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Background: Nodular dermatitis (PN) is a severely itchy chronic skin disease with
symmetrically distributed nodules, often linked to an atopic background in some
patients. However, the pathogenesis of PN with atopic dermatitis remains unclear.
Objective: The objective of this study is to compare the transcriptomes from skin
biopsies of prurigo patients with and without atopic dermatitis, aiming to identify
unique gene expression patterns and gain insights into the molecular mechanisms
underlying Atopic dermatitis Prurigo (ADP) and Non-Atopic dermatitis
Prurigo (NADP).

Method: We conducted transcriptome analysis to compare gene expression
between normal controls and atopic dermatitis patients, identifying DEGs and
performing KEGG and GO analyses, along with correlations between disease
severity and itch NRS.

Results: We performed transcriptome profiling on 5 patients with ADP, 6 patients
with NADP, and 6 healthy controls. Gene expression analysis revealed significant
differences in inflammatory cytokines, suggesting that cytokine-mediated pathways
play an important role in the pathogenesis of ADP. GO and KEGG analyses revealed
cytokine-cytokine receptor interactions, with Th2 cytokines (SERPINB4, IL4R, [L24)
upregulated in ADP and structural repair (BMP2) and metabolic genes (LEPR)
elevated in NADP. Severity analysis showed positive correlations with SERPINB4,
S100A8, IL24, and TGFB1, and negative correlations with BMP2, IL33, and LEPR.
Keratinocyte hyperproliferation and inflammatory genes were commonly
upregulated in both ADP and NADP.

Conclusion: These results provide insight into the molecular mechanisms of PN,
particularly in the context of atopic dermatitis, and highlight that immune
dysregulation and impaired skin barrier function are key factors in pathogenesis.
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Prurigo nodularis (PN), atopic dermatitis (AD), chronic pruritus, differentially expressed
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Introduction

Prurigo nodularis (PN) is a chronic inflammatory skin disorder
characterized by intensely pruritic and hyperkeratotic nodules,
predominantly located on the extensor surfaces of the extremities
and trunk (1). This debilitating condition significantly impairs
quality of life, often leading to severe psychosocial stress due to
persistent itching and the appearance of nodules (2, 3). PN is
notoriously therapy-resistant; however, the recent FDA approvals
of dupilumab and nemolizumab offer promising treatment options
(4, 5).

Despite its prevalence, the pathogenesis of PN remains poorly
understood, particularly in relation to atopic dermatitis (AD) and
the clinical variations observed across racial and ethnic groups.
Recent research suggests that PN is driven by a distinct Th22/IL-22-
mediated immune response, characterized by elevated IL-22 levels
in both systemic circulation and lesional skin (6). CD4" and CD8" T
cells play a central role in this pathway, contributing to keratinocyte
hyperplasia and disrupted epidermal differentiation, thereby
exacerbating pruritus and aligning with PN’s histopathological
features (6).

Transcriptomic analyses have also revealed racial differences in
immune responses among PN patients. For instance, African
American individuals exhibit lower IL-31 upregulation compared
to Europeans, who display stronger Th2/IL-13 responses (7). This
pattern is supported by the efficacy of nemolizumab in alleviating
IL-31-driven pruritus and Th2 inflammation in European PN
cohorts, highlighting the importance of personalized treatments
tailored to racial and genetic backgrounds (1, 8, 9).

AD significantly contributes to PN development, as both
conditions share overlapping immune pathways, including Thl,
Th2, and Th17 polarization (9, 10). Mechanisms such as immune-
mediated inflammation, bacterial colonization, and impaired skin
barrier function are common to both diseases. The upregulation of
Th2 cytokines, including IL-13 and IL-4R, underscores this shared
immunologic profile (9, 11). The therapeutic success of IL-4R-
targeting biologics, such as dupilumab, further supports their
common pathophysiology (8, 12-14).

Nonetheless, transcriptomic comparisons between atopic
dermatitis-associated prurigo (ADP) and classic AD have revealed
significant distinctions (9). ADP exhibits more pronounced Th22
polarization, with higher IL-22 levels and increased expression of
IL-22 receptors (IL22RA1 and IL22RA2), which are not commonly
elevated in AD (9). ADP also displays neural dysregulation,
evidenced by increased nerve fiber density and neuroimmune
interactions in lesional skin—features that are less prominent in
classic AD (4, 9). In addition, ADP is associated with macrophage
activation (M1/M2), increased tumor necrosis factor (TNF)
production, fibrosis, tissue remodeling, and angiogenesis, further
differentiating it from AD (4, 9, 15). Ultimately, PN is a distinct
dermatological entity with both unique and overlapping
immunological pathways when compared to AD. While previous
studies have primarily focused on distinguishing AD from PN, the
transcriptomic differences between ADP and non-atopic dermatitis
prurigo (NADP) have not been well characterized. Elucidating these
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molecular mechanisms may guide the development of more
personalized therapeutic approaches and improve clinical
outcomes for patients with PN.

Materials and methods
Human participants and sample collection

Skin tissue samples were obtained from 17 participants (12
males, 5 females) aged 19 to 75 years, divided into three groups:
chronic pruritus without atopic dermatitis (n=6), chronic pruritus
with atopic dermatitis (n=5), and normal controls (n=6). A priori
power analysis (o0 = 0.05, power = 0.80) indicated that at least 17
participants per group are required. Atopic dermatitis and Prurigo
nodularis (PN) were diagnosed by dermatologists based on
established criteria. Normal skin samples were collected from the
calf region, while PN samples were obtained from affected areas via
punch biopsies. Exclusion criteria included immunosuppressive
drug use, systemic inflammatory conditions, pregnancy,
or breastfeeding.

Samples were collected using sterile techniques, flash-frozen in
liquid nitrogen, and stored at -80°C. The study was conducted in
accordance with the Declaration of Helsinki and approved by the
IRB of Kangnam Sacred Heart Hospital (IRB No. 2022-03-038).
Written informed consent was obtained from all participants.
Clinical characteristics are summarized in Table 1.

Transcriptome analysis of skin tissue
samples

A total of 17 skin tissue samples were analyzed using
Macrogen’s transcriptome sequencing method. RNA was
extracted from the skin tissue samples following the
manufacturer’s protocol. RNA sequencing was performed on an
Mumina HiSeq 2500 platform to generate 100bp paired-end reads.
Data preprocessing and quality checks included filtering, logarithm
transformation, and normalization, with reproducibility assessed
through box plots and density plots. Sequencing reads were aligned
to the human reference genome (GRCh38) using HISAT2, and
differential expression analysis was conducted using DESeq2.
Publicly available transcriptomic data of lesional atopic dermatitis
and healthy control skin samples were obtained from the Gene
Expression Omnibus [GSE5667 (16) and GSE213849 (17)] and
previously published. Platform heterogeneity was corrected by
removing batch effects with the ComBat function of the sva package.

Principal component analysis

Principal component analysis (PCA) was performed using the
DESeq2 package in R to analyze sample variance and clustering.
Count data were normalized with variance stabilizing
transformation (vst) to adjust for sequencing depth and
variability. Genes with low counts (0-10 in fewer than 8 of 17
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samples) were filtered out. The vst-transformed data were used for
PCA, and results were visualized with ggplot2, with samples
categorized as Normal, NADP (Non-Atopic Dermatitis Pruritus),
or ADP (Atopic Dermatitis Pruritus). A DESeqDataSet was created
with count data and metadata, and DESeq2 was used for differential

0.326

expression analysis. vst-normalized data were used for PCA,

0.853
1
0.452

visualized with plotPCA, showing percent variance of the first
two components. ggplot2 enhanced the plot with ellipses
indicating 95% confidence intervals for each group.

Differential gene expression analysis

DEG analysis using DESeq2 identified significant genes (padj
< 0.05), selecting the top 250 upregulated and downregulated genes by
log2FoldChange. Adjusted P-values were calculated with the Benjamini-
Hochberg false-discovery-rate procedure. Volcano plots highlighted the
top 25 genes, marking significance and fold-change thresholds, while

6
1/5
63.83+10.87
7+1.15
3.33+0.47

heatmaps visualized expression patterns, including focused views of the
top 25 genes. Comparisons (Normal vs. ADP, Normal vs. NADP,
NADP vs. ADP) revealed the top 50 DEGs for each group, illustrating
the magnitude and significance of expression changes.
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KEGG and GO enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were conducted using the
clusterProfiler package. For GO enrichment analysis, significant
genes (padj < 0.05) were annotated using the org.Hs.eg.db database,
with the analysis encompassing Biological Process (BP), Cellular

5
2/3
54+17.24
7+0.63
3.2+0.75

Component (CC), and Molecular Function (MF) categories. The
results were adjusted using the Benjamini-Hochberg (BH) method,

Prurigo Patients
(Atopic Dermatitis)

and significant pathways were visualized using dot plots to highlight
the top 20 enriched GO terms.

For KEGG pathway enrichment analysis, gene symbols were
first mapped to ENTREZ IDs using the bitr function. Mapped genes

were analyzed for pathway enrichment in Homo sapiens (hsa) using
the enrichKEGG function, with results similarly adjusted using the
BH method. Significant pathways were visualized using both dot
plots and bar plots. Additionally, specific pathways, such as
“hsa04060” (Cytokine-cytokine receptor interaction pathway),

6
2/4
30+25.1
0.00+0.00
0.00+0.00

were visualized using the pathview package, which generates
detailed pathway maps with color-coded gene expression data.
This pathway is highly relevant to prurigo nodularis pathogenesis,
as it includes key inflammatory mediators (e.g., IL-4, IL-13, IL-24)
that play central roles in immune dysregulation and pruritus.

Correlation analysis of cytokine-cytokine
receptor interaction genes with disease
severity and pruritus numerical rating scale
in patients

Cytokine-cytokine receptor interaction genes from KEGG

Values are shown as counts or mean + SD. P-values were calculated as follows: Gender (Female / Male), %* test (two-sided); Age, one-way ANOV A across the three groups; Pruritus NRS, Kruskal-Wallis test; CNPG score, Kruskal-Wallis test. Abbreviations: SD, standard

deviation; NRS, numeric rating scale; CNPG, chronic nodular prurigo.

CNPG Score: 0: Clear, 1: Almost Clear, 2: Mild, 3: Moderate, 4: Severe
SD: Standard Deviation; Pruritus NRS: Pruritus Numeric Rating Scale

TABLE 1 Clinical characteristics of participants.

Chronic nodular prurigo (CNPG)

Characteristics
Gender (Female / Male)
Age (Mean+SD)
Pruritus NRS

Tissue

analysis were correlated with Severity and Pruritus NRS scores.
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The top 250 upregulated and downregulated genes were log2-
transformed and aligned with clinical data. Correlation analyses
identified the top 10 genes with the strongest positive and negative
correlations for Severity and Pruritus NRS. Scatter plots with
regression lines visualized these relationships.

Results

Comprehensive genetic and pathway
analysis of prurigo nodularis patients with
and without atopic dermatitis: insights
from GO enrichment and KEGG pathway
studies

This study analyzed gene expression in 17 skin transcriptomes,
comparing 6 normal individuals and 11 Prurigo Nodularis (PN)
patients (5 AD, 6 NAD). Table 1 presents the demographic and
clinical characteristics of the normal and patient groups.

To evaluate differentially expressed genes (DEGs) between PN
patients with and without atopic dermatitis (AD), we performed
PCA, which demonstrated clear gene expression differences
between normal controls and PN patients, highlighting the
influence of AD (Figure 1A). A heatmap of the top 50 significant
genes (Figure 1B) and a Volcano plot (Figure 1C) revealed distinct
expression profiles among normal controls, PN patients with AD,
and those without AD.

GO enrichment analysis indicated associations with epidermal
development, keratinocyte differentiation, pruritus, and
neurological functions (Figure 1D), while KEGG pathway analysis
highlighted cytokine-cytokine receptor interactions involving IL-4,
IL-13, IL-25, TSLP, and IL-33 (Figure 1E, Supplementary Table 1).
These findings suggest that the top 50 DEGs are closely linked to
AD-related pathways and skin inflammation in PN patients.

Comparative gene expression and pathway
analysis in atopic dermatitis prurigo

We analyzed the gene expression differences between Non-
Atopic Dermatitis Prurigo (NADP) and Atopic Dermatitis Prurigo
(ADP) using a Volcano plot (Figure 2A, Supplementary Table 2) and
performed GO enrichment and KEGG pathway analysis (Figure 2B,
Supplementary Table 3). The functional classification of genes was
provided as follows (Supplementary Table 4-6). In the NADP/ADP
comparison, the upregulated genes of ADP were related to skin and
allergic inflammation, while the downregulated genes were related to
AD-related inflammation in other tissues, highlighting the
importance of AD-related pathways. GO enrichment and KEGG
pathway analysis were also performed for the Normal/ADP, Normal/
NADP, and NADP/ADP groups (Figure 2B). Although the NADP/
ADP group had too few genes to obtain meaningful results, the
Normal/ADP and Normal/NADP groups were related to epidermal
development, keratinocyte differentiation, and synaptic organization
in neurological processes, which was consistent with the results of the
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normal/itch comparison. Additionally, integration with public
transcriptomic data (GSE213849) revealed that A total of 128
differentially expressed genes overlapped with GSE213849 and
GSE5667. Several genes significantly upregulated in classic AD
were also elevated in our ADP samples, indicating shared
molecular signatures and reinforcing the immunological overlap
between AD and ADP (Supplementary Figure 1).

Distinct gene expression patterns
highlighting immune dysregulation and
skin barrier dysfunction in Prurigo
subgroups

These results were analyzed to classify the expression patterns
associated with specific genes into various AD-related subgroups
(Thl, Th2, Th17, NK cells, Skin barrier, Tissue remodeling, Nerve
function, etc.) and identify genes or biomarkers that play important
roles in each subgroup. The gene expression analysis in PN patients
reveals distinct patterns associated with immune dysregulation and
skin barrier dysfunction Figure 3. The ADP subgroup shows Th2
inflammation (IL13, ILAR, TGF-f1), skin barrier disruption (LCE3A,
KRT16), and tissue remodeling (MMPs), highlighting potential
therapeutic targets for personalized treatments. Further supporting
our findings, analysis of public microarray data (GSE5667) revealed
that genes associated with skin barrier integrity and inflammation,
such as SPRR2G and LCE3D, were upregulated in both AD and our
ADP dataset (Supplementary Figure 2).

Correlation analysis of severity and NRS in
atopic dermatitis: inflammation and
immune regulation insights

We conducted a correlation analysis between prurigo severity
and pruritus (as measured by the NRS) and gene expression levels
in ADP (Figure 4). Genes such as SERPINB4, S100A8, 1124, and
TGFBLI positively correlate with disease severity, suggesting their
involvement in inflammation and immune responses in ADP.
Conversely, genes like BMP2, IL33, and LEPR show negative
correlations. S100 family genes and CCL18 further highlight their
role in inflammation, offering potential therapeutic targets for
managing ADP. These results suggest that gene expression
patterns vary with disease severity and that specific genes are
associated with the progression of ADP, depending on whether
their expression levels are increased or decreased.

Differential gene expression in atopic and
non-atopic Prurigo highlights shared and
unique pathways in inflammation and
tissue remodeling

Gene expression analysis of ADP and NADP revealed that ADP
has higher expression of inflammatory and immune-regulating
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FIGURE 1
Transcriptomic analysis of skin tissues from healthy controls and patients with Prurigo Nodularis. (A) Principal component analysis (PCA) of
transcriptomic data. The left plot shows PCA results for skin tissues from healthy controls, non-atopic prurigo nodularis (NADP), and atopic prurigo
nodularis (ADP). The right plot shows PCA results comparing NADP and ADP tissues. (B) Heatmap of differentially expressed genes (DEGs) among
normal, NADP, and ADP tissues, showing the top 50 genes with the most significant expression changes. (C) Volcano plot representing DEG analysis
between healthy and PN patient tissues. Red dots represent genes that are upregulated in prurigo Nodularis tissues (log2FC > 1 and p-value < 0.05),
while teal dots represent genes that are downregulated in prurigo Nodularis tissues (log2FC < -1 and p-value < 0.05). (D) Gene Ontology (GO)
enrichment and (E) KEGG pathway enrichment of DEG patterns identified in normal and prurigo Nodularis tissues.

genes (e.g., SERPINB4, S100 family, IL4R, IL24), while NADP
shows relatively lower expression of inflammatory markers and
distinct expression patterns in structural repair (e.g., BMP2) and
metabolic regulation genes (e.g., LEPR). Notably, although BMP2
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and LEPR were initially considered elevated in NADP, Figure 5
indicates these genes are in fact downregulated compared to healthy
controls. These differences highlight potential pathway divergence
and suggest that a Th2-mediated immune response is particularly
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Differential gene expression analysis between Normal, NADP, and ADP tissues. (A) Volcano plots showing differential expression analysis for three
comparisons: Normal vs. ADP (top), Normal vs. NADP (middle), and NADP vs. ADP (bottom). Red dots indicate genes with significant upregulation
(log2FC > 1, p-value < 0.05), while teal dots represent genes with significant downregulation (log2FC < -1, p-value < 0.05). (B) GO enrichment
analysis based on DEGs from Normal vs. ADP (top) and Normal vs. NADP (bottom). (C) KEGG pathway enrichment analysis for DEGs identified in
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Functional categorization and heatmap analysis. The heatmap displays the expression patterns of DEGs classified into functional categories,
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and ADP tissues. All DEGs included in the heatmap were selected based on an adjusted p-value (padj) < 0.05 from DESeg2 analysis, indicating
statistical significance. Functional grouping was based on known gene functions and prior literature.
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prominent in ADP, supported by the upregulation of SERPINB4,
S100A8, IL4R, and IL24. Targeting Th2 cytokines may therefore
offer effective therapeutic strategies (Figure 5). Moreover, genes
such as TOP2A and SELL, previously identified as significantly
upregulated in PN compared to healthy controls (GSE213849),
were also elevated in our ADP samples, suggesting a shared
transcriptional landscape between ADP and classical PN
(Supplementary Figure 3).
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Differential gene expression and pathway
analysis in atopic dermatitis: insights into
inflammation, keratinocyte
hyperproliferation, and immune
dysregulation

Our study identified 415 genes uniquely upregulated in ADP,
412 in NADP, and 836 in both groups, while 840 were commonly
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Correlation analysis between gene expression and severity of prurigo nodularis. Scatter plots show the relationship between gene expression levels
and chronic nodular prurigo severity scores (0-4). The x-axis represents the severity score, while the y-axis indicates log2-normalized FPKM values
for each gene. The blue line represents the regression trend, and the shaded grey area indicates the confidence interval. All genes shown in the plots
demonstrated statistically significant correlations with severity (Spearman correlation, p < 0.05).

downregulated Table 2. Genes linked to keratinocyte
hyperproliferation (MMP1, SI00A8, S100A9) and inflammation
(IL24, CXCL9) were upregulated in both groups Table 2. whereas
downregulated genes like WIF1 and CHRM4 highlighted distinct
pathways. Upregulated fibrosis and tissue remodeling genes
(MMP3, MMP12) suggest potential therapeutic targets to
improve AD treatment strategies.

Discussion

This study presents a comprehensive gene expression analysis
of PN patients, differentiating between Atopic dermatitis Prurigo
(ADP) and Non-Atopic dermatitis Prurigo (NADP) subtypes and
comparing them with healthy controls. Our results revealed distinct
transcriptomic differences not only between PN patients and
healthy controls but also between ADP and NADP subgroups,
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underscoring the importance of understanding genetic and
molecular distinctions within PN for developing targeted therapies.

PCA revealed distinct gene expression profiles between PN
patients and normal controls, with differences between ADP and
NADP. GO and KEGG analyses identified unique immunological
features, including upregulated cytokine-cytokine receptor
interactions. In particular, particularly the Th2 pathway involving
IL-4, IL-13, IL-33, and TSLP. This is consistent with previous
findings that both ADP and AD share Th2 polarization (9).
Previous studies demonstrated the efficacy of Th2-targeting
therapies, such as dupilumab, in treating PN (8, 12-14), which
aligns with findings from Japanese cohorts identifying Th2 as a
major driver in PN among Asian populations (18, 19).

Our study examined the Th22/IL-22 pathway, which is known
to disrupt the skin barrier and exacerbate pruritus in atopic
dermatitis. IL-22 promotes keratinocyte proliferation and impairs
barrier function; however, in our dataset, Th22-related gene
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FIGURE 5

Gene expression levels of core genes identified as potential biomarkers in prurigo nodularis. The graphs display the expression levels of core genes
identified as potential biomarkers for distinguishing between disease groups in prurigo nodularis. The y-axis represents FPKM values, with black dots
indicating the Normal group, blue dots indicating the NADP group, and red dots indicating the ADP group. Error bars represent the mean + standard
deviation. Asterisks denote statistical significance (*p < 0.05, **p < 0.01).

expression, including IL-22 and its receptors (IL22RA1, IL22RA2),  populations (6). This contrasts with African-American or
was not significantly elevated in either the ADP or NADP groups,as  European populations, where IL-22 and other Th22 cytokines are
also reflected in Figures 3-5. This finding suggests that the Th22 axis ~ often upregulated and play a central role in disease pathology (6).
is not a dominant immune pathway in our Asian PN cohort, These observations underscore racial and ethnic variations in
aligning with previous transcriptomic studies in similar  immune activation pathways, with lower Th22 activity but
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TABLE 2 Functional categorization of differentially expressed genes in PN patients.

Functional categorization Gene

Keratinocyte hyperproliferation

Fibrosis and tissue remodeling

Pruritus and neurogenic inflammation

Chronic inflammation
(Th1/Th2/Th17/Th22)

Innate immunity

MMP1, SPRR2A, S100A8, S100A9 1
WIF1 |

MMP1, MMP3, MMP10, MMP12 1
LEPR, IGSF10 |

1L24, MMP1, NTSR1, HRH3, HTR7 1
CHRM4, KCNJ13 |

IL24, CXCL9, CXCL10, IL4R, ILI3RA2, S100A8, SI00A9, SERPINB4 1
NR4A1 |

DEFB4A, S100A8, S100A9 1

relatively heightened Th2-mediated responses in Asian patients,
which may have important implications for tailored
therapeutic strategies.

IL-31, a cytokine strongly linked to pruritus and inflammation,
is known to stimulate cutaneous nerve fibers and drive
neuroimmune activation in prurigo nodularis (PN) patients (20).
However, in our current transcriptomic analysis of lesional skin
samples, IL-31 expression was not significantly elevated in either
the ADP or NADP groups compared to healthy controls. This
finding is consistent with previous reports in Asian PN cohorts,
where IL-31 expression was either low or absent at the
transcriptomic level (6, 20). One possible explanation for this
discrepancy lies in racial or ethnic differences in immune
signaling, with IL-31-mediated pathways more prominently
observed in European populations, while IL-17 or IL-22-related
pathways appear to be more dominant in Asian patients (6, 21).
Additionally, the tissue specificity of IL-31 expression—more
frequently detected in serum or peripheral blood mononuclear
cells than in skin tissue—may also contribute to the lack of
differential expression in our skin biopsy data (11). These
observations underscore the complex and heterogeneous
pathogenesis of PN and highlight the need for integrative analyses
combining transcriptomic, proteomic, and serum-based cytokine
profiling in future studies.

For pathway analysis, GO enrichment and KEGG assessments
on normal/ADP, normal/NADP, and NADP/ADP groups revealed
prominent pathways. Epidermal development and synaptic
organization were highly significant in ADP compared to normal
controls, and cytokine-cytokine receptor interaction pathways were
relevant for both ADP and NADP. The IL-17 signaling pathway, in
particular, was more active in NADP compared to controls,
paralleling findings in psoriasis, where IL-17 is known to play a
central role (6). These findings highlight the IL-17A-Endothelin-1
axis as a potentially important driver in PN pathogenesis (21).

Comparative analysis of gene expression between ADP and
NADP further clarified pathophysiological distinctions, revealing
upregulation of genes such as NPTX2, ADAMTSL2, USP32P1,
ENDCI1, PCDHI12, and ALDHI1L2 in ADP. NPTX2, associated
with chronic pruritus, is highly expressed in sensory neurons
(22), while FNDCI1 in fibroblasts (23), and PCDH12, a marker for
MrgprA3+ neurons linked to itch perception (24) were more
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pronounced in ADP. The upregulation of genes related to neural
function and tissue remodeling in ADP suggests that
neuroregulatory dysfunction and fibroproliferative tissue
remodeling may be more pronounced in ADP than NADP.

Fibrosis is central to PN pathology, marked by increased
keratinocyte proliferation, ECM remodeling, and tissue
thickening. Upregulated MMPs (e.g, MMP1, MMP3, MMP12)
drive ECM breakdown and fibrotic nodule formation. Similarly,
SPRR2A, associated with hyperproliferative (25) and reparative
responses (26-28), and decreased IGSF10 expression may
exacerbate uncontrolled fibrosis, contributing to the increased
dermal thickness typical of nodular prurigo (27).

Among commonly upregulated genes in both ADP and NADP,
SERPINB4—induced by IL-22, IL-17, IL-4, and IL-13—correlates
with disease severity, highlighting its potential as a biomarker for
treatment efficacy. IL-24, another promising therapeutic target,
exacerbates pruritus and inflammation, particularly in response to
Staphylococcus aureus (28). Antimicrobial peptide DEFB4B, critical
in skin barrier integrity, shows decreased expression in PN, linking
it to susceptibility to infection (29). IGFL1, which supports
epithelial proliferation, and SPRR2A (25), crucial for keratinocyte
differentiation, emerge as targets for enhancing skin recovery and
preventing disease progression in PN and AD (30). Upregulated
IL4R, CCL18, and TGFB1 indicate shared Th2-driven inflammation
in ADP and NADP, while ADP-specific genes like CSF3R and
ADAMTSL2 highlight heightened inflammation, remodeling, and
neuroimmune interactions.

Single-cell RNA-sequencing in PN and AD reveals fibroblasts in
AD lesions expressing CCL2, CCL19, and CCL11, which drive
immune cell recruitment and inflammation via the IKKB/NF-kB
pathway, worsening AD pathology (31). Comparative studies
between PN and AD have shown that both conditions exhibit
type 2 immune bias, but AD showed extensive immune activation
of CD8A+ILIR+IL13+ cytotoxic T cells (32). In contrast, PN is
characterized by extracellular matrix remodeling, collagen
synthesis, and fibrosis, and has been shown to have CXCL14-1L24
+ fibroblasts (33). In addition, a recent study identified a population
of COL6A5+COL18A1+ fibroblasts that are present exclusively in
AD lesions (34). Our study found significant upregulation of IL-4R,
IL-13R, and IL-24 in AD lesions, contributing to Th2 responses.
KEGG analysis revealed cytokine-cytokine receptor interactions as
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key to PN and AD progression. Genes like S100 family, CCL18, and
CSF3R increased with AD severity, linking gene expression to
disease progression and identifying therapeutic targets for
inflammation and itching. Correlation analysis between the
severity of PN with the top 500 significant genes revealed a
positive correlation for IL4R, IL13RA2 (Th2), TGFBI1 (fibrosis in
PN), CXCR1 (chemoattractant), and IL24 (Th2). Similarly, a
positive correlation with pruritus NRS was observed for IL4R,
CXCRI1, TGFBI1, IL13RA2. These findings suggest that these
cytokines and their receptors could serve as potential therapeutic
targets. Additionally, KEGG pathway analysis identified
upregulation of ADP-related DEGs such as CLCF1, CXCL9, and
CXCL10, suggesting that the CXCL9/CXCLI10 axis may play a key
role in pruritic neuroinflammation (35). Increased expression of
1124, S100A8, and S100A9 contributes to neuroinflammation,
thereby activating sensory neurons that induce itch. MMP1
degrades extracellular matrix components, exposing the nerves to
inflammatory mediators, thereby increasing nerve sensitivity.
Conversely, decreased expression of CHRM4 and KCNJ13 may
impair sensory nerve signaling, thereby increasing nerve excitability
and altering itch perception.

Several genes, including BMPR1A, EDA, IL33, and BMP2 were
notably downregulated in PN. BMPR1A regulates skin
inflammation via key signaling pathways (36, 37). while EDA is
associated with cell death, differentiation, and migration processes
(38). In this study, IL-33 levels were found to be reduced in PN and
negatively correlated with pruritus severity (6, 39, 40). A potential
hypothesis is that while IL-33 is a key driver of allergic
inflammation (39-43), it also plays an essential role in promoting
re-epithelialization (43-45), inducing ILC2 proliferation (46, 47),
facilitating wound healing (43-45, 47) and supporting the induction
and maintenance of regulatory T cells (Tregs) (48-50). Reduced IL-
33 expression may impair wound healing, preventing the resolution
of scratch-induced lesions and promoting the transition from acute
to chronic inflammation (39-42, 51, 52).

BMP2, which plays a role in cell growth, maturation, and
fibrotic proliferation across the dermis and epidermis, was also
downregulated (53). Decreased BMP2 and related genes in PN
indicate a shift to chronic fibrosis, while downregulated LEPR and
GHR in ADP suggest systemic dysfunction. Targeting these and
structural repair pathways may offer holistic therapies.

In conclusion, this study elucidates critical molecular and
immunological differences between ADP and NADP, providing
insights into distinct inflammatory pathways in each subtype.
Pathways such as IL-17 in NADP and neuroregulatory
dysfunction in ADP highlight the potential for personalized
treatments, particularly by targeting cytokines such as IL4R,
IL13RA2, and TGFBI1, which are associated with disease severity.
The influence of racial and ethnic factors further emphasizes the
need for individualized therapies based on molecular
characteristics, warranting further research to refine treatment
strategies for PN’s diverse subtypes.
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