible antibody and receptor variable region

diversity (YC) is realized in any one individual (Y).
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3.3 Operational specificity

We define operational specificity (OpS), S, as the unlikelihood

of an element pairing with a non-cognate partner (See Methods,

Section 2.2.2) It can be considered in at least three contexts: 1) that

of averages over all solution elements, 2) that of individual solution

elements and 3) that of the system as a whole. We will consider each

in turn, here. We discuss anticollision probabilities and epitope

OpS, with the corresponding results, in Section 3.5 and

Supplementary Material 3.2.

3.3.1 Average OpS over all solution elements
Since the human immune repertoire contains 107 to 1010

distinct Ab variable region species (N), conservative, lower bound

estimates of Pj
� �

= Dih i=N are ≈ 10−10 to 10−7 for Dih i = 1, and

10−12 to 10−9 for Dih i = 1=100. The corresponding estimates for

Sj
� �

are a range of 1 − 10−7 to 1 − 10−10 and 1 − 10−9 to 1 − 10−12,

respectively. It is in this sense that antibodies are, at least on average,

highly specific. As depicted in Figure 6, cross-reactivity is

improbable for each randomly selected antibody-epitope, on

average, though not nearly as improbable as a random collision

(second preimage) in a cryptographic algorithm such as SHA-256.

In the case of SHA-256, ⟨Sj⟩ is about 1-10-77. The statistical

comparison between the two systems is summarized in Table 3.

3.3.2 Operational specificity of individual solution
elements

As derived in the Appendix, Section 6.2, for high solution

element degeneracies, ⟨Dj⟩ ≫ 1, the collision probability for an

individual solution element (antibody or hash value), j, is Pj ≈

Rj⟨Di⟩/N, where Rj is the normalized degeneracy of solution element

j. This holds provided there are no prior correlations between

problem and solution elements. In the case of SHA functions in

current use, the distribution of the M files among the N − 1 non-

cognate hash values is close to random and uniform (92–94).

Although the output of these functions is exactly reproducible for

each unique input, it varies chaotically with small changes in the

input, in what is known as the avalanche effect (95), resulting in a

pseudo-random distribution. And since the solution elements (hash

values) are all of the same size, this pseudo-random mapping also

ensures that each member of the solution set has very nearly the

same number offiles mapping to it (preimage cardinality). Thus, the

probability distribution of Rj is spiked, with all Rj ≈ 1. Further, since

⟨Di⟩ = 1, it is clear that Pj = ⟨Di⟩/N ≈ 1/N, for each hash value, j. This

is analogous to randomly assigning M possible problem elements

into N equally sized bins, as depicted in Figure 6. The OpS for each

hash value is then Sj ≈ 1 − 1/N = ⟨Sj⟩, which for the example case is,

again, ≈1-10-77.

The situation in immunity is analogous. Absent prior exposure,

the distribution of epitopes across the repertoire of N − 1 non-

cognate antibodies is likely very close to random, because the

recombination of the coding segments for antibodies is known to

be largely random (16, 17). In addition, small changes in structure

tend to have disproportionate effects in antibody-antigen affinity

(96–101), in what could be called the immunological version of the
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1585421
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Petrella 10.3389/fimmu.2025.1585421
avalanche effect. Hence, in the general case, two epitopes with

structures that vary more than slightly are no more likely to bind the

same antibody than by chance.

As to the size distribution of the binding spaces of individual

antibodies, there is a paucity of data, but the distribution of CDR3

lengths, which has been considered a proxy for binding site diversity, is

reported to be roughly a truncated Gaussian (76, 102, 103). In any

symmetric distribution of positive-valued data, the largest data point

value cannot exceed twice the mean (because xmax = 2 × mean − xmin,

and xmin > 0). Hence, a size distribution that is approximately a

truncated Gaussian, or otherwise symmetric, implies a maximal

normalized degeneracy for solution elements of Rj,max ≈ 2, and a

maximal cross-reaction probability of Pj,max ≈ 2⟨Di⟩/N = 2⟨Pj⟩. The

minimal OpS of an antibody taken from a symmetric distribution

of Ab degeneracies is then Sj,min ≈ 1−2⟨Di⟩/N. Assuming, again, that

⟨Di⟩ = 1, this means Sj,min =1 - 2 × 10–7 to 1 - 2 × 10-10, which is

the same order of magnitude as the average OpS across all antibodies

(1-10–7 to 1-10-10). Thus, truncated Gaussian or other symmetric

binding space distributions do not, in general, lead to order-of-

magnitude drops in individual Ab operational specificities, relative to

the mean.

At the other extreme, the bounds for the maximal OpS (Sj,max)

and minimal cross-reactivity (Pj,min) for individual antibodies are

less clear. While affinity differences between different antibodies

have been quantified–e.g., affinity maturation may confer an
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increase in binding affinity of one or two orders of magnitude

(86, 104, 105)–differences in binding space sizes or specificities

have not.

3.3.3 Systemic OpS
The systemic OpS takes into account all possible pairwise

combinations of members of the problem repertoire (e.g.,

epitopes) with all (single) elements in the solution (Ab)

repertoire. As detailed in the Appendix (Section 6.2), assuming

large problem spaces (M ≫ 1) and solution element degeneracies

(⟨Dj⟩≫ 1), and assuming complementary (f,y) pairings are

uncorrelated, the systemic probability of collision, Pc, is

approximately

Pc  ≈  
Dih i
N

2

(Var(Rj) + 1) =
Dj

� �2N
M2 (Var(Rj) + 1), (4)

where (Var(Rj) + 1) = K†
c is the high-mean distribution

coefficient for solution elements. The systemic OpS is given by Sc
≈ 1−Pc, provided Pc≪ 1. As also discussed in the Appendix (Section

6.2), the Pc term is minimized, and Sc is maximized, when the

probability distribution of Dj is singular (i.e., “spiked”; see Figure 7),

and all Rj =1, so that the variance Var(Rj) is essentially zero and

Sc ≈ 1 − Pc = 1 − Dih i2
N . Hence, in the case of a spiked distribution,

K†
c = 1. Notably, cryptographic hash algorithms such as SHA-256

are thought to have a spiked preimage size distribution (93, 106).
FIGURE 6

Binning of chemical (or message) space. For both panels, the inner, colored circular area represents the set of possible epitopes; each of the 64
circular sectors (out to the dashed circular boundary) is the slice of chemical space to which each distinct Ab is complementary, assuming no
overlap and complete coverage; f1 through f6–different epitopes; crosses (+)–epitopes cognate to their respective antibodies; dots (•)–random,
non-cognate epitopes. In (A) the probability that a randomly selected (•) epitope would be in the same bin as a cognate (+) epitope is 1/64, because
the chemical space is divided equally. In (B) four antibodies dominate the space, so that the odds of such a cross-reaction are much higher. In this
way, the probability of a cross-reaction or collision increase with the variance in the degeneracies. In cryptology, the circle represents the set of all
possible digital messages that a hash function could receive as input; each slice represents a subset of messages that result in a particular digest or
hash value. For SHA-256, there would be ≈1077 slices. In humoral immunity, there are 10 million slices, or more. An expansion of the set of possible
epitopes or digital files, depicted here as an enlargement of the colored circular area to the dashed outer circle, does not change the probability of a
cross-reaction or collision, provided the new f are randomly distributed across the solution space.
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For our example cryptographic case, then, we can estimate Pc for the

hash function to be the same as ⟨Pj⟩, i.e., Pc ≈
Dih i2
N = 12

1077 =10
-77 ≈

Pj
� �

and, similarly, Sc ≈ Sj
� �

≈1-10-77.

From Equation 4, note that as M is increased, so long as the

solution element degeneracies, Dj, increase proportionately, Pc
remains unchanged, as Var(Rj) is constant under uniform scaling

of Dj. Hence, similar to the case for the average antibody OpS, as

long as HB is random, the systemic probability (Pc) and specificity

(OpS) are unchanged as the number of epitopes to which the system

is exposed (M) is increased. See also Figure 6 and Appendix

(Section 6.2).

As mentioned above, the actual size distribution of Ab binding

spaces is unclear, but there is some data to suggest that it is

approximately Gaussian. Since the maximal variance of any
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Gaussian distribution over its positive support is the mean squared

or, here, ⟨Rj⟩
2 (107–109), and since, by definition, ⟨Rj⟩ = 1, it must be

true that max(Var(Rj)) = 12 = 1 for Ab binding degeneracies

conforming to Gaussian distributions. Hence, the maximal K†
c for a

Gaussian distribution of Ab degeneracies is 2, and for large ⟨Dj⟩ and

fixed N and ⟨Di⟩, the maximal probability of a collision across the

system is   Pc,max =
2 Dih i2
N  ,  or twice the optimal value, and the

minimal OpS, sc,min = 1 − 2 Dih i2
N . Further, what is conventionally

considered a Gaussian distribution of positive data generally has a

location parameter m > 0, and in these cases, the maximal variance

over the Gaussian’s positive support is Rj

� �2(p − 2)=2, which implies

a maximal K†
c of p=2 ≈ 1:5708 and Pc,max ≈

1:57 Dih i2
N . Table 4 shows

the results of statistical trials calculating rates of epitope-Ab cross-

reactivity as a function of varying spread parameter, (s), of the

(truncated) Gaussian distribution of antibody degeneracies, given

fixed repertoire size N and location parameter µ. The cross-reactivity

rates closely track Var(Rj), which here achieves a peak value

of ≈ 0.452 at about s =20. The rates then plateau at that of a

uniform distribution (4/3N), to within discretization error.

As illustrated in Figure 7 and discussed in the Appendix (Section

6.4), other, related unimodal distributions, such as Rayleigh,

Maxwell-Boltzmann, Poisson, and uniform distributions, have

similar maximal  K†  
c values and therefore give similar results. At

the other extreme, systems having widely split and skewed bimodal

distributions–i.e., two sub-populations with very different population

sizes and degeneracies–can have a much lower OpS, as also depicted

in the figure. As described in detail in the Appendix (Section 6.2.4), a

split distribution will always have a higher variance and a lower OpS

than a spiked distribution. The effect is much more pronounced if the

lower-degeneracy peak is much taller (and thus has a significant total

probability mass). Other distributions (e.g., multimodal, less widely

split/less asymmetric bimodal) give intermediate results (not shown).

These facts together suggest that as long as Ab degeneracies conform

approximately to Gaussian or similar unimodal distributions, the

systemic probability of cross-reaction is never more than twice the

minimum value, and more commonly less than ≈1.57 times the

minimum value, for fixed N and ⟨Di⟩. Given our prior estimates for

N, Pc,max in human immunity would fall in a range of ≈  2�10–10 to

≈  2 �10–7 for Dih i = 1, and 2 �10–14 to ≈  2 �10–11 for Dih i =
0:01, with corresponding Sc,min ranges of 1 - Pc,max .
3.4 Statistical trial calculations of Ab-Ag
cross-reaction probabilities for varying
repertoire size

As mentioned earlier and described in Methods (Section 2.3),

the AEIP model was developed to predict the number of

interactions between arbitrary antigens and a set of antibodies

selected randomly from a larger Ab pool. Several sets of

corresponding trial calculations, or phenomenological

simulations, were carried out, and the results were compared to

those of the model. In the main set of calculations, 10 antibodies

were selected at random from Ab repertoires of varying sizes and

tested against 100 billion antigens, each having 5 epitopes. For the
TABLE 3 Basic statistical comparison between the SHA-256 model
system used in this study (SHA-256 System column) and the B cell
receptor/antibody immune recognition system (Humoral Immunity
column).

Component or
variable

SHA-256
system

Humoral
immunity

problem element digital file epitope

solution element hash value antibody

M 101204(a) 1083

Mprot 1030

N 1077 107 to 1010

Dj

� �
101127(a) 1073 to 1076

Pj
� �

10-77 10–12 to 10-7

Sj
� �

1-10-77 1-10–7 to 1-10-12

Pc 10-77 10–12 to 10-7

Sc 1-10-77 1-10–7 to 1-10-12

nc   1022 102

Pjj nc 10-55 10–10 to 10-5

Dih i 1 0.01 to 1

Pih i 0 10–14 to 10-8(b)

Sih i 1 1-10–8 to 1-10-14(b)

Pa 0 1049 to 1059(b)

Sa 1 ≈ 0

mult(H) 1 1.005 to 1.58(b)

fH 1 0.01 to 0.63(b)
Mprot–estimated number of distinct protein/peptide epitopes. nc –number of solution
elements generated in response to a typical challenge. For the SHA, the example used is the
number of hash value calculations that can be performed on 100 Bitcoin mining machines
over 2 weeks as of ≈ 2023. For the immune system, it is the number of distinct epitopes
eliciting cognate Ab production in a typical viral infection. Pj| nc– The probability that a
typical challenge will result in a collision with a fixed hash value target (and corresponding
file) or a cross-reactive match between the set of elicited antibodies and a given (e.g., self)
epitope. The rest of the row headings are as per Table 1. Although the magnitudes of the
results are different in the two systems, the mathematical structure is very similar, diverging
only for Pa and Sa, the systemic probability of anticollision and the corresponding OpS (see
Results Section 3.5, Equation 5, and Discussion 4.2).. (a) Assuming a message size of 4000 bits
(250 16-bit words). (b) Assuming a Poisson distribution for epitope degeneracies (Di).
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sake of simplicity and interpretability, the model assumes that at

each repertoire size, the repertoires are both complete and non-

overlapping–i.e., Di =1. Hence, the model does not illustrate the

effect of subtracting or adding antibodies with similar degeneracies

to the immune repertoire; rather, it can be used to compare the

behavior of immune systems designed with different repertoire sizes

and corresponding Ab degeneracies.

The results for the number of antigens having a single cross-

reactive antibody match,W, as a function of repertoire size are shown

as a log-log plot in Figure 8. The plot is linear, with slope -0.988,

indicating that W drops off inversely with N, approximately

in proportion to N−0.988. The theoretical and trial results are

nearly superposable. The raw results, along with those of several
Frontiers in Immunology 13
approximations to the AEIP model, are given in Supplementary

Table S1 of Supplementary Material 1.2. For a repertoire size of

N = 100, over 33.9% of the antigens cross-react once, whereas for

N = 1000, only ≈ 4.8% cross-react once, with similarly decreasing

results for larger N.
3.5 Anticollision (epitope cross-reaction)
probability and OpS

The average epitope cross-reaction probability ⟨Pi⟩ is the

average probability that an epitope will be complementary to a
FIGURE 7

Unimodal and bimodal distributions for antibody or hash value degeneracies. Panel (A) shows five different unimodal distributions for solution
element degeneracies, normalized to the interval Dj ∈ [0,1000], and their associated (high-mean) distribution coefficients, Kc

†. They are: R–a
Rayleigh distribution (red curve) with s =50; M-B–a Maxwell-Boltzmann distribution (blue curve) with s =150; G–a Gaussian (black curve) with s
=200 and µ = ⟨Dj⟩ = 500; S–a singular distribution (black spike) at Dj =500, P–a Poisson distribution (grey curve) with l = ⟨Dj⟩ = 500,; and U–a
uniform distribution (grey line). The singular distribution minimizes the variance and, hence, the distribution coefficient, and it therefore maximizes
the system specificity. However, the distribution coefficients of the other unimodal curves do not differ from that optimal case by more than a factor
of 1.333 in these examples, despite their varying forms. By contrast, Panel (B) shows a skewed and widely split bimodal distribution (red spikes, “B”) in
which a small number of elements (100) account for most (95.0%) of the system’s degeneracy and the vast majority (100,000) account for very little,
resulting in a large variance and Kc

† (902.8, as well as Kc =901.9). This greatly diminishes the system OpS and increases the chances for cross
reactivity or collision relative to the optimal case.
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non-cognate antibody (e.g., see dashed black arrow in Figure 2). It is

given by Pih i = D*i
� �
N , where D*i

D E
= Dih i − 1 + L0 is the average

non-cognate degeneracy over all epitopes–i.e., the average number

of non-cognate Abs to which an epitope is complementary–and L0
is the fraction of epitopes having degeneracy 0 (see Supplementary

Material 3.2). Since in immunity, Dih i is likely small, a Poisson

distribution for the degeneracies is plausible–i.e., Lk =
e− Dih i Dih ik

k ! ,

where Lk  is the probability of epitope i having Di = k. This is

because, if it is fairly rare for an epitope to be complimentary to

any single antibody, then the probability of complementarity to m

antibodies might be expected to fall off exponentially with m.

Assuming that this is the case, L0 = e− Dih i, and given our estimate

of 0:01 < Dih i < 1, D*i
D E

would be in a range between ≈ 5�
10−5  and  0:37.

Further, given our previous estimates for N , Pih i falls in the

range of Pih i ≈ 10−14 to 10−8, with Sih i in the range of ≈ 1 − 10−8 to
Frontiers in Immunology 14
1 − 10−14. Hence, individual epitopes would appear to be quite

specific for their cognate antibodies.

However, the same is not true for systemic epitope OpS. The

systemic anticollision (epitope cross-reaction) probability, Pa, is

given by.

Pa =
Dih i2M

N(N − 1)
Var(Di)

Dih i2 + 1 −
1
Dih i

� �
, (5)

where the term in parentheses is the distribution coefficient, Ka.

Note that since Pa is a sum over individual probabilities over the

system, it can (greatly) exceed 1, in which case it is interpreted as the

expected number of epitopes complementary to two antibodies

throughout the system. For N ≫ 1 and a Poisson distribution of Di,

Pa   ≈
Dih i2M
N2 (see Supplementary Material 3.2). Given our previous
TABLE 4 Rates of cross-reactivity of 100,000 epitopes with 100 Abs for different spreads (s) in Ab degeneracies.

s ⟨Dj⟩ ⟨Dj⟩G Var(Dj) Var(Dj)G Var(Rj) Rate(%) RateG(%) RateR(%)

0.25 2.00 1.55 0.000 0.002 0.000 1.000 1.001 1.000

0.50 2.00 1.66 0.000 0.022 0.000 1.000 1.008 1.000

1.00 2.00 1.87 0.000 0.070 0.000 1.000 1.020 1.000

1.25 2.06 2.15 0.116 0.296 0.027 1.028 1.064 1.027

1.50 2.16 2.31 0.294 0.419 0.063 1.065 1.079 1.063

2.00 2.48 2.70 0.890 0.935 0.145 1.144 1.128 1.145

2.50 2.84 3.09 1.694 1.622 0.210 1.211 1.170 1.210

3.00 3.17 3.44 2.344 2.244 0.233 1.245 1.202 1.245

3.50 3.56 3.85 3.486 3.322 0.275 1.277 1.224 1.275

4.00 3.96 4.25 4.878 4.569 0.311 1.312 1.253 1.311

5.00 4.71 5.01 7.540 7.189 0.340 1.354 1.300 1.354

6.00 5.47 5.76 10.795 10.327 0.360 1.376 1.325 1.374

8.00 7.11 7.34 21.351 19.361 0.422 1.438 1.373 1.437

10.00 8.71 8.84 32.286 29.794 0.426 1.400 1.354 1.398

20.00 16.14 16.20 117.620 112.183 0.452 1.453 1.427 1.452

30.00 20.73 20.91 178.354 168.686 0.415 1.402 1.372 1.401

40.00 22.93 22.97 191.807 184.996 0.365 1.352 1.337 1.351

50.00 23.62 24.01 201.720 191.451 0.361 1.349 1.319 1.348

60.00 25.13 24.60 197.318 194.524 0.313 1.368 1.376 1.367

70.00 25.53 24.97 201.208 196.203 0.309 1.337 1.342 1.335

80.00 26.00 25.21 208.000 197.218 0.308 1.309 1.310 1.308

100.00 26.00 25.49 208.000 198.331 0.308 1.309 1.305 1.308
Abs were assigned degeneracies according to a (truncated) Gaussian distribution, with varying s parameter and fixed location parameter (μ = 0.25). Epitopes were randomly assigned to the Abs
and then pairs of epitopes were randomly selected and checked for matching Ab assignments. In each trial (row), there were 100,000/(99,999x2) ≈ 5 billion tested epitope pairs. Column headings:
s – spread parameter; ⟨Dj⟩− mean Ab degeneracy; Var(Dj)− variance of the Ab degeneracies; Var(Rj)− variance of the normalized Ab degeneracies; rate(%)− percentage of epitope pairs that
cross-reacted with the same Ab; rateR(%)− percentage predicted from (Var⟨Rj⟩ + 1)/N. ⟨Dj⟩G, Var(Dj

)G, and rateG(%)–predicted mean Ab degeneracy, predicted variance of Ab degeneracies, and
predicted % of pairs resulting in cross-reaction, all calculated directly from the (truncated) Gaussian distribution (see Supplementary Material 5 for details). As s increases, the distribution widens
and ⟨Dj⟩ rises, since μ is fixed. The number of Abs in the trials varied from N = 98 to 101 due to discretization effects, which in turn cause some small fluctuations in the actual and predicted rates.
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estimates for N and Dih i, the systemic epitope cross-reaction

probability, Pa, falls in the range of Pa ≈
0:01
1010

� �2M  to 1
107
� �2M =

10−24M  to 10−14M : Even using our conservative, lower-bound

estimates for M and Mprot , this implies Pa ≈   1049 to 1059 across all

epitopes and Pa ≈ 106  to 1016 across only protein/peptide epitopes.

Correspondingly, the systemic OpS across all epitopes, Sa ≈ e−Pa =

e−10
59
to e−10

49
(see Addendum Section 8.2.3 for derivation), which is

effectively zero. Hence, the large size of these epitope spaces virtually

guarantees that two randomly selected antibodies will, on average,

contain many of the same epitopes in their binding spaces, although

this group of shared epitopes represents only a tiny fraction (e.g., 10−24)

of the total.10

By contrast, in the cryptographic case, L0 = 0 and Dih i = 1

(each digital file maps reproducibly to a single digital signature) and

hence Pih i = Dih i−1+L0  
N = 0–i.e., there are no anticollisions. Likewise,

Var(Di) = 0 for SHAs, and hence Pa   =
M

N(N−1) (0 + 1 − 1) = 0. Thus,

with respect to systemic problem element OpS, the mathematical

behavior of immune recognition and SHA functions diverges, due

to the strict single-valuedness of SHAs and the size of the problem

spaces. See also Discussion.
3.6 Average multiplicity and coverage
fraction of the H relation

A quantity related to ⟨Di
∗⟩ and ⟨Di⟩ is the average multiplicity

of H, which is the average number of solution elements pointed to

by each problem element in FH,

mult(H) = o
N
k=1P(Di = k)k

oN
k=1P(Di = k)

=
Dih i

FHj j= Fj j =
Dih i
fH

:
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In immunity, this is the average epitope degeneracy divided by

the epitope coverage fraction. For a Poisson distribution of Di, fH =

1 − e−⟨Di⟩, and, hence, given our estimates for ⟨Di⟩, approximate

ranges for the coverage fraction and average multiplicity in

immunity are 0:01 < fH < 0:63 and 1:005 ≤ mult(HB) ≤ 1:58,

respectively. This means that, although a considerable fraction of

all epitopes bind to at least one antibody in a given repertoire, most

of the epitopes within that fraction bind to only one antibody–i.e.,

the HB relation is near-total and yet generally single-valued. For

SHAs, fH = mult(HK ) = 1.
3.7 Estimate of Ab cross-reactivity with
self-antigens

We can estimate the expected number of antigens that will bind,

or the probability of a single binding interaction, to a given (fixed)

antibody. This is relevant to autoimmunity, for example. The AEIP

model indicates that the probability of a single Ab-Ag interaction is

linear in the number of epitopes per Ag, e (see Methods section

2.3.1). For large N, the total number of interactions, can be

expressed using the relation ⟨W⟩ = Ae⟨Pj⟩, where A is the

number of antigens accessible to an antibody. In particular, we

can ask, when a new Ab is randomly generated, say by somatic

mutation in the periphery, what are the chances that it will cross-

react with one of the body’s own antigens? As described in

Supplementary Material 4, a reasonable estimate for A, in the case

of self-antigens, is 10,000, and a generous estimate for e is 1000.
Assuming ⟨Di⟩ = 1, ⟨Pj⟩ has been shown in the present study to

be 10-10 to 10-7. Taking A ≈ to be 10,000, the average local

degeneracy (i.e., “local” to a restricted set of antigens), ⟨W⟩ =
FIGURE 8

Base-10 log-log plot of the number of single, cross-reactive Ab-Ag matches between randomly selected antigens and sets of 10 antibodies selected
randomly from larger repertoires (as in a polyclonal response), as a function of repertoire size. LogW–log of the number of antigens having
complementarity to exactly one antibody in the selected set. LogN–log of the size of the Ab repertoire. The red dots are the trial (simulation) results,
while the blue line is a least-squares-fit of the theoretical results (from the AEIP model). The number of antigens tested is 100 billion, and the
number of epitopes per Ag (e) was fixed at 5.
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Ae⟨Pj⟩, is, therefore, in a range of about 0.001 to 1. This is the

average number of self-antigens/epitopes that a single newly

produced Ab species will have in its chemical binding space.

Studies of polyclonal animal antibodies raised against animal

proteins and tested against large arrays of human proteins have

shown frequencies of strong binding events that are consistent with

these statistics (110), as have studies of monoclonal Abs using

panels of recombinant human antigen arrays (111). On the other

hand, the lower-end estimate for ⟨Di⟩ of 0.01 results in an estimate

for ⟨W⟩ of 10−5 to 10−2, which is somewhat lower than that expected

from experiment.
3.8 The effect of polyclonal binding
requirements on specificity

Although monoclonal Abs can elicit immune responses (112,

113), polyclonal Abs are generally more effective at activating the

complement system (114, 115) and neutralizing soluble proteins or

viral particles (116, 117), for example, because they more readily

result in stable, multimeric Ab-Ag complexes. Thus, the probabilities

with which non-cognate antigens will bind to multiple Abs, e.g., in a

typical polyclonal immune response, is of interest with regard to

autoimmunity. The dependence of these binding probabilities on the

number of antibodies present in the response, the size of the

repertoire, and the number of epitope-antibody complementarities,

or matches, was explored in a set of theoretical calculations using the

AEIP model, as well as a number of corresponding statistical

calculations, or phenomenological simulations.

3.8.1 The probability of polyclonal self-reaction.
First, consider the self-reactivity example described above, but

now suppose that self-antigens are exposed to ten non-cognate

antibodies instead of one. As shown in Table 5, the AEIP model

demonstrates that the average number of self-antigens that will

cross-react once (m =1) is, as expected, higher by a factor of ≈ 10–

that is, ⟨W⟩ varies in a range from 0.010 to 9.99, depending on the

repertoire size and assuming ⟨Di⟩ = 1.

However, as also shown in the table, as well as in Table 6 and

Figure 5, and as described analytically in the Appendix (Section

6.3), the chances that an individual antigen will participate in m
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cross-reactive interactions –i.e., m of its epitopes interacting with m

distinct, non-cognate antibodies–falls off approximately

exponentially with m. Table 5 shows that the chances of any of

the self-antigens in the prior example cross-reacting with any two of

the selected antibodies is about 5 in a billion to 5 in 1000. Figure 5

shows a log plot of the probability of m cross-reactive matches

between any of the 10,000 self-antigens in the body and 10

antibodies selected randomly from repertoires of sizes ranging

from 107 to 1010, assuming 1000 epitopes per Ag (e =1000). The

log plot is roughly linearly decreasing with m, which means the

probability is exponentially decreasing. Even with this high number

of epitopes per Ag, the total probability that any of the self-antigens

will cross-react with two of the ten selected Abs is only ≈ 4% in the

smallest repertoire (N = 107 Abs), and the chances that any will

cross-react with all 10 Abs is on the order of 10-66 to 10-36 across the

various repertoire sizes.
3.8.2 Phenomenological simulations of multiple
cross-reactions with single antigens

This general pattern of a linearly increasing probability of single

cross-reactions per Ag as a function of the number of distinct

antibodies in a response, accompanied by an exponentially

decreasing probability of multiple cross-reactions per Ag, is also

shown in a set of phenomenological simulations (see also Methods

Section 2.3.2).

An increasingly large subset of antibodies (n =1 to 10) was

randomly selected from a repertoire of fixed size (N =10 million)

and tested against a panel of 100 million antigens, with each having

5 epitopes per Ag. Supplementary Figure S1 in Supplementary

Material 1.1 shows the number of antigens cross-reacting once with

one of the n selected antibodies, according to both the numerical

results of the simulations as well as the exact AEIP results. (The

results of 4 different approximations to the exact model, which

correspond to within ±0.0004%, are given in Supplementary

Material 1.2, Supplementary Table S2). Although there is some

statistical variation in the numerical trial results, the overall results

indicate a linear increase in the number of epitope-antibody

matches as a function of the number of antibodies present (e.g.,

in the polyclonal response). Hence, as expected, polyclonal

antibodies are likely to result in proportionately more single

cross-reactive matches than a monoclonal Ab.

However, Table 6 shows that the number of antigens, out of 100

billion, cross-reacting with m of the 10 antibodies selected randomly

out of Ab repertoires of various sizes (N) decreases approximately

exponentially with m. At larger N, the probability of each additional

cross-reactive match drops by a factor of  ≈ N(m+1)
(5−m)(10−m) for fixed N, as

expected (see Appendix Section 6.3, Equation 13). In addition, the

probabilities diminish in inverse proportion toN, also as expected. At a

repertoire size of 107, the chances of an antigen being complementary

to two ormore Abs are on the order of 1 in 1011. Hence, in humans, the

probability that multiple antibodies raised in a polyclonal response

would cross-react with a given non-cognate antigen, (e.g., a self-

antigen) thereby triggering a potent immune response to that

antigen, is normally very small.
TABLE 5 Number of self-antigens (out of 10,000 total), each having
1000 epitopes, participating in m crossreactions with 10 test antibodies
selected randomly out of the total repertoire, which varies in size here
from 107 to 1010, as calculated from the AEIP model.

m
Size of repertoire

1010 109 108 107

0 9999.990 9999.900 9999.000 9990.004

1 0.010 0.100 1.000 9.991

2 4.495E-09 4.495E-07 4.495E-05 4.492E-3

3 1.196E-15 1.196E-12 1.196E-09 1.196E-06
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TABLE 6 Probability of cross-reactive matching for various sizes of the total Ab repertoire, N, and varying numbers of cross-reactive matches per Ag,
m, assuming complete coverage of epitope space without overlap (i.e., Di =1).

N m Trial Exact % Diff % Of total

100 0 58365069993 58375236692.615 -0.0174 58.375

1 33946511905 33939091100.358 0.0219 33.939

2 7024474519 7021880917.315 0.0369 7.022

3 638525059 638352810.665 0.0270 0.638

4 25082314 25103762.217 -0.0854 0.025

5 336210 334716.830 0.4461 3.347E-04

1000 0 95089212190 95089370457.168 -0.0002 95.089

1 4822094044 4821976189.512 0.0024 4.822

2 87978683 87938775.493 0.0454 0.088

3 712467 712054.862 0.0579 7.121E-04

4 2615 2519.911 3.7735 2.520E-06

5 1 3.054 -67.2607 3.054E-09

10000 0 99500264643 99500899370.045 -0.0006 99.501

1 498833733 498201979.622 0.1268 0.498

2 900845 897930.873 0.3245 8.979E-04

3 779 719.208 8.3136 7.192E-07

4 0 0.252 — 2.520E-10

5 0 3.027E-05 — 3.027E-14

107 0 99999503369 99999500000.900 0.0000 100.000

1 496628 499998.200 -0.6740 5.000E-04

2 3 0.900 233.3341 9.000E-10

3 0 7.200E-07 — 7.200E-16

4 0 2.520E-13 — 2.520E-22

5 0 3.024E-20 — 3.024E-29

108 0 99999950537 99999950000.010 0.0000 100.000

1 49463 49999.982 -1.0740 5.000E-05

2 0 9.000E-03 — 9.000E-12

3 0 7.200E-10 — 7.200E-19

4 0 2.520E-17 — 2.520E-26

5 0 3.024E-25 — 3.024E-34

1010 0 99999999481 99999999500.000 0.0000 100.000

1 519 500.000 3.8000 5.000E-07

2 0 9.000E-07 — 9.000E-16

3 0 7.200E-16 — 7.200E-25

4 0 2.520E-25 — 2.520E-34

5 0 3.024E-35 — 3.024E-44
F
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The column headings are: trial–the number of antigens, out of 100 billion tested, that cross-react m times with any of 10 antibodies selected out of the larger pool in the phenomenological
simulations; exact–the results predicted from the AEIP model; % diff –the percent difference between the exact and statistical trial results ((trial-exact)/exact × 100); % of total–the number of
antigens cross-reacting m times as a % of the 100 billion tested. The number of epitopes per Ag (e) is fixed at 5. For a small pool of N =10 total antibodies, since all of them are selected for testing
(n =10), the antigens will always cross-react at every epitope (m =5 for all). For a somewhat larger pool, N =100, the probability shifts markedly toward lower m and drops off rapidly with higher
m, but there are still many antigens with multiple matches–about 7% cross-react with two antibodies and ≈ 0.6% with three. As the Ab pool becomes still larger (as in humans), single cross-
reactions become less common, but multiple cross-reactive matches per antigen become very rare.
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In cryptography, the equivalent of requiring n Ab matches for a

single antigen would be to require that the digest of an input file

correspond to n concatenated hash values, rather than one. This

would mean effectively increasing the size of the solution space of

the hash function by a factor of n, e.g., from SHA-256 to SHA-512,

which exists as part of the SHA-2 standard (118, 119), or SHA-1024,

which does not.
4 Discussion

This study has described the statistics that underlie the human

immune system’s paradoxical ability to recognize an extremely large

set of possible antigens (Ags) while retaining apparent specificity for

particular cognate antigens. As has been illustrated, immunity

accomplishes this by using strategies that mathematically parallel

those used by cryptographic hash functions such as SHA-256. Both

systems employ solution elements (antibodies, hash values) that are,

at least on average, highly degenerate or multispecific toward their

problem elements (epitopes, digital files), yet appear to maintain

specificity for their originating or primary problem elements in real-

world operation. Moreover, the study illustrates in a quantitative,

albeit approximate, manner why multispecificity and specificity are

viewed most usefully not as different points along the same

parameter axis, but as distinct parameters or properties with

different, though related, mathematical forms. In particular,

specificity is a function of the degree of multispecificity, as well as

other system variables.
11 Since there are ≈1032 total (i.e., not unique) protein molecules in the

entire human population (196) and ≈1080 atoms in the known universe (197),

this illustrates that only a small fraction of all possible species of epitopes or

antigens are ever instantiated. Still, there is no evidence to suggest the

immune repertoire would fail to recognize any of them.
4.1 Antibody degeneracy

The large size of epitope space, together with the need for

completeness of antigen recognition, implies that antibodies must

have high binding degeneracies, at least on average. This is a

straightforward application of the pigeonhole principle (120) to

humoral immunity. Other authors have pointed out that T-cell

receptors must be multispecific (25, 38), because of the large

number of possible presenting peptides. In 1998, Mason

estimated that one T-cell can respond to 108 different 11-mer

peptides, and T-cell multispecificity has been experimentally

confirmed (29). Multispecificity, or degeneracy, has also been

understood to be a property of at least some antibodies (26, 33,

39, 40, 121–124). It is well-known that a single Ab variable region

can have within it multiple distinct binding sites or paratopes (125),

or different paratope states (27, 126, 127), that bind completely

different epitopes. A single Ab paratope can bind different,

unrelated epitopes (128–130), or different epitopes on the same

Ag (59). Germline or “natural” antibodies–those found in human

serum in the apparent absence of antigenic stimulation and which

are primarily of the IgM class–are known to be “polyreactive” (26,

121), although often with low affinity. Conventionally, it has been

believed that the binding regions of polyreactive antibodies tend to

be more flexible (123, 131, 132), although there is evidence against

this (133, 134), and a 2020 analysis indicated that polyreactive
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antibodies also tended to be less strongly negatively charged and less

hydrophilic, while tending to have longer CDR loops in the heavy

chain (135). In general, however, antibodies, and particularly

affinity-matured antibodies (41, 136–139), are believed to be more

specific than T-cell receptors. Overall, it has remained unclear as to

how antibody multispecificity should be interpreted in the context

of cases in which antibodies demonstrate exquisite specificity for

particular antigenic targets.

Moreover, a global, systematic, quantitative analysis of human

antibody degeneracy and its relation to specificity has not been

previously undertaken. Some authors have characterized the

number of possible, distinct antigens as “infinite” (39, 40). Here,

through straightforward modeling and the use of prior

experimental data, we arrive at conservative lower-bound

estimates for the number of possible, hapten-related epitopes and

protein/peptide epitopes ofM =1083 andMprot =10
30, respectively.11

These results imply a conservative, lower-bound estimate for the

average degeneracy of antibodies to be ≈1071 epitopes, of which at

least ≈1018 represent protein or peptide epitopes. Hence, HB, the

relation which takes epitopes to antibodies in an individual

repertoire, is very highly many-to-one, at least on average.

The cryptographic case is similar: hash functions must be

capable of handling any of an enormous number of possible

digital files–far greater, even, than the number of possible

epitopes. For a 4000-bit digital file space (roughly 100 English

words), this number is M ≈ 101204, which implies an average hash

value degeneracy of ≈ 101127 files or messages. Thus, as is known,

the hash values generated from, and assigned to, input digital files as

distinguishing markers are, in fact, not at all specific in an absolute

sense (140–143). In this same sense, antibodies, at least on average,

are far from being absolutely specific to their cognate epitope

or antigen.
4.2 The specificity paradox

The specificity paradox is that, despite this necessary

degeneracy, multispecificity, or “promiscuity”, antibodies often

appear to be specific to their cognate antigens in laboratory

testing or clinical use (144–146), and hash functions such as

SHA-256 are, in practice, highly effective digital security tools.

The explanation is that the utility of these systems depends not as

much on absolute specificity as it does on the degree of specificity.

This idea, expressed in other terms, is well known in cryptography,

but it is not widely appreciated for antibodies. In the immunological

literature, the notion of polyspecificity, multispecificity or

degeneracy has often been conceived of as a sort of opposite of

specificity, implying a many-to-one relationship as opposed to a

one-to-one relationship. This has led to some confusion.
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Degeneracy is the number of complementary partners an

element has in a relation–e.g., the number of epitopes to which

an antibody is complementary. By contrast, specificity, strictly

defined here as operational specificity , is an element ’s

unlikelihood of being complementary to an arbitrary, non-

cognate partner–e.g., of an antibody’s being complementary to a

non-cognate epitope. Hence, an element in a relation can be both

highly degenerate–i.e., highly multispecific–with respect to its

possible partners and, simultaneously, highly specific,

without contradiction.

As described by the models and simulations in this work, the

average solution element OpS is very high in both types of systems:

≈ 1-10-77 for SHA-256, and ≈ 1-10-7 to 1-10-12 for the human

antibody repertoire.

Hence, the solution elements in either system are sufficiently

large, non-overlapping, and, as discussed below, uncorrelated to

exhibit the specificity required for them to work as intended in their

contexts of use. Although an Ab recognizes many molecular

structures, those structures are scattered throughout chemical

space and the binding repertoire. Thus, as proposed by prior

authors for T-cell receptors (28), the probability that a given Ab

will recognize a single, randomly selected antigen or epitope is still

low. The same holds true for digital files and hash values (141, 143,

147). Since the probability of collisions or cross-reactions varies

inversely with solution repertoire size, N, repertoires in these

systems must be large enough to make those events sufficiently

rare, yet small enough to be feasible. In addition, because the

average and systemic cross-reactive probabilities Pj
� �

and Pc,

depend on Dj

� �
=M and Dj

� �2
=M2, respectively, it is true that as

epitope spaces increase in size (M), the cross-reactive probabilities

and corresponding OpS’s remain constant so long as the antibody

degeneracies, ⟨Dj⟩, grow proportionately– and they do if epitopes

are distributed randomly across the antibody binding spaces.

Similarly, in cryptography, doubling the digital file size (squaring

M) does not change the average OpS of a hash value, since ⟨Dj⟩

increases proportionately (by a factor of M). On the other hand,

when the size of the solution space, N, increases, the average

specificity rises, presuming the problem element degeneracy, ⟨Di⟩,

is fixed.

The meaning of systemic OpS differs substantially from that of

individual OpS or its average across the system. For solution

elements (e.g., antibodies), the latter two quantities are measures

of whether a randomly chosen problem element (e.g., epitope) is

likely to be complementary to a particular solution element.

Systemic OpS, by contrast, measures how improbable it is for a

collision or cross-reaction to occur anywhere across the entire

system. For high average solution element degeneracies (⟨Dj⟩ ≫ 1),

it has been shown here that the systemic probability of collision varies

approximately as   Pc ≈
Dih i2
N (Var(Rj) + 1), where Rj is the degeneracy

normalized to the mean. For small individual collision probabilities

(i.e., large spaces), the systemic OpS is, then, Sc ≈ e−Pc, which reduces

to 1 − Pc when Pc is ≪ 1, as it is for antibodies in a human immune

repertoire or hash values generated by an SHA.

In the case of SHA functions, since all Di =1, and the spread of

hash value degeneracies (Var(Dj) or Var(Rj)) is effectively 0, these
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collision probabilities and the associated OpS’s are likely very close

to the solution element average (1-10-77), which is the minimum

possible value for fixed, large N. Less is known about the

distributions of antibody degeneracies, but there is some evidence

that they are approximately Gaussian. The current work, together

with the results of prior studies on statistical distributions (107–

109), has illustrated that, for a fixed repertoire size and average

epitope degeneracy, ⟨Di⟩, Gaussian and many other unimodal,

Gaussian-like distributions give rise to maximal cross-reaction

probabilities of, at most, twice that of the minimum, and more

often less than ≈ 1.57 times the minimum. Hence, systemic OpS is

rather insensitive to shifts within and between these kinds of

unimodal degeneracy distributions, for a large, fixed repertoire

size. By contrast, a system with a widely split, bimodal degeneracy

distribution and a tall left-hand peak, for example, would have a

specificity that is significantly lower, by virtue of an increased

variance, than that of the optimal configuration. All of this would

seem to apply to hash values as well.

In humoral immunity, the current work has illustrated that, as

expected, the average epitope degeneracy–i.e., the average number

of distinct Abs capable of binding a particular epitope, ⟨Di⟩–

increases linearly with the number of Ab species available,

assuming the average size of the individual Ab binding spaces is

constant. Further, the quadratic dependence of the probability of

Ab cross-reactivity, Pc, on ⟨Di⟩, underscores why it is important for

the immune system to have as low a ⟨Di⟩ as possible while still

ensuring, statistically, that the immune response will recognize

multiple epitopes on any arbitrary antigen.

A related, unforeseen result of this analysis has been that while

the average epitope OpS is fairly high–estimated here to be ≈ 1 −

10−14 to 1 − 10−8, the systemic epitope OpS, Sa, is effectively zero.

This arises from the fact that for large problem/solutions spaces,

systemic OpS is Sa ≈ e−Pa and that, in contrast to the case of

antibody cross-reactions or collisions, the probability (or, here, the

number) of anticollisions–i.e., the expected number of epitopes

complementary to any two randomly selected antibodies– Pa   ≈
Dih i2M
N2

Var(Di)
Dih i2 + 1 − 1

Dih i
	 


is very high in absolute terms. For protein

or peptide epitopes, it is at least 106 − 1016, and for the set of all

epitopes, far higher. In this way, the immune system diverges from

SHAs, for which Pa = 0 and Sa = 1. This occurs because, although

the prefactor Dih i2M
N2 is extremely large in both systems due to the

large problem spaces, the distribution coefficient Var(Di)
Dih i2 + 1 − 1

Dih i
	 


for SHA digital file degeneracies is 0, while that for epitope

degeneracies is > 0 (and equal to 1 for a Poisson distribution).

Hence, while an individual epitope will, on average, be very specific

for its cognate antibody in an immune repertoire, chemical/epitope

space is so large that two antibodies selected randomly from that

repertoire will still be statistically guaranteed to be complementary

to many of the same epitopes, although the fraction of such epitopes

relative to the total is extremely small (10−24 to 10−14).12 We have

thus demonstrated that in humoral immunity, the HB relation is

almost certainly multivalued over at least part of its domain, but
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that this “multivalued-ness”, or multiplicity, is limited, estimated

here to be ≈ 1.005 to 1.58 antibodies per epitope, on average,

assuming a Poisson distribution of epitope degeneracies. Along

those same lines, the average non-cognate degeneracy of an epitope

is estimated to be only ≈ 0.00005 to 0.37 antibodies. Thus, while it

appears that potential anticollisions (epitope cross-reactions) must

exist in humoral immunity in large numbers, they are expected to

actually occur fairly infrequently as long as epitopes are randomly

distributed across antibody binding space.

This helps demonstrate that although the HB relation does not

mirror cryptographic hash functions exactly, in that it is not exactly

a total, single-valued function, it does approximate one. The average

epitope degeneracy, ⟨Di⟩, which is a measure of the coverage

fraction of HB–i.e., the number of epitopes recognized by an

individual’s repertoire (FH) relative to the number of all possible

epitopes (F)– while not exactly 1, is likely within an order of

magnitude or two less than one. In fact, assuming a Poisson

distribution, it implies a coverage fraction of ≈ 0.01 to 0.6, which

is remarkably high, given the size of F (M or Mprot). Interestingly,

calculated rates of Ab cross-reactivity assuming ⟨Di⟩ = 1 were more

consistent with experiment here than those assuming ⟨Di⟩ = 0.01

(Results Section 3.7). At the same time, HB is not highly

multivalued, as just mentioned. The human immune repertoire

thus seems to have been evolutionarily tuned in size and specificity

to cover all of antigenic space in any single individual without much

redundancy in epitope binding. If ⟨Di⟩ were higher, for example,

there would be more cross-reactivity, and if it were lower, immune

recognition might be incomplete–i.e., antigenic totality might

not hold.
4.3 Random association

One might argue, especially with regard to antibodies, that the

specificity for local changes in epitope structure is significantly

worse than the above estimates would imply, because local changes

in antigen structure may not, in some cases, produce large changes

in Ab binding affinity (148). It is true that immunological cross-

reactions are more probable in nearby (82) than more distant (110,

111) regions of chemical/epitope space. Finding cross-reactivity is

easier among related drug molecules (149), homologous antigens

across species (150, 151), or surface antigens in different strains of a

virus (152), for example, than it is among distantly related or

unrelated antigens. This effect is mirrored by some types of

cryptanalytic attacks, such as differential attacks, which exploit

the fact that collisions are more apt to be found through local

perturbations of digital messages than through large changes (153–

155). It is also true that, over the course of an individual’s lifetime,

there will be constant modification of the Ab repertoire due to

affinity maturation and the filtering out of self-reactive antibodies

(156, 157), so that some non-randomness is introduced (158).

However, because of 1) the randomness involved in immune

gene recombination (16, 17) described earlier, 2) avalanche-type

effects in Ab-Ag structure-affinity relationships (96–101), which,
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while often not as great as those in SHA functions, are still

significant, and 3) the sheer size of chemical space, the vast

majority of epitopes to which the immune system is naïve will

still be more-or-less randomly distributed across Ab variable

regions. This is the immunological equivalent of hash functions

generating pseudo-random hash value output for each unique

digital message input (92, 159).

In this way, degeneracy and specificity are decoupled in these

systems. As long as hash functions generate random output, they

can take on digital messages of arbitrary length (increases in M)

without any significant loss of OpS in their hash values–what in

cryptography is known collision resistance (160). Similarly, in

adaptive immunity, as long as there are no correlations between

new epitopes and, for example, antibodies/cell receptors directed

against sel f -antigens, the immune system can afford

complementarity to any arbitrarily large number of different,

random epitopes without incurring higher rates of cross-

reactivity. In the case of some autoimmune diseases, epitopes on

pathogens can “mimic” self-epitopes such that their cognate

antibodies or cell receptors are very likely to cross-react with self

(161, 162) and thus the normal statistics do not hold. In a similar

way, correlations between new inputs and target hash values

“break” an SHA, which means they negate its security or utility

(155). Hence, in both systems, randomness is a key design feature–

not just to create diversity in the solution space, but to create

uncorrelated diversity.
4.4 Affinity maturation and absolute
specificity

Affinity-matured antibodies have a higher affinity for their

cognate antigens because of the diversification and amplification

of selected combining site populations that occurs during the

maturation process (163, 164). One line of thinking has been that

these antibodies are also more specific than primary or germline

antibodies (136–139), possibly because they are more rigid (165–

168). However, other studies indicate that the higher affinity may

arise from a number of mechanisms unrelated to flexibility (166,

169–171).

In either case, the body’s ability to respond effectively to an

antigen to which it is naïve depends critically on the diversity that

exists prior to the initiation of the affinity maturation process with

respect to that particular antigen. An immune repertoire that has

undergone many affinity maturation events must still retain

sufficient degeneracy to respond to any arbitrary antigens in the

context of a limited, albeit large, total number of immune receptor

species. As illustrated in this work, and as mentioned above, an

immune repertoire with a bimodal distribution of antibody

degeneracies has a lower systemic operational specificity than one

with a singular distribution, more so if the split in the distribution is

wide, with the taller peak at lower degeneracies. Not surprisingly,

even antibodies that have undergone affinity maturation have been
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shown to cross-react with both related (80–83, 110, 149, 172, 173)

and unrelated epitopes (110, 111, 128, 129, 174–177).

These findings and the statistics of immune receptors and

molecular diversity as detailed in this work and as paralleled by

the statistics of SHA collisions, would suggest that cross-reactive

antigens to any antibody, affinity-matured or primary, probably

exist somewhere in chemical/peptide space, although they may be

difficult to find. Experimental data on the size of the binding spaces

of individual antibodies is currently scarce, and nothing in the

present work rules out the existence of particular antibodies that are

absolutely specific to their cognate epitopes. However, it appears to

be highly statistically, chemically and functionally improbable.

Terms like “monospecific” or “monoreactive” should be

understood in this context.
4.5 Factors limiting cross-reactions and
collisions

As also illustrated in the current work, factors that reduce the

number of cross-reactions or collisions are 1) restriction of the

effective problem domains, 2) multiple-match requirements (at least

in the case of immunity), and 3) low-variance degeneracy

distributions, which were discussed above. In real-world

operation, the absolute number of collisions or cross-reactions

depends not only on the antibody specificity, which is essentially

a ratio or “rate,” but on the number of problem element inputs with

which the system will actually be presented, which is generally

much smaller than the set of all possible inputs. As described in

Supplementary Material 6, the average person will be exposed to an

extremely small fraction of all possible antigenic molecular

structures over his/her lifetime, and the number of self-antigens

to which a novel Ab will be exposed is also relatively small.

Similarly, cryptanalysts, Bitcoin miners, and thieves are limited in

their searches for collisions by computational capacity and cost.

As to multiple-match requirements, this analysis illustrates the

statistics by which the linkage between polyclonal antibody binding

and a potent immune response likely boosts operational specificity

for whole antigens relative to individual epitopes. Although there

are exceptions, a potent immune response generally requires the

binding of multiple antibodies to an antigen and the formation of

immune complexes (see ref (178) for a review). Because they bind to

different epitopes on the antigen, polyclonal antibodies facilitate the

formation of these complexes. They are commonly thought of as

being less specific than monoclonal antibodies (179–181), and this

is true, as measured by their collective degeneracy. As illustrated in

the current work, a set of multiple, distinct antibodies will have a

proportionately larger antigenic binding space than an individual

(monoclonal) Ab. For this reason, it has been surmised by some that

polyclonal immune responses may contribute to autoimmunity

(182). However, as is also illustrated here, the probability that the

same antigen (e.g., a self-antigen) will cross-react with several non-

cognate antibodies raised in an immune response is low, dropping
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off exponentially with the number of epitope-antibody matches.

Because the binding spaces of the constituent antibodies in a

polyclonal response are (randomly) different, the likelihood of a

non-cognate antigen cross-reacting with several of them is

approximately the product of the individual likelihoods. In this

way, the requirement that the immune system imposes on a given

antigen to participate in multiple Ab-Ag interactions before

allowing it to trigger a potent immune response very likely helps

to prevent autoimmunity and other non-targeted responses. The

mechanism may be likened to multi-step authentication in

digital security.
4.6 Other parallels and potential
applications

There are other parallels between adaptive immunity and

cryptology that have not been mentioned in this analysis. In some

cases, these cross-disciplinary connections may provide insights or

suggest avenues of investigation.

For example, although SHAs are often modeled as random

oracles (92), and although their outputs are in fact close to

randomly uniform distributions, cryptanalysts exploit deviations

from uniformity in many types of attack by localizing target hash

values to more highly populated regions of the hash value domain

(e.g., references (155, 183)). In a similar way, recombination in

immune cell receptor genes is not entirely random and uniform

(184), and rates of somatic hypermutation, a genomic process that

occurs as part of affinity maturation, also show some location- (21)

and sequence-related (185, 186) biases. It is known that in B-cells

that are not naïve to antigens, the heavy chain tends to determine

the light chain, a phenomenon called light chain coherence (158). It

is not yet clear whether any of these deviations from randomness

also result in non-uniformity in the Ab binding repertoire as it

affects the coverage of antigenic space; presumably, they may.

Through antigenic drift (187–189) and shift (190), pathogens like

viruses and bacteria mutate or genetically reassort to evade the

adaptive immune response. However, the extent to which they may

“attack” binding repertoire non-uniformity–i.e., occupy or mutate

into regions of epitope chemical space whose cognate antibodies

reside in “cold spots” in their coding sequences–has not yet been

well explored and represents a potential area of research. Additional

parallels between adaptive immunity and cryptography, some of

which suggest other avenues of inquiry, are discussed in

Supplementary Material 7.

Finally, the analytic framework developed here and its future

extensions and refinements may have applications in predictive

calculations–for example, in quantitative predictions of cross-

reactivity among sets or pools of antibodies (191–193),

particularly as more data is collected with respect to immunologic

parameters such as antibody binding space sizes and epitope

degeneracies. Knowledge of the mathematical relationships
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among system parameters should enable the determination of any

single parameter, given data on the others (e.g., by rearrangement of

Equation 4), or, when data on all the parameters is available, enable

checks on their mutual consistency.
5 Conclusion

This study has used a probabilistic systems analysis approach to

describe the statistics that underlie human antibody-antigen

complementarity. It has provided conservative, lower-bound,

order-of-magnitude estimates for antibody degeneracy, or

multispecificity, while also defining, formulating, and quantifying

the concept of operational specificity. It has illustrated why the

degeneracy of human antibodies must be extremely high, at least on

average, and that the properties of degeneracy and operational

specificity (OpS) are distinct and, in an important sense, decoupled:

as long as the assignment of epitopes to antibodies–i.e., the HB

relation–is random, OpS remains constant as the size of epitope

space varies. This helps to explain and quantify the specificity

paradox–namely, that antibodies can be highly degenerate, or

“multispecific,” in their binding to epitopes and still display

significant clinical and laboratory specificity. In particular,

antibodies are specific enough for the body to be able to tolerate

the production of new ones, given the number of self-antigens that

they are likely to encounter, and given that the binding of cognate

and non-cognate epitopes is generally uncorrelated. In addition, it

has been shown here how the immune system’s imposition of

multi-epitope recognition requirements, executed via the polyclonal

response, increases specificity and likely helps avert autoimmunity.

The present study has also illustrated that adaptive immunity

shares many similarities with cryptographic hash algorithms in its

organization and function. The digital fingerprints produced by

hash functions such as SHA-256 are even more highly degenerate

than antibodies, but they are also more operationally specific,

because of the greater size of their solution spaces, again

illustrating how the two properties are uncoupled. Further, HB

approximates the behavior of SHAs, which are total, single-valued

functions, by being near-total while managing to avoid high

multiplicity. The parameters in humoral immunity have

apparently been “tuned” to statistically ensure that multiple

epitopes will be recognized on an arbitrary antigen, while

minimizing the chances that any epitope will be recognized by

multiple antibodies.

This work is intended as a first attempt at formalizing the

analysis of degeneracy and specificity in these types of systems; it is

expected that the analysis will be extended in the future to include

YC, the set of all possible human antibody species, and that the

numerical estimates will improve. By delineating the relationships

between system parameters involved in humoral immunity, the

current models extend our understanding of the statistics of cross-

reactivity and could contribute to predictive calculations. The

parallels between immunity and cryptography may suggest cross-

disciplinary research.
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3. Quinteros DA, Bermúdez JM, Ravetti S, Cid A, Allemandi DA, Palma SD.
Therapeutic use of monoclonal antibodies: general aspects and challenges for drug
delivery. In: Andronescu E., Grumezescu A. M. (eds). Nanostructures for Drug Delivery.
Micro and Nano Technologies. (Elsevier, 2017)807–833. doi: 10.1016/B978-0-323-
46143-6.00025-7

4. Siddiqui MZ. Monoclonal antibodies as diagnostics; an appraisal. Indian J Pharm
Sci. (2010) 72:12. doi: 10.4103/0250-474x.62229

5. Yang M, van Bruggen R, Xu W. Generation and diagnostic application of
monoclonal antibodies against Seneca Valley virus. J Veterinary Diagn Invest. (2011)
24:42–50. doi: 10.1177/1040638711426323

6. Lian X, Scott-Thomas A, Lewis JG, Bhatia M, MacPherson SA, Zeng Y, et al.
Monoclonal antibodies and invasive aspergillosis: Diagnostic and therapeutic
perspectives. Int J Mol Sci. (2022) 23:5563. doi: 10.3390/ijms23105563

7. Wikipedia. Monospecific antibody(2022). Available online at: https://en.
wikipedia.org/wiki/Monospecific_antibody (Accessed December of 2024).

8. Borowska MT, Boughter CT, Bunker JJ, Guthmiller JJ, Wilson PC, Roux B, et al.
Biochemical and biophysical characterization of natural polyreactivity in antibodies.
Cell Rep. (2023) 42:113190. doi: 10.1016/j.celrep.2023.113190

9. Lopes JA, Garnier NE, Pei Y, Yates JGE, Campbell ESB, Goens MM, et al. AAV-
vectored expression of monospecific or bispecific monoclonal antibodies protects mice
from lethal Pseudomonas aeruginosa pneumonia. Gene Ther. (2024) 31:400–12.
doi: 10.1038/s41434-024-00453-1

10. Ray CMP, Yang H, Spangler JB, Mac Gabhann F. Mechanistic computational
modeling of monospecific and bispecific antibodies targeting interleukin-6/8
receptors. PLoS Comput Biol. (2024) 20:e1012157. doi: 10.1371/journal.
pcbi.1012157

11. Ehrlich P. Croonian lecture.—on immunity with special reference to cell life.
Proc R Soc Lond. (1900) 66:424–48.. doi: 10.1098/rspl.1899.0121

12. Burnet FM. A modification of Jerne’s theory of antibody production using the
concept of clonal selection. Nat Immunol. (2007) 8:1024–6. (reprinted from Australian
journal of science, vol 20, 1957). doi: 10.3322/canjclin.26.2.119

13. van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martıńez-
Martıńez P, Vermeulen E, et al. Anti-inflammatory activity of human IgG4 antibodies
by dynamic Fab arm exchange. Science. (2007) 317:1554–7. doi: 10.1126/
science.1144603

14. Tieri P, Grignolio A, Zaikin A, Mishto M, Remondini D, Castellani GC, et al.
Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the
complexity of the immune system. Theor Biol Med Model. (2010) 7:32. doi: 10.1186/
1742-4682-7-32

15. Jiang G, Lee CW, Wong PY, Gazzano-Santoro H. Evaluation of semi-
homogeneous assay formats for dual-specificity antibodies. J Immunol Methods.
(2013) 387:51–6. doi: 10.1016/j.jim.2012.09.010

16. Tonegawa S. Somatic generation of antibody diversity. Nature. (1983) 302:575–
81. doi: 10.1038/302575a0

17. Alt FW, Blackwell TK, Yancopoulos GD. Development of the primary antibody
repertoire. Science. (1987) 238:1079–87. doi: 10.1126/science.3317825

18. Weigert MG, Cesari IM, Yonkovich SJ, Cohn M. Variability in the lambda light
chain sequences of mouse antibody. Nature. (1970) 228:1045–7. doi: 10.1038/
2281045a0
19. Li Z, Woo CJ, Iglesias-Ussel MD, Ronai D, Scharff MD. The generation of
antibody diversity through somatic hypermutation and class switch recombination.
Genes Dev. (2004) 18:1–11. doi: 10.1101/gad.1161904

20. Briney BS, Willis JR, Crowe JE. Human peripheral blood antibodies with long
HCDR3s are established primarily at original recombination using a limited subset of
germline genes. PLoS One. (2012) 7:e36750. doi: 10.1371/journal.pone.0036750

21. Elhanati Y, Sethna Z, Marcou Q, Callan CG, Mora T, Walczak AM. Inferring
processes underlying B-cell repertoire diversity. Philos Trans R Soc Lond B Biol Sci.
(2015) 370:20140243. doi: 10.1098/rstb.2014.0243

22. Chi X, Li Y, Qiu X. V(D)J recombination, somatic hypermutation and class
switch recombination of immunoglobulins: mechanism and regulation. Immunology.
(2020) 160:233–47. doi: 10.1111/imm.13176

23. Lebedin M, Foglierini M, Khorkova S, Vázquez Garcıá C, Ratswohl C, Davydov
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