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Antibodies and cryptographic
hash functions: quantifying
the specificity paradox

Robert J. Petrella’®

‘Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States,
2Harvard Medical School, Boston, MA, United States

The specificity of the immune response is critical to its biological function, yet the
generality of immune recognition implies that antibody binding is multispecific or
degenerate. The current work explores and quantifies this paradox through a
systems analysis approach that incorporates set theoretic ideas and an
application of structural and statistical modeling to prior experimental
immunological and biochemical data. Order-of-magnitude estimates are
computed for the average degeneracies and specificities of antibodies and
epitopes using a chemico-spatial model for epitope diversity and a binary
model for antibody-antigen binding. The results illustrate and quantify how the
humoral immune system achieves both high specificity and high degeneracy
simultaneously by effectively decoupling the two properties, similarly to
programs in cryptography called secure hash algorithms (SHAs), which display
the same paradoxical features. In addition, an antibody-epitope interaction
probability model is used to help show how newly formed antibodies may
avoid cross-reactivity with self-antigens despite their high degree of
multispecificity and how the requirement of polyclonal binding likely improves
the overall specificity of the immune response. Because they describe the
relationships between various statistical parameters in humoral immunity, the
models developed here may also have predictive utility.

KEYWORDS

antibodies, adaptive immune system, receptors, antigens, epitopes, degeneracy,
polyspecificity, polyreactivity

1 Introduction

Human antibodies (Abs) behave as specific to their cognate antigens (Ags) under many
clinical and experimental conditions. For example, a monoclonal antibody’s specificity (1)
is often critical to its therapeutic (2, 3) or diagnostic (4-6) utility. Such antibodies have
commonly been referred to as “monospecific’ or “monoreactive” (7-10). Early
immunological thinking was, in fact, that one antibody or receptor implied one
specificity (11, 12), in what has been referred to as the “one antibody, one antigen”
dogma, rule or paradigm (13-15). The specificity of antibodies depends on the broad
chemical and structural diversity in their variable or binding regions, which arises from a
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more-or-less random recombination of their coding immune gene
segments (16, 17), together with several other secondary
mechanisms (18-24).

Yet despite the large degree of diversity among immune cell
receptors and antibodies, we know that their binding to antigens
must still be highly multispecific, cross-reactive or degenerate (25—
30). This is because immune recognition is thought to be inclusive
of all types of antigen-sized molecules and molecular fragments
(31-36)- an observation termed the postulate of antigenic totality in
the present work- and while the immune repertoire of an individual
is large, it is small compared to chemical space. In the language of
set theory, the relation (“mapping”) of distinct antigens— or, more
precisely, the parts of their structures called epitopes—to antibody
species that can bind them must be many-to-one, at least
on average.

The current work is an attempt to quantify and shed light on
this specificity paradox. How can antibodies be both specific and
multispecific? The topic has been discussed for decades with respect
to both antibodies (37) and T-cells (28, 38), and estimates of T-cell
receptor degeneracy have been given (25, 29). Sewell hypothesized
that the capacity of T-cell receptors to retain some specificity for
particular antigens despite high levels of cross-reactivity related to
the sizes of their repertoires and those of their presenting peptides
(28). With respect to antibodies, the current thinking is that they
likely span a range of specificities, and that at least some antibodies
produced late in the immune response are highly specific to their
cognate antigens (39-41).

However, there has not been a formal, systematic attempt to
describe the statistics of antibody-epitope interactions and to
clarify-in mathematical terms-the paradoxical capacity of the
adaptive immune response to display features of both
multispecificity, or degeneracy, and specificity. The current study
illustrates how these two properties are, in fact, distinct and
statistically uncoupled. It does so by applying some set theoretic
constructs and a quantitative though approximate (order-of-
magnitude) systems analysis to the question. The study defines
operational specificity (OpS) of antibodies precisely as how unlikely
it is for an antibody to cross-react with an antigen that did not elicit
it (i.e., a non-cognate antigen). It derives mathematical expressions
for this quantity in regard to individual antibodies, their averages,
and the antibody repertoire as a whole (systemic OpS), in terms of
the other properties of the system. A binary, statistical model of
antibody-antigen binding is developed (i.e., a pair either binds or it
does not) and applied to prior experimental data to arrive at
conservative, lower-bound estimates for antibody and epitope
degeneracy, as well as cross-reactive probabilities and OpS. A
related model (AEIP) is used to confirm the results and explore
the frequency of antibody interaction with self-antigens, as well as
the effect of polyclonality on self-interaction.

The main findings in the study are as follows:

1. A conservative, lower bound estimate for the average
binding degeneracy of a human antibody is in the range
of 107 to 107° epitopes, of which at least at least ~10'®
represent protein or peptide epitopes.
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To arrive at these estimates, a peptide-epitope chemico-
spatial (PECS) model of epitope diversity is developed and
combined with prior experimental data (Methods Section
2.1 and Results Sections 3.1 and 3.2).

2. An estimate for the average operational specificity (OpS) of
human antibodies across a single individual’s antibody
repertoire is approximately 1-1077 to 1-107'* (Results
Section 3.3.1).

3. The systemic OpS-i.e. the specificity of an individual’s antibody

repertoire as a whole, S.-varies as S, = 1 — <1?\"]>2 (Var(R)) + 1),
where (D;) is the average epitope degeneracy, R; is the
distribution of normalized antibody degeneracies, and N is
the size of the repertoire. (Results Section 3.3.3 and Appendix
Section 6.2.3).

4. Numerical estimates of human systemic antibody OpS are in
the range of ~1-107" to 1-107'*. (Results Section 3.3.3.)

5. The specificity of individual epitopes for their cognate
antigens is quite high: in the range of 1-107"* to 1-
10°%, but epitope space is so large that it virtually
guarantees, statistically, that two randomly chosen
antibodies in an immune repertoire will share many
common epitopes in their binding spaces—conservatively,
~ 10° to 10" protein or peptide epitopes, on average
(Results Section 3.5), although this is a very small fraction
of the total size of the relevant epitope space.

6. The average number of self-antigens to which a newly
formed antibody will be complementary is in the range of
1073 to 1, assuming 10,000 self-antigens and an average
epitope degeneracy of 1 (see Results Section 3.7). This is
consistent with experimental data.

7. The total number of antigens complementary to a polyclonal
response of n antibodies increases approximately linearly
with », but the number of antigens having complementarity
to multiple members (m) of that set of antibodies falls
exponentially with m. (Results Section 3.8) This illustrates
how the requirement of polyclonal binding in the immune
response likely improves its overall specificity.

Further, it is illustrated here that the mathematical structure
underlying immune specificity and degeneracy closely mirrors that
of cryptographic hash functions (see ref (42) for review), also
known as secure hash algorithms (SHAs). These functions take
digital files as their input and generate relatively short alphanumeric
codes called hash values, ak.a. message digests, that are then
attached to the files for security purposes. They are used in many
types of digital security protocols, such as those generating digital
signatures (43, 44). The Bitcoin mining protocol (45, 46) uses the
hash algorithm SHA-256 (47, 48), which generates hash values of
256 bits in length. Mathematically, hash values and electronic files
are the cryptographic counterparts of antibodies and epitopes,
respectively, and they give rise to the same type of specificity
paradox. Hash functions must be capable of handling any digital
input, which means their outputs or digests must be highly
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degenerate (49), yet they must be specific enough to their

P . « »1
originating or ~cognate

files to ensure digital security. In
addition, although an SHA is a total, single-valued function and
the relation of epitopes to antibodies in a repertoire is not, we show
that the latter approximates the former in behavior (see, e.g., Results
Section 3.6). To illustrate the parallels between the systems,
cryptanalytic data from a single case is compared to immunologic
experimental data. The example case used is an electronic file that is
4000 bits (250 16-bit words) in size, which was approximately the
size of the average Bitcoin transaction over most the 2010’s (50, 51).
By integrating experimental data into a newly developed
mathematical framework that describes the relationships among
key immune system properties or parameters, such as size and
specificity, the present work aims to improve our understanding of
the statistics of antibody-antigen complementarity. It shows that
antibodies, at least on average, must have very high binding
degeneracies or multispecificities and illustrates how they are able
to maintain high clinical and laboratory specificity despite this. It
further demonstrates how this capability relies on a statistical
decoupling of specificity and multispecificity, similar to the case
in cryptographic hash systems. The findings here also suggest that
human immune system parameters have been evolutionarily
optimized to permit universal antigen recognition while limiting
cross- and self-reactivity. The study focuses on the statistics of
humoral immunity-i.e., B-cell receptors and antibodies-but many
of the general principles are applicable to T-cell receptors as well.

2 Methods

2.1 Peptide/protein epitope chemico-
spatial model

We define an epitope here as that portion of a molecular
structure or set of structures (e.g., a set of amino acids) in a
particular 3-D conformation, allowing for local fluctuations, that is
involved in close interactions with an antibody. (See Glossary in
Supplementary Material 2 for the definitions of terms used in this
work.) Further, “epitopes” in this work generally refers to distinct
epitopes, as opposed to copies, unless otherwise indicated.” The size
of epitope space depends not only on varying amino acid sequences,
but also on conformational diversity, because antibodies can
discriminate conformation (52, 53). Modeling this can be
complex, but the approach is simplified here by use of a peptide/
protein epitope chemico-spatial (PECS) model. In this model, each
amino acid in a protein or peptide epitope can occur in any of g

1 Here, we extend the notion of cognate, which denotes a primary (or
causal) and unique pairing between an epitope and an antibody, to the
general case of any system containing problem and solution elements that
can be identified as having such a relationship, including cryptographic
hash systems.

2 The same is true for "antibodies”, which refers to a set of unique antibody
species—more specifically, unique variable regions, as well as the terms

“solution elements”, “problem elements”, "hash values”, and “digital files".
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distinct (x,y) positions, where the hypothetical (x,y) plane is defined
as roughly parallel to the paratope-epitope (Ab-Ag) interface. See
Figure 1. In addition, each residue can occur at different depths, or
z-positions, relative to the plane. The z-coordinate is decomposed
into the position of the protein surface relative to the plane and that
of the residue (as defined by its alpha-carbon) relative to the surface.
The decomposition is important because the set of amino acids in
an epitope is not necessarily continuous on the protein polypeptide
chain (54). Most epitopes, in fact, are of the discontinuous or
“conformational” type (55-59). This also suggests that the z-
positions of the residues be considered as mutually independent.
Hence, if N, amino acid types can occur at any one of d depths (z-
positions) relative to the interfacial plane, the number of possible
chemico-spatial configurations is M, = (N,d)?. Because we are
seeking a conservative, lower bound estimate for epitope diversity,
the PECS model intentionally underestimates the total number of
distinct protein/peptide epitopes (see also Appendix, Section 6.1).

2.2 Degeneracy and operational specificity

2.2.1 Problem and solution element degeneracy
Consider finite sets ® and ¥ containing M and N elements,
respectively, and the relation

HCO x VY. (1)

We refer to @ as the problem set, its elements ¢; as problem
elements, ¥ as the solution set, and its elements y; as solution
elements. For simplicity and symmetry, throughout this work, the
“” subscripts-i.e., inputs—are reserved for problem elements and
the “j” subscripts for solution elements.

As illustrated in Figure 2, @y is the preimage of the H relation,
Y is considered both the image and codomain of H and is
embedded in a larger set of elements, YO, the analysis of which is
beyond the scope of the present study. In the immunologic context,
@ is the set of all possible epitopes, ‘¥ is the set of all antibodies in an
individual’s repertoire, @y is the set of epitopes that are
complementary to (would bind to) at least 1 antibody (variable
region) in ¥, and W€ is the set of all possible human antibodies (“‘V
complete”). In the cryptographic context, @ and ¥ are the sets of all
possible input files (in this work, of size 4000 bits) and all possible
SHA-generated hash values (here, of 256 bits in length),
respectively. @y is the preimage of the SHA function, which is
equal to @, and € is the space of possible hash values producible
by any SHA function. In both contexts, we assume that H is
surjective-in other words, there is no need to consider the subset
of ¥ called Wy because all codomain elements (antibodies, hash
values) are involved in the relation.?

For convenience, we define the relations Hp and Hy as instances
of the H relation (Equation 1) corresponding to immune
recognition and SHAs, respectively. Hy is a total, single-valued

3 It is highly probable that all (fully formed) antibodies bind at least one
epitope. Similarly, all hash values are thought to have at least one possible

originating file, although this has not been proven.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1585421
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Petrella 10.3389/fimmu.2025.1585421
z
Ab
S /,_ag N\ =6 >
z I ' [ I 7 x
" : F = — F— A
| [ | |
Z5 | I 3 I @
e F =4 — F = F =4 — F =
Zs I T Lo @ 1@ I
s F—A F— A —_— F— A F—H —
Z, @ Lo I I
L 1 F— A — F— A
[ [ [ [
FIGURE 1

Peptide/protein epitope chemico-spatial (PECS) model. Ab—antibody; red border—region of antibody interfacing with epitopes; a; through ag—-6
possible (x, y)-positions for epitope amino acids; red discs—o carbons of amino acids; z; through z5 -5 possible z-positions for the a-carbons. The
(hypothetical) interfacial plane, and additional a, positions, extend from the x-axis in the y-dimension, which would run perpendicular to the page.
The o carbons can occur at any of three depths within each amino acid, and the local epitope surface can, itself, occur at one of three depths
relative to the interfacial plane. The model intentionally undercounts the total number of epitopes by ignoring amino acid side chain and backbone
conformational diversity, as well as possible shifts in amino acid (a,) position in the (x, y) plane.

function, whereas this study explores the extent to which Hp is or
is not.

We also define the N x M relation matrix R;; according to
whether the element ¢; in @ is associated with the element y; in 'V as

1, if
R = { - ©
0, if no.

See also Figure 3. The degeneracy, D;, of solution element j is the
number of correspondences or “yeses” across all problem elements*:
D;=Ry; = Ef\fl Rj;, and the average degeneracy” across all solution
elements is <D}-> = Ejlile /N. See Table 1 for a list of the variables
used in this work and their definitions. Similarly, the degeneracy of
problem element i is D; =R, = ZjlilR,-j, and the average
degeneracy across all problem elements is (D;) =S¥ D,/M. In
immunity, D; is the binding degeneracy of antibody j across all
epitopes, and D; that of epitope i across all antibodies in the
repertoire. Since double sums over all R;; in the system can be
carried out in either order without changing the result, we know
that ¥, D, = Ejl\ile, and hence M(D;) = N(D;), which is the
relation size, or the sum of all the “1”s in R;;. In immunity, this is the
total number of possible epitope-Ab pairs involving an individual
immune repertoire. Then, (D;) = (D;)M/N.

The probability, Py, that a randomly chosen problem element will
be associated with solution element j is Py; = Zf‘fl R;/M = D;/M. In
immunity, the probability that a randomly chosen epitope will bind to

4 The degree of the element, in set theory. This is similar to the preimage
cardinality of the element under H but degeneracy (or degree) is a property
that extends to all domain or codomain elements, including those with
degeneracy 0

5 The units here are problem elements, or, e.qg., epitopes, but we will ignore

units for conciseness in most of this work.
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(ie., be complementary to) antibody j is the degeneracy of that Ab as a
fraction of the number of possible epitopes. The normalized
degeneracy of each solution element can be given as the degeneracy
relative to the mean, R; = D;/(D;), so that Py; = Ri(D;)/M = R;(D;)
/N. Similarly, the normalized degeneracies of the problem elements are
R; = D;/(D;), and the probability that a randomly chosen Ab will bind
to epitope i is Py; = >, R;;/N = D;/N = Ri(D;) /N = Ry(D;) /M .

2.2.2 Operational specificity

If an antigen contains & epitopes, E; = {i,i...i}, then the
number of Ab interactions it will have is m; :Ei‘zll{Dik:l}.
Assuming D; is usually 0 or 1 for most epitopes (see Section 4.2.2),
then (D;) <1 and, very approximately, m; = (D;)g;, Over all
antigens, the average number of Ab interactions per antigen, (m),
will more closely approximate (m) =~ (D;)(€). Hence, for (D;) < 1,a
(m)/(€)-

To define operational specificity, or OpS, we first establish the idea

fair approximation is (D;) =

of primary or cognate pairs, which are problem element-solution
element pairs that we define to be elements of a “special” or primary
subset of the overall relation and that are uniquely paired. By “uniquely
paired”, we mean they form a partial bijection or a bijective subset of
the overall relation. Namely, they are a subset, H', of H:

H' = {(9y5» w)lj € {1,2,3,..N}},

where g: ¥ — @, is a bijection (unique pairing) and @, is the
subset of @ for which each element is cognate to a corresponding
element in Y. This assumes that M > N. See Figure 2. The set of
pairs of tested epitopes and their cognate antibodies is a cognate
subset, as is the set of pairs of digital messages to be secured and
their corresponding hash values.

As shown in Table 2, there are three possible relationships
between a cognate ordered pair (¢, V) and any other ordered
pair (¢;,, ¥, ). For simplicity, the table assumes that g(j) = j. That s,
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FIGURE 2

Diagram of relations associating problem and solution elements in the current study. Green trapezoid (@)-the set of all epitopes (problem elements,
domain), {¢1, ¢o. ¢3....¢12}; red oval (¥)-one individual's Ab (variable region) repertoire (solution elements, codomain, image of H), {y1, y», ys}; H
(ring)—the relation associating @ and ¥; grey oval (®,)-the subset of @ that is related to ¥ by H-i.e., the preimage of H- which is the set of
epitopes that bind to at least one Ab in ¥; orange oval (¥°)-set of all possible human Ab species, of which ¥ is a subset; arrows—complementary
(¢, w©) pairs, w© € ¥C; blue arrows—primary or cognate (¢, y) pairs; solid, black arrows—potential collisions, i.e., (¢, w) pairs involving non-cognate ¢;
yellow arrows— (¢, y©) pairs involving Abs outside of ¥; solid, yellow arrows—pairs involving epitopes that bind only to Abs outside of ¥. The subset
of problem elements, here {1, ¢;, ¢1o}, involved in cognate pairs (blue arrows) is called @, (see text). The dashed arrows represent pairs potentially
involved in anticollisions: dashed, yellow—potential extra-repertoire anticollisions; dashed, black—a potential intra-repertoire anticollision (y1, ¢7, y»).
The (¢;, y1) pair also gives rise to a potential collision (¢;, yq, ¢;). See text for the definitions of these variables in the cryptographic context. In both
contexts, @ is many orders of magnitude larger than ¥ (not drawn to scale), and the H relation is presumed to be "onto"—i.e., covers the entire

codomain Y.

the indices of cognate problem and solution elements are equal. 1) If
iy # iy, fi = jp, the pairs share only the same solution element, and we
call the relationship a collision or cross-reaction (solid, black arrows in
Figure 2); 2) If iy =iy, j; # j,, the pairs share only the problem
element, and the relationship is an anticollision (dashed, black arrow
in Figure 2; see also Section 3.5). Finally, 3) If i} # i), j; # j,, the pairs
share neither element and participate in a non-collision. Throughout
this work, the term “collision” will be assumed to include the idea of
antibody cross-reaction with non-cognate epitopes, and “specificity”
will refer to collision specificity, rather than anticollision specificity,
unless otherwise stated. Notably, there are no anticollisions in SHA
algorithms; the present study explores how close humoral immunity
comes to this, if at all.

The operational specificity of an element, S, measures how
unlikely it is for the element to participate in a collision or cross-
reaction. For individual elements or their averages, S = 1 — P, where
P s the probability of a collision®. If P; = 0 and S; = 1, then no non-

6 Technically, a second preimage, in cryptography.
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cognate problem elements point to solution element j, and it has
perfect specificity for its cognate problem element. In immunity,
this would mean an antibody is truly monospecific. In
cryptography, no alternative files would hash to primary or
originating message digest j. Conversely, S; = 0 implies that all
problem elements collide: all non-cognate epitopes cross-react with
antibody j and all alternative files hash to message digest j. This is
illustrated in Figure 4.

Collision probabilities and OpS can be considered in the context
of individual antibodies, P, S;, or system averages, (P;), (S;). In
addition, the systemic probability of a collision, P, is the probability
of a cross-reaction between a solution element and one non-cognate
problem element anywhere across the entire solution space, and the
systemic OpS, S, is the corresponding specificity.

For individual solution elements and Dj > 1, P} = % = Poj
and §; = 1 - %. Hence, as depicted in Figure 4, the specificity is a
function of the degeneracy and the size of the problem space. The
latter expression is similar in form, though not exactly the same, as
the measure called specificity used in binary medical tests (60).”
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[ b, ¢, A s s b, g g Do | &y | O | Dj
Y, 1 0 1 0 0 0 1 1 0 0 0 0 4
v, 0 0 0 1 0 0 1 0 0 0 0 0 2
P, 0 0 0 0 1 1 0 0 1 0 0 1 4
D; 1 0 1 1 1 1 2 1 1 0 0 1 10
FIGURE 3

Relation matrix R. ¢; and y—problem and solution elements as described in Figure 2; D; and D;— the degeneracies for problem element / and
solution element j, respectively. For each possible (¢, ) pair, the corresponding matrix value indicates whether ¢; associates with y; (in which case,
R; =1), or not (R; =0). For example, problem element ¢, associates with solution element y; but not with y». The primary or cognate pairs are
indicated with a blue"l". The matrix elements excluding the D; =0 columns (¢,, ¢10, and ¢y1) correspond to the H relation described in Figure 2. In
real-world humoral immunity, many, and perhaps most, of the D;'s are O (e.g., solid yellow arrows in Figure 2; see Results Section 3.2.2). By contrast,
in SHA algorithms, D; is always 1. The rows and columns of the matrix have been transposed here for illustration purposes.

Similarly, For D; > 1, averages across the system are

(D;) _ (D)
(P) = Mo N )
and <S]-> is 1 minus those quantities.
For large problem/solution spaces, systemic OpS is generally
S, =~ e ™, which reduces to § =~ 1 — P, for P, <« 1. The forms for P,
and S, in terms of other system variables, as well as all derivations, are
provided in the Appendix (Section 6.2) and Supplementary Material 3.

2.2.3 Phenomenological simulations related to
systemic OpS

In this set of calculations, N antibodies in the system were assigned
degeneracies (D;’s) conforming to a positive-valued Gaussian
distribution. Then, D; epitopes were randomly associated with each
antibody, j, one Ab per epitope (D; =1). Pairs of epitopes were then
selected at random-the first representing the cognate epitope in an
antibody-epitope pair. If the second happened to bind the same
antibody as the first, then the epitope pairing was counted as an Ab
cross-reaction. This was repeated for the entire set of epitopes, so that
there were a maximum of 100,000 x99,999/2 = 5 x 10° epitope pairs per
trial. The probability of cross-reaction was calculated as the number of
positive cross-reactions divided by the total number of epitope pairs,
and this was compared to the theoretical result. A number of trials were
carried out, varying the spread of the degeneracies (o of the Gaussian
distribution). The actual number of epitope pairs per trial varied
between 2 and 5 billion, because of the effect of truncating the
Gaussian (at D;=0), which varied with the spread parameter.

2.3 Antibody-epitope interaction
probability model

2.3.1 AEIP model form

The above models do not take into account sampling of subsets
of antibodies from larger pools, as occurs in polyclonal immune
responses to an antigen. To guarantee the generation of accurate

7 Specificity =1- (false(+)/cond(-)), where “false(+)" is the number of
individuals in a population testing falsely positive and “cond(-)" the number

who do not have the illness or condition.
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statistics for multi-epitope, multi-antibody interactions involving
such sampling across all size scales, the antibody-epitope
interaction probability (AEIP) model was developed. This model
generates the probability, P(¢ m, n, N), of an antigen having &
epitopes that will participate in m interactions with a set of n
distinct antibodies or B-cell clones selected from a larger pool of N
clones in the immune repertoire. The total number of expected
complementary interactions, or “matches,” (W), given A tested
antigens, is then simply (W) = AP. The assumptions are that 1) Hp
is total (no unassigned epitopes), 2) Hj is random; 3) the antigens
are each assigned random epitopes, 4) duplicate epitope-antibody
matches for a given antigen are not allowed (no combinatoric
replacement), and 5) the antigenic binding spaces of the Abs are
of the same size (all D; are equal). This last condition is why the Ab
degeneracies do not appear explicitly in the model. Conditions 2, 3,
and 5 imply that the antigenic space is apportioned more-or-less
evenly among the N antibodies.
The probability is the product of four terms:

P(e,m,n,N),=S.C,T,T, (3)
where
el B n! B (N-n)! _(N-#)!
T e-m! " m-m)!m!” ' N-n-e+m)!’ ? NI

provided that the arguments of the factorials are all greater than
zero-i.e., N > {gn} > m, and N = n + £ — m. This expression is exact,
in the sense that statistical results will converge to it over a large
number of trials.

In the special case of n =1 (a single selected or tested Ab), the
number of cross-reactive matches, 7, can be either 0 or 1, and the
probability reduces to

_J1-¢/N if m=0,
P(e,m,l,N)—{g/N/ if m=1

and (W) = A¢/N for a single match. Since (D;) = 1 in the AEIP
model, from Equation 2 the average probability of collision for an
individual Ab is (P;) = 1/N and (W) = A&(P;), as in the example
given in Results Section 3.7.

As discussed in the Appendix (Section 6.3), for arbitrary n > £>
m > 0 and N > {n,&m}, the probability simplifies to P(&m,n,N) =
S:C,/N™.
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FIGURE 4

Dependence of specificity (OpS) on degeneracy. The operational specificity, S;, of a solution element (e.g., an antibody or hash value) for its cognate
problem element (e.g., epitope or digital file), relative to a randomly selected problem element, is plotted on the vertical axis as a function of its
degeneracy, D;. The various lines represent different sizes, M, for the problem space, which determine the line’s slope. The point (D;S)) = (1,1), labeled
the "point of monospecificity,” is the only point where the solution element is absolutely specific for its cognate problem element. It is also where
the specificity is independent of the size of problem space. When D; = M, (e.g., D; =10,000 for M =10,000), the specificity is zero.

Various other approximations to the exact model are derived
and other details are also provided in the Appendix (Section 6.3).

2.3.2 Phenomenological simulations related to
the AEIP model

Several sets of trial calculations, or phenomenological
simulations, were carried out to quantify the probabilities of
interaction between sets of selected antibodies and arbitrary
antigens, and the results were compared to the theoretical
estimates from the AEIP model. For each calculation, a set of n
antibodies was randomly selected out of a larger pool of N Abs,
which also correspond to the N partitions into which epitope
space was subdivided. Then, € epitopes were randomly selected
from those partitions and assigned to a test antigen and checked
for complementarity with the n selected Abs. The number of non-
redundant matches was then tabulated for each of A test antigens.
The results were compared with the theoretical results, using the
exact formulation (log form of Equation 3) and either of four
approximations for the probabilities, which are described in the
Appendix (Section 6.3). For most trials, € = 5 was used, because
that is a typical number of immunodominant epitopes involved in
an immune response (61, 62) and it also allows for smaller
repertoire sizes to be explored, given the constraint N > & In
one set of trials (see Figure 5), € =1000, which is a high-end
estimate of the number of recognizable epitopes on an antigen
(Supplementary Material 4).

Frontiers in Immunology

3 Results
3.1 Size of the problem domains, ®

3.1.1 The size of electronic file space

The size of digital file space grows exponentially with file size.
The contents of a 4000-bit input file can be arranged in 2*°*° or
approximately 10'*** ways, and hence the size of the file space,
M = 10"%**, For comparison, the number of particles in the known

universe is very approximately 10%.

3.1.2 The size of peptide/protein epitope space

The number of possible epitopes that the humoral immune
system could be tasked with recognizing also grows roughly
exponentially with molecular or fragment size. As described in
Methods, the PECS model gives a lower-bound estimate for the size
of epitope space as M, = (N,d), where N, is the number of residue
types, q is the number of (x,y) positional “slots” for the amino acids
across the binding interface and d is the number of possible z-
positions, which are the depths of the o-carbons relative to the
binding interface.

This is illustrated in Figure 1. As to an estimate of g, multiple
studies have shown that the average protein or peptide epitope-i.e.,
the set of amino acids interacting at the antibody-antigen interface—
consists of about 15-25 residues (58, 59, 63), and many epitope
interfaces contain 30 amino acids or more. Because a reasonable
lower bound is sought here, we choose 15 as the maximal number of
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TABLE 1 The main variables used in this work.

Component or variable type

Problem space variable

10.3389/fimmu.2025.1585421

Solution space variable

name of space [ ¥
element types epitopes, digital files antibodies, hash values
cardinality of the space M N
degeneracy of an element D; D;
average degeneracy of elements (Dy) (Dj)
normalized degeneracy of an element R; R;
collision/anticollision probability for an individual P p.
element ! ’
average collision/anticollision probability across all
elements P2 P
systemic collision/anticollision probability P, P,
operational specificity (OpS), element S; S;
average element OpS across elements (S:) (S;)
systemic OpS Sa Se
distribution coefficient K, K.
distribution coefficient, high mean Kt K.t
average multiplicity of H relation mult(H)
coverage fraction of H relation fia = |Dy//| |
number of:
interactions per antigen m
tested solution elements n
epitopes per antigen £
tested antigens A
antigens cross-reacting with Ab w

amino acids and, in addition, we limit the number of positional slots
to the number of amino acids, so that g =15. Since any of 20 possible
amino acid types can occur at each of those (x,y) slots, N, =20. To
estimate d, we partition the depth of residues relative to the
hypothetical interfacial plane into a number of regions, as shown
in the figure. The great majority of epitope amino acids are centered
at a Chakravarty depth (distance of an atom from the nearest
surface water molecule) of 8A or less, and most are between 3.5 A

and 6 A (64). Hence, we can reasonably discretize the problem by
allowing the o-carbon of an amino acid to occupy any one of three
depths relative to the epitope surface, each separated by roughly 2.0-
2.5A. This separation is large enough to capture typical local
fluctuations, as measured, for example, by RMS deviations of o-
carbons in MD simulations of stable structures (65, 66), or between
homologous a-carbons in conserved regions of different
proteins (67).

TABLE 2 Examples of the three types of relationships between a cognate ordered pair and other ordered pairs (assuming i = j for cognate ordered

pairs).

Relationship Cognate ordered pair

B (92 v1)

collision (01, y1) (non-cognate pair)
anticollision (61, v1) Eﬁ;nlfignate pair)
non-collision (91, v1) pair)

Frontiers in Immunology

Other ordered pair

(02, ¥») (cognate pair) or (¢, y3) (non-cognate

Example

an antibody that cross-reacts with a non-cognate
epitope

an epitope that cross-reacts with a non-cognate
antibody

two antibody-antigen pairs
which are distinct in both
elements
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FIGURE 5
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m

Log plot of the probability of interaction between antibodies raised in a polyclonal response to a non-self antigen and the set of all self-antigens in the
human body, according to the AEIP model. W—-the average number of self-antigens, out of 10000, that will likely interact with any of 10 selected
antibodies, assuming 1000 epitopes per Ag, for various sizes of antibody repertoires (base-10 log plot). m—the number of cross-reactions per antigen. It
is unlikely for even one self-antigen to find two Ab matches, and the probabilities decrease exponentially from there with the number of matches.

The depth of the epitope surface, itself, can also vary relative to
the interfacial plane. Since, again, we are erring on the side of
undercounting possible configurations, we suppose only three
different possible depths for the surface at each amino acid
position and assume the separation to be roughly equal to that
between the possible depths of the amino acids relative to the
surface. Hence, each residue can be at any of d =5 depths relative to
the plane (any of 3 possible positions relative to the surface, with
two possible shifts of the surface). Further, since epitopes can be
discontinuous, the model assumes the amino acid positions are all
independent of each other. Hence, the overall estimate arising from
the model is M, = (20 - 5)", or 10*°. For multiple reasons cited
above and in the Appendix (Section 6.1), this is likely a very
conservative lower-bound estimate for the number of possible
protein epitopes that the adaptive immune response must be
capable of recognizing/binding.

3.1.3 The size of hapten space

In addition to proteins and peptides, the immune system
recognizes any number of molecular types, including sugars, lipids,
carbohydrates, drugs and small molecules. These molecules can
function as immunogens, provided they are coupled with carrier
proteins. It is estimated that there are about 10% possible small
organic compounds of molecular weight 500 Da or less that are
stable in water at room temperature, if only C, H, O, N, P, S and
halide atom types are included (68). Restricting our analysis to
molecules of this size and assuming only one conformation per
molecule, we can set 10% as the lower bound for the number of
possible haptens that the immune system is tasked with recognizing.
Further, assuming that carrier proteins contribute up to 10 amino acids
to the combined hapten/protein epitope and using the PECS model
described above for the chemical and conformational diversity of the
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amino acids, the total number of possible, distinct structures comprised
of hapten and protein is M = 10® x (20 - 5)'%r about 10*. This likely
represents a very conservative, lower-bound estimate of the number of
possible molecular structures to which the immune system could be
challenged to respond, because 1) larger haptens (e.g., digoxin at a
M.W. of 781 Da) (69), haptens containing different atom types (70, 71),
and larger protein epitopes (72) are known to exist, and 2) the estimate
does not take into account the conformational diversity of the haptens.
In addition, M or |®| is likely to be significantly larger than the number
of structures, because humoral immunity generally recognizes multiple
epitopes on each hapten-carrier conjugate. Put another way, although
antigenic totality suggests M is at least as large as the number of hapten/
carrier protein structures, it could be larger (see also Glossary,
Supplementary Material 2).

3.2 Size of the repertoires (¥) and the
degeneracies of y;

As described in Methods (Section 2.2), the average degeneracy
of solution elements (e.g., Abs) is (D;) = (D;) M/N, where M = ||
and N = || are the problem and solution set sizes, and (D;) is the
average degeneracy of the problem elements (e.g., epitopes).® When
(D)< 1, it can be considered a measure of the coverage fraction of
the H relation, fi; = |®yl|/|®| -that is, the “completeness” of the
binding repertoire. On the other hand, when (D;) > 1, it is a
measure of the “multivalued-ness” or multiplicity of H-e.g., the
binding space overlap of the antibodies.

8 As mentioned, the “i" subscripts here always correspond to problem

elements (e.g., epitopes) and the “j" subscripts to solution elements (e.g., Abs).
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3.2.1 A hash function’s repertoire

In the cryptographic case, (D;) is the average degeneracy of all
files or messages, and because hash functions (Hg) behave as total
mathematical functions-i.e., each digital file maps to one and only
one hash value- D; = (D;) = 1, and the average degeneracy of the
hash values reduces to (D;) = M/N. For our example case involving
SHA-256, M = 10'2% the size of the solution domain is N = 22°° =
10”7, and (Dj)z 10'2°4/10”7 = 10*'%. Hence, the Hy relation (here,
SHA-256) is highly many-to-one or non-injective. In this absolute
sense, hash values are not at all specific to a given file.

3.2.2 The antibody repertoire

Analogously to the cryptographic case, if M is the number of
(distinct) epitopes, N the number of (distinct) antibodies or cellular
receptors, and (D;) the average degeneracy of epitopes with respect
to an individual’s immune repertoire, then the average Ab
degeneracy in the system is (D;) = (D;) M/N. The estimate for M
was given above. Now, we estimate N and (D).

There are = 10" to 10'> T and B cells in the human body (73,
74) and because there tend to be multiple copies of each cellular
clone, the number of chemically distinct antibodies/immune
receptors in an individual-ie., the size an individual’s immune
repertoire, N-is thought to be’ in the range of 107 to 10'° (75-78).

As described in Methods (Section 2.2), a fair estimate of (D;)
is =(m)/(€), where m is the number of antibody interactions per
antigen and €is the number of epitopes per antigen. It is known that
different antibodies can bind similar epitopes (79-84), but in this
work, an epitope is defined such that similar, but distinct chemical
compounds are counted as different epitopes. We know that D; is
often< 1, since individual immune responses tend not to produce
antibodies against all epitopes on an antigen (85-89). As discussed
in Section 3.7 below and in Supplementary Material 4, a generous
estimate for (&) is 1000, and individual immune responses typically
generate antibodies to a few tens of epitopes ({(m)), so a reasonable
10/1000=1/100. For simplicity,
throughout this work (D;) = 1 is often used as a first

lower bound for (D;) is
approximation for the immunologic case.

Combining estimates for M, N, and (D;), a conservative lower
bound estimate for (D;) is a range of = (1/100) x 10%/10"° = 10" to
1 x 10%/10” = 107°. This is a very low-end estimate of the number of
epitopes, as defined here, that each Ab species, on average, is tasked
with being able to bind. The number of protein/peptide epitopes is
likely to be at least (Dj,,0) = (1/100) x 10°°/10' to 1 x 10°°/10” =
10'® to 10*°. Hence, the H relation is highly many-to-one as well, at
least on average.

These are fairly robust results. Using a much more restrictive
approximation of the size of chemical space (90, 91) for the size of
the hapten domain changes the conclusions quantitatively but
not qualitatively.

9 Thisis significantly less than the upper limit of diversity that can, in theory,
arise from immune cell gene recombination (21, 194, 195), illustrating that
only a small fraction of total possible antibody and receptor variable region

diversity (W) is realized in any one individual (¥).
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3.3 Operational specificity

We define operational specificity (OpS), S, as the unlikelihood
of an element pairing with a non-cognate partner (See Methods,
Section 2.2.2) It can be considered in at least three contexts: 1) that
of averages over all solution elements, 2) that of individual solution
elements and 3) that of the system as a whole. We will consider each
in turn, here. We discuss anticollision probabilities and epitope
OpS, with the corresponding results, in Section 3.5 and
Supplementary Material 3.2.

3.3.1 Average OpS over all solution elements

Since the human immune repertoire contains 107 to 10'°
distinct Ab variable region species (N), conservative, lower bound
estimates of (P;) = (D;)/N are ~ 107" to 107 for (D;) = 1, and
1072 to 10° for (D;) = 1/100. The corresponding estimates for
<Sj> are a range of 1 — 107t01-10"and 1-10° to 1 — 1072,
respectively. It is in this sense that antibodies are, at least on average,
highly specific. As depicted in Figure 6, cross-reactivity is
improbable for each randomly selected antibody-epitope, on
average, though not nearly as improbable as a random collision
(second preimage) in a cryptographic algorithm such as SHA-256.
In the case of SHA-256, (S;) is about 1-1077. The statistical
comparison between the two systems is summarized in Table 3.

3.3.2 Operational specificity of individual solution
elements

As derived in the Appendix, Section 6.2, for high solution
element degeneracies, (D;) > 1, the collision probability for an
individual solution element (antibody or hash value), j, is P; =
R{(D;)/N, where R; is the normalized degeneracy of solution element
j. This holds provided there are no prior correlations between
problem and solution elements. In the case of SHA functions in
current use, the distribution of the M files among the N — 1 non-
cognate hash values is close to random and uniform (92-94).
Although the output of these functions is exactly reproducible for
each unique input, it varies chaotically with small changes in the
input, in what is known as the avalanche effect (95), resulting in a
pseudo-random distribution. And since the solution elements (hash
values) are all of the same size, this pseudo-random mapping also
ensures that each member of the solution set has very nearly the
same number of files mapping to it (preimage cardinality). Thus, the
probability distribution of R;is spiked, with all Ri= 1. Further, since
(D;) = 1, itis clear that P; = (D;)/N = 1/N, for each hash value, j. This
is analogous to randomly assigning M possible problem elements
into N equally sized bins, as depicted in Figure 6. The OpS for each
hash value is then S; = 1 — 1/N = (S;), which for the example case is,
again, ~1-1077.

The situation in immunity is analogous. Absent prior exposure,
the distribution of epitopes across the repertoire of N — 1 non-
cognate antibodies is likely very close to random, because the
recombination of the coding segments for antibodies is known to
be largely random (16, 17). In addition, small changes in structure
tend to have disproportionate effects in antibody-antigen affinity
(96-101), in what could be called the immunological version of the
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FIGURE 6

Binning of chemical (or message) space. For both panels, the inner, colored circular area represents the set of possible epitopes; each of the 64
circular sectors (out to the dashed circular boundary) is the slice of chemical space to which each distinct Ab is complementary, assuming no
overlap and complete coverage; ¢, through ¢s—different epitopes; crosses (+)—epitopes cognate to their respective antibodies; dots (s)-random,
non-cognate epitopes. In (A) the probability that a randomly selected (s) epitope would be in the same bin as a cognate (+) epitope is 1/64, because
the chemical space is divided equally. In (B) four antibodies dominate the space, so that the odds of such a cross-reaction are much higher. In this
way, the probability of a cross-reaction or collision increase with the variance in the degeneracies. In cryptology, the circle represents the set of all
possible digital messages that a hash function could receive as input; each slice represents a subset of messages that result in a particular digest or
hash value. For SHA-256, there would be =10”” slices. In humoral immunity, there are 10 million slices, or more. An expansion of the set of possible
epitopes or digital files, depicted here as an enlargement of the colored circular area to the dashed outer circle, does not change the probability of a
cross-reaction or collision, provided the new ¢ are randomly distributed across the solution space.

avalanche effect. Hence, in the general case, two epitopes with
structures that vary more than slightly are no more likely to bind the
same antibody than by chance.

As to the size distribution of the binding spaces of individual
antibodies, there is a paucity of data, but the distribution of CDR3
lengths, which has been considered a proxy for binding site diversity, is
reported to be roughly a truncated Gaussian (76, 102, 103). In any
symmetric distribution of positive-valued data, the largest data point
value cannot exceed twice the mean (because X, = 2 X mean — Xin,
and x.,;, > 0). Hence, a size distribution that is approximately a
truncated Gaussian, or otherwise symmetric, implies a maximal
normalized degeneracy for solution elements of R;,.q. = 2, and a
maximal cross-reaction probability of P}, = 2(D;)/N = 2(P;). The
minimal OpS of an antibody taken from a symmetric distribution
of Ab degeneracies is then S;,,,;, = 1-2(D;)/N. Assuming, again, that
(D;) = 1, this means §;,,,;, =1 - 2 x 107 to 1 - 2 x 107, which is
the same order of magnitude as the average OpS across all antibodies
(1-107 to 1-101%). Thus, truncated Gaussian or other symmetric
binding space distributions do not, in general, lead to order-of-
magnitude drops in individual Ab operational specificities, relative to
the mean.

At the other extreme, the bounds for the maximal OpS (Sjax)
and minimal cross-reactivity (Pj,,;,) for individual antibodies are
less clear. While affinity differences between different antibodies
have been quantified-e.g., affinity maturation may confer an
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increase in binding affinity of one or two orders of magnitude
(86, 104, 105)-differences in binding space sizes or specificities
have not.

3.3.3 Systemic OpS

The systemic OpS takes into account all possible pairwise
combinations of members of the problem repertoire (e.g.,
epitopes) with all (single) elements in the solution (Ab)
repertoire. As detailed in the Appendix (Section 6.2), assuming
large problem spaces (M >> 1) and solution element degeneracies
({Dj)> 1), and assuming complementary (¢,y) pairings are
uncorrelated, the systemic probability of collision, P, is
approximately

2 \2
P, = G;]—» (Var(R) +1) = <l?&#(\/ar(Rj) +1),

(4)

where (Var(R;) + 1) = K! is the high-mean distribution
coefficient for solution elements. The systemic OpS is given by S,
~ 1-P,, provided P, < 1. As also discussed in the Appendix (Section
6.2), the P. term is minimized, and S, is maximized, when the
probability distribution of D; is singular (i.e., “spiked”; see Figure 7),
and all R; =1, so that the variance Var(R)) is essentially zero and
Se=1-P.=1 —%. Hence, in the case of a spiked distribution,
K! = 1. Notably, cryptographic hash algorithms such as SHA-256
are thought to have a spiked preimage size distribution (93, 106).
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TABLE 3 Basic statistical comparison between the SHA-256 model
system used in this study (SHA-256 System column) and the B cell
receptor/antibody immune recognition system (Humoral Immunity
column).

Component or SHA-256 Humoral
variable system immunity

problem element digital file epitope
solution element hash value antibody
M 101204(a) 1083
Myror 10%°
N 10”7 107 to 10"
(D;) 10127 107 to 107
(P;) 1077 107"% to 107
() 1-1077 1-107 to 1-107*
P, 1077 1072 to 107
S, 1-1077 1-107 to 1-10°*2
n, 107 10
Pl n, 10°° 10" to 10°
(D;) 1 0.01 to 1
(P;) 0 10 to 10"
(S 1 1-107° to 1-1074®
P, 0 10% to 10%®
Sa 1 ~0
mult(H) 1 1.005 to 1.58®
fu 1 0.01 to 0.63"

M oi-estimated number of distinct protein/peptide epitopes. n. -number of solution
elements generated in response to a typical challenge. For the SHA, the example used is the
number of hash value calculations that can be performed on 100 Bitcoin mining machines
over 2 weeks as of ~ 2023. For the immune system, it is the number of distinct epitopes
eliciting cognate Ab production in a typical viral infection. Pj| n.~ The probability that a
typical challenge will result in a collision with a fixed hash value target (and corresponding
file) or a cross-reactive match between the set of elicited antibodies and a given (e.g., self)
epitope. The rest of the row headings are as per Table 1. Although the magnitudes of the
results are different in the two systems, the mathematical structure is very similar, diverging
only for P, and S,, the systemic probability of anticollision and the corresponding OpS (see
Results Section 3.5, Equation 5, and Discussion 4.2).. (a) Assuming a message size of 4000 bits
(250 16-bit words). (b) Assuming a Poisson distribution for epitope degeneracies (D;).

For our example cryptographic case, then, we can estimate P, for the
hash function to be the same as (P)), i.e., P, = % = %77 =107 =
<P]> and, similarly, S, = <S]—> ~1-107.

From Equation 4, note that as M is increased, so long as the
solution element degeneracies, D;, increase proportionately, P,
remains unchanged, as Var(R;) is constant under uniform scaling
of D;. Hence, similar to the case for the average antibody OpS, as
long as Hpg is random, the systemic probability (P.) and specificity
(OpS) are unchanged as the number of epitopes to which the system
is exposed (M) is increased. See also Figure 6 and Appendix
(Section 6.2).

As mentioned above, the actual size distribution of Ab binding
spaces is unclear, but there is some data to suggest that it is
approximately Gaussian. Since the maximal variance of any
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Gaussian distribution over its positive support is the mean squared
or, here, (Rj)2 (107-109), and since, by definition, (Rj) =1, it must be
true that max(Var(R;) = 1> = 1 for Ab binding degeneracies
conforming to Gaussian distributions. Hence, the maximal KJ for a
Gaussian distribution of Ab degeneracies is 2, and for large (D;) and
fixed N and (D), the mazximal probability of a collision across the
p _ 2D)

c,max N

, or twice the optimal value, and the

2
minimal OpS, s, =1 —%. Further, what is conventionally

system is
considered a Gaussian distribution of positive data generally has a
location parameter ¢ > 0, and in these cases, the maximal variance
over the Gaussian’s positive support is <Rj>2(n’ —2)/2, which implies
a maximal K] of /2 = 1.5708 and P, ., = %. Table 4 shows
the results of statistical trials calculating rates of epitope-Ab cross-
reactivity as a function of varying spread parameter, (o), of the
(truncated) Gaussian distribution of antibody degeneracies, given
fixed repertoire size N and location parameter y. The cross-reactivity
rates closely track Var(R;), which here achieves a peak value
of = 0.452 at about ¢ =20. The rates then plateau at that of a
uniform distribution (4/3N), to within discretization error.

As illustrated in Figure 7 and discussed in the Appendix (Section
6.4), other, related unimodal distributions, such as Rayleigh,
Maxwell-Boltzmann, Poisson, and uniform distributions, have
similar maximal K values and therefore give similar results. At
the other extreme, systems having widely split and skewed bimodal
distributions-i.e., two sub-populations with very different population
sizes and degeneracies—can have a much lower OpS, as also depicted
in the figure. As described in detail in the Appendix (Section 6.2.4), a
split distribution will always have a higher variance and a lower OpS
than a spiked distribution. The effect is much more pronounced if the
lower-degeneracy peak is much taller (and thus has a significant total
probability mass). Other distributions (e.g., multimodal, less widely
split/less asymmetric bimodal) give intermediate results (not shown).
These facts together suggest that as long as Ab degeneracies conform
approximately to Gaussian or similar unimodal distributions, the
systemic probability of cross-reaction is never more than twice the
minimum value, and more commonly less than =1.57 times the
minimum value, for fixed N and (D;). Given our prior estimates for
N, P, ax in human immunity would fall in a range of = 2 X 10 to

~ 2 x107 for (D;) =1, and 2 x10™ to =~ 2 x107"" for (D;) =
0.01, with corresponding S, ,,,;, ranges of 1 - P, ..

3.4 Statistical trial calculations of Ab-Ag
cross-reaction probabilities for varying
repertoire size

As mentioned earlier and described in Methods (Section 2.3),
the AEIP model was developed to predict the number of
interactions between arbitrary antigens and a set of antibodies
selected randomly from a larger Ab pool. Several sets of
corresponding trial calculations, or phenomenological
simulations, were carried out, and the results were compared to
those of the model. In the main set of calculations, 10 antibodies
were selected at random from Ab repertoires of varying sizes and
tested against 100 billion antigens, each having 5 epitopes. For the
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Unimodal and bimodal distributions for antibody or hash value degeneracies. Panel (A) shows five different unimodal distributions for solution
element degeneracies, normalized to the interval D; € [0,1000], and their associated (high-mean) distribution coefficients, K. They are: R-a
Rayleigh distribution (red curve) with ¢ =50; M-B-a Maxwell-Boltzmann distribution (blue curve) with ¢ =150; G—a Gaussian (black curve) with o
=200 and p = (D;) = 500; S—a singular distribution (black spike) at D; =500, P-a Poisson distribution (grey curve) with A = (D;) = 500,; and U-a

uniform distribution (grey line). The singular distribution minimizes the variance and, hence, the distribution coefficient, and it therefore maximizes

the system specificity. However, the distribution coefficients of the other unimodal curves do not differ from that optimal case by more than a factor
of 1.333 in these examples, despite their varying forms. By contrast, Panel (B) shows a skewed and widely split bimodal distribution (red spikes, “B") in
which a small number of elements (100) account for most (95.0%) of the system’s degeneracy and the vast majority (100,000) account for very little,

resulting in a large variance and K.' (902.8, as well as K. =901.9). This greatly diminishes the system OpS and increases the chances for cross

reactivity or collision relative to the optimal case.

sake of simplicity and interpretability, the model assumes that at
each repertoire size, the repertoires are both complete and non-
overlapping-i.e., D; =1. Hence, the model does not illustrate the
effect of subtracting or adding antibodies with similar degeneracies
to the immune repertoire; rather, it can be used to compare the
behavior of immune systems designed with different repertoire sizes
and corresponding Ab degeneracies.

The results for the number of antigens having a single cross-
reactive antibody match, W, as a function of repertoire size are shown
as a log-log plot in Figure 8. The plot is linear, with slope -0.988,
indicating that W drops off inversely with N, approximately
in proportion to N °?® The theoretical and trial results are
nearly superposable. The raw results, along with those of several
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approximations to the AEIP model, are given in Supplementary
Table S1 of Supplementary Material 1.2. For a repertoire size of
N =100, over 33.9% of the antigens cross-react once, whereas for
N = 1000, only =~ 4.8% cross-react once, with similarly decreasing
results for larger N.

3.5 Anticollision (epitope cross-reaction)
probability and OpS

The average epitope cross-reaction probability (P;) is the
average probability that an epitope will be complementary to a
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TABLE 4 Rates of cross-reactivity of 100,000 epitopes with 100 Abs for different spreads (o) in Ab degeneracies.

Var(D) Var(Dj)g Var(R;) Rate(%) Ratec(%) Rateg(%)

0.25 2.00 1.55 0.000 0.002 0.000 1.000 1.001 1000
0.50 2.00 1.66 0.000 0.022 0.000 1.000 1.008 1000
100 2.00 187 0.000 0.070 0.000 1.000 1020 1000
125 2.06 215 0.116 0.296 0.027 1.028 1.064 1027
1.50 2.16 231 0.294 0.419 0.063 1.065 1.079 1.063
2.00 248 270 0.890 0.935 0.145 1144 1128 1145
250 2.84 3.09 1694 1622 0.210 1211 1170 1210
3.00 3.17 3.44 2344 2244 0.233 1.245 1.202 1245
3.50 356 3.85 3.486 3.322 0.275 1277 1.224 1275
4,00 3.96 425 4878 4569 0311 1312 1253 1311
5.00 471 5.01 7.540 7.189 0.340 1.354 1.300 1354
6.00 5.47 576 10795 10327 0.360 1.376 1325 1374
8.00 7.1 734 21351 19361 0.422 1438 1373 1437
10.00 8.71 8.84 32.286 29.794 0.426 1.400 1.354 1398
20.00 16.14 16.20 117.620 112.183 0.452 1.453 1427 1452
30.00 20.73 2091 178.354 168.686 0415 1.402 1372 1401
40.00 22,93 22.97 191.807 184.996 0.365 1.352 1.337 1351
50.00 23.62 24,01 201.720 191.451 0.361 1.349 1319 1348
60.00 25.13 24.60 197.318 194.524 0.313 1.368 1.376 1367
70.00 25.53 24.97 201.208 196.203 0.309 1.337 1342 1335
80.00 26.00 2521 208.000 197.218 0.308 1309 1310 1308
100.00 26.00 25.49 208.000 198.331 0.308 1.309 1.305 1308

Abs were assigned degeneracies according to a (truncated) Gaussian distribution, with varying ¢ parameter and fixed location parameter (u = 0.25). Epitopes were randomly assigned to the Abs
and then pairs of epitopes were randomly selected and checked for matching Ab assignments. In each trial (row), there were 100,000/(99,999x2) = 5 billion tested epitope pairs. Column headings:

G - spread parameter; (Dj)— mean Ab degeneracy; Var(D;)- variance of the Ab degeneracies; Var(R;)~ variance of the normalized Ab degeneracies; rate(%)- percentage of epitope pairs that
cross-reacted with the same Ab; rateg(%)— percentage predicted from (Var(R;) + 1)/N. (Dj)g, Var(Dj)G, and rateg(%)-predicted mean Ab degeneracy, predicted variance of Ab degeneracies, and
predicted % of pairs resulting in cross-reaction, all calculated directly from the (truncated) Gaussian distribution (see Supplementary Material 5 for details). As G increases, the distribution widens
and (Dj) rises, since pt is fixed. The number of Abs in the trials varied from N = 98 to 101 due to discretization effects, which in turn cause some small fluctuations in the actual and predicted rates.

non-cognate antibody (e.g., see dashed black arrow in Figure 2). It is

*
<% >, where <Dj> = (D;) =1+ L, is the average

given by (P;) =
non-cognate degeneracy over all epitopes—i.e., the average number
of non-cognate Abs to which an epitope is complementary-and L,
is the fraction of epitopes having degeneracy 0 (see Supplementary
Material 3.2). Since in immunity, (D;) is likely small, a Poisson

distribution for the degeneracies is plausible-i.e., L; = %,

where L; is the probability of epitope i having D; = k. This is
because, if it is fairly rare for an epitope to be complimentary to
any single antibody, then the probability of complementarity to m
antibodies might be expected to fall off exponentially with m.

(P and given our estimate

Assuming that this is the case, Ly = e~
of 0.01 < (D;) <1, <D,*> would be in a range between =5 X

10~ and 0.37.
Further, given our previous estimates for N, (P;) falls in the
range of (P;) = 107 to 10, with (S;) in the range of =1 -10"%to
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1-10"". Hence, individual epitopes would appear to be quite
specific for their cognate antibodies.

However, the same is not true for systemic epitope OpS. The
systemic anticollision (epitope cross-reaction) probability, P,, is
given by.

(D;)’M

T N(N-1)

Coort )

where the term in parentheses is the distribution coefficient, K,

(5)

Note that since P, is a sum over individual probabilities over the
system, it can (greatly) exceed 1, in which case it is interpreted as the
expected number of epitopes complementary to two antibodies
throughout the system. For N > 1 and a Poisson distribution of D,

2
P, = <DI"32M (see Supplementary Material 3.2). Given our previous
10 ie. a single epitope would cross-react with one of these randomly

selected antibody pairs very infrequently, provided epitopes are randomly

distributed throughout the Ab binding space.
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FIGURE 8

Base-10 log-log plot of the number of single, cross-reactive Ab-Ag matches between randomly selected antigens and sets of 10 antibodies selected
randomly from larger repertoires (as in a polyclonal response), as a function of repertoire size. LogW-log of the number of antigens having
complementarity to exactly one antibody in the selected set. LogN-log of the size of the Ab repertoire. The red dots are the trial (simulation) results,
while the blue line is a least-squares-fit of the theoretical results (from the AEIP model). The number of antigens tested is 100 billion, and the

number of epitopes per Ag (&) was fixed at 5.

estimates for N and (D;), the systemic epitope cross-reaction
probability, P,, falls in the range of P, = (%31)°M to (;)°M =
107*M to 107M. Even using our conservative, lower-bound
estimates for M and M, this implies P, = 10 to 10° across all
epitopes and P, = 10° to 10" across only protein/peptide epitopes.
Correspondingly, the systemic OpS across all epitopes, S, =~ e« =

_10% 104
elO toelO

(see Addendum Section 8.2.3 for derivation), which is
effectively zero. Hence, the large size of these epitope spaces virtually
guarantees that two randomly selected antibodies will, on average,
contain many of the same epitopes in their binding spaces, although
this group of shared epitopes represents only a tiny fraction (e.g., 1072*)
of the total."’

By contrast, in the cryptographic case, L, =0 and (D;) =1
(each digital file maps reproducibly to a single digital signature) and
hence (P;) = W+L° = 0-i.e., there are no anticollisions. Likewise,
Var(D;) = 0 for SHAs, and hence P, = % (0+1-1) =0. Thus,
with respect to systemic problem element OpS, the mathematical
behavior of immune recognition and SHA functions diverges, due
to the strict single-valuedness of SHAs and the size of the problem

spaces. See also Discussion.

3.6 Average multiplicity and coverage
fraction of the H relation

A quantity related to (D;") and (D;) is the average multiplicity
of H, which is the average number of solution elements pointed to
by each problem element in @y,

S PD; =k (D) (D)

7lH: = =7
) =S58 b =k T Bal19]
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In immunity, this is the average epitope degeneracy divided by
the epitope coverage fraction. For a Poisson distribution of D;, fi; =

1 = D

, and, hence, given our estimates for (D;), approximate
ranges for the coverage fraction and average multiplicity in
immunity are 0.01<f;; <0.63 and 1.005 < mult(Hy) < 1.58,
respectively. This means that, although a considerable fraction of
all epitopes bind to at least one antibody in a given repertoire, most
of the epitopes within that fraction bind to only one antibody-i.e.,
the Hp relation is near-total and yet generally single-valued. For

SHAs, fy = mult(Hy) = 1.

3.7 Estimate of Ab cross-reactivity with
self-antigens

We can estimate the expected number of antigens that will bind,
or the probability of a single binding interaction, to a given (fixed)
antibody. This is relevant to autoimmunity, for example. The AEIP
model indicates that the probability of a single Ab-Ag interaction is
linear in the number of epitopes per Ag, € (see Methods section
2.3.1). For large N, the total number of interactions, can be
expressed using the relation (W) = Ag(P;), where A is the
number of antigens accessible to an antibody. In particular, we
can ask, when a new Ab is randomly generated, say by somatic
mutation in the periphery, what are the chances that it will cross-
react with one of the body’s own antigens? As described in
Supplementary Material 4, a reasonable estimate for A, in the case
of self-antigens, is 10,000, and a generous estimate for € is 1000.

Assuming (D;) = 1, (P;) has been shown in the present study to
be 10'° to 107, Taking A = to be 10,000, the average local
degeneracy (i.e., “local” to a restricted set of antigens), (W) =
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As(Pj), is, therefore, in a range of about 0.001 to 1. This is the
average number of self-antigens/epitopes that a single newly
produced Ab species will have in its chemical binding space.
Studies of polyclonal animal antibodies raised against animal
proteins and tested against large arrays of human proteins have
shown frequencies of strong binding events that are consistent with
these statistics (110), as have studies of monoclonal Abs using
panels of recombinant human antigen arrays (111). On the other
hand, the lower-end estimate for (D;) of 0.01 results in an estimate
for (W) of 10~ to 1072, which is somewhat lower than that expected
from experiment.

3.8 The effect of polyclonal binding
requirements on specificity

Although monoclonal Abs can elicit immune responses (112,
113), polyclonal Abs are generally more effective at activating the
complement system (114, 115) and neutralizing soluble proteins or
viral particles (116, 117), for example, because they more readily
result in stable, multimeric Ab-Ag complexes. Thus, the probabilities
with which non-cognate antigens will bind to multiple Abs, e.g., in a
typical polyclonal immune response, is of interest with regard to
autoimmunity. The dependence of these binding probabilities on the
number of antibodies present in the response, the size of the
repertoire, and the number of epitope-antibody complementarities,
or matches, was explored in a set of theoretical calculations using the
AEIP model, as well as a number of corresponding statistical
calculations, or phenomenological simulations.

3.8.1 The probability of polyclonal self-reaction.

First, consider the self-reactivity example described above, but
now suppose that self-antigens are exposed to ten non-cognate
antibodies instead of one. As shown in Table 5, the AEIP model
demonstrates that the average number of self-antigens that will
cross-react once (m =1) is, as expected, higher by a factor of =~ 10-
that is, (W) varies in a range from 0.010 to 9.99, depending on the
repertoire size and assuming (D;) = 1.

However, as also shown in the table, as well as in Table 6 and
Figure 5, and as described analytically in the Appendix (Section
6.3), the chances that an individual antigen will participate in m

TABLE 5 Number of self-antigens (out of 10,000 total), each having
1000 epitopes, participating in m crossreactions with 10 test antibodies
selected randomly out of the total repertoire, which varies in size here
from 107 to 10'°, as calculated from the AEIP model.

Size of repertoire

10° 108
0 9999.990 9999.900 9999.000 9990.004
1 0.010 0.100 1.000 9.991
2 4.495E-09 4.495E-07 4.495E-05 4.492E-3
3 1.196E-15 1.196E-12 1.196E-09 1.196E-06
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cross-reactive interactions —i.e., m of its epitopes interacting with m
distinct, non-cognate antibodies-falls off approximately
exponentially with m. Table 5 shows that the chances of any of
the self-antigens in the prior example cross-reacting with any two of
the selected antibodies is about 5 in a billion to 5 in 1000. Figure 5
shows a log plot of the probability of m cross-reactive matches
between any of the 10,000 self-antigens in the body and 10
antibodies selected randomly from repertoires of sizes ranging
from 107 to 10'°, assuming 1000 epitopes per Ag (& =1000). The
log plot is roughly linearly decreasing with m, which means the
probability is exponentially decreasing. Even with this high number
of epitopes per Ag, the total probability that any of the self-antigens
will cross-react with two of the ten selected Abs is only = 4% in the
smallest repertoire (N = 10” Abs), and the chances that any will
cross-react with all 10 Abs is on the order of 10°® to 107® across the

various repertoire sizes.

3.8.2 Phenomenological simulations of multiple
cross-reactions with single antigens

This general pattern of a linearly increasing probability of single
cross-reactions per Ag as a function of the number of distinct
antibodies in a response, accompanied by an exponentially
decreasing probability of multiple cross-reactions per Ag, is also
shown in a set of phenomenological simulations (see also Methods
Section 2.3.2).

An increasingly large subset of antibodies (n =1 to 10) was
randomly selected from a repertoire of fixed size (N =10 million)
and tested against a panel of 100 million antigens, with each having
5 epitopes per Ag. Supplementary Figure S1 in Supplementary
Material 1.1 shows the number of antigens cross-reacting once with
one of the n selected antibodies, according to both the numerical
results of the simulations as well as the exact AEIP results. (The
results of 4 different approximations to the exact model, which
correspond to within *0.0004%, are given in Supplementary
Material 1.2, Supplementary Table S2). Although there is some
statistical variation in the numerical trial results, the overall results
indicate a linear increase in the number of epitope-antibody
matches as a function of the number of antibodies present (e.g.,
in the polyclonal response). Hence, as expected, polyclonal
antibodies are likely to result in proportionately more single
cross-reactive matches than a monoclonal Ab.

However, Table 6 shows that the number of antigens, out of 100
billion, cross-reacting with m of the 10 antibodies selected randomly
out of Ab repertoires of various sizes (N) decreases approximately
exponentially with m. At larger N, the probability of each additional
cross-reactive match drops by a factor of = % for fixed N, as
expected (see Appendix Section 6.3, Equation 13). In addition, the
probabilities diminish in inverse proportion to N, also as expected. At a
repertoire size of 107, the chances of an antigen being complementary
to two or more Abs are on the order of 1 in 10'*. Hence, in humans, the
probability that multiple antibodies raised in a polyclonal response
would cross-react with a given non-cognate antigen, (e.g., a self-
antigen) thereby triggering a potent immune response to that
antigen, is normally very small.
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TABLE 6 Probability of cross-reactive matching for various sizes of the total Ab repertoire, N, and varying numbers of cross-reactive matches per Ag,

m, assuming complete coverage of epitope space without overlap (i.e., D; =1).

\ m Trial Exact % Diff % Of total
100 0 58365069993 58375236692.615 -0.0174 58375
1 33946511905 33939091100.358 0.0219 33.939

2 7024474519 7021880917.315 0.0369 7.022

3 638525059 638352810.665 0.0270 0.638

4 25082314 25103762217 -0.0854 0.025

5 336210 334716.830 0.4461 3.347E-04

1000 0 95089212190 95089370457.168 -0.0002 95.089
1 4822094044 4821976189.512 0.0024 4.822

2 87978683 87938775.493 0.0454 0.088

3 712467 712054.862 0.0579 7.121E-04

4 2615 2519.911 3.7735 2.520E-06

5 1 3.054 -67.2607 3.054E-09

10000 0 99500264643 99500899370.045 -0.0006 99.501
1 498833733 498201979.622 0.1268 0.498

2 900845 897930.873 0.3245 8.979E-04

3 779 719.208 8.3136 7.192E-07

4 0 0.252 — 2.520E-10

5 0 3.027E-05 — 3.027E-14

107 0 99999503369 99999500000.900 0.0000 100.000
1 496628 499998.200 -0.6740 5.000E-04

2 3 0.900 233.3341 9.000E-10

3 0 7.200E-07 — 7.200E-16

4 0 2.520E-13 — 2.520E-22

5 0 3.024E-20 — 3.024E-29

10° 0 99999950537 99999950000.010 0.0000 100.000
1 49463 49999.982 -1.0740 5.000E-05

2 0 9.000E-03 — 9.000E-12

3 0 7.200E-10 — 7.200E-19

4 0 2.520E-17 — 2.520E-26

5 0 3.024E-25 — 3.024E-34

10" 0 99999999481 99999999500.000 0.0000 100.000
1 519 500.000 3.8000 5.000E-07

2 0 9.000E-07 — 9.000E-16

3 0 7.200E-16 — 7.200E-25

4 0 2.520E-25 — 2.520E-34

5 0 3.024E-35 — 3.024E-44

The column headings are: trial-the number of antigens, out of 100 billion tested, that cross-react m times with any of 10 antibodies selected out of the larger pool in the phenomenological
simulations; exact-the results predicted from the AEIP model; % diff —the percent difference between the exact and statistical trial results ((trial-exact)/exact x 100); % of total-the number of
antigens cross-reacting m times as a % of the 100 billion tested. The number of epitopes per Ag (€) is fixed at 5. For a small pool of N =10 total antibodies, since all of them are selected for testing
(n =10), the antigens will always cross-react at every epitope (m =5 for all). For a somewhat larger pool, N =100, the probability shifts markedly toward lower m and drops off rapidly with higher
m, but there are still many antigens with multiple matches—about 7% cross-react with two antibodies and =~ 0.6% with three. As the Ab pool becomes still larger (as in humans), single cross-
reactions become less common, but multiple cross-reactive matches per antigen become very rare.
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In cryptography, the equivalent of requiring n Ab matches for a
single antigen would be to require that the digest of an input file
correspond to n concatenated hash values, rather than one. This
would mean effectively increasing the size of the solution space of
the hash function by a factor of n, e.g., from SHA-256 to SHA-512,
which exists as part of the SHA-2 standard (118, 119), or SHA-1024,
which does not.

4 Discussion

This study has described the statistics that underlie the human
immune system’s paradoxical ability to recognize an extremely large
set of possible antigens (Ags) while retaining apparent specificity for
particular cognate antigens. As has been illustrated, immunity
accomplishes this by using strategies that mathematically parallel
those used by cryptographic hash functions such as SHA-256. Both
systems employ solution elements (antibodies, hash values) that are,
at least on average, highly degenerate or multispecific toward their
problem elements (epitopes, digital files), yet appear to maintain
specificity for their originating or primary problem elements in real-
world operation. Moreover, the study illustrates in a quantitative,
albeit approximate, manner why multispecificity and specificity are
viewed most usefully not as different points along the same
parameter axis, but as distinct parameters or properties with
different, though related, mathematical forms. In particular,
specificity is a function of the degree of multispecificity, as well as
other system variables.

4.1 Antibody degeneracy

The large size of epitope space, together with the need for
completeness of antigen recognition, implies that antibodies must
have high binding degeneracies, at least on average. This is a
straightforward application of the pigeonhole principle (120) to
humoral immunity. Other authors have pointed out that T-cell
receptors must be multispecific (25, 38), because of the large
number of possible presenting peptides. In 1998, Mason
estimated that one T-cell can respond to 10° different 11-mer
peptides, and T-cell multispecificity has been experimentally
confirmed (29). Multispecificity, or degeneracy, has also been
understood to be a property of at least some antibodies (26, 33,
39, 40, 121-124). It is well-known that a single Ab variable region
can have within it multiple distinct binding sites or paratopes (125),
or different paratope states (27, 126, 127), that bind completely
different epitopes. A single Ab paratope can bind different,
unrelated epitopes (128-130), or different epitopes on the same
Ag (59). Germline or “natural” antibodies-those found in human
serum in the apparent absence of antigenic stimulation and which
are primarily of the IgM class—are known to be “polyreactive” (26,
121), although often with low affinity. Conventionally, it has been
believed that the binding regions of polyreactive antibodies tend to
be more flexible (123, 131, 132), although there is evidence against
this (133, 134), and a 2020 analysis indicated that polyreactive
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antibodies also tended to be less strongly negatively charged and less
hydrophilic, while tending to have longer CDR loops in the heavy
chain (135). In general, however, antibodies, and particularly
affinity-matured antibodies (41, 136-139), are believed to be more
specific than T-cell receptors. Overall, it has remained unclear as to
how antibody multispecificity should be interpreted in the context
of cases in which antibodies demonstrate exquisite specificity for
particular antigenic targets.

Moreover, a global, systematic, quantitative analysis of human
antibody degeneracy and its relation to specificity has not been
previously undertaken. Some authors have characterized the
number of possible, distinct antigens as “infinite” (39, 40). Here,
through straightforward modeling and the use of prior
experimental data, we arrive at conservative lower-bound
estimates for the number of possible, hapten-related epitopes and
protein/peptide epitopes of M =10* and M,,,,, =10, respectively.""
These results imply a conservative, lower-bound estimate for the
average degeneracy of antibodies to be =10”! epitopes, of which at
least ~10'® represent protein or peptide epitopes. Hence, Hp, the
relation which takes epitopes to antibodies in an individual
repertoire, is very highly many-to-one, at least on average.

The cryptographic case is similar: hash functions must be
capable of handling any of an enormous number of possible
digital files—far greater, even, than the number of possible
epitopes. For a 4000-bit digital file space (roughly 100 English

words), this number is M = 101204

, which implies an average hash
value degeneracy of ~ 10""*’ files or messages. Thus, as is known,
the hash values generated from, and assigned to, input digital files as
distinguishing markers are, in fact, not at all specific in an absolute
sense (140-143). In this same sense, antibodies, at least on average,
are far from being absolutely specific to their cognate epitope

or antigen.

4.2 The specificity paradox

The specificity paradox is that, despite this necessary
degeneracy, multispecificity, or “promiscuity”, antibodies often
appear to be specific to their cognate antigens in laboratory
testing or clinical use (144-146), and hash functions such as
SHA-256 are, in practice, highly effective digital security tools.
The explanation is that the utility of these systems depends not as
much on absolute specificity as it does on the degree of specificity.
This idea, expressed in other terms, is well known in cryptography,
but it is not widely appreciated for antibodies. In the immunological
literature, the notion of polyspecificity, multispecificity or
degeneracy has often been conceived of as a sort of opposite of
specificity, implying a many-to-one relationship as opposed to a
one-to-one relationship. This has led to some confusion.

11 Since there are =10%2 total (i.e,, not unique) protein molecules in the
entire human population (196) and =10%° atoms in the known universe (197),
this illustrates that only a small fraction of all possible species of epitopes or
antigens are ever instantiated. Still, there is no evidence to suggest the

immune repertoire would fail to recognize any of them.
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Degeneracy is the number of complementary partners an
element has in a relation-e.g., the number of epitopes to which
an antibody is complementary. By contrast, specificity, strictly
defined here as operational specificity, is an element’s
unlikelihood of being complementary to an arbitrary, non-
cognate partner—e.g., of an antibody’s being complementary to a
non-cognate epitope. Hence, an element in a relation can be both
highly degenerate-i.e., highly multispecific-with respect to its
possible partners and, simultaneously, highly specific,
without contradiction.

As described by the models and simulations in this work, the
average solution element OpS is very high in both types of systems:
~ 1-1077 for SHA-256, and =~ 1-107 to 1-10"*? for the human
antibody repertoire.

Hence, the solution elements in either system are sufficiently
large, non-overlapping, and, as discussed below, uncorrelated to
exhibit the specificity required for them to work as intended in their
contexts of use. Although an Ab recognizes many molecular
structures, those structures are scattered throughout chemical
space and the binding repertoire. Thus, as proposed by prior
authors for T-cell receptors (28), the probability that a given Ab
will recognize a single, randomly selected antigen or epitope is still
low. The same holds true for digital files and hash values (141, 143,
147). Since the probability of collisions or cross-reactions varies
inversely with solution repertoire size, N, repertoires in these
systems must be large enough to make those events sufficiently
rare, yet small enough to be feasible. In addition, because the
average and systemic cross-reactive probabilities <Pj> and P,
depend on (D;)/M and (D;)*/M?, respectively, it is true that as
epitope spaces increase in size (M), the cross-reactive probabilities
and corresponding OpS’s remain constant so long as the antibody
degeneracies, (D;), grow proportionately- and they do if epitopes
are distributed randomly across the antibody binding spaces.
Similarly, in cryptography, doubling the digital file size (squaring
M) does not change the average OpS of a hash value, since (D;)
increases proportionately (by a factor of M). On the other hand,
when the size of the solution space, N, increases, the average
specificity rises, presuming the problem element degeneracy, (D;),
is fixed.

The meaning of systemic OpS differs substantially from that of
individual OpS or its average across the system. For solution
elements (e.g., antibodies), the latter two quantities are measures
of whether a randomly chosen problem element (e.g., epitope) is
likely to be complementary to a particular solution element.
Systemic OpS, by contrast, measures how improbable it is for a
collision or cross-reaction to occur anywhere across the entire
system. For high average solution element degeneracies ((D;) > 1),
it has been shown here that the systemic probability of collision varies
approximately as P, = % (Var(R)) + 1), where R; is the degeneracy
normalized to the mean. For small individual collision probabilities
(i.e., large spaces), the systemic OpS is, then, S, = ¢, which reduces
to 1 — P. when P. is < 1, as it is for antibodies in a human immune
repertoire or hash values generated by an SHA.

In the case of SHA functions, since all D; =1, and the spread of
hash value degeneracies (Var(D;) or Var(R))) is effectively 0, these
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collision probabilities and the associated OpS’s are likely very close
to the solution element average (1-1077), which is the minimum
possible value for fixed, large N. Less is known about the
distributions of antibody degeneracies, but there is some evidence
that they are approximately Gaussian. The current work, together
with the results of prior studies on statistical distributions (107-
109), has illustrated that, for a fixed repertoire size and average
epitope degeneracy, (D;), Gaussian and many other unimodal,
Gaussian-like distributions give rise to maximal cross-reaction
probabilities of, at most, twice that of the minimum, and more
often less than = 1.57 times the minimum. Hence, systemic OpS is
rather insensitive to shifts within and between these kinds of
unimodal degeneracy distributions, for a large, fixed repertoire
size. By contrast, a system with a widely split, bimodal degeneracy
distribution and a tall left-hand peak, for example, would have a
specificity that is significantly lower, by virtue of an increased
variance, than that of the optimal configuration. All of this would
seem to apply to hash values as well.

In humoral immunity, the current work has illustrated that, as
expected, the average epitope degeneracy-i.e., the average number
of distinct Abs capable of binding a particular epitope, (D;)-
increases linearly with the number of Ab species available,
assuming the average size of the individual Ab binding spaces is
constant. Further, the quadratic dependence of the probability of
Ab cross-reactivity, P, on (D;), underscores why it is important for
the immune system to have as low a (D;) as possible while still
ensuring, statistically, that the immune response will recognize
multiple epitopes on any arbitrary antigen.

A related, unforeseen result of this analysis has been that while
the average epitope OpS is fairly high-estimated here to be = 1 —
10" to 1 — 1078, the systemic epitope OpS, S,, is effectively zero.
This arises from the fact that for large problem/solutions spaces,

Pa

systemic OpS is S, ~ ¢ ** and that, in contrast to the case of

antibody cross-reactions or collisions, the probability (or, here, the
number) of anticollisions-i.e., the expected number of epitopes

complementary to any two randomly selected antibodies- P, =

(D)*M_( Var(D)) 1
N7 <<D,»>2 1=y

or peptide epitopes, it is at least 10® — 10'¢, and for the set of all

) is very high in absolute terms. For protein

epitopes, far higher. In this way, the immune system diverges from

SHAs, for which P, = 0 and S, = 1. This occurs because, although
(D))’M
N2

the prefactor
large problem spaces, the distribution coefficient (

is extremely large in both systems due to the

Var(D;) 1 )
(D) (D)
for SHA digital file degeneracies is 0, while that for epitope

+1-

degeneracies is > 0 (and equal to 1 for a Poisson distribution).
Hence, while an individual epitope will, on average, be very specific
for its cognate antibody in an immune repertoire, chemical/epitope
space is so large that two antibodies selected randomly from that
repertoire will still be statistically guaranteed to be complementary
to many of the same epitopes, although the fraction of such epitopes
relative to the total is extremely small (107* to 107'*).2 We have
thus demonstrated that in humoral immunity, the Hp relation is
almost certainly multivalued over at least part of its domain, but

12 This is also the approximate probability that two randomly selected

epitopes will cross-react with a given antibody, since (D;)?/N? = (D;)*/M?.
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that this “multivalued-ness”, or multiplicity, is limited, estimated
here to be = 1.005 to 1.58 antibodies per epitope, on average,
assuming a Poisson distribution of epitope degeneracies. Along
those same lines, the average non-cognate degeneracy of an epitope
is estimated to be only =~ 0.00005 to 0.37 antibodies. Thus, while it
appears that potential anticollisions (epitope cross-reactions) must
exist in humoral immunity in large numbers, they are expected to
actually occur fairly infrequently as long as epitopes are randomly
distributed across antibody binding space.

This helps demonstrate that although the Hy relation does not
mirror cryptographic hash functions exactly, in that it is not exactly
a total, single-valued function, it does approximate one. The average
epitope degeneracy, (D;), which is a measure of the coverage
fraction of Hp-i.e., the number of epitopes recognized by an
individual’s repertoire (®y) relative to the number of all possible
epitopes (®)- while not exactly 1, is likely within an order of
magnitude or two less than one. In fact, assuming a Poisson
distribution, it implies a coverage fraction of ~ 0.01 to 0.6, which
is remarkably high, given the size of ® (M or M,,,,). Interestingly,
calculated rates of Ab cross-reactivity assuming (D;) = 1 were more
consistent with experiment here than those assuming (D;) = 0.01
(Results Section 3.7). At the same time, Hp is not highly
multivalued, as just mentioned. The human immune repertoire
thus seems to have been evolutionarily tuned in size and specificity
to cover all of antigenic space in any single individual without much
redundancy in epitope binding. If (D;) were higher, for example,
there would be more cross-reactivity, and if it were lower, immune
recognition might be incomplete-i.e., antigenic totality might
not hold.

4.3 Random association

One might argue, especially with regard to antibodies, that the
specificity for local changes in epitope structure is significantly
worse than the above estimates would imply, because local changes
in antigen structure may not, in some cases, produce large changes
in Ab binding affinity (148). It is true that immunological cross-
reactions are more probable in nearby (82) than more distant (110,
111) regions of chemical/epitope space. Finding cross-reactivity is
easier among related drug molecules (149), homologous antigens
across species (150, 151), or surface antigens in different strains of a
virus (152), for example, than it is among distantly related or
unrelated antigens. This effect is mirrored by some types of
cryptanalytic attacks, such as differential attacks, which exploit
the fact that collisions are more apt to be found through local
perturbations of digital messages than through large changes (153-
155). It is also true that, over the course of an individual’s lifetime,
there will be constant modification of the Ab repertoire due to
affinity maturation and the filtering out of self-reactive antibodies
(156, 157), so that some non-randomness is introduced (158).

However, because of 1) the randomness involved in immune
gene recombination (16, 17) described earlier, 2) avalanche-type
effects in Ab-Ag structure-affinity relationships (96-101), which,
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while often not as great as those in SHA functions, are still
significant, and 3) the sheer size of chemical space, the vast
majority of epitopes to which the immune system is naive will
still be more-or-less randomly distributed across Ab variable
regions. This is the immunological equivalent of hash functions
generating pseudo-random hash value output for each unique
digital message input (92, 159).

In this way, degeneracy and specificity are decoupled in these
systems. As long as hash functions generate random output, they
can take on digital messages of arbitrary length (increases in M)
without any significant loss of OpS in their hash values-what in
cryptography is known collision resistance (160). Similarly, in
adaptive immunity, as long as there are no correlations between
new epitopes and, for example, antibodies/cell receptors directed
against self-antigens, the immune system can afford
complementarity to any arbitrarily large number of different,
random epitopes without incurring higher rates of cross-
reactivity. In the case of some autoimmune diseases, epitopes on
pathogens can “mimic” self-epitopes such that their cognate
antibodies or cell receptors are very likely to cross-react with self
(161, 162) and thus the normal statistics do not hold. In a similar
way, correlations between new inputs and target hash values
“break” an SHA, which means they negate its security or utility
(155). Hence, in both systems, randomness is a key design feature—
not just to create diversity in the solution space, but to create
uncorrelated diversity.

4.4 Affinity maturation and absolute
specificity

Affinity-matured antibodies have a higher affinity for their
cognate antigens because of the diversification and amplification
of selected combining site populations that occurs during the
maturation process (163, 164). One line of thinking has been that
these antibodies are also more specific than primary or germline
antibodies (136-139), possibly because they are more rigid (165-
168). However, other studies indicate that the higher affinity may
arise from a number of mechanisms unrelated to flexibility (166,
169-171).

In either case, the body’s ability to respond effectively to an
antigen to which it is naive depends critically on the diversity that
exists prior to the initiation of the affinity maturation process with
respect to that particular antigen. An immune repertoire that has
undergone many affinity maturation events must still retain
sufficient degeneracy to respond to any arbitrary antigens in the
context of a limited, albeit large, total number of immune receptor
species. As illustrated in this work, and as mentioned above, an
immune repertoire with a bimodal distribution of antibody
degeneracies has a lower systemic operational specificity than one
with a singular distribution, more so if the split in the distribution is
wide, with the taller peak at lower degeneracies. Not surprisingly,
even antibodies that have undergone affinity maturation have been
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shown to cross-react with both related (80-83, 110, 149, 172, 173)
and unrelated epitopes (110, 111, 128, 129, 174-177).

These findings and the statistics of immune receptors and
molecular diversity as detailed in this work and as paralleled by
the statistics of SHA collisions, would suggest that cross-reactive
antigens to any antibody, affinity-matured or primary, probably
exist somewhere in chemical/peptide space, although they may be
difficult to find. Experimental data on the size of the binding spaces
of individual antibodies is currently scarce, and nothing in the
present work rules out the existence of particular antibodies that are
absolutely specific to their cognate epitopes. However, it appears to
be highly statistically, chemically and functionally improbable.
Terms like “monospecific” or “monoreactive” should be
understood in this context.

4.5 Factors limiting cross-reactions and
collisions

As also illustrated in the current work, factors that reduce the
number of cross-reactions or collisions are 1) restriction of the
effective problem domains, 2) multiple-match requirements (at least
in the case of immunity), and 3) low-variance degeneracy
distributions, which were discussed above. In real-world
operation, the absolute number of collisions or cross-reactions
depends not only on the antibody specificity, which is essentially
a ratio or “rate,” but on the number of problem element inputs with
which the system will actually be presented, which is generally
much smaller than the set of all possible inputs. As described in
Supplementary Material 6, the average person will be exposed to an
extremely small fraction of all possible antigenic molecular
structures over his/her lifetime, and the number of self-antigens
to which a novel Ab will be exposed is also relatively small.
Similarly, cryptanalysts, Bitcoin miners, and thieves are limited in
their searches for collisions by computational capacity and cost.

As to multiple-match requirements, this analysis illustrates the
statistics by which the linkage between polyclonal antibody binding
and a potent immune response likely boosts operational specificity
for whole antigens relative to individual epitopes. Although there
are exceptions, a potent immune response generally requires the
binding of multiple antibodies to an antigen and the formation of
immune complexes (see ref (178) for a review). Because they bind to
different epitopes on the antigen, polyclonal antibodies facilitate the
formation of these complexes. They are commonly thought of as
being less specific than monoclonal antibodies (179-181), and this
is true, as measured by their collective degeneracy. As illustrated in
the current work, a set of multiple, distinct antibodies will have a
proportionately larger antigenic binding space than an individual
(monoclonal) Ab. For this reason, it has been surmised by some that
polyclonal immune responses may contribute to autoimmunity
(182). However, as is also illustrated here, the probability that the
same antigen (e.g., a self-antigen) will cross-react with several non-
cognate antibodies raised in an immune response is low, dropping
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off exponentially with the number of epitope-antibody matches.
Because the binding spaces of the constituent antibodies in a
polyclonal response are (randomly) different, the likelihood of a
non-cognate antigen cross-reacting with several of them is
approximately the product of the individual likelihoods. In this
way, the requirement that the immune system imposes on a given
antigen to participate in multiple Ab-Ag interactions before
allowing it to trigger a potent immune response very likely helps
to prevent autoimmunity and other non-targeted responses. The
mechanism may be likened to multi-step authentication in
digital security.

4.6 Other parallels and potential
applications

There are other parallels between adaptive immunity and
cryptology that have not been mentioned in this analysis. In some
cases, these cross-disciplinary connections may provide insights or
suggest avenues of investigation.

For example, although SHAs are often modeled as random
oracles (92), and although their outputs are in fact close to
randomly uniform distributions, cryptanalysts exploit deviations
from uniformity in many types of attack by localizing target hash
values to more highly populated regions of the hash value domain
(e.g., references (155, 183)). In a similar way, recombination in
immune cell receptor genes is not entirely random and uniform
(184), and rates of somatic hypermutation, a genomic process that
occurs as part of affinity maturation, also show some location- (21)
and sequence-related (185, 186) biases. It is known that in B-cells
that are not naive to antigens, the heavy chain tends to determine
the light chain, a phenomenon called light chain coherence (158). It
is not yet clear whether any of these deviations from randomness
also result in non-uniformity in the Ab binding repertoire as it
affects the coverage of antigenic space; presumably, they may.
Through antigenic drift (187-189) and shift (190), pathogens like
viruses and bacteria mutate or genetically reassort to evade the
adaptive immune response. However, the extent to which they may
“attack” binding repertoire non-uniformity-i.e., occupy or mutate
into regions of epitope chemical space whose cognate antibodies
reside in “cold spots” in their coding sequences-has not yet been
well explored and represents a potential area of research. Additional
parallels between adaptive immunity and cryptography, some of
which suggest other avenues of inquiry, are discussed in
Supplementary Material 7.

Finally, the analytic framework developed here and its future
extensions and refinements may have applications in predictive
calculations—for example, in quantitative predictions of cross-
reactivity among sets or pools of antibodies (191-193),
particularly as more data is collected with respect to immunologic
parameters such as antibody binding space sizes and epitope
degeneracies. Knowledge of the mathematical relationships
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among system parameters should enable the determination of any
single parameter, given data on the others (e.g., by rearrangement of
Equation 4), or, when data on all the parameters is available, enable
checks on their mutual consistency.

5 Conclusion

This study has used a probabilistic systems analysis approach to
describe the statistics that underlie human antibody-antigen
complementarity. It has provided conservative, lower-bound,
order-of-magnitude estimates for antibody degeneracy, or
multispecificity, while also defining, formulating, and quantifying
the concept of operational specificity. It has illustrated why the
degeneracy of human antibodies must be extremely high, at least on
average, and that the properties of degeneracy and operational
specificity (OpS) are distinct and, in an important sense, decoupled:
as long as the assignment of epitopes to antibodies-i.e., the Hp
relation—is random, OpS remains constant as the size of epitope
space varies. This helps to explain and quantify the specificity
paradox-namely, that antibodies can be highly degenerate, or
“multispecific,” in their binding to epitopes and still display
significant clinical and laboratory specificity. In particular,
antibodies are specific enough for the body to be able to tolerate
the production of new ones, given the number of self-antigens that
they are likely to encounter, and given that the binding of cognate
and non-cognate epitopes is generally uncorrelated. In addition, it
has been shown here how the immune system’s imposition of
multi-epitope recognition requirements, executed via the polyclonal
response, increases specificity and likely helps avert autoimmunity.

The present study has also illustrated that adaptive immunity
shares many similarities with cryptographic hash algorithms in its
organization and function. The digital fingerprints produced by
hash functions such as SHA-256 are even more highly degenerate
than antibodies, but they are also more operationally specific,
because of the greater size of their solution spaces, again
illustrating how the two properties are uncoupled. Further, Hp
approximates the behavior of SHAs, which are total, single-valued
functions, by being near-total while managing to avoid high
multiplicity. The parameters in humoral immunity have
apparently been “tuned” to statistically ensure that multiple
epitopes will be recognized on an arbitrary antigen, while
minimizing the chances that any epitope will be recognized by
multiple antibodies.

This work is intended as a first attempt at formalizing the
analysis of degeneracy and specificity in these types of systems; it is
expected that the analysis will be extended in the future to include
W, the set of all possible human antibody species, and that the
numerical estimates will improve. By delineating the relationships
between system parameters involved in humoral immunity, the
current models extend our understanding of the statistics of cross-
reactivity and could contribute to predictive calculations. The
parallels between immunity and cryptography may suggest cross-
disciplinary research.
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