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The specificity of the immune response is critical to its biological function, yet the generality of immune recognition implies that antibody binding is multispecific or degenerate. The current work explores and quantifies this paradox through a systems analysis approach that incorporates set theoretic ideas and an application of structural and statistical modeling to prior experimental immunological and biochemical data. Order-of-magnitude estimates are computed for the average degeneracies and specificities of antibodies and epitopes using a chemico-spatial model for epitope diversity and a binary model for antibody-antigen binding. The results illustrate and quantify how the humoral immune system achieves both high specificity and high degeneracy simultaneously by effectively decoupling the two properties, similarly to programs in cryptography called secure hash algorithms (SHAs), which display the same paradoxical features. In addition, an antibody-epitope interaction probability model is used to help show how newly formed antibodies may avoid cross-reactivity with self-antigens despite their high degree of multispecificity and how the requirement of polyclonal binding likely improves the overall specificity of the immune response. Because they describe the relationships between various statistical parameters in humoral immunity, the models developed here may also have predictive utility.
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1 Introduction


Human antibodies (Abs) behave as specific to their cognate antigens (Ags) under many clinical and experimental conditions. For example, a monoclonal antibody’s specificity (1) is often critical to its therapeutic (2, 3) or diagnostic (4–6) utility. Such antibodies have commonly been referred to as “monospecific” or “monoreactive” (7–10). Early immunological thinking was, in fact, that one antibody or receptor implied one specificity (11, 12), in what has been referred to as the “one antibody, one antigen” dogma, rule or paradigm (13–15). The specificity of antibodies depends on the broad chemical and structural diversity in their variable or binding regions, which arises from a more-or-less random recombination of their coding immune gene segments (16, 17), together with several other secondary mechanisms (18–24).


Yet despite the large degree of diversity among immune cell receptors and antibodies, we know that their binding to antigens must still be highly multispecific, cross-reactive or degenerate (25–30). This is because immune recognition is thought to be inclusive of all types of antigen-sized molecules and molecular fragments (31–36)– an observation termed the postulate of antigenic totality in the present work– and while the immune repertoire of an individual is large, it is small compared to chemical space. In the language of set theory, the relation (“mapping”) of distinct antigens– or, more precisely, the parts of their structures called epitopes–to antibody species that can bind them must be many-to-one, at least on average.


The current work is an attempt to quantify and shed light on this specificity paradox. How can antibodies be both specific and multispecific? The topic has been discussed for decades with respect to both antibodies (37) and T-cells (28, 38), and estimates of T-cell receptor degeneracy have been given (25, 29). Sewell hypothesized that the capacity of T-cell receptors to retain some specificity for particular antigens despite high levels of cross-reactivity related to the sizes of their repertoires and those of their presenting peptides (28). With respect to antibodies, the current thinking is that they likely span a range of specificities, and that at least some antibodies produced late in the immune response are highly specific to their cognate antigens (39–41).


However, there has not been a formal, systematic attempt to describe the statistics of antibody-epitope interactions and to clarify–in mathematical terms–the paradoxical capacity of the adaptive immune response to display features of both multispecificity, or degeneracy, and specificity. The current study illustrates how these two properties are, in fact, distinct and statistically uncoupled. It does so by applying some set theoretic constructs and a quantitative though approximate (order-of-magnitude) systems analysis to the question. The study defines operational specificity (OpS) of antibodies precisely as how unlikely it is for an antibody to cross-react with an antigen that did not elicit it (i.e., a non-cognate antigen). It derives mathematical expressions for this quantity in regard to individual antibodies, their averages, and the antibody repertoire as a whole (systemic OpS), in terms of the other properties of the system. A binary, statistical model of antibody-antigen binding is developed (i.e., a pair either binds or it does not) and applied to prior experimental data to arrive at conservative, lower-bound estimates for antibody and epitope degeneracy, as well as cross-reactive probabilities and OpS. A related model (AEIP) is used to confirm the results and explore the frequency of antibody interaction with self-antigens, as well as the effect of polyclonality on self-interaction.


The main findings in the study are as follows:


	
1. A conservative, lower bound estimate for the average binding degeneracy of a human antibody is in the range of 1073 to 1076 epitopes, of which at least at least ≈1018 represent protein or peptide epitopes.


	
 To arrive at these estimates, a peptide-epitope chemico-spatial (PECS) model of epitope diversity is developed and combined with prior experimental data (Methods Section 2.1 and Results Sections 3.1 and 3.2).


	
2. An estimate for the average operational specificity (OpS) of human antibodies across a single individual’s antibody repertoire is approximately 1-10–7 to 1-10-12 (Results Section 3.3.1).


	
3. The systemic OpS–i.e. the specificity of an individual’s antibody repertoire as a whole, Sc
–varies as 
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, where ⟨Di
⟩ is the average epitope degeneracy, Rj
 is the distribution of normalized antibody degeneracies, and N is the size of the repertoire. (Results Section 3.3.3 and 
Appendix Section 6.2.3
).


	
4. Numerical estimates of human systemic antibody OpS are in the range of ≈1-10–7 to 1-10–14. (Results Section 3.3.3.)


	
5. The specificity of individual epitopes for their cognate antigens is quite high: in the range of 

1
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−14




 to 

1
−


10

−8



, but epitope space is so large that it virtually guarantees, statistically, that two randomly chosen antibodies in an immune repertoire will share many common epitopes in their binding spaces–conservatively, ≈ 106 to 1016 protein or peptide epitopes, on average (Results Section 3.5), although this is a very small fraction of the total size of the relevant epitope space.


	
6. The average number of self-antigens to which a newly formed antibody will be complementary is in the range of 



10


−
3




 to 1, assuming 10,000 self-antigens and an average epitope degeneracy of 1 (see Results Section 3.7). This is consistent with experimental data.


	
7. The total number of antigens complementary to a polyclonal response of n antibodies increases approximately linearly with n, but the number of antigens having complementarity to multiple members (m) of that set of antibodies falls exponentially with m. (Results Section 3.8) This illustrates how the requirement of polyclonal binding in the immune response likely improves its overall specificity.





Further, it is illustrated here that the mathematical structure underlying immune specificity and degeneracy closely mirrors that of cryptographic hash functions (see ref (42) for review), also known as secure hash algorithms (SHAs). These functions take digital files as their input and generate relatively short alphanumeric codes called hash values, a.k.a. message digests, that are then attached to the files for security purposes. They are used in many types of digital security protocols, such as those generating digital signatures (43, 44). The Bitcoin mining protocol (45, 46) uses the hash algorithm SHA-256 (47, 48), which generates hash values of 256 bits in length. Mathematically, hash values and electronic files are the cryptographic counterparts of antibodies and epitopes, respectively, and they give rise to the same type of specificity paradox. Hash functions must be capable of handling any digital input, which means their outputs or digests must be highly degenerate (49), yet they must be specific enough to their originating or “cognate”
1
 files to ensure digital security. In addition, although an SHA is a total, single-valued function and the relation of epitopes to antibodies in a repertoire is not, we show that the latter approximates the former in behavior (see, e.g., Results Section 3.6). To illustrate the parallels between the systems, cryptanalytic data from a single case is compared to immunologic experimental data. The example case used is an electronic file that is 4000 bits (250 16-bit words) in size, which was approximately the size of the average Bitcoin transaction over most the 2010’s (50, 51).


By integrating experimental data into a newly developed mathematical framework that describes the relationships among key immune system properties or parameters, such as size and specificity, the present work aims to improve our understanding of the statistics of antibody-antigen complementarity. It shows that antibodies, at least on average, must have very high binding degeneracies or multispecificities and illustrates how they are able to maintain high clinical and laboratory specificity despite this. It further demonstrates how this capability relies on a statistical decoupling of specificity and multispecificity, similar to the case in cryptographic hash systems. The findings here also suggest that human immune system parameters have been evolutionarily optimized to permit universal antigen recognition while limiting cross- and self-reactivity. The study focuses on the statistics of humoral immunity–i.e., B-cell receptors and antibodies–but many of the general principles are applicable to T-cell receptors as well.






2 Methods





2.1 Peptide/protein epitope chemico-spatial model


We define an epitope here as that portion of a molecular structure or set of structures (e.g., a set of amino acids) in a particular 3-D conformation, allowing for local fluctuations, that is involved in close interactions with an antibody. (See Glossary in 
Supplementary Material 2
 for the definitions of terms used in this work.) Further, “epitopes” in this work generally refers to distinct epitopes, as opposed to copies, unless otherwise indicated.
2
 The size of epitope space depends not only on varying amino acid sequences, but also on conformational diversity, because antibodies can discriminate conformation (52, 53). Modeling this can be complex, but the approach is simplified here by use of a peptide/protein epitope chemico-spatial (PECS) model. In this model, each amino acid in a protein or peptide epitope can occur in any of q distinct (x,y) positions, where the hypothetical (x,y) plane is defined as roughly parallel to the paratope-epitope (Ab-Ag) interface. See 
Figure 1
. In addition, each residue can occur at different depths, or z-positions, relative to the plane. The z-coordinate is decomposed into the position of the protein surface relative to the plane and that of the residue (as defined by its alpha-carbon) relative to the surface. The decomposition is important because the set of amino acids in an epitope is not necessarily continuous on the protein polypeptide chain (54). Most epitopes, in fact, are of the discontinuous or “conformational” type (55–59). This also suggests that the z-positions of the residues be considered as mutually independent. Hence, if Nr
 amino acid types can occur at any one of d depths (z-positions) relative to the interfacial plane, the number of possible chemico-spatial configurations is 
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. Because we are seeking a conservative, lower bound estimate for epitope diversity, the PECS model intentionally underestimates the total number of distinct protein/peptide epitopes (see also Appendix, Section 6.1).
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Figure 1 | 
Peptide/protein epitope chemico-spatial (PECS) model. Ab–antibody; red border–region of antibody interfacing with epitopes; 


a
1



 through 


a
6



–6 possible (x, y)-positions for epitope amino acids; red discs–α carbons of amino acids; 


z
1



 through 


z
5



–5 possible z-positions for the α-carbons. The (hypothetical) interfacial plane, and additional 


a
k



 positions, extend from the x-axis in the y-dimension, which would run perpendicular to the page. The α carbons can occur at any of three depths within each amino acid, and the local epitope surface can, itself, occur at one of three depths relative to the interfacial plane. The model intentionally undercounts the total number of epitopes by ignoring amino acid side chain and backbone conformational diversity, as well as possible shifts in amino acid 


(
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 position in the (x, y) plane.








2.2 Degeneracy and operational specificity





2.2.1 Problem and solution element degeneracy


Consider finite sets Φ and Ψ containing M and N elements, respectively, and the relation



H
⊆
Φ
×
Ψ
.


(1)


We refer to Φ as the problem set, its elements ϕi
 as problem elements, Ψ as the solution set, and its elements ψj
 as solution elements. For simplicity and symmetry, throughout this work, the “i” subscripts–i.e., inputs–are reserved for problem elements and the “j” subscripts for solution elements.


As illustrated in 
Figure 2
, ΦH is the preimage of the H relation, Ψ is considered both the image and codomain of H and is embedded in a larger set of elements, ΨC, the analysis of which is beyond the scope of the present study. In the immunologic context, Φ is the set of all possible epitopes, Ψ is the set of all antibodies in an individual’s repertoire, ΦH is the set of epitopes that are complementary to (would bind to) at least 1 antibody (variable region) in Ψ, and ΨC is the set of all possible human antibodies (“Ψ complete”). In the cryptographic context, Φ and Ψ are the sets of all possible input files (in this work, of size 4000 bits) and all possible SHA-generated hash values (here, of 256 bits in length), respectively. ΦH is the preimage of the SHA function, which is equal to Φ, and ΨC is the space of possible hash values producible by any SHA function. In both contexts, we assume that H is surjective–in other words, there is no need to consider the subset of Ψ called ΨH because all codomain elements (antibodies, hash values) are involved in the relation.
3




[image: Diagram illustrating a mapping between two sets. The left green square labeled Φ contains a gray oval labeled Φᵀᵀ, containing elements ϕ₁ to ϕ₁₂. Arrows extend from these elements through a ring labeled H to an orange oval labeled Ψᶜ, containing a red oval labeled Ψ with elements ψ₁ to ψ₃. Blue, black, and yellow arrows indicate different individual Phi to Psi relations.]
Figure 2 | 
Diagram of relations associating problem and solution elements in the current study. Green trapezoid (
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)–the set of all epitopes (problem elements, domain), 
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; red oval (
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)–one individual’s Ab (variable region) repertoire (solution elements, codomain, image of 
H

), 
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; 
H

 (ring)–the relation associating 
Φ

 and 
Ψ

; grey oval (


Φ
H



)–the subset of 
Φ

 that is related to 
Ψ

 by 
H

–i.e., the preimage of 
H

– which is the set of epitopes that bind to at least one Ab in 
Ψ

; orange oval (
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)–set of all possible human Ab species, of which 
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 is a subset; 
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–complementary 
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; blue arrows–primary or cognate 
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 pairs; solid, black arrows–potential collisions, i.e., (
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) pairs involving non-cognate 
ϕ

; yellow arrows– 
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 pairs involving Abs outside of 
Ψ

; solid, yellow arrows–pairs involving epitopes that bind only to Abs outside of 
Ψ

. The subset of problem elements, here 
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, involved in cognate pairs (blue arrows) is called 
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 (see text). The dashed arrows represent pairs potentially involved in anticollisions: dashed, yellow–potential extra-repertoire anticollisions; dashed, black–a potential intra-repertoire anticollision (
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) pair also gives rise to a potential collision (
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). See text for the definitions of these variables in the cryptographic context. In both contexts, 


Φ
H



 is many orders of magnitude larger than 
Ψ

 (not drawn to scale), and the 
H

 relation is presumed to be “onto”–i.e., covers the entire codomain 
Ψ

.




For convenience, we define the relations HB
 and HK
 as instances of the H relation (Equation 1) corresponding to immune recognition and SHAs, respectively. HK
 is a total, single-valued function, whereas this study explores the extent to which HB
 is or is not.


We also define the N × M relation matrix R

ij
 according to whether the element ϕi
 in Φ is associated with the element ψj
 in Ψ as
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See also 
Figure 3
. The degeneracy, 


D
j



, of solution element 
j

 is the number of correspondences or “yeses” across all problem elements
4
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, and the average degeneracy
5
 across all solution elements is 
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. See 
Table 1
 for a list of the variables used in this work and their definitions. Similarly, the degeneracy of problem element 
i

 is 
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, and the average degeneracy across all problem elements is 
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. In immunity, 
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 is the binding degeneracy of antibody 
j

 across all epitopes, and 
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 that of epitope 
i

 across all antibodies in the repertoire. Since double sums over all 
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 in the system can be carried out in either order without changing the result, we know that 
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. In immunity, this is the total number of possible epitope-Ab pairs involving an individual immune repertoire. Then, 


〈


D
j


〉

=

〈


D
i


〉

M
/
N


.
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Figure 3 | 
Relation matrix R. ϕi
 and ψj
–problem and solution elements as described in 
Figure 2
; 
Di

 and 
Dj

– the degeneracies for problem element i and solution element j, respectively. For each possible (ϕi,ψj
) pair, the corresponding matrix value indicates whether ϕi
 associates with ψj
 (in which case, Rij
 =1), or not (Rij
 =0). For example, problem element ϕ
1 associates with solution element ψ
1 but not with ψ
2. The primary or cognate pairs are indicated with a blue”1”. The matrix elements excluding the Di
 =0 columns (ϕ
2
,ϕ
10, and ϕ
11) correspond to the H relation described in 
Figure 2
. In real-world humoral immunity, many, and perhaps most, of the Di
’s are 0 (e.g., solid yellow arrows in 
Figure 2
; see Results Section 3.2.2). By contrast, in SHA algorithms, Di
 is always 1. The rows and columns of the matrix have been transposed here for illustration purposes.





Table 1 | 
The main variables used in this work.





	Component or variable type

	Problem space variable

	Solution space variable






	name of space
	Φ
	Ψ



	element types
	epitopes, digital files
	antibodies, hash values



	cardinality of the space
	
M

	
N




	degeneracy of an element
	
Di


	
Dj





	average degeneracy of elements
	⟨Di
⟩
	⟨Dj
⟩



	normalized degeneracy of an element
	
Ri


	
Rj





	collision/anticollision probability for an individual element
	
Pi


	
Pj





	average collision/anticollision probability across all elements
	⟨Pi
⟩
	⟨Pj
⟩



	systemic collision/anticollision probability
	
Pa


	
Pc





	operational specificity (OpS), element
	
Si


	
Sj





	average element OpS across elements
	⟨Si
⟩
	⟨Sj
⟩



	systemic OpS
	
Sa


	
Sc





	distribution coefficient
	
Ka


	
Kc





	distribution coefficient, high mean
	
Ka
†
	
Kc
†



	average multiplicity of H relation
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	coverage fraction of H relation
	
f
H = |ΦH|/|Φ|



	number of:
	




	interactions per antigen
	
m




	tested solution elements
	
n




	epitopes per antigen
	
ϵ




	tested antigens
	
A




	antigens cross-reacting with Ab
	
W











The probability, 


P

0
j




, that a randomly chosen problem element will be associated with solution element 
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 In immunity, the probability that a randomly chosen epitope will bind to (i.e., be complementary to) antibody 
j

 is the degeneracy of that Ab as a fraction of the number of possible epitopes. The normalized degeneracy of each solution element can be given as the degeneracy relative to the mean, 
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2.2.2 Operational specificity


If an antigen contains ϵi
 epitopes, Ei
 = {i
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,…iϵi

}, then the number of Ab interactions it will have is 
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 is usually 0 or 1 for most epitopes (see Section 4.2.2), then 
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To define operational specificity, or OpS, we first establish the idea of primary or cognate pairs, which are problem element-solution element pairs that we define to be elements of a “special” or primary subset of the overall relation and that are uniquely paired. By “uniquely paired”, we mean they form a partial bijection or a bijective subset of the overall relation. Namely, they are a subset, H′, of H:
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where g: Ψ → Φ
cog
 is a bijection (unique pairing) and Φ
cog
 is the subset of Φ for which each element is cognate to a corresponding element in Ψ. This assumes that M ≥ N. See 
Figure 2
. The set of pairs of tested epitopes and their cognate antibodies is a cognate subset, as is the set of pairs of digital messages to be secured and their corresponding hash values.


As shown in 
Table 2
, there are three possible relationships between a cognate ordered pair 
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. For simplicity, the table assumes that 
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. That is, the indices of cognate problem and solution elements are equal. 1) If 
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, the pairs share only the same solution element, and we call the relationship a collision or cross-reaction (solid, black arrows in 
Figure 2
); 2) If 
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, the pairs share only the problem element, and the relationship is an anticollision (dashed, black arrow in 
Figure 2
; see also Section 3.5). Finally, 3) If 
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2



, the pairs share neither element and participate in a non-collision. Throughout this work, the term “collision” will be assumed to include the idea of antibody cross-reaction with non-cognate epitopes, and “specificity” will refer to collision specificity, rather than anticollision specificity, unless otherwise stated. Notably, there are no anticollisions in SHA algorithms; the present study explores how close humoral immunity comes to this, if at all.



Table 2 | 
Examples of the three types of relationships between a cognate ordered pair and other ordered pairs (assuming i = j for cognate ordered pairs).





	Relationship

	Cognate ordered pair

	Other ordered pair

	Example






	collision
	(ϕ
1
, ψ
1)
	(ϕ
2
, ψ
1)
(non-cognate pair)
	an antibody that cross-reacts with a non-cognate epitope



	anticollision
	(ϕ
1
, ψ
1)
	(ϕ
1
, ψ
2)
(non-cognate pair)
	an epitope that cross-reacts with a non-cognate antibody



	non-collision
	(ϕ
1
, ψ
1)
	(ϕ
2
, ψ
2) (cognate pair) or (ϕ
2
, ψ
3) (non-cognate pair)
	two antibody-antigen pairs
which are distinct in both
elements










The operational specificity of an element, S, measures how unlikely it is for the element to participate in a collision or cross-reaction. For individual elements or their averages, S = 1 − P, where P is the probability of a collision
6
. If Pj
 = 0 and Sj
 = 1, then no non-cognate problem elements point to solution element j, and it has perfect specificity for its cognate problem element. In immunity, this would mean an antibody is truly monospecific. In cryptography, no alternative files would hash to primary or originating message digest j. Conversely, Sj
 = 0 implies that all problem elements collide: all non-cognate epitopes cross-react with antibody j and all alternative files hash to message digest j. This is illustrated in 
Figure 4
.


[image: Graph illustrating specificity versus diversity, with specificity \( S_j \) on the y-axis and diversity \( D_j \) on the x-axis. Four downward sloping lines represent different problem space sizes (M = 10,000; 20,000; 100,000; 1,000,000). The top point labeled “point of monospecificity” is at \( S_j = 1.0 \) and \( D_j = 0 \), and the end point labeled “point of zero specificity” is at \( D_j = 10,000 \).]
Figure 4 | 
Dependence of specificity (OpS) on degeneracy. The operational specificity, Sj
, of a solution element (e.g., an antibody or hash value) for its cognate problem element (e.g., epitope or digital file), relative to a randomly selected problem element, is plotted on the vertical axis as a function of its degeneracy, Dj
. The various lines represent different sizes, M, for the problem space, which determine the line’s slope. The point (Dj,Sj
) = (1,1), labeled the “point of monospecificity,” is the only point where the solution element is absolutely specific for its cognate problem element. It is also where the specificity is independent of the size of problem space. When Dj
 = M, (e.g., Dj
 =10,000 for M =10,000), the specificity is zero.




Collision probabilities and OpS can be considered in the context of individual antibodies, Pj, Sj
, or system averages, ⟨Pj
⟩, ⟨Sj
⟩. In addition, the systemic probability of a collision, Pc
, is the probability of a cross-reaction between a solution element and one non-cognate problem element anywhere across the entire solution space, and the systemic OpS, Sc
, is the corresponding specificity.


For individual solution elements and 
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≈
1
−



D
j


M



. Hence, as depicted in 
Figure 4
, the specificity is a function of the degeneracy and the size of the problem space. The latter expression is similar in form, though not exactly the same, as the measure called specificity used in binary medical tests (60).
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 Similarly, For 


D
j

≫
1
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and 
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〉



 is 1 minus those quantities.


For large problem/solution spaces, systemic OpS is generally Sc
 ≈ e
−

Pc
, which reduces to S ≈ 1 − Pc
 for Pc
 ≪ 1. The forms for Pc
 and Sc
 in terms of other system variables, as well as all derivations, are provided in the Appendix (Section 6.2) and 
Supplementary Material 3
.






2.2.3 Phenomenological simulations related to systemic OpS


In this set of calculations, N antibodies in the system were assigned degeneracies (Dj
’s) conforming to a positive-valued Gaussian distribution. Then, Dj
 epitopes were randomly associated with each antibody, j, one Ab per epitope (Di
 =1). Pairs of epitopes were then selected at random–the first representing the cognate epitope in an antibody-epitope pair. If the second happened to bind the same antibody as the first, then the epitope pairing was counted as an Ab cross-reaction. This was repeated for the entire set of epitopes, so that there were a maximum of 100,000 ×99,999/2 ≈ 5 x 109 epitope pairs per trial. The probability of cross-reaction was calculated as the number of positive cross-reactions divided by the total number of epitope pairs, and this was compared to the theoretical result. A number of trials were carried out, varying the spread of the degeneracies (σ of the Gaussian distribution). The actual number of epitope pairs per trial varied between 2 and 5 billion, because of the effect of truncating the Gaussian (at Dj
=0), which varied with the spread parameter.







2.3 Antibody-epitope interaction probability model





2.3.1 AEIP model form


The above models do not take into account sampling of subsets of antibodies from larger pools, as occurs in polyclonal immune responses to an antigen. To guarantee the generation of accurate statistics for multi-epitope, multi-antibody interactions involving such sampling across all size scales, the antibody-epitope interaction probability (AEIP) model was developed. This model generates the probability, P(ϵ, m, n, N), of an antigen having ϵ epitopes that will participate in m interactions with a set of n distinct antibodies or B-cell clones selected from a larger pool of N clones in the immune repertoire. The total number of expected complementary interactions, or “matches,” ⟨W⟩, given A tested antigens, is then simply ⟨W⟩ = AP. The assumptions are that 1) HB
 is total (no unassigned epitopes), 2) HB
 is random; 3) the antigens are each assigned random epitopes, 4) duplicate epitope-antibody matches for a given antigen are not allowed (no combinatoric replacement), and 5) the antigenic binding spaces of the Abs are of the same size (all Dj
 are equal). This last condition is why the Ab degeneracies do not appear explicitly in the model. Conditions 2, 3, and 5 imply that the antigenic space is apportioned more-or-less evenly among the N antibodies.


The probability is the product of four terms:
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provided that the arguments of the factorials are all greater than zero–i.e., N ≥ {ϵ,n} ≥ m, and N ≥ n + ϵ − m. This expression is exact, in the sense that statistical results will converge to it over a large number of trials.


In the special case of n =1 (a single selected or tested Ab), the number of cross-reactive matches, m, can be either 0 or 1, and the probability reduces to
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and ⟨W⟩ = Aϵ/N for a single match. Since ⟨Di
⟩ = 1 in the AEIP model, from Equation 2 the average probability of collision for an individual Ab is ⟨Pj
⟩ ≈ 1/N and ⟨W⟩ = Aϵ⟨Pj
⟩, as in the example given in Results Section 3.7.


As discussed in the Appendix (Section 6.3), for arbitrary n ≥ ϵ ≥ m > 0 and N ≫ {n,ϵ,m}, the probability simplifies to P(ϵ,m,n,N) ≈ SϵCn/Nm
.


Various other approximations to the exact model are derived and other details are also provided in the Appendix (Section 6.3).






2.3.2 Phenomenological simulations related to the AEIP model


Several sets of trial calculations, or phenomenological simulations, were carried out to quantify the probabilities of interaction between sets of selected antibodies and arbitrary antigens, and the results were compared to the theoretical estimates from the AEIP model. For each calculation, a set of n antibodies was randomly selected out of a larger pool of N Abs, which also correspond to the N partitions into which epitope space was subdivided. Then, ϵ epitopes were randomly selected from those partitions and assigned to a test antigen and checked for complementarity with the n selected Abs. The number of non-redundant matches was then tabulated for each of A test antigens. The results were compared with the theoretical results, using the exact formulation (log form of Equation 3) and either of four approximations for the probabilities, which are described in the Appendix (Section 6.3). For most trials, ϵ = 5 was used, because that is a typical number of immunodominant epitopes involved in an immune response (61, 62) and it also allows for smaller repertoire sizes to be explored, given the constraint N > ϵ. In one set of trials (see 
Figure 5
), ϵ =1000, which is a high-end estimate of the number of recognizable epitopes on an antigen (
Supplementary Material 4
).


[image: Logarithmic line graph showing the relationship between W and m for different repertoire sizes. Four colored lines represent repertoire sizes of 10^10 (blue), 10^9 (orange), 10^8 (gray), and 10^7 (yellow). W decreases exponentially with increasing m for all sizes.]
Figure 5 | 
Log plot of the probability of interaction between antibodies raised in a polyclonal response to a non-self antigen and the set of all self-antigens in the human body, according to the AEIP model. W–the average number of self-antigens, out of 10000, that will likely interact with any of 10 selected antibodies, assuming 1000 epitopes per Ag, for various sizes of antibody repertoires (base-10 log plot). m–the number of cross-reactions per antigen. It is unlikely for even one self-antigen to find two Ab matches, and the probabilities decrease exponentially from there with the number of matches.










3 Results





3.1 Size of the problem domains, Φ





3.1.1 The size of electronic file space


The size of digital file space grows exponentially with file size. The contents of a 4000-bit input file can be arranged in 24000 or approximately 101204 ways, and hence the size of the file space, M = 101024. For comparison, the number of particles in the known universe is very approximately 1080.






3.1.2 The size of peptide/protein epitope space


The number of possible epitopes that the humoral immune system could be tasked with recognizing also grows roughly exponentially with molecular or fragment size. As described in Methods, the PECS model gives a lower-bound estimate for the size of epitope space as Mprot
 = (Nrd)
q
, where Nr
 is the number of residue types, q is the number of (x,y) positional “slots” for the amino acids across the binding interface and d is the number of possible z-positions, which are the depths of the α-carbons relative to the binding interface.


This is illustrated in 
Figure 1
. As to an estimate of q, multiple studies have shown that the average protein or peptide epitope–i.e., the set of amino acids interacting at the antibody-antigen interface–consists of about 15–25 residues (58, 59, 63), and many epitope interfaces contain 30 amino acids or more. Because a reasonable lower bound is sought here, we choose 15 as the maximal number of amino acids and, in addition, we limit the number of positional slots to the number of amino acids, so that q =15. Since any of 20 possible amino acid types can occur at each of those (x,y) slots, Nr
 =20. To estimate d, we partition the depth of residues relative to the hypothetical interfacial plane into a number of regions, as shown in the figure. The great majority of epitope amino acids are centered at a Chakravarty depth (distance of an atom from the nearest surface water molecule) of 8Å or less, and most are between 3.5 Å and 6 Å (64). Hence, we can reasonably discretize the problem by allowing the α-carbon of an amino acid to occupy any one of three depths relative to the epitope surface, each separated by roughly 2.0-2.5Å. This separation is large enough to capture typical local fluctuations, as measured, for example, by RMS deviations of α-carbons in MD simulations of stable structures (65, 66), or between homologous α-carbons in conserved regions of different proteins (67).


The depth of the epitope surface, itself, can also vary relative to the interfacial plane. Since, again, we are erring on the side of undercounting possible configurations, we suppose only three different possible depths for the surface at each amino acid position and assume the separation to be roughly equal to that between the possible depths of the amino acids relative to the surface. Hence, each residue can be at any of d =5 depths relative to the plane (any of 3 possible positions relative to the surface, with two possible shifts of the surface). Further, since epitopes can be discontinuous, the model assumes the amino acid positions are all independent of each other. Hence, the overall estimate arising from the model is Mprot
 ≈ (20 · 5)15, or 1030. For multiple reasons cited above and in the Appendix (Section 6.1), this is likely a very conservative lower-bound estimate for the number of possible protein epitopes that the adaptive immune response must be capable of recognizing/binding.






3.1.3 The size of hapten space


In addition to proteins and peptides, the immune system recognizes any number of molecular types, including sugars, lipids, carbohydrates, drugs and small molecules. These molecules can function as immunogens, provided they are coupled with carrier proteins. It is estimated that there are about 1063 possible small organic compounds of molecular weight 500 Da or less that are stable in water at room temperature, if only C, H, O, N, P, S and halide atom types are included (68). Restricting our analysis to molecules of this size and assuming only one conformation per molecule, we can set 1063 as the lower bound for the number of possible haptens that the immune system is tasked with recognizing. Further, assuming that carrier proteins contribute up to 10 amino acids to the combined hapten/protein epitope and using the PECS model described above for the chemical and conformational diversity of the amino acids, the total number of possible, distinct structures comprised of hapten and protein is M ≈ 1063 × (20 · 5)10or about 1083. This likely represents a very conservative, lower-bound estimate of the number of possible molecular structures to which the immune system could be challenged to respond, because 1) larger haptens (e.g., digoxin at a M.W. of 781 Da) (69), haptens containing different atom types (70, 71), and larger protein epitopes (72) are known to exist, and 2) the estimate does not take into account the conformational diversity of the haptens. In addition, M or |Φ| is likely to be significantly larger than the number of structures, because humoral immunity generally recognizes multiple epitopes on each hapten-carrier conjugate. Put another way, although antigenic totality suggests M is at least as large as the number of hapten/carrier protein structures, it could be larger (see also Glossary, 
Supplementary Material 2
).







3.2 Size of the repertoires (Ψ) and the degeneracies of ψj




As described in Methods (Section 2.2), the average degeneracy of solution elements (e.g., Abs) is ⟨Dj
⟩ = ⟨Di
⟩ M/N, where M = |Φ| and N = |Ψ| are the problem and solution set sizes, and ⟨Di
⟩ is the average degeneracy of the problem elements (e.g., epitopes).
8
 When ⟨Di
⟩< 1, it can be considered a measure of the coverage fraction of the H relation, f
H = |ΦH|/|Φ| –that is, the “completeness” of the binding repertoire. On the other hand, when ⟨Di
⟩ > 1, it is a measure of the “multivalued-ness” or multiplicity of H–e.g., the binding space overlap of the antibodies.





3.2.1 A hash function’s repertoire


In the cryptographic case, ⟨Di
⟩ is the average degeneracy of all files or messages, and because hash functions (HK
) behave as total mathematical functions–i.e., each digital file maps to one and only one hash value– Di
 = ⟨Di
⟩ = 1, and the average degeneracy of the hash values reduces to ⟨Dj
⟩ = M/N. For our example case involving SHA-256, M ≈ 101204, the size of the solution domain is N = 2256 ≈ 1077, and ⟨Dj
⟩≈ 101204
/1077 = 101127. Hence, the HK
 relation (here, SHA-256) is highly many-to-one or non-injective. In this absolute sense, hash values are not at all specific to a given file.






3.2.2 The antibody repertoire


Analogously to the cryptographic case, if M is the number of (distinct) epitopes, N the number of (distinct) antibodies or cellular receptors, and ⟨Di
⟩ the average degeneracy of epitopes with respect to an individual’s immune repertoire, then the average Ab degeneracy in the system is ⟨Dj
⟩ = ⟨Di
⟩ M/N. The estimate for M was given above. Now, we estimate N and ⟨Di
⟩.


There are ≈ 1011 to 1012 T and B cells in the human body (73, 74) and because there tend to be multiple copies of each cellular clone, the number of chemically distinct antibodies/immune receptors in an individual–i.e., the size an individual’s immune repertoire, N–is thought to be
9
 in the range of 107 to 1010 (75–78).


As described in Methods (Section 2.2), a fair estimate of ⟨Di
⟩ is ≈⟨m⟩/⟨ϵ⟩, where m is the number of antibody interactions per antigen and ϵ is the number of epitopes per antigen. It is known that different antibodies can bind similar epitopes (79–84), but in this work, an epitope is defined such that similar, but distinct chemical compounds are counted as different epitopes. We know that Di
 is often< 1, since individual immune responses tend not to produce antibodies against all epitopes on an antigen (85–89). As discussed in Section 3.7 below and in 
Supplementary Material 4
, a generous estimate for ⟨ϵ⟩ is 1000, and individual immune responses typically generate antibodies to a few tens of epitopes (⟨m⟩), so a reasonable lower bound for ⟨Di
⟩ is ≈ 10/1000=1/100. For simplicity, throughout this work ⟨Di
⟩ = 1 is often used as a first approximation for the immunologic case.


Combining estimates for M, N, and ⟨Di
⟩, a conservative lower bound estimate for ⟨Dj
⟩ is a range of ≈ (1/100) × 1083
/1010 = 1071 to 1 × 1083
/107 = 1076. This is a very low-end estimate of the number of epitopes, as defined here, that each Ab species, on average, is tasked with being able to bind. The number of protein/peptide epitopes is likely to be at least ⟨Dj,prot
⟩ ≈ (1/100) × 1030
/1010 to 1 × 1030
/107 = 1018 to 1023. Hence, the HB
 relation is highly many-to-one as well, at least on average.


These are fairly robust results. Using a much more restrictive approximation of the size of chemical space (90, 91) for the size of the hapten domain changes the conclusions quantitatively but not qualitatively.







3.3 Operational specificity


We define operational specificity (OpS), S, as the unlikelihood of an element pairing with a non-cognate partner (See Methods, Section 2.2.2) It can be considered in at least three contexts: 1) that of averages over all solution elements, 2) that of individual solution elements and 3) that of the system as a whole. We will consider each in turn, here. We discuss anticollision probabilities and epitope OpS, with the corresponding results, in Section 3.5 and 
Supplementary Material 3.2
.





3.3.1 Average OpS over all solution elements


Since the human immune repertoire contains 107 to 1010 distinct Ab variable region species (N), conservative, lower bound estimates of 
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, respectively. It is in this sense that antibodies are, at least on average, highly specific. As depicted in 
Figure 6
, cross-reactivity is improbable for each randomly selected antibody-epitope, on average, though not nearly as improbable as a random collision (second preimage) in a cryptographic algorithm such as SHA-256. In the case of SHA-256, ⟨Sj
⟩ is about 1-10-77. The statistical comparison between the two systems is summarized in 
Table 3
.


[image: Two circular diagrams labeled A and B. Diagram A has a color gradient segmented into sixty-four equal parts with brown arrows pointing outward and six scattered symbols labeled phi one to phi six. Diagram B shows a similar pattern with segments in yellow, pink, and green, including directional arrows and the same phi symbols. However, the segments are not equal in size, so that two of the symbols appear in a single segment. The segments are numbered in both diagrams and each diagram is encircled by a larger, dashed outline.]
Figure 6 | 
Binning of chemical (or message) space. For both panels, the inner, colored circular area represents the set of possible epitopes; each of the 64 circular sectors (out to the dashed circular boundary) is the slice of chemical space to which each distinct Ab is complementary, assuming no overlap and complete coverage; ϕ1 through ϕ6–different epitopes; crosses (+)–epitopes cognate to their respective antibodies; dots (•)–random, non-cognate epitopes. In (A) the probability that a randomly selected (•) epitope would be in the same bin as a cognate (+) epitope is 1/64, because the chemical space is divided equally. In (B) four antibodies dominate the space, so that the odds of such a cross-reaction are much higher. In this way, the probability of a cross-reaction or collision increase with the variance in the degeneracies. In cryptology, the circle represents the set of all possible digital messages that a hash function could receive as input; each slice represents a subset of messages that result in a particular digest or hash value. For SHA-256, there would be ≈1077 slices. In humoral immunity, there are 10 million slices, or more. An expansion of the set of possible epitopes or digital files, depicted here as an enlargement of the colored circular area to the dashed outer circle, does not change the probability of a cross-reaction or collision, provided the new ϕ are randomly distributed across the solution space.





Table 3 | 
Basic statistical comparison between the SHA-256 model system used in this study (SHA-256 System column) and the B cell receptor/antibody immune recognition system (Humoral Immunity column).
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Mprot–estimated number of distinct protein/peptide epitopes. nc –number of solution elements generated in response to a typical challenge. For the SHA, the example used is the number of hash value calculations that can be performed on 100 Bitcoin mining machines over 2 weeks as of ≈ 2023. For the immune system, it is the number of distinct epitopes eliciting cognate Ab production in a typical viral infection. Pj| nc– The probability that a typical challenge will result in a collision with a fixed hash value target (and corresponding file) or a cross-reactive match between the set of elicited antibodies and a given (e.g., self) epitope. The rest of the row headings are as per Table 1. Although the magnitudes of the results are different in the two systems, the mathematical structure is very similar, diverging only for Pa and Sa, the systemic probability of anticollision and the corresponding OpS (see Results Section 3.5, Equation 5, and Discussion 4.2).. (a) Assuming a message size of 4000 bits (250 16-bit words). (b) Assuming a Poisson distribution for epitope degeneracies (Di).








3.3.2 Operational specificity of individual solution elements


As derived in the Appendix, Section 6.2, for high solution element degeneracies, ⟨Dj
⟩ ≫ 1, the collision probability for an individual solution element (antibody or hash value), j, is Pj
 ≈ Rj
⟨Di
⟩/N, where Rj
 is the normalized degeneracy of solution element j. This holds provided there are no prior correlations between problem and solution elements. In the case of SHA functions in current use, the distribution of the M files among the N − 1 non-cognate hash values is close to random and uniform (92–94). Although the output of these functions is exactly reproducible for each unique input, it varies chaotically with small changes in the input, in what is known as the avalanche effect (95), resulting in a pseudo-random distribution. And since the solution elements (hash values) are all of the same size, this pseudo-random mapping also ensures that each member of the solution set has very nearly the same number of files mapping to it (preimage cardinality). Thus, the probability distribution of Rj
 is spiked, with all Rj
 ≈ 1. Further, since ⟨Di
⟩ = 1, it is clear that Pj
 = ⟨Di
⟩/N ≈ 1/N, for each hash value, j. This is analogous to randomly assigning M possible problem elements into N equally sized bins, as depicted in 
Figure 6
. The OpS for each hash value is then Sj
 ≈ 1 − 1/N = ⟨Sj
⟩, which for the example case is, again, ≈1-10-77.


The situation in immunity is analogous. Absent prior exposure, the distribution of epitopes across the repertoire of N − 1 non-cognate antibodies is likely very close to random, because the recombination of the coding segments for antibodies is known to be largely random (16, 17). In addition, small changes in structure tend to have disproportionate effects in antibody-antigen affinity (96–101), in what could be called the immunological version of the avalanche effect. Hence, in the general case, two epitopes with structures that vary more than slightly are no more likely to bind the same antibody than by chance.


As to the size distribution of the binding spaces of individual antibodies, there is a paucity of data, but the distribution of CDR3 lengths, which has been considered a proxy for binding site diversity, is reported to be roughly a truncated Gaussian (76, 102, 103). In any symmetric distribution of positive-valued data, the largest data point value cannot exceed twice the mean (because x
max = 2 × mean − x
min, and x
min > 0). Hence, a size distribution that is approximately a truncated Gaussian, or otherwise symmetric, implies a maximal normalized degeneracy for solution elements of Rj,max
 ≈ 2, and a maximal cross-reaction probability of Pj,max
 ≈ 2⟨Di
⟩/N = 2⟨Pj
⟩. The minimal OpS of an antibody taken from a symmetric distribution of Ab degeneracies is then Sj,min
 ≈ 1−2⟨Di
⟩/N. Assuming, again, that ⟨Di
⟩ = 1, this means Sj,min
 =1 - 2 × 10–7 to 1 - 2 × 10-10, which is the same order of magnitude as the average OpS across all antibodies (1-10–7 to 1-10-10). Thus, truncated Gaussian or other symmetric binding space distributions do not, in general, lead to order-of-magnitude drops in individual Ab operational specificities, relative to the mean.


At the other extreme, the bounds for the maximal OpS (Sj,max
) and minimal cross-reactivity (Pj,min
) for individual antibodies are less clear. While affinity differences between different antibodies have been quantified–e.g., affinity maturation may confer an increase in binding affinity of one or two orders of magnitude (86, 104, 105)–differences in binding space sizes or specificities have not.






3.3.3 Systemic OpS


The systemic OpS takes into account all possible pairwise combinations of members of the problem repertoire (e.g., epitopes) with all (single) elements in the solution (Ab) repertoire. As detailed in the Appendix (Section 6.2), assuming large problem spaces (M ≫ 1) and solution element degeneracies (⟨Dj⟩≫ 1), and assuming complementary (ϕ,ψ) pairings are uncorrelated, the systemic probability of collision, Pc, is approximately
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where (Var(Rj
) + 1) = 
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 is the high-mean distribution coefficient for solution elements. The systemic OpS is given by Sc
 ≈ 1−Pc
, provided Pc
 ≪ 1. As also discussed in the Appendix (Section 6.2), the Pc
 term is minimized, and Sc
 is maximized, when the probability distribution of Dj
 is singular (i.e., “spiked”; see 
Figure 7
), and all Rj
 =1, so that the variance Var(Rj
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. Hence, in the case of a spiked distribution, 
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 = 1. Notably, cryptographic hash algorithms such as SHA-256 are thought to have a spiked preimage size distribution (93, 106). For our example cryptographic case, then, we can estimate Pc
 for the hash function to be the same as ⟨Pj
⟩, i.e., 
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[image: Panel A displays multiple distribution curves for D_j over the interval from 0 to 1000.  They are labeled R, M-B, S, P, G, and U with corresponding numbers ranging from 1.000 to 1.333. The vertical axis \(f\) ranges from 0 to 0.012. Panel B shows a distribution consisting of two spikes, both labeled B with a corresponding number of 902.8.  One spike is near D_j =0 and a second is near D_j=1000.  The vertical axis \(f\) ranges from 0 to 10.984.  The mean is indicated as being near D_j=0.]
Figure 7 | 
Unimodal and bimodal distributions for antibody or hash value degeneracies. Panel (A) shows five different unimodal distributions for solution element degeneracies, normalized to the interval Dj
 ∈ [0,1000], and their associated (high-mean) distribution coefficients, Kc

†. They are: R–a Rayleigh distribution (red curve) with σ =50; M-B–a Maxwell-Boltzmann distribution (blue curve) with σ =150; G–a Gaussian (black curve) with σ =200 and µ = ⟨Dj
⟩ = 500; S–a singular distribution (black spike) at Dj
 =500, P–a Poisson distribution (grey curve) with λ = ⟨Dj
⟩ = 500,; and U–a uniform distribution (grey line). The singular distribution minimizes the variance and, hence, the distribution coefficient, and it therefore maximizes the system specificity. However, the distribution coefficients of the other unimodal curves do not differ from that optimal case by more than a factor of 1.333 in these examples, despite their varying forms. By contrast, Panel (B) shows a skewed and widely split bimodal distribution (red spikes, “B”) in which a small number of elements (100) account for most (95.0%) of the system’s degeneracy and the vast majority (100,000) account for very little, resulting in a large variance and Kc

† (902.8, as well as Kc
 =901.9). This greatly diminishes the system OpS and increases the chances for cross reactivity or collision relative to the optimal case.




From Equation 4, note that as M is increased, so long as the solution element degeneracies, Dj
, increase proportionately, Pc
 remains unchanged, as Var(Rj
) is constant under uniform scaling of Dj
. Hence, similar to the case for the average antibody OpS, as long as HB
 is random, the systemic probability (Pc
) and specificity (OpS) are unchanged as the number of epitopes to which the system is exposed (M) is increased. See also 
Figure 6
 and Appendix (Section 6.2).


As mentioned above, the actual size distribution of Ab binding spaces is unclear, but there is some data to suggest that it is approximately Gaussian. Since the maximal variance of any Gaussian distribution over its positive support is the mean squared or, here, ⟨Rj
⟩2 (107–109), and since, by definition, ⟨Rj
⟩ = 1, it must be true that max(Var(Rj
)) = 12 = 1 for Ab binding degeneracies conforming to Gaussian distributions. Hence, the maximal 
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 for a Gaussian distribution of Ab degeneracies is 2, and for large ⟨Dj
⟩ and fixed N and ⟨Di
⟩, the maximal probability of a collision across the system is 
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. Further, what is conventionally considered a Gaussian distribution of positive data generally has a location parameter 
μ

 > 0, and in these cases, the maximal variance over the Gaussian’s positive support is 




〈


R
j


〉


2


(

π
−
2

)

/
2


, which implies a maximal 


K
c
†



 of 

π
/
2
≈
1.5708


 and 


P

c
,
m
a
x


≈


1.57



〈


D
i


〉


2


N



. 
Table 4
 shows the results of statistical trials calculating rates of epitope-Ab cross-reactivity as a function of varying spread parameter, (σ), of the (truncated) Gaussian distribution of antibody degeneracies, given fixed repertoire size N and location parameter µ. The cross-reactivity rates closely track Var(Rj), which here achieves a peak value of ≈ 0.452 at about σ =20. The rates then plateau at that of a uniform distribution (4/3N), to within discretization error.



Table 4 | 
Rates of cross-reactivity of 100,000 epitopes with 100 Abs for different spreads (σ) in Ab degeneracies.





	σ

	⟨Dj⟩

	⟨Dj⟩G


	Var(Dj)

	Var(Dj)G


	Var(Rj)

	Rate(%)

	RateG(%)

	RateR(%)






	0.25
	2.00
	1.55
	0.000
	0.002
	0.000
	1.000
	1.001
	1.000



	0.50
	2.00
	1.66
	0.000
	0.022
	0.000
	1.000
	1.008
	1.000



	1.00
	2.00
	1.87
	0.000
	0.070
	0.000
	1.000
	1.020
	1.000



	1.25
	2.06
	2.15
	0.116
	0.296
	0.027
	1.028
	1.064
	1.027



	1.50
	2.16
	2.31
	0.294
	0.419
	0.063
	1.065
	1.079
	1.063



	2.00
	2.48
	2.70
	0.890
	0.935
	0.145
	1.144
	1.128
	1.145



	2.50
	2.84
	3.09
	1.694
	1.622
	0.210
	1.211
	1.170
	1.210



	3.00
	3.17
	3.44
	2.344
	2.244
	0.233
	1.245
	1.202
	1.245



	3.50
	3.56
	3.85
	3.486
	3.322
	0.275
	1.277
	1.224
	1.275



	4.00
	3.96
	4.25
	4.878
	4.569
	0.311
	1.312
	1.253
	1.311



	5.00
	4.71
	5.01
	7.540
	7.189
	0.340
	1.354
	1.300
	1.354



	6.00
	5.47
	5.76
	10.795
	10.327
	0.360
	1.376
	1.325
	1.374



	8.00
	7.11
	7.34
	21.351
	19.361
	0.422
	1.438
	1.373
	1.437



	10.00
	8.71
	8.84
	32.286
	29.794
	0.426
	1.400
	1.354
	1.398



	20.00
	16.14
	16.20
	117.620
	112.183
	0.452
	1.453
	1.427
	1.452



	30.00
	20.73
	20.91
	178.354
	168.686
	0.415
	1.402
	1.372
	1.401



	40.00
	22.93
	22.97
	191.807
	184.996
	0.365
	1.352
	1.337
	1.351



	50.00
	23.62
	24.01
	201.720
	191.451
	0.361
	1.349
	1.319
	1.348



	60.00
	25.13
	24.60
	197.318
	194.524
	0.313
	1.368
	1.376
	1.367



	70.00
	25.53
	24.97
	201.208
	196.203
	0.309
	1.337
	1.342
	1.335



	80.00
	26.00
	25.21
	208.000
	197.218
	0.308
	1.309
	1.310
	1.308



	100.00
	26.00
	25.49
	208.000
	198.331
	0.308
	1.309
	1.305
	1.308







Abs were assigned degeneracies according to a (truncated) Gaussian distribution, with varying σ parameter and fixed location parameter (µ = 0.25). Epitopes were randomly assigned to the Abs and then pairs of epitopes were randomly selected and checked for matching Ab assignments. In each trial (row), there were 100,000/(99,999x2) ≈ 5 billion tested epitope pairs. Column headings: σ – spread parameter; ⟨Dj⟩− mean Ab degeneracy; Var(Dj)− variance of the Ab degeneracies; Var(Rj)− variance of the normalized Ab degeneracies; rate(%)− percentage of epitope pairs that cross-reacted with the same Ab; rateR(%)− percentage predicted from (Var⟨Rj⟩ + 1)/N. ⟨Dj⟩G, Var(Dj)G, and rateG(%)–predicted mean Ab degeneracy, predicted variance of Ab degeneracies, and predicted % of pairs resulting in cross-reaction, all calculated directly from the (truncated) Gaussian distribution (see Supplementary Material 5 for details). As σ increases, the distribution widens and ⟨Dj⟩ rises, since µ is fixed. The number of Abs in the trials varied from N = 98 to 101 due to discretization effects, which in turn cause some small fluctuations in the actual and predicted rates.




As illustrated in 
Figure 7
 and discussed in the Appendix (Section 6.4), other, related unimodal distributions, such as Rayleigh, Maxwell-Boltzmann, Poisson, and uniform distributions, have similar maximal 

 

K
c

†
 




values and therefore give similar results. At the other extreme, systems having widely split and skewed bimodal distributions–i.e., two sub-populations with very different population sizes and degeneracies–can have a much lower OpS, as also depicted in the figure. As described in detail in the Appendix (Section 6.2.4), a split distribution will always have a higher variance and a lower OpS than a spiked distribution. The effect is much more pronounced if the lower-degeneracy peak is much taller (and thus has a significant total probability mass). Other distributions (e.g., multimodal, less widely split/less asymmetric bimodal) give intermediate results (not shown). These facts together suggest that as long as Ab degeneracies conform approximately to Gaussian or similar unimodal distributions, the systemic probability of cross-reaction is never more than twice the minimum value, and more commonly less than ≈1.57 times the minimum value, for fixed N and ⟨Di
⟩. Given our prior estimates for N, Pc,max
 in human immunity would fall in a range of 

≈
 


2 
×

10–10 to 

≈
 


2 
×

10–7 for 


〈


D
i


〉

=
1
,


 and 2 
×

10–14 to 

≈
 


2 
×

10–11 for 


〈


D
i


〉

=
0.01
,


 with corresponding 


S

c
,
m
i
n




 ranges of 1 - 


P

c
,
m
a
x




.







3.4 Statistical trial calculations of Ab-Ag cross-reaction probabilities for varying repertoire size


As mentioned earlier and described in Methods (Section 2.3), the AEIP model was developed to predict the number of interactions between arbitrary antigens and a set of antibodies selected randomly from a larger Ab pool. Several sets of corresponding trial calculations, or phenomenological simulations, were carried out, and the results were compared to those of the model. In the main set of calculations, 10 antibodies were selected at random from Ab repertoires of varying sizes and tested against 100 billion antigens, each having 5 epitopes. For the sake of simplicity and interpretability, the model assumes that at each repertoire size, the repertoires are both complete and non-overlapping–i.e., Di
 =1. Hence, the model does not illustrate the effect of subtracting or adding antibodies with similar degeneracies to the immune repertoire; rather, it can be used to compare the behavior of immune systems designed with different repertoire sizes and corresponding Ab degeneracies.


The results for the number of antigens having a single cross-reactive antibody match, W, as a function of repertoire size are shown as a log-log plot in 
Figure 8
. The plot is linear, with slope -0.988, indicating that W drops off inversely with N, approximately in proportion to N
−0.988. The theoretical and trial results are nearly superposable. The raw results, along with those of several approximations to the AEIP model, are given in 
Supplementary Table S1
 of 
Supplementary Material 1.2
. For a repertoire size of N = 100, over 33.9% of the antigens cross-react once, whereas for N = 1000, only ≈ 4.8% cross-react once, with similarly decreasing results for larger N.


[image: Graph showing a linear relationship between Log W and Log N on a logarithmic scale. Red dots, labeled “statistical trials,” overlap a blue line labeled “theoretical.” Data points range from Log N values of 2 to 10 and Log W values of 0 to 10.]
Figure 8 | 
Base-10 log-log plot of the number of single, cross-reactive Ab-Ag matches between randomly selected antigens and sets of 10 antibodies selected randomly from larger repertoires (as in a polyclonal response), as a function of repertoire size. LogW–log of the number of antigens having complementarity to exactly one antibody in the selected set. LogN–log of the size of the Ab repertoire. The red dots are the trial (simulation) results, while the blue line is a least-squares-fit of the theoretical results (from the AEIP model). The number of antigens tested is 100 billion, and the number of epitopes per Ag (ϵ) was fixed at 5.








3.5 Anticollision (epitope cross-reaction) probability and OpS


The average epitope cross-reaction probability ⟨Pi
⟩ is the average probability that an epitope will be complementary to a non-cognate antibody (e.g., see dashed black arrow in 
Figure 2
). It is given by 
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Supplementary Material 3.2
). Since in immunity, 
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. Hence, individual epitopes would appear to be quite specific for their cognate antibodies.


However, the same is not true for systemic epitope OpS. The systemic anticollision (epitope cross-reaction) probability, 
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where the term in parentheses is the distribution coefficient, Ka. Note that since Pa
 is a sum over individual probabilities over the system, it can (greatly) exceed 1, in which case it is interpreted as the expected number of epitopes complementary to two antibodies throughout the system. For N ≫ 1 and a Poisson distribution of 
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By contrast, in the cryptographic case, 
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. Thus, with respect to systemic problem element OpS, the mathematical behavior of immune recognition and SHA functions diverges, due to the strict single-valuedness of SHAs and the size of the problem spaces. See also Discussion.






3.6 Average multiplicity and coverage fraction of the H relation


A quantity related to ⟨Di

∗⟩ and ⟨Di
⟩ is the average multiplicity of H, which is the average number of solution elements pointed to by each problem element in ΦH,





m
u
l
t

¯


(
H
)

=



∑

k
=
1

N

P

(


D
i

=
k

)

k



∑

k
=
1

N

P

(


D
i

=
k

)



=



〈


D
i


〉




|

Φ
H

|

/

|
Φ
|



=



〈


D
i


〉




f
H



.





In immunity, this is the average epitope degeneracy divided by the epitope coverage fraction. For a Poisson distribution of Di
, f
H = 1 − e
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⟩, and, hence, given our estimates for ⟨Di
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H
B



 relation is near-total and yet generally single-valued. For SHAs, 
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3.7 Estimate of Ab cross-reactivity with self-antigens


We can estimate the expected number of antigens that will bind, or the probability of a single binding interaction, to a given (fixed) antibody. This is relevant to autoimmunity, for example. The AEIP model indicates that the probability of a single Ab-Ag interaction is linear in the number of epitopes per Ag, ϵ (see Methods section 2.3.1). For large N, the total number of interactions, can be expressed using the relation ⟨W⟩ = Aϵ⟨Pj
⟩, where A is the number of antigens accessible to an antibody. In particular, we can ask, when a new Ab is randomly generated, say by somatic mutation in the periphery, what are the chances that it will cross-react with one of the body’s own antigens? As described in 
Supplementary Material 4
, a reasonable estimate for A, in the case of self-antigens, is 10,000, and a generous estimate for ϵ is 1000.


Assuming ⟨Di
⟩ = 1, ⟨Pj
⟩ has been shown in the present study to be 10-10 to 10-7. Taking A ≈ to be 10,000, the average local degeneracy (i.e., “local” to a restricted set of antigens), ⟨W⟩ = Aϵ⟨Pj
⟩, is, therefore, in a range of about 0.001 to 1. This is the average number of self-antigens/epitopes that a single newly produced Ab species will have in its chemical binding space. Studies of polyclonal animal antibodies raised against animal proteins and tested against large arrays of human proteins have shown frequencies of strong binding events that are consistent with these statistics (110), as have studies of monoclonal Abs using panels of recombinant human antigen arrays (111). On the other hand, the lower-end estimate for ⟨Di
⟩ of 0.01 results in an estimate for ⟨W⟩ of 10−5 to 10−2, which is somewhat lower than that expected from experiment.






3.8 The effect of polyclonal binding requirements on specificity


Although monoclonal Abs can elicit immune responses (112, 113), polyclonal Abs are generally more effective at activating the complement system (114, 115) and neutralizing soluble proteins or viral particles (116, 117), for example, because they more readily result in stable, multimeric Ab-Ag complexes. Thus, the probabilities with which non-cognate antigens will bind to multiple Abs, e.g., in a typical polyclonal immune response, is of interest with regard to autoimmunity. The dependence of these binding probabilities on the number of antibodies present in the response, the size of the repertoire, and the number of epitope-antibody complementarities, or matches, was explored in a set of theoretical calculations using the AEIP model, as well as a number of corresponding statistical calculations, or phenomenological simulations.





3.8.1 The probability of polyclonal self-reaction.


First, consider the self-reactivity example described above, but now suppose that self-antigens are exposed to ten non-cognate antibodies instead of one. As shown in 
Table 5
, the AEIP model demonstrates that the average number of self-antigens that will cross-react once (m =1) is, as expected, higher by a factor of ≈ 10–that is, ⟨W⟩ varies in a range from 0.010 to 9.99, depending on the repertoire size and assuming ⟨Di
⟩ = 1.



Table 5 | 
Number of self-antigens (out of 10,000 total), each having 1000 epitopes, participating in m crossreactions with 10 test antibodies selected randomly out of the total repertoire, which varies in size here from 107
 to 1010
, as calculated from the AEIP model.





	m

	Size of repertoire




	1010


	109


	108


	107







	0
	9999.990
	9999.900
	9999.000
	9990.004



	1
	0.010
	0.100
	1.000
	9.991



	2
	4.495E-09
	4.495E-07
	4.495E-05
	4.492E-3



	3
	1.196E-15
	1.196E-12
	1.196E-09
	1.196E-06










However, as also shown in the table, as well as in 
Table 6
 and 
Figure 5
, and as described analytically in the Appendix (Section 6.3), the chances that an individual antigen will participate in m cross-reactive interactions –i.e., m of its epitopes interacting with m distinct, non-cognate antibodies–falls off approximately exponentially with m. 
Table 5
 shows that the chances of any of the self-antigens in the prior example cross-reacting with any two of the selected antibodies is about 5 in a billion to 5 in 1000. 
Figure 5
 shows a log plot of the probability of m cross-reactive matches between any of the 10,000 self-antigens in the body and 10 antibodies selected randomly from repertoires of sizes ranging from 107 to 1010, assuming 1000 epitopes per Ag (ϵ =1000). The log plot is roughly linearly decreasing with m, which means the probability is exponentially decreasing. Even with this high number of epitopes per Ag, the total probability that any of the self-antigens will cross-react with two of the ten selected Abs is only ≈ 4% in the smallest repertoire (N = 107 Abs), and the chances that any will cross-react with all 10 Abs is on the order of 10-66 to 10-36 across the various repertoire sizes.



Table 6 | 
Probability of cross-reactive matching for various sizes of the total Ab repertoire, N, and varying numbers of cross-reactive matches per Ag, m, assuming complete coverage of epitope space without overlap (i.e., Di =1).





	N

	m

	Trial

	Exact

	% Diff

	% Of total






	100
	0
	58365069993
	58375236692.615
	-0.0174
	58.375



	1
	33946511905
	33939091100.358
	0.0219
	33.939



	2
	7024474519
	7021880917.315
	0.0369
	7.022



	3
	638525059
	638352810.665
	0.0270
	0.638



	4
	25082314
	25103762.217
	-0.0854
	0.025



	5
	336210
	334716.830
	0.4461
	3.347E-04



	1000
	0
	95089212190
	95089370457.168
	-0.0002
	95.089



	1
	4822094044
	4821976189.512
	0.0024
	4.822



	2
	87978683
	87938775.493
	0.0454
	0.088



	3
	712467
	712054.862
	0.0579
	7.121E-04



	4
	2615
	2519.911
	3.7735
	2.520E-06



	5
	1
	3.054
	-67.2607
	3.054E-09



	10000
	0
	99500264643
	99500899370.045
	-0.0006
	99.501



	1
	498833733
	498201979.622
	0.1268
	0.498



	2
	900845
	897930.873
	0.3245
	8.979E-04



	3
	779
	719.208
	8.3136
	7.192E-07



	4
	0
	0.252
	—
	2.520E-10



	5
	0
	3.027E-05
	—
	3.027E-14



	107

	0
	99999503369
	99999500000.900
	0.0000
	100.000



	1
	496628
	499998.200
	-0.6740
	5.000E-04



	2
	3
	0.900
	233.3341
	9.000E-10



	3
	0
	7.200E-07
	—
	7.200E-16



	4
	0
	2.520E-13
	—
	2.520E-22



	5
	0
	3.024E-20
	—
	3.024E-29



	108

	0
	99999950537
	99999950000.010
	0.0000
	100.000



	1
	49463
	49999.982
	-1.0740
	5.000E-05



	2
	0
	9.000E-03
	—
	9.000E-12



	3
	0
	7.200E-10
	—
	7.200E-19



	4
	0
	2.520E-17
	—
	2.520E-26



	5
	0
	3.024E-25
	—
	3.024E-34



	1010

	0
	99999999481
	99999999500.000
	0.0000
	100.000



	1
	519
	500.000
	3.8000
	5.000E-07



	2
	0
	9.000E-07
	—
	9.000E-16



	3
	0
	7.200E-16
	—
	7.200E-25



	4
	0
	2.520E-25
	—
	2.520E-34



	5
	0
	3.024E-35
	—
	3.024E-44







The column headings are: trial–the number of antigens, out of 100 billion tested, that cross-react m times with any of 10 antibodies selected out of the larger pool in the phenomenological simulations; exact–the results predicted from the AEIP model; % diff –the percent difference between the exact and statistical trial results ((trial-exact)/exact × 100); % of total–the number of antigens cross-reacting m times as a % of the 100 billion tested. The number of epitopes per Ag (ϵ) is fixed at 5. For a small pool of N =10 total antibodies, since all of them are selected for testing (n =10), the antigens will always cross-react at every epitope (m =5 for all). For a somewhat larger pool, N =100, the probability shifts markedly toward lower m and drops off rapidly with higher m, but there are still many antigens with multiple matches–about 7% cross-react with two antibodies and ≈ 0.6% with three. As the Ab pool becomes still larger (as in humans), single cross-reactions become less common, but multiple cross-reactive matches per antigen become very rare.








3.8.2 Phenomenological simulations of multiple cross-reactions with single antigens


This general pattern of a linearly increasing probability of single cross-reactions per Ag as a function of the number of distinct antibodies in a response, accompanied by an exponentially decreasing probability of multiple cross-reactions per Ag, is also shown in a set of phenomenological simulations (see also Methods Section 2.3.2).


An increasingly large subset of antibodies (n =1 to 10) was randomly selected from a repertoire of fixed size (N =10 million) and tested against a panel of 100 million antigens, with each having 5 epitopes per Ag. 
Supplementary Figure S1
 in 
Supplementary Material 1.1
 shows the number of antigens cross-reacting once with one of the n selected antibodies, according to both the numerical results of the simulations as well as the exact AEIP results. (The results of 4 different approximations to the exact model, which correspond to within ±0.0004%, are given in 
Supplementary Material 1.2
, 
Supplementary Table S2
). Although there is some statistical variation in the numerical trial results, the overall results indicate a linear increase in the number of epitope-antibody matches as a function of the number of antibodies present (e.g., in the polyclonal response). Hence, as expected, polyclonal antibodies are likely to result in proportionately more single cross-reactive matches than a monoclonal Ab.


However, 
Table 6
 shows that the number of antigens, out of 100 billion, cross-reacting with m of the 10 antibodies selected randomly out of Ab repertoires of various sizes (N) decreases approximately exponentially with m. At larger N, the probability of each additional cross-reactive match drops by a factor of 
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 for fixed N, as expected (see Appendix Section 6.3, Equation 13). In addition, the probabilities diminish in inverse proportion to N, also as expected. At a repertoire size of 107, the chances of an antigen being complementary to two or more Abs are on the order of 1 in 1011. Hence, in humans, the probability that multiple antibodies raised in a polyclonal response would cross-react with a given non-cognate antigen, (e.g., a self-antigen) thereby triggering a potent immune response to that antigen, is normally very small.


In cryptography, the equivalent of requiring n Ab matches for a single antigen would be to require that the digest of an input file correspond to n concatenated hash values, rather than one. This would mean effectively increasing the size of the solution space of the hash function by a factor of n, e.g., from SHA-256 to SHA-512, which exists as part of the SHA-2 standard (118, 119), or SHA-1024, which does not.








4 Discussion


This study has described the statistics that underlie the human immune system’s paradoxical ability to recognize an extremely large set of possible antigens (Ags) while retaining apparent specificity for particular cognate antigens. As has been illustrated, immunity accomplishes this by using strategies that mathematically parallel those used by cryptographic hash functions such as SHA-256. Both systems employ solution elements (antibodies, hash values) that are, at least on average, highly degenerate or multispecific toward their problem elements (epitopes, digital files), yet appear to maintain specificity for their originating or primary problem elements in real-world operation. Moreover, the study illustrates in a quantitative, albeit approximate, manner why multispecificity and specificity are viewed most usefully not as different points along the same parameter axis, but as distinct parameters or properties with different, though related, mathematical forms. In particular, specificity is a function of the degree of multispecificity, as well as other system variables.





4.1 Antibody degeneracy


The large size of epitope space, together with the need for completeness of antigen recognition, implies that antibodies must have high binding degeneracies, at least on average. This is a straightforward application of the pigeonhole principle (120) to humoral immunity. Other authors have pointed out that T-cell receptors must be multispecific (25, 38), because of the large number of possible presenting peptides. In 1998, Mason estimated that one T-cell can respond to 108 different 11-mer peptides, and T-cell multispecificity has been experimentally confirmed (29). Multispecificity, or degeneracy, has also been understood to be a property of at least some antibodies (26, 33, 39, 40, 121–124). It is well-known that a single Ab variable region can have within it multiple distinct binding sites or paratopes (125), or different paratope states (27, 126, 127), that bind completely different epitopes. A single Ab paratope can bind different, unrelated epitopes (128–130), or different epitopes on the same Ag (59). Germline or “natural” antibodies–those found in human serum in the apparent absence of antigenic stimulation and which are primarily of the IgM class–are known to be “polyreactive” (26, 121), although often with low affinity. Conventionally, it has been believed that the binding regions of polyreactive antibodies tend to be more flexible (123, 131, 132), although there is evidence against this (133, 134), and a 2020 analysis indicated that polyreactive antibodies also tended to be less strongly negatively charged and less hydrophilic, while tending to have longer CDR loops in the heavy chain (135). In general, however, antibodies, and particularly affinity-matured antibodies (41, 136–139), are believed to be more specific than T-cell receptors. Overall, it has remained unclear as to how antibody multispecificity should be interpreted in the context of cases in which antibodies demonstrate exquisite specificity for particular antigenic targets.


Moreover, a global, systematic, quantitative analysis of human antibody degeneracy and its relation to specificity has not been previously undertaken. Some authors have characterized the number of possible, distinct antigens as “infinite” (39, 40). Here, through straightforward modeling and the use of prior experimental data, we arrive at conservative lower-bound estimates for the number of possible, hapten-related epitopes and protein/peptide epitopes of M =1083 and Mprot
 =1030, respectively.
11
 These results imply a conservative, lower-bound estimate for the average degeneracy of antibodies to be ≈1071 epitopes, of which at least ≈1018 represent protein or peptide epitopes. Hence, HB
, the relation which takes epitopes to antibodies in an individual repertoire, is very highly many-to-one, at least on average.


The cryptographic case is similar: hash functions must be capable of handling any of an enormous number of possible digital files–far greater, even, than the number of possible epitopes. For a 4000-bit digital file space (roughly 100 English words), this number is M ≈ 101204, which implies an average hash value degeneracy of ≈ 101127 files or messages. Thus, as is known, the hash values generated from, and assigned to, input digital files as distinguishing markers are, in fact, not at all specific in an absolute sense (140–143). In this same sense, antibodies, at least on average, are far from being absolutely specific to their cognate epitope or antigen.






4.2 The specificity paradox


The specificity paradox is that, despite this necessary degeneracy, multispecificity, or “promiscuity”, antibodies often appear to be specific to their cognate antigens in laboratory testing or clinical use (144–146), and hash functions such as SHA-256 are, in practice, highly effective digital security tools. The explanation is that the utility of these systems depends not as much on absolute specificity as it does on the degree of specificity. This idea, expressed in other terms, is well known in cryptography, but it is not widely appreciated for antibodies. In the immunological literature, the notion of polyspecificity, multispecificity or degeneracy has often been conceived of as a sort of opposite of specificity, implying a many-to-one relationship as opposed to a one-to-one relationship. This has led to some confusion.


Degeneracy is the number of complementary partners an element has in a relation–e.g., the number of epitopes to which an antibody is complementary. By contrast, specificity, strictly defined here as operational specificity, is an element’s unlikelihood of being complementary to an arbitrary, non-cognate partner–e.g., of an antibody’s being complementary to a non-cognate epitope. Hence, an element in a relation can be both highly degenerate–i.e., highly multispecific–with respect to its possible partners and, simultaneously, highly specific, without contradiction.


As described by the models and simulations in this work, the average solution element OpS is very high in both types of systems: 
≈

 1-10-77 for SHA-256, and 
≈

 1-10-7 to 1-10-12 for the human antibody repertoire.


Hence, the solution elements in either system are sufficiently large, non-overlapping, and, as discussed below, uncorrelated to exhibit the specificity required for them to work as intended in their contexts of use. Although an Ab recognizes many molecular structures, those structures are scattered throughout chemical space and the binding repertoire. Thus, as proposed by prior authors for T-cell receptors (28), the probability that a given Ab will recognize a single, randomly selected antigen or epitope is still low. The same holds true for digital files and hash values (141, 143, 147). Since the probability of collisions or cross-reactions varies inversely with solution repertoire size, N, repertoires in these systems must be large enough to make those events sufficiently rare, yet small enough to be feasible. In addition, because the average and systemic cross-reactive probabilities 
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, respectively, it is true that as epitope spaces increase in size (M), the cross-reactive probabilities and corresponding OpS’s remain constant so long as the antibody degeneracies, ⟨Dj
⟩, grow proportionately– and they do if epitopes are distributed randomly across the antibody binding spaces. Similarly, in cryptography, doubling the digital file size (squaring M) does not change the average OpS of a hash value, since ⟨Dj
⟩ increases proportionately (by a factor of M). On the other hand, when the size of the solution space, N, increases, the average specificity rises, presuming the problem element degeneracy, ⟨Di
⟩, is fixed.


The meaning of systemic OpS differs substantially from that of individual OpS or its average across the system. For solution elements (e.g., antibodies), the latter two quantities are measures of whether a randomly chosen problem element (e.g., epitope) is likely to be complementary to a particular solution element. Systemic OpS, by contrast, measures how improbable it is for a collision or cross-reaction to occur anywhere across the entire system. For high average solution element degeneracies (⟨Dj
⟩ ≫ 1), it has been shown here that the systemic probability of collision varies approximately as 
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, where Rj
 is the degeneracy normalized to the mean. For small individual collision probabilities (i.e., large spaces), the systemic OpS is, then, Sc
 ≈ e
−

Pc

, which reduces to 1 − Pc
 when Pc
 is ≪ 1, as it is for antibodies in a human immune repertoire or hash values generated by an SHA.


In the case of SHA functions, since all Di
 =1, and the spread of hash value degeneracies (Var(Dj
) or Var(Rj
)) is effectively 0, these collision probabilities and the associated OpS’s are likely very close to the solution element average (1-10-77), which is the minimum possible value for fixed, large N. Less is known about the distributions of antibody degeneracies, but there is some evidence that they are approximately Gaussian. The current work, together with the results of prior studies on statistical distributions (107–109), has illustrated that, for a fixed repertoire size and average epitope degeneracy, ⟨Di
⟩, Gaussian and many other unimodal, Gaussian-like distributions give rise to maximal cross-reaction probabilities of, at most, twice that of the minimum, and more often less than ≈ 1.57 times the minimum. Hence, systemic OpS is rather insensitive to shifts within and between these kinds of unimodal degeneracy distributions, for a large, fixed repertoire size. By contrast, a system with a widely split, bimodal degeneracy distribution and a tall left-hand peak, for example, would have a specificity that is significantly lower, by virtue of an increased variance, than that of the optimal configuration. All of this would seem to apply to hash values as well.


In humoral immunity, the current work has illustrated that, as expected, the average epitope degeneracy–i.e., the average number of distinct Abs capable of binding a particular epitope, ⟨Di
⟩–increases linearly with the number of Ab species available, assuming the average size of the individual Ab binding spaces is constant. Further, the quadratic dependence of the probability of Ab cross-reactivity, Pc
, on ⟨Di
⟩, underscores why it is important for the immune system to have as low a ⟨Di
⟩ as possible while still ensuring, statistically, that the immune response will recognize multiple epitopes on any arbitrary antigen.


A related, unforeseen result of this analysis has been that while the average epitope OpS is fairly high–estimated here to be ≈ 1 − 10−14 to 1 − 10−8, the systemic epitope OpS, Sa
, is effectively zero. This arises from the fact that for large problem/solutions spaces, systemic OpS is Sa
 ≈ e
−

Pa
 and that, in contrast to the case of antibody cross-reactions or collisions, the probability (or, here, the number) of anticollisions–i.e., the expected number of epitopes complementary to any two randomly selected antibodies– 
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 is very high in absolute terms. For protein or peptide epitopes, it is at least 106 − 1016, and for the set of all epitopes, far higher. In this way, the immune system diverges from SHAs, for which Pa
 = 0 and Sa
 = 1. This occurs because, although the prefactor 
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 for SHA digital file degeneracies is 0, while that for epitope degeneracies is > 0 (and equal to 1 for a Poisson distribution). Hence, while an individual epitope will, on average, be very specific for its cognate antibody in an immune repertoire, chemical/epitope space is so large that two antibodies selected randomly from that repertoire will still be statistically guaranteed to be complementary to many of the same epitopes, although the fraction of such epitopes relative to the total is extremely small (10−24 to 10−14).
12
 We have thus demonstrated that in humoral immunity, the HB
 relation is almost certainly multivalued over at least part of its domain, but that this “multivalued-ness”, or multiplicity, is limited, estimated here to be ≈ 1.005 to 1.58 antibodies per epitope, on average, assuming a Poisson distribution of epitope degeneracies. Along those same lines, the average non-cognate degeneracy of an epitope is estimated to be only ≈ 0.00005 to 0.37 antibodies. Thus, while it appears that potential anticollisions (epitope cross-reactions) must exist in humoral immunity in large numbers, they are expected to actually occur fairly infrequently as long as epitopes are randomly distributed across antibody binding space.


This helps demonstrate that although the HB
 relation does not mirror cryptographic hash functions exactly, in that it is not exactly a total, single-valued function, it does approximate one. The average epitope degeneracy, ⟨Di
⟩, which is a measure of the coverage fraction of HB
–i.e., the number of epitopes recognized by an individual’s repertoire (ΦH) relative to the number of all possible epitopes (Φ)– while not exactly 1, is likely within an order of magnitude or two less than one. In fact, assuming a Poisson distribution, it implies a coverage fraction of ≈ 0.01 to 0.6, which is remarkably high, given the size of Φ (M or Mprot
). Interestingly, calculated rates of Ab cross-reactivity assuming ⟨Di
⟩ = 1 were more consistent with experiment here than those assuming ⟨Di
⟩ = 0.01 (Results Section 3.7). At the same time, HB
 is not highly multivalued, as just mentioned. The human immune repertoire thus seems to have been evolutionarily tuned in size and specificity to cover all of antigenic space in any single individual without much redundancy in epitope binding. If ⟨Di
⟩ were higher, for example, there would be more cross-reactivity, and if it were lower, immune recognition might be incomplete–i.e., antigenic totality might not hold.






4.3 Random association


One might argue, especially with regard to antibodies, that the specificity for local changes in epitope structure is significantly worse than the above estimates would imply, because local changes in antigen structure may not, in some cases, produce large changes in Ab binding affinity (148). It is true that immunological cross-reactions are more probable in nearby (82) than more distant (110, 111) regions of chemical/epitope space. Finding cross-reactivity is easier among related drug molecules (149), homologous antigens across species (150, 151), or surface antigens in different strains of a virus (152), for example, than it is among distantly related or unrelated antigens. This effect is mirrored by some types of cryptanalytic attacks, such as differential attacks, which exploit the fact that collisions are more apt to be found through local perturbations of digital messages than through large changes (153–155). It is also true that, over the course of an individual’s lifetime, there will be constant modification of the Ab repertoire due to affinity maturation and the filtering out of self-reactive antibodies (156, 157), so that some non-randomness is introduced (158).


However, because of 1) the randomness involved in immune gene recombination (16, 17) described earlier, 2) avalanche-type effects in Ab-Ag structure-affinity relationships (96–101), which, while often not as great as those in SHA functions, are still significant, and 3) the sheer size of chemical space, the vast majority of epitopes to which the immune system is naïve will still be more-or-less randomly distributed across Ab variable regions. This is the immunological equivalent of hash functions generating pseudo-random hash value output for each unique digital message input (92, 159).


In this way, degeneracy and specificity are decoupled in these systems. As long as hash functions generate random output, they can take on digital messages of arbitrary length (increases in M) without any significant loss of OpS in their hash values–what in cryptography is known collision resistance (
160). Similarly, in adaptive immunity, as long as there are no correlations between new epitopes and, for example, antibodies/cell receptors directed against self-antigens, the immune system can afford complementarity to any arbitrarily large number of different, random epitopes without incurring higher rates of cross-reactivity. In the case of some autoimmune diseases, epitopes on pathogens can “mimic” self-epitopes such that their cognate antibodies or cell receptors are very likely to cross-react with self (161, 162) and thus the normal statistics do not hold. In a similar way, correlations between new inputs and target hash values “break” an SHA, which means they negate its security or utility (155). Hence, in both systems, randomness is a key design feature–not just to create diversity in the solution space, but to create uncorrelated diversity.






4.4 Affinity maturation and absolute specificity


Affinity-matured antibodies have a higher affinity for their cognate antigens because of the diversification and amplification of selected combining site populations that occurs during the maturation process (163, 164). One line of thinking has been that these antibodies are also more specific than primary or germline antibodies (136–139), possibly because they are more rigid (165–168). However, other studies indicate that the higher affinity may arise from a number of mechanisms unrelated to flexibility (166, 169–171).


In either case, the body’s ability to respond effectively to an antigen to which it is naïve depends critically on the diversity that exists prior to the initiation of the affinity maturation process with respect to that particular antigen. An immune repertoire that has undergone many affinity maturation events must still retain sufficient degeneracy to respond to any arbitrary antigens in the context of a limited, albeit large, total number of immune receptor species. As illustrated in this work, and as mentioned above, an immune repertoire with a bimodal distribution of antibody degeneracies has a lower systemic operational specificity than one with a singular distribution, more so if the split in the distribution is wide, with the taller peak at lower degeneracies. Not surprisingly, even antibodies that have undergone affinity maturation have been shown to cross-react with both related (80–83, 110, 149, 172, 173) and unrelated epitopes (110, 111, 128, 129, 174–177).


These findings and the statistics of immune receptors and molecular diversity as detailed in this work and as paralleled by the statistics of SHA collisions, would suggest that cross-reactive antigens to any antibody, affinity-matured or primary, probably exist somewhere in chemical/peptide space, although they may be difficult to find. Experimental data on the size of the binding spaces of individual antibodies is currently scarce, and nothing in the present work rules out the existence of particular antibodies that are absolutely specific to their cognate epitopes. However, it appears to be highly statistically, chemically and functionally improbable. Terms like “monospecific” or “monoreactive” should be understood in this context.






4.5 Factors limiting cross-reactions and collisions


As also illustrated in the current work, factors that reduce the number of cross-reactions or collisions are 1) restriction of the effective problem domains, 2) multiple-match requirements (at least in the case of immunity), and 3) low-variance degeneracy distributions, which were discussed above. In real-world operation, the absolute number of collisions or cross-reactions depends not only on the antibody specificity, which is essentially a ratio or “rate,” but on the number of problem element inputs with which the system will actually be presented, which is generally much smaller than the set of all possible inputs. As described in 
Supplementary Material 6
, the average person will be exposed to an extremely small fraction of all possible antigenic molecular structures over his/her lifetime, and the number of self-antigens to which a novel Ab will be exposed is also relatively small. Similarly, cryptanalysts, Bitcoin miners, and thieves are limited in their searches for collisions by computational capacity and cost.


As to multiple-match requirements, this analysis illustrates the statistics by which the linkage between polyclonal antibody binding and a potent immune response likely boosts operational specificity for whole antigens relative to individual epitopes. Although there are exceptions, a potent immune response generally requires the binding of multiple antibodies to an antigen and the formation of immune complexes (see ref (178) for a review). Because they bind to different epitopes on the antigen, polyclonal antibodies facilitate the formation of these complexes. They are commonly thought of as being less specific than monoclonal antibodies (179–181), and this is true, as measured by their collective degeneracy. As illustrated in the current work, a set of multiple, distinct antibodies will have a proportionately larger antigenic binding space than an individual (monoclonal) Ab. For this reason, it has been surmised by some that polyclonal immune responses may contribute to autoimmunity (182). However, as is also illustrated here, the probability that the same antigen (e.g., a self-antigen) will cross-react with several non-cognate antibodies raised in an immune response is low, dropping off exponentially with the number of epitope-antibody matches. Because the binding spaces of the constituent antibodies in a polyclonal response are (randomly) different, the likelihood of a non-cognate antigen cross-reacting with several of them is approximately the product of the individual likelihoods. In this way, the requirement that the immune system imposes on a given antigen to participate in multiple Ab-Ag interactions before allowing it to trigger a potent immune response very likely helps to prevent autoimmunity and other non-targeted responses. The mechanism may be likened to multi-step authentication in digital security.






4.6 Other parallels and potential applications


There are other parallels between adaptive immunity and cryptology that have not been mentioned in this analysis. In some cases, these cross-disciplinary connections may provide insights or suggest avenues of investigation.


For example, although SHAs are often modeled as random oracles (92), and although their outputs are in fact close to randomly uniform distributions, cryptanalysts exploit deviations from uniformity in many types of attack by localizing target hash values to more highly populated regions of the hash value domain (e.g., references (155, 183)). In a similar way, recombination in immune cell receptor genes is not entirely random and uniform (184), and rates of somatic hypermutation, a genomic process that occurs as part of affinity maturation, also show some location- (21) and sequence-related (185, 186) biases. It is known that in B-cells that are not naïve to antigens, the heavy chain tends to determine the light chain, a phenomenon called light chain coherence (158). It is not yet clear whether any of these deviations from randomness also result in non-uniformity in the Ab binding repertoire as it affects the coverage of antigenic space; presumably, they may. Through antigenic drift (187–189) and shift (190), pathogens like viruses and bacteria mutate or genetically reassort to evade the adaptive immune response. However, the extent to which they may “attack” binding repertoire non-uniformity–i.e., occupy or mutate into regions of epitope chemical space whose cognate antibodies reside in “cold spots” in their coding sequences–has not yet been well explored and represents a potential area of research. Additional parallels between adaptive immunity and cryptography, some of which suggest other avenues of inquiry, are discussed in 
Supplementary Material 7
.


Finally, the analytic framework developed here and its future extensions and refinements may have applications in predictive calculations–for example, in quantitative predictions of cross-reactivity among sets or pools of antibodies (191–193), particularly as more data is collected with respect to immunologic parameters such as antibody binding space sizes and epitope degeneracies. Knowledge of the mathematical relationships among system parameters should enable the determination of any single parameter, given data on the others (e.g., by rearrangement of Equation 4), or, when data on all the parameters is available, enable checks on their mutual consistency.







5 Conclusion


This study has used a probabilistic systems analysis approach to describe the statistics that underlie human antibody-antigen complementarity. It has provided conservative, lower-bound, order-of-magnitude estimates for antibody degeneracy, or multispecificity, while also defining, formulating, and quantifying the concept of operational specificity. It has illustrated why the degeneracy of human antibodies must be extremely high, at least on average, and that the properties of degeneracy and operational specificity (OpS) are distinct and, in an important sense, decoupled: as long as the assignment of epitopes to antibodies–i.e., the HB
 relation–is random, OpS remains constant as the size of epitope space varies. This helps to explain and quantify the specificity paradox–namely, that antibodies can be highly degenerate, or “multispecific,” in their binding to epitopes and still display significant clinical and laboratory specificity. In particular, antibodies are specific enough for the body to be able to tolerate the production of new ones, given the number of self-antigens that they are likely to encounter, and given that the binding of cognate and non-cognate epitopes is generally uncorrelated. In addition, it has been shown here how the immune system’s imposition of multi-epitope recognition requirements, executed via the polyclonal response, increases specificity and likely helps avert autoimmunity.


The present study has also illustrated that adaptive immunity shares many similarities with cryptographic hash algorithms in its organization and function. The digital fingerprints produced by hash functions such as SHA-256 are even more highly degenerate than antibodies, but they are also more operationally specific, because of the greater size of their solution spaces, again illustrating how the two properties are uncoupled. Further, HB
 approximates the behavior of SHAs, which are total, single-valued functions, by being near-total while managing to avoid high multiplicity. The parameters in humoral immunity have apparently been “tuned” to statistically ensure that multiple epitopes will be recognized on an arbitrary antigen, while minimizing the chances that any epitope will be recognized by multiple antibodies.


This work is intended as a first attempt at formalizing the analysis of degeneracy and specificity in these types of systems; it is expected that the analysis will be extended in the future to include ΨC, the set of all possible human antibody species, and that the numerical estimates will improve. By delineating the relationships between system parameters involved in humoral immunity, the current models extend our understanding of the statistics of cross-reactivity and could contribute to predictive calculations. The parallels between immunity and cryptography may suggest cross-disciplinary research.
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Footnotes




1 Here, we extend the notion of cognate, which denotes a primary (or causal) and unique pairing between an epitope and an antibody, to the general case of any system containing problem and solution elements that can be identified as having such a relationship, including cryptographic hash systems.




2 The same is true for “antibodies”, which refers to a set of unique antibody species–more specifically, unique variable regions, as well as the terms “solution elements”, “problem elements”, “hash values”, and “digital files”.




3 It is highly probable that all (fully formed) antibodies bind at least one epitope. Similarly, all hash values are thought to have at least one possible originating file, although this has not been proven.




4 The degree of the element, in set theory. This is similar to the preimage cardinality of the element under H but degeneracy (or degree) is a property that extends to all domain or codomain elements, including those with degeneracy 0.




5 The units here are problem elements, or, e.g., epitopes, but we will ignore units for conciseness in most of this work.




6 Technically, a second preimage, in cryptography.




7 Specificity 

=
1
−

(

false

(
+
)

/
cond

(
−
)


)

,


 where “

false

(
+
)



” is the number of individuals in a population testing falsely positive and “

cond

(
−
)



” the number who do not have the illness or condition.




8 As mentioned, the “i” subscripts here always correspond to problem elements (e.g., epitopes) and the “j” subscripts to solution elements (e.g., Abs).




9 This is significantly less than the upper limit of diversity that can, in theory, arise from immune cell gene recombination (21, 194, 195), illustrating that only a small fraction of total possible antibody and receptor variable region diversity (ΨC) is realized in any one individual (Ψ).




10 i.e., a single epitope would cross-react with one of these randomly selected antibody pairs very infrequently, provided epitopes are randomly distributed throughout the Ab binding space.




11 Since there are ≈1032 total (i.e., not unique) protein molecules in the entire human population (196) and ≈1080 atoms in the known universe (197), this illustrates that only a small fraction of all possible species of epitopes or antigens are ever instantiated. Still, there is no evidence to suggest the immune repertoire would fail to recognize any of them.




12 This is also the approximate probability that two randomly selected epitopes will cross-react with a given antibody, since ⟨Di
⟩2
/N
2 = ⟨Dj
⟩2
/M
2.
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