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Objective: The objective of this study is to evaluate the incidence, prognostic

value, and risk factors of progression of disease within 12 months (POD12) in

patients with diffuse large B-cell lymphoma (DLBCL).

Methods: A retrospective analysis of the clinical, pathological, and follow-up data

was carried out on 69 DLBCL cases in Shanxi Bethune Hospital from January

2016 to June 2020. One-way ANOVA and multivariate Cox regression analysis

were used to explore the correlation between POD12 and prognosis, and logistic

regression analysis was used to explore the risk factors of POD12, accompanied

by prediction models based on convolutional neural networks and long short-

term memory (CNN-LSTM), as well as particle swarm optimization and general

regression neural network (PSO-GRNN) models.

Results: (1) POD12 is significantly correlated with PFS (p< 0.001) and OS

(p = 0.008). (2) From the univariate logistic regression analysis corrected by the

first-line chemotherapy regimen, LDH, b2-MG, stage, ECOG, NLR, and SII are

identified as risk factors for POD12 (p< 0.1), while b2-MG and ECOG are identified

as independent risk factors from the multivariate logistic regression analysis

(p< 0.05). (3) A prediction model for POD12 is established based on LDH, b2-MG,

stage, ECOG, NLR, and SII. The AUC is 0.846 (95% CI: 0.749~0.944, p< 0.001),

suggesting that themodel is reasonable. A predictionmethod for the characteristic
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variables of POD12 risk is proposed using the CNN-LSTM deep learning model

based on chaotic time series. Comparatively, the CNN-LSTM and PSO-GRNN

models are the most suitable to predict the risk level of the POD12 in the future.
KEYWORDS

diffuse large B cell lymphoma, prognosis, prediction model of POD12, early progression,
risk factor
1 Introduction

Diffuse large B-cell lymphoma (DLBCL) is a type of

hematological malignancy with high heterogeneity in biological

characteristics, clinical manifestations, and prognosis, which is

influenced by many factors. Although more than 60% of patients

can achieve a complete cure or long-term survival by the first-line

standard immunochemotherapy, a large number of patients still

eventually die due to disease recurrence or treatment resistance

(1, 2).

Many recent investigations (3, 4) have found that, among

DLBCL patients receiving first-line antitumor therapy, disease

progression within 12 months after diagnosis (POD12) is a

significant adverse prognostic factor, and these patients may not

even benefit from rescue treatment combined with autologous

hematopoietic stem cell transplantation (AHSCT). Therefore, it is

necessary to provide personalized therapy beyond standard

immunochemotherapy based on the first-line treatment to

improve patient survival, and it is crucial to identify such patients

effectively at an early stage.

In addition, since POD12 can only be evaluated after treatment,

it cannot be used to guide decision-making in previously untreated

patients, which limits its clinical value. Therefore, how to predict

POD12 is an urgent problem to be solved. However, at present,

there are few investigations on the predictive factors of POD12 (4),

and thus, no effective prediction tools or methods for POD12 are

available in the clinic.

The objective of this study is to evaluate the prognostic values

and risk factors of POD12 through cohort analysis, and to further

establish a clinical prediction model of POD12 to provide a

theoretical basis for accurate prognostic stratification and

personalized therapy for DLBCL.
2 Materials and methods

2.1 Case data

A retrospective analysis was carried out on 69 DLBCL cases, of

which 6 were lost and 63 were complete, in Shanxi Bethune

Hospital from January 2016 to June 2020. Inclusion criteria:

DLBCL diagnosed and graded by the latest diagnostic standards
02
of the World Health Organization (WHO) in 2008, and first-line

chemotherapy, and complete medical records and follow-up data.

Exclusion criteria: (1) Double-hit or triple-hit patients confirmed by

the fluorescence in situ hybridization (FISH) detection in the

pathological tissues; (2) Patients with other malignant tumors; (3)

Those who lost follow-up or died without POD12 after diagnosis.

The intact DLBCL paraffin tissue preserved in the pathology

department was collected and consecutively sectioned into 4mm
thickness for immunohistochemical detection. The clinical data of

patients were collected, including the sexual distinction, age, clinical

stage, ECOG score, absolute value of neutrophils and lymphocytes,

platelet and hemoglobin levels, etc. The values of the neutrophil to

lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR),

lymphocyte to monocyte ratio (LMR), and systemic immune-

inflammatory index (SII) were calculated, and the corresponding

optimal cutoff values were obtained according to the ROC curve.
2.2 Methods

2.2.1 Immunohistochemistry
The antibodies, such as Myc, Bcl-2, Bcl-6, CD10, MUM-1, Ki-67,

and P53, were all purchased from Beijing Zhongshan Jinqiao

Biotechnology Co. Ltd. (Beijing, China) and the secondary antibody

reagents were obtained from Ventana Medical Systems (Rotkreuz,

Switzerland). The EnVision two-step method was employed using the

Roche BenchMark XT automatic immunohistochemical instrument.

Myc protein was localized in the nucleus and, based on the percentage

of positive cells, was graded as follows: grade 0 (0), grade 1 (1%~25%),

grade 2 (26%~50%), grade 3 (51%~75%), and grade 4 (76%~100%),

respectively (8). Bcl-2 positivity is defined as the presence of tumor

cells (≥ 50%) with brownish-yellow particles in the cytoplasm and

membrane, while Bcl-6 positivity is defined as the presence of

brownish-yellow particles (≥ 50%) in the nuclei (5, 6). When the

percentage of tumor cells with the brownish-yellow granules in the

cytoplasm or nuclei is more than 30%, the positive expression of CD10

or MUM-1 is confirmed. Based on the number of P53-positive cells in

the nuclei, expression is graded as follows: 0 (no positive cells), grade 1

(≤ 5%), grade 2 (6%~10%), grade 3 (11%~40%), grade 4 (≥ 41%),

respectively, and grades 2~4 are considered the overexpression (7). In

addition, the immunohistochemical results of Myc, Bcl-2, CD10, Bcl-

6, and MUM-1 proteins were analyzed using the Hans method (9),
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and the germinal center B (GCB) and non-GCB subtypes were

determined according to the COO types.

2.2.2 FISH method
The tumor area was selected based on HE staining, using C-Myc,

Bcl-2, and Bcl-6 gene break-apart probes purchased from Guangzhou

Anbiping Pharmaceutical Technology Co. Ltd. (Guangzhou, China).

More than 100 nuclear signals of tumors were recorded under high-

power magnification (× 100) with a Zeiss Axioimager fluorescence

microscope. Each probe consists of a red fluorescent and a green

fluorescent component. In normal cells, two yellow fusion signals or

adjacent red and green signals are observed. In cases of gene

translocation, a separation between the yellow with red signals is

observed. When the ratio of the separated signal exceeds 10%, the

result is considered positive. If more than three yellow fusion signals

are present in the same nucleus, it is regarded as a gene duplication.

2.2.3 Follow-up
Telephone and outpatient inquiries were the main follow-up

method, and follow-up continued until 31 December 2021. The

follow-up period was from the time of diagnosis to the end of

follow-up or the date of death. POD12 refers to recurrence or

progression within 12 months after diagnosis (3, 4). To accurately

observe and compare the effect of POD12 on the subsequent survival

of DLBCL patients, the prognostic value of POD12 was verified. The

definition of overall survival (OS) in this study is consistent with

other relevant studies (3, 4), referring to the interval from 1 year after

diagnosis (non-POD12 group) or the date of POD determination

(POD group) to the patient’s death or the last follow-up.
2.3 Statistical analysis

SPSS 24.0 software was used for the statistical analysis. One-way

analysis of variance (ANOVA) and multivariate Cox regression

analysis were used to explore the correlation between POD12

and the prognosis of DLBCL. Univariate and multivariate

logistic regression analyses were used to explore the risk

factors of POD12. The calculation method of model

prediction accuracy was defined as the ratio of the total number

of true-negative and true-positive patients to the total number of

patients. The calculation method of model prediction accuracy

is confirmed.
3 Deep learning prediction model of
CNN-LSTM and PSO-GRNN

3.1 Prediction of the POD12 state
parameters based on the phase space
reconstruction

Aiming at the chaos of the characteristic variables of POD12,

the time series data were first reconstructed, and two parameters of
Frontiers in Immunology 03
the reconstructed phase space were obtained, namely the

embedding dimension (m), calculated by the false nearest-

neighbor (FNN) method, and the latency [delay time (t)], by the

mutual information method, to restore the original space. The

values of m and t were then taken as the input items for the

CNN model to extract the sequence of spatial features, and the state

of the POD12 characteristic variable at time t could be predicted

using the LSTM model (see Figure 1).
3.2 Phase space reconstruction of
characteristic variables of POD12

The monitoring time series data exhibit obvious chaotic

characteristics. To restore the original space, it is necessary to

calculate the embedding dimension (m) and latency (t) variables
of the phase space for the reconstructed POD12 state. Based on

chaos theory, the delay time was calculated using the mutual

information method, and the embedding dimension was

determined using the false nearest-neighbor method. The phase

spaces of the original monitoring data were then reconstructed

using these parameters to restore their real spaces. According to the

embedding theorem, for the monitoring time-series data Xi,n

� �N
n=1(i

= 1, 2,ċ, I; where I is the number of characteristic variables and N is

the length of the time series), the reconstruction space state of the

ith characteristic variable could be expressed as Equation 1

Xi,n = ½Xi,n,Xi,n−ti…Xi,n� (mi−1)ti �

=

xi(1) xi(2) ⋯ xi(n − (mi − 1)ti)

xi(1 + ti) xi(2 + ti) ⋯ xi(n − (mi − 2)ti)

⋮ ⋮ ⋮ ⋮

xi(1 + (mi − 1)ti) xi(2 + (mi − 1)ti) ⋯ xi(n)

2
666664

3
777775
(1)

Where Xi,n denotes the phase space of the ith characteristic

variable, and Xi is a point in the phase space of the ith characteristic

variable. mi and ti are the embedding dimension and delay time of

the ith characteristic variable, with n∈[1, 2, …, N]. The dimension

number (m) of the state space formed by Xn could be expressed as

Equation 2:

m =o
I

i=1
mi (2)

After the phase space reconstruction, there is a mapping

function G: Rm → Rm, subject to Equation 3

Xn + l = G(Xn) (3)

Or there is a mapping function Gi: R
m→ R, subject to Equation 4

Xi, n + l = Gi(Xn) (4)

Where l denotes the number of the prediction steps. In other

words, the state of the time series Xn + l (i.e., the next l steps) can be

predicted based on the reconstructed state variable.
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3.3 Prediction of POD12 characteristics
based on the CNN-LSTM model

CNN is used to extract the spatial characteristics of the

reconstructed phase space. CNN is a model that performs

convolution operations within a deep network and has strong

expressive ability for spatial data. It is well known that the

occurrence of POD12 is not only a gradual process of incubation

and evolution but also a nonlinear dynamic process. To further

describe this nonlinear process, LSTM is used to predict the

characteristic quantity of POD12. LSTM can dynamically

memorize historical information and has been widely used. By

using LSTM to learn new information from the original POD12

monitoring data while maintaining the status of the historical

information of the monitoring data, the new information from
Frontiers in Immunology 04
the original POD12 monitoring data could be fully learned, and the

status of the historical information of the monitoring data could be

completely remembered by using LSTM.

The LSTM repeated module is composed of three activation

function gates (i.e., forget gate (s1), input gate (s2), and output gate

(s3)) and two tanh activation functions f1 f2 regarding the output,
as shown in Figure 2. The bullet symbol (·) represents the

concatenation operation, and the p and S symbols represent

element-wise multiplication and addition, respectively. The

fundamental component of LSTM is the cell state, where a line

comes from the previous block memory (St − 1) and connects to the

current block memory (St). Afterward, the flow of information

straight down the line is allowed. In other words, the forgetting part

of the memory in the cell state is determined by the input of the cell

state at the previous time point in the forget gate, the memory, and
FIGURE 1

Prediction flowchart of the future state using the CNN-LSTM model.
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the intermediate output of the cell state. The data to be added to the

cell state are adjusted by the sigmoid function, and the intermediate

output is determined by the updated memory cell state and the

output. In this work, the characteristic sequence of the phase space

extracted and reconstructed by CNN was modeled using an LSTM

model. By learning the characteristic time series, the nonlinear

process of POD12 evolution is represented, the future state of

POD12 (i.e., at time t + 1) is predicted more accurately, and the

risk level of POD12 is evaluated according to the future state of the

POD12 characteristic variables.

The CNN-LSTM model consists of the CNN and LSTM parts.

The former is used to express and extract the spatial feature

information of the reconstructed phase space as the input of

LSTM, while the latter is used to receive the output of the CNN-

extracted information and use its memory characteristics in the

time series to accurately extract time-series features. Thus, the

future POD12 state could be predicted. The main process of

predicting the future state variables of the POD12 characteristics

with the CNN-LSTM model is as follows.

(1) In the CNN part, the reconstructed phase space state

represented by a two-dimensional matrix Xi,n = ½Xi,n,Xi,n−ti , · · ·,

Xi,n−(mi−1)ti �is taken as the input. In this matrix, the “row”

represents the reconstructed phase space point with a length of

m, and the “column” represents the length of the time series. This

two-dimensional matrix is input to the CNN, and the high-

dimensional characteristic information is then extracted using the

convolution function H(x), as shown in Equation 5. After the

important characteristics are selected through the pooling layer,

the input is transformed into a one-dimensional vector by the

flatten layer, and thus, the time series with high-dimensional

characteristic information is output.

H(x) = f ⊗ g =
Z +∞

−∞
f (x − u) · g(u) (5)

Where f and g are integrable functions, and x and u are the

variables within them.
Frontiers in Immunology 05
(2) In the LSTM part, the output time series from the CNN is

used as the input. A traditional recurrent neural network (RNN) is

prone to gradient disappearance or explosion when handling long

sequences. To overcome these problems caused by long-term

memory, a gating mechanism is introduced into LSTM, which

greatly improves the ability of the data expression for RNN. In

general, the characteristic time series are predicted using a single-

layer structure in LSTM. During model training, unreasonable

training data often lead to overfitting. The L2 parametric

regularization method (weight loss) can be used to mitigate this

to some extent. In this method, a regularization item is added to the

objective function to bring it closer to the origin by attenuating the

weight. The weight loss function of the optimization objective can

be expressed as Equation 6:

loss(y,W) = ∥ y − ŷ ∥2 +l ∥W ∥2 (6)

Where l is the hyperparameter and W is the hyperlink weight

of the neural network.

(3) CNN-LSTM model training. Firstly, the dataset is divided

into training and test sets. Next, the hyperparameters (i.e., epoch

data and loss functions) and the optimizer are set, including

parameters such as weight and learning rate. Finally, the LSTM

model is trained by using the training data to extract the temporal

features of the reconstructed phase space data.

(4) After the CNN-LSTM model is successfully trained, the test

set is input to obtain the prediction results.

(5) The accuracy of the prediction results in step (4) is

evaluated. If the accuracy meets the predefined threshold, step (6)

is proceeded; otherwise, step (3) is returned to, and training is

continued until the model converges.

(6) The evolution state value of the POD12 at time t + 1 is

predicted by using the above model trained perfectly.

The prediction process of the risk level for POD12 includes two

steps. (1) Quantitative discrimination of the risk level of POD12—

that is, the discrimination of the risk level of POD12 at the time of t

+ 1. Firstly, the future state values of the characteristic variables
FIGURE 2

LSTM repeating module.
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obtained by the CNN-LSTM model (i.e., the state values of the

POD12 characteristic variables at the time of t + 1) are taken as the

input. Based on the PSO-GRNN model, the risk level of POD12 at

the time of t + 1 is then obtained by the regression method. (2)

Prediction of the risk level of POD12 in the future. To predict the

POD12 risk level of the test set based on the monitoring variables,

the test set data are used as input variables to obtain the future state

value of the POD12 risk level of the test set. At the same time, this

serves as a comparative experiment to verify the effectiveness of the

method in predicting the future risk level of POD12.

GRNN is an artificial neural network that uses the radial basis

function as its activation function. Compared with the

backpropagation (BP) neural network, it has stronger

approximation and learning capabilities. Even with a small

sample size, it can effectively identify the risk index of POD12.

The purpose of introducing the PSO algorithm is to obtain a more

stable regression prediction model. If the smoothing factor of the

GRNN model is selected manually, issues such as low efficiency and

reduced accuracy may arise. The determination of the smoothing

factor is essentially an optimization problem—that is, by finding an

optimal smoothing factor, the mean square deviation between the

output values and the actual values of the training sample is

minimized. By this method, the best smoothing factor can

be obtained.

PSO is an intelligent algorithm inspired by the cooperative

behavior of birds searching for food. Compared with the classical

genetic algorithm, it can converge to the optimal solution faster.

Assuming that the solution to the objective optimization problem is

a d-dimensional vector and each particle in the swarm represents a

possible solution, each possible solution can be evaluated by

calculating the fitness of each particle in the swarm. This allows

the identification of a particle Lbest that contains the optimal

solution in the d-dimensional space. Thus, the problem of

determining the smoothing factor can be transformed into

finding Lbest using the PSO algorithm.

Assuming that N particles are randomly scattered in d-

dimensional space and their positions are Li = (lb1, lb2, ···, lbd) (i =1,

2, ···, n), Li is substituted into the function F(L) to calculate its fitness

Fi. Based on the fitness values, the optimal positions of the ith particle

and all particles in the swarm are obtained, denoted as Pid = (Pi1, Pi2,

···, Pid) and Gb = (Pg1, Pg2, ···, Pgd) (g = 1, 2, ···, N), respectively. In this

way, each particle updates its individual position based on the current

position Li, the optimal position Pid found by itself, and the optimal

position Pgd found in the whole particle swarm.

In the initial operation, a large flight speed is necessary for the

PSO algorithm to avoid being trapped in a local optimal solution.

However, when the particle swarm approaches the optimal solution,

the particle flying speed should not be too large as the number of

iterations increases. Otherwise, it will be difficult for the particles to

accurately converge on the optimal solution. To reduce fluctuations

near the optimal solution, it is necessary to introduce an adaptive

inertia factor w. As the number of iterations increases, the adaptive

inertia factor w gradually decreases, which means that the particle

flight speed decreases—ensuring the optimal smoothing factor and
Frontiers in Immunology 06
ultimately yielding more accurate prediction results. These

relationships are described by Equations 7–9.

v(k+1)id = wv(k)id + c1r1 p(k)id − l(k)id

� �
+ c2r2 p(k)gd − l(k)id

� �
(7)

l(k+1)id = l(k)id + v(k+1)id (8)

w = Wmax − (Wmax −Wmin) + tan
I

Imax

� �
� p

4

� �
(9)

Where v(k)id is the velocity vector of particle i when the kth

particle swarm is searching for the “food”; C1 and C2 are learning

factors; r1 and r2 are random numbers in the (0,1) interval; and w is

the inertia factor. Wmax and Wmin are the upper and lower bounds

of the inertia factor, respectively. I and Imax are the current number

and maximum iteration numbers, respectively. Once the model

reaches the iteration criterion, the optimal solution is obtained.
4 Results and discussion

4.1 General characteristics

4.1.1 Clinical features
There are 63 patients, including 29 men and 34 women. The

median age is approximately 67 years (21~89), with 44 (69.8%)

patients over 60 years old. There are 18 cases (28.6%) of Ann Arbor

stages I~II and 45 cases (71.4%) at stages III~IV; 16 cases (25.4%)

presented with B symptoms; 29 cases (46%) had an ECOG score of

≥ 2; 24 cases (38%) had extranodal involvement at more than two

sites; 12 cases (19%) had large masses (> 7.5 cm); 31 cases (49.2%)

had b2-MG values exceeding the normal upper limit; 30 cases

(47.6%) had elevated lactate dehydrogenase (LDH) values (or

levels); 50 cases (79.4%) had serum albumin values< 40 g/L; 0

case had ALT values above the normal upper limit; five cases (7.9%)

had elevated AST values; and two cases (3.2%) had elevated ALP

values (exceeding the normal upper limit). A total of 53 patients

(84.1%) received rituximab combined with chemotherapy, while 10

cases (15.9%) received chemotherapy alone.

In addition, this study employed Youden’s index to determine

the optimal cut-off values for NLR, PLR, LMR, and SII. Youden’s

index serves as a diagnostic performance metric for evaluating the

ability of a screening method to distinguish between true patients

and nonpatients. It is computed by subtracting (1 − specificity)

from sensitivity, and the test variable value corresponding to its

maximum represents the diagnostic threshold for that particular

method. Furthermore, ROC curves for NLR, PLR, LMR, and SII

were plotted separately using the occurrence of POD12 as the study

endpoint (Figure 3). The sensitivity and specificity values

corresponding to the maximum Youden’s index for these curves

were (0.483, 0.853), (0.897, 0.382), (0.862, 0.412), and (0.345, 0.794),

respectively. By integrating the actual clinical values from 63

patients, the optimal cut-off values were further determined to be

1.73, 306.494, 4.867, and 304.2, respectively.
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4.1.2 Pathological characteristics
Among 63 patients, 21 (33.3%) cases had pathological GCB and 42

(66.7%) cases had non-GCB; 26 cases (41.3%) were Myc positive

(grades 3–4); 47 cases (69.3%) were Bcl-2 positive (≥ 50%); and 45 cases

(71.4%) were Bcl-6 positive (≥ 50%). There were 12 cases (19%) of P53

expression with grades 1~2 and 51 cases (81%) with grades 3~4. Based

on FISH testing, three cases (4.8%) were Myc positive, 0 cases (0%)

were Bcl-2 positive, and six cases (9.5%) were Bcl-6 positive.
4.2 POD12 and its relationship with
prognosis in patients with DLBCL

Prior to conducting the analysis, this study employed a single-

proportion power test to calculate the statistical power for POD12.

The sample size was set at 63 (the number of cases used), and the
Frontiers in Immunology 07
comparison proportion was set at 46% (the proportion of POD12

occurrence). The calculated power value was 0.927878, indicating

that the sample size was sufficient for detecting statistical associations.

Among 63 previously untreated DLBCL patients, 29 cases (46%)

experienced POD12. The OS values in the POD12 group were

significantly lower than those in the non-POD12 group (p< 0.001;

Figure 4), with 3-year OS rates of 3.45% and 23.53%, respectively.

From one-way ANOVA, POD12 is significantly correlated with

progression-free survival (PFS; p< 0.001; Table 1) and OS (p = 0.008;

Table 2). When factors with p< 0.2 in the one-way ANOVA are

included in the multivariate Cox regression analysis, and the effect of

first-line treatment on the prognosis of DLBCL is corrected for,

POD12 remains the most significant independent prognostic factor

in PFS (HR = 0.235, 95% confidence interval (CI): 0.106~0.524,

p< 0.001; Table 1) and OS (HR = 0.274, 95% CI: 0.123~0.606,

p = 0.001; Table 2).
FIGURE 3

ROC curves of NLR, PLR, LMR, and SII.
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4.3 Risk factor analysis of POD12

Among the 63 patients who underwent immunohistochemical

detection, univariate logistic regression analysis—adjusted for the

first-line chemotherapy regimen—identified LDH ≥ 250 IU/L, b2-
MG ≥ 3 μmol/L, stages III–IV, ECOG ≥ 2, NLR ≥ 1.73, SII ≥ 304.2

as potential risk factors for POD12 (Table 3). Furthermore,

multivariate logistic regression analysis revealed that b2-MG ≥ 3

μmol/L and ECOG ≥ 2 were independent risk factors for POD12

(p< 0.05; Table 4).

According to the analysis of POD12 in previously untreated

DLBCL patients, the risk factors for POD12 are LDH ≥ 250 IU/L,

b2-MG ≥ 3 μmol/L, stages III–IV, ECOG ≥ 2 score, NLR ≥ 1.73, and

SII ≥ 304.2. From the prediction model A, which includes the above

six factors, the logistic regression coefficient b values are 0.251,

2.615, 0.991, 2.299, 0.408, and 1.371, respectively. The larger the

regression coefficient, the stronger the correlation between the

corresponding risk factors and POD12. The regression coefficient

value involving b2-MG ≥ 3 μmol/L is the largest, giving a score of 2,

while the risk factors LDH ≥ 250 IU/L, stages III–IV, ECOG ≥ 2,

NLR ≥ 1.73, and SII ≥ 304.2 are each assigned 1 point. The ROC

curve was obtained based on the patient’s scores and whether

POD12 occurred. The area from the curve is 0.846 (95% CI:

0.749–0.944), and the best cut-off value is a score of 4, which

divides the patients into a low-risk group (< 4) and a high-risk

group (≥ 4). Upon verification in 63 patients with DLBCL with

complete clinical data, it was found that 26 patients with previously

untreated DLBCL had scores less than 4, among whom 23 (88.46%)

did not develop POD12. POD12 occurred (i.e., ≥ 4 score) in 26 of 37

patients (70.27%). The positive predictive rate (PPV) is 70.27%, the

negative predictive rate (NPV) is 88.46%, and the overall accuracy is
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77.78%. The platelet-to-lymphocyte ratio (PLR) is 2.769, indicating

that the risk of POD12 in patients with DLBCL with a score of ≥ 4

was 2.769 times higher than in those with a score of< 4. Model A

can also be used to predict the OS of patients. For patients with a

score of< 4, the median OS was not reached, whereas the median OS

for those with a score of ≥ 4 was 13 months; the difference was

statistically significant (p< 0.001). Logistic regression analysis

corrected by the first-line treatment regimen showed that the risk

of POD12 in patients with scores ≥ 4 was significantly higher than

in those with scores< 4 (OR = 18.121, 95% CI: 4.494–73.078,

p< 0.001; Table 5). Compared with NCCN-IPI, the accuracy of

POD12 prediction increased from 57.14% to 77.0%, and the risk of

POD12 in the high-risk patients was significantly higher than in

low-risk patients (OR = 12, 95% CI: 2.456–58.631, p = 078%;

Figure 5). In addition, prediction model B was established based

on the independent risk factors b2-MG and ECOG for POD12. The

high-risk group was defined as having ECOG ≥ 2 and b2-MG ≥ 3

μmol/L; the medium-risk group included patients with either

ECOG ≥ 2 and b2-MG< 3 μmol/L, or ECOG< 2 and b2-MG ≥ 3

μmol/L; and the low-risk group included those with ECOG< 2 and

b2-MG< 3 μmol/L. According to the logistic regression analysis

corrected by the first-line treatment regimen, the predictive ability

of this model was medium-high at 002 (see Table 5). Its prediction

accuracy was higher than that of NCCN-IPI but lower than that of

prediction model A (see Figure 5). Therefore, in this study,

prediction model A was selected as the final prediction model

for POD12.

Different from the PFS or OS, POD12 is not influenced by

deaths caused by other factors (such as treatment-related adverse

reactions) or by second-line treatment. It may better reflect the

invasiveness and/or treatment resistance of the disease itself. At

present, some conventional clinical prognostic evaluation systems,

such as the international prognostic index (IPI) (10), cell-of-origin

classification (11, 12), simultaneous Bcl-2 and C-Myc and/or Bcl-6

rearrangement, dual expression (DE) of C-Myc and Bcl-2, increased

expression of mutant p53 protein (13–16), high-grade B-cell

lymphoma, double-hit/triple-hit DLBCL (15, 17, 18), can be used

to predict the overall survival of patients with DLBCL. However, the

relationship between these prognostic factors and POD12 in

DLBCL remains uncertain (19). In addition, patients with POD12

may initially achieve CR with first-line treatment but then

experience rapid disease progression. Their tumor cells may not

respond well to follow-up therapies, resulting in poor overall

survival (OS) (20, 21). Similarly, POD12 has been shown to have

important prognostic value. Ma et al. (4) found that DLBCL

patients treated with first-line rituximab + cyclophosphamide +

adriamycin + vincristine + prednisone (R-CHOP) had significantly

lower OS rates if they experienced POD12 compared to those who

did not (p< 0.001). These patients also responded poorly to

subsequent rescue treatment, indicating that POD12 carries

strong prognostic significance across various conventional

treatment regimens.

At present, there are few investigations on the predictive factors

of POD12, with high heterogeneity in biological characteristics. It is

necessary to establish a POD12 prediction model to help identify
FIGURE 4

Effect of POD12 on OS in patients with DLBCL.
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high-risk groups, formulate personalized therapy plans, and

improve prognosis. In this study, the incidence of POD12 is high

(46%), and OS is significantly worse in patients with early

progression compared to those without. This may be closely

related to factors such as advanced disease stage, high tumor

burden, and limited sample size, which need to be further verified

in large-sample clinical trials. In addition, this study included

patients who received immunochemotherapy and chemotherapy,

and the effect of first-line treatment on the prognosis of DLBCL was

corrected; POD12 remained the most significant independent

prognostic factor for both PFS and OS. This work confirms that

POD12 is a reliable adverse prognostic factor for DLBCL.

Therefore, it is necessary to identify high-risk patients early and

implement individualized treatment in a timely manner to reduce

the incidence of POD12. Ma et al. (4) found that, in addition to the
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progression of the disease, neither the prognostic factors in

traditional IPI nor others, such as double expression, TP53, and

COO, can serve as independent predictors of POD12. Combining

the CD79B mutation, PIM1 mutation, and Ann Arbor staging can

further improve prediction efficiency, with POD12 showing the

highest accuracy. Therefore, some scholars have attempted to

predict POD12 by combining clinical features and gene

mutations. However, these prediction tools require expensive and

time-consuming gene sequencing and related tests, which are

currently difficult to implement in clinical practice. After

screening the baseline clinical and pathological factors, we found

that certain risk factors, such as LDH ≥ 250 IU/L, b2-MG ≥ 3 μmol/

L, stages III–IV, ECOG ≥ 2 score, NLR ≥ 1.73, and SII ≥ 304.2, are

strongly associated with POD12. Accordingly, a new prognostic

model was established. Sixty-three previously untreated DLBCL
TABLE 1 Univariate and multivariate Cox analysis of prognostic factors for DLBCL (PFS).

Prognostic
factors

Adverse factors One-way ANOVA Multivariate Cox analysis

eta p-value HR (95% CI) p-value

Sexual distinction Male 0.02 0.878

Age ≥ 60 0.014 0.912

Position Extranodal 0.133 0.3

Origin Non-GCB 0.014 0.913

MYC ≥ 40% 0.035 0.787

BCL-2 ≥ 50% 0.206 0.106 1.238 (0.569–2.693) 0.59

BCL-6 ≥ 30% 0.146 0.252

P53 ≥ 50% 0.009 0.942

FMYC + 0.052 0.683

FBCL6 + 0.145 0.256

Ki-67 ≥ 80% 0.015 0.904

LDH (IU/L) ≥ 250 0.353 0.004 1.806 (0.869–3.751) 0.113

Seralbumin (g/L) ≥ 40 0.024 0.855

AST ≥ 50 0.043 0.739

b2-MG ≥ 3 0.138 0.279

Stage III, IV 0.278 0.027 2.534 (0.987–6.507) 0.053

B symptom Yes 0.117 0.362

Extranodal number ≥ 2 0.159 0.214

Bulky Yes 0.004 0.974

ECOG ≥ 2 0.235 0.063 0.823 (0.404–1.676) 0.592

R2 No 0.015 0.910

POD12 Yes 0.435 < 0.001 0.235 (0.106–0.524) < 0.001

NLR ≥ 1.73 0.194 0.127 0.813 (0.309–2.138) 0.675

PLR ≥ 306.494 0.062 0.629

SII ≥ 304.2 0.182 0.153 0.675 (0.275–1.657) 0.391

LMR ≥ 4.867 0.008 0.948
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patients with complete clinical data were divided into low-risk

(score 0–3) and high-risk (score ≥ 4) groups. The risk of the

POD12 in previously untreated DLBCL patients with a score ≥ 4

was 2.769 times higher than that in patients with a score of 0–3. In

addition, the POD12 prediction model can also predict the OS of

previously untreated DLBCL patients.

There is currently no optimal prognostic model for diffuse large

B-cell lymphoma that accurately predicts early disease progression.

Clinical indicators, immune microenvironment, and pathological

indicators may influence the prognosis of DLBCL. The indicators

selected in this study provide a comprehensive evaluation by

combining clinical, pathological, and microenvironment-related

indicators. It is well known that inflammation plays an important

role in tumor progression and treatment response, and peripheral

blood cell counts, which to some extent reflect the inflammatory
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state, are closely related to the progression of cancer (22, 23). In this

work, prognostic indicators of inflammation are included. NLR

(24–28) and SII (29) are considered to have prognostic value for

DLBCL. A recent meta-analysis showed that NLR was associated

with poor OS and was considered a low-cost prognostic factor in

2,297 patients with DLBCL (30). Based on neutrophils, platelets,

and lymphocytes, SII may reflect inflammatory status and tumor

activity more accurately than PLR and NLR, and it has been proven

to be an independent predictor of various malignancies, such as

breast cancer and lung cancer (31, 32). However, the data on non-

Hodgkin lymphoma are limited. To our knowledge, the relationship

between the above indicators and POD12 outcomes in DLBCL has

not been explored. Therefore, we conducted this investigation to

evaluate the prognostic value of NLR, PLR, SII, and LMR in POD12

of DLBCL and found that NLR and SII were prognostic risk factors
TABLE 2 Univariate and multivariate Cox analysis of prognostic factors in DLBCL (OS).

Prognostic
factors

Adverse factors One-way ANOVA Multivariate Cox analysis

eta p-value HR (95% CI) p-value

Sexual distinction Male 0.076 0.555

Age ≥ 60 0.013 0.919

Position Extranodal 0.08 0.533

Origin Non-GCB 0.015 0.906

MYC ≥ 40% 0.038 0.768

BCL-2 ≥ 50% 0.193 0.129 1.17 (0.535–2.555) 0.694

BCL-6 ≥ 30% 0.154 0.227

P53 ≥ 50% 0.028 0.826

FMYC + 0.058 0.649

FBCL6 + 0.139 0.279

Ki-67 ≥ 80% 0.041 0.750

LDH(IU/L) ≥ 250 0.358 0.004 2.542 (1.219–5.303) 0.013

Seralbumin (g/L) ≥ 40 0.028 0.827

AST ≥ 50 0.064 0.616

b2-MG ≥ 3 0.101 0.431

Stage III, IV 0.234 0.065 1.688 (0.662–4.307) 0.273

B symptom Yes 0.143 0.263

Extranodal number ≥ 2 0.195 0.126 0.713 (0.337–1.507) 0.376

Bulky Yes 0.032 0.806

ECOG ≥ 2 0.211 0.097 0.692 (0.344–1.393) 0.302

R2 No 0.068 0.596

POD12 Yes 0.334 0.008 0.274 (0.123–0.606) 0.001

NLR ≥ 1.73 0.185 0.148 1.185 (0.391–3.585) 0.764

PLR ≥ 306.494 0.051 0.690

SII ≥ 304.2 0.164 0.198 0.525 (0.182–1.518) 0.234

LMR ≥4.867 0.043 0.736
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TABLE 3 Univariate logistic regression analysis adjusted for the first-line chemotherapy regimen for POD12.

Prognostic
factors

Adverse
factors

b SE Wald OR 95% CI p-value

Sexual distinction Male 0.61 0.514 1.408 1.841 0.672 5.045 0.235

Age ≥ 60 0.539 0.563 0.916 1.714 0.569 5.169 0.338

Position Extranodal 0.466 0.51 0.835 1.594 0.586 4.331 0.361

Origin Non-GCB 0.486 0.545 0.793 1.625 0.558 4.73 0.373

MYC ≥ 40% 0.666 0.559 1.416 1.946 0.65 5.823 0.234

BCL-2 ≥ 50% 0.234 0.542 0.185 1.263 0.436 3.658 0.667

BCL-6 ≥ 30% 0.205 0.607 0.114 1.227 0.374 4.031 0.736

P53 ≥ 50% 0.008 0.513 0 1.008 0.369 2.758 0.987

FMYC + 0.56 1.252 0.2 1.75 0.15 20.35 0.655

FBCL6 + 1.337 1.184 1.275 3.808 0.374 38.777 0.259

Ki-67 ≥ 80% 0.87 0.687 1.604 2.386 0.621 9.169 0.205

LDH (IU/L) ≥ 250 1.379 0.536 6.63 3.973 1.39 11.353 0.01

Seralbumin (g/L) ≥ 40 0.811 0.664 1.491 2.25 0.612 8.27 0.222

AST ≥ 50 0.613 0.95 0.416 1.846 0.287 11.889 0.519

b2-MG ≥ 3 2.167 0.583 13.832 8.73 2.787 27.348 < 0.001

Stage III, IV 1.089 0.605 3.239 2.971 0.908 9.729 0.072

B symptom Yes 0.468 0.593 0.623 1.597 0.499 5.108 0.43

Extranodal number ≥ 2 0.806 0.529 2.325 2.24 0.794 6.316 0.127

Bulky Yes 1.138 0.723 2.476 3.12 0.756 12.873 0.116

ECOG ≥ 2 1.517 0.542 7.823 4.56 1.575 13.205 0.005

R2 No 0.189 0.69 0.075 1.208 0.312 4.672 0.784

NLR ≥ 1.73 1.284 0.717 3.211 3.611 0.887 14.709 0.073

PLR ≥ 306.494 0.742 0.603 1.514 2.1 0.644 6.846 0.218

SII ≥ 304.2 1.095 0.651 2.825 2.989 0.834 10.717 0.093

LMR ≥ 4.867 0.028 0.666 0.002 1.029 0.279 3.797 0.966
F
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TABLE 4 Multivariate logistic regression analysis for POD12.

Prognostic
factors

Adverse factors b SE Wald OR 95%CI p-value

LDH (IU/L) ≥ 250 0.251 0.784 0.103 0.778 0.167 3.615 0.749

b2-MG ≥ 3 2.615 0.872 9.002 13.671 2.476 75.468 0.003

Stage III, IV 0.991 0.87 1.295 2.693 0.489 14.831 0.255

ECOG ≥ 2 2.299 0.804 8.178 9.961 2.061 48.14 0.004

NLR ≥ 1.73 0.408 1.465 0.077 1.503 0.085 26.569 0.781

SII ≥ 304.2 1.371 1.348 1.035 3.94 0.281 55.323 0.309
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for POD12. In addition, we found that patients with LDH ≥ 250 IU/

L and stages III–IV were more likely to develop POD12, but these

were not independent risk factors. Myc, p53, Bcl-2, and Bcl-6 did

not influence the occurrence of POD12.

Among the clinical factors included in this study, b2-MG and

ECOG scores were identified as the independent risk factors for

POD12, while LDH ≥ 250 IU/L, stages III–IV, NLR ≥ 1.73, and SII ≥

304.2 were also associated with increased risk. In diagnosis, attention

should be paid to the identification of these high-risk patients, and

personalized therapy should be initiated promptly to improve

prognosis. In the new model developed in this study, patients were

divided into high- and low-risk groups, with the former showing a

significantly higher risk of POD12. Compared with NCCN-IPI alone,

the new model demonstrated improved sensitivity and accuracy in

predicting POD12, accurately identifying 70.27% of POD12 cases,

though with slightly reduced specificity. Given the current lack of

efficient POD12 prediction models, and considering that this new

model is more economical and simpler than molecular clinical

models, the findings of this study hold practical significance.
4.4 Risk level prediction for POD12 with
CNN-LSTM

For the deep learning prediction model of POD12 using CNN-

LSTM and PSO-GRNN, as mentioned above, LDH, b2-MG, III-IV,

ECOG, NLR, and SII are selected as the risk factors for POD12.
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These characteristic variables are divided into two combinations:

one consists of LDH, b2-MG, and stages III–IV, and the other

consists of ECOG, NLR, and SII.

In the pretreatment process, a small number of missing

monitoring results are filled using the “before and after mean”

method (i.e., xi = (xi − 1 + xi + 1)/2). A control parameter m (m = 0.85)

is introduced to correct them with xi = mxi (xi = LDH, b2-MG, III-

IV, ECOG, NLR, and SII), to ensure the relative stability of the

monitoring time series and the reliability of the prediction results.

The risk rank of POD12 can be evaluated using a

comprehensive index, which is calculated from each single index

of the risk rank reflected by each POD12 characteristic variable at

each time. The calculation of the POD12 comprehensive risk index

mainly includes the following steps.

Calculation of the risk factors of a single index (Wi(t))

(Equation 10)

Wi(t) =
jjx(t) −x0j j
xmax − x0

(10)

Where x(t)is the amplitude of the monitoring index (such as

LDH, b2-MG, III-IV, ECOG, NLR, and SII) at time t, and x0and

xmaxare the average and maximum values of the amplitude of the

monitoring index under the normal conditions.

Determining the weight factor (pi(t)) of the risk factors of the

single index to calculate the comprehensive risk factors (Wz(t)) of

the multivariable characteristics of POD12, based on the risk factors

and their respective weights (Equation 11).
TABLE 5 Comparison of single-factor logistic regression analysis between the NCCN-IPI and the prediction model.

Model Adverse factors b SE Wald OR 95% CI p-value

NCCN-IPI ≥ 4 1.284 0.717 3.211 3.611 0.887 14.709 0.073

Model A ≥ 4 2.897 0.711 16.581 18.121 4.494 73.078 < 0.001

Model B Medium and high risk 2.485 0.809 9.426 12 2.456 58.631 0.002
FIGURE 5

NCCN-IPI and two prediction models, (A, B). (A) NCCN-IPI. (B) Prediction model (A). (C) Prediction model (B).
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Wz(t) =o
n

i=1
Wi(t) · pi(t) (11)

The rank of the risk for POD12 could then be determined by the

comprehensive risk index. The risk ranking is divided into four

categories: risk, subsidiary risk, subsidiary safe, and safe.

Based on chaos theory, for six characteristic variables of POD12

(i.e., LDH, b2-MG, stages III–IV, ECOG, NLR, and SII), the delay

time (t) was calculated using the mutual information method, and

the embedding dimension (m) was determined using the false

nearest-neighbor method, where m corresponds to the value with

the minimum false proximity rate.

The characteristic time series were predicted using a single-layer

structure in LSTM. The number of neurons is set to 100, and the

hyperparameter l is 0.01. The CNN-LSTM model was used for

training. In the process of training the model, the training time step

was set to the embedded dimension m, the activation function was

Relu, and the optimizer was Adam. The number of epochs was set

to 100, and the learning rate was 0.01, with an experimental time

step of 1 h.To assess the performance of the prediction models, the

mean absolute percentage error (MAPE) is a commonly used

criterion. Specifically, given a dataset y = y1, y2,…, yNf g, let the

predicted values output by a certain prediction model be denoted as
y
∧
= y∧1 , y

∧
2 ,…, y∧N

� �
, then Equation 12

MAPE =
1
N o

N

k=1

yk − y∧k
yk

����
����� 100% (12)

It can be seen from the calculation formula that the smaller the

MAPE value, the better the performance of the model. In order to

better describe the prediction ability of the model, this study cited

the evaluation scale introduced in Xu et al. (33). Its details are as

follows: when the MAPE is less than 10%, the prediction ability is

considered “highly accurate”; when the MAPE is between 10% and

20%, the prediction ability is “good”; when the MAPE is between

20% and 50%, the prediction ability is “reasonable”; and when the

MAPE is greater than 50%, the prediction ability is considered

“weak and inaccurate”.

In addition, the mean absolute scaled error (MASE) can also be

used to measure the performance of prediction models and is

expressed as Equation 13:

MASE =
1
N o

N

k=1

yk − y∧k
�� ��

1
N o

N

k=1

yk − yj j
(13)

Subsequently, to comparatively evaluate the predictive

performance of the models, this study divided the case dataset

into a training set and a test set at a ratio of 9:1. First, the GRNN,

DB-LSTM [introduced by Zhou and Xu (34)], DeepSurv

[introduced by Katzman et al. (35)], and CNN-LSTM models

were trained on the training set. After training, the models were

applied to the test set, with the results presented in Table 6.

For the prediction of the POD12 comprehensive risk index

using LDH, b2-MG, III-IV, ECOG, NLR, and SII, as shown in

Table 6, CNN-LSTM exhibits the smallest MAPE and MASE values
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(bold values in Table 6), indicating highly accurate prediction

performance. Compared with the maximum value of MAPE

among the four models, the MAPE value of CNN-LSTM is

reduced by 58.75%. In addition, the MASE values of the other

three models are 2.25 times, 2.51 times, and 1.75 times that of CNN-

LSTM, respectively.
4.5 Assessment of the impact of different
combinations on the risk level of POD12

To verify the effectiveness of the PSO-GRNN method,

experiments were conducted on the discrimination of the risk

level of POD12 and the prediction of the risk level of POD12 in

the future.

According to the characteristic variables of two combinations

(“LDH, b2-MG, and III-IV” and “ECOG, NLR, and SII”), the

POD12 risk levels were comprehensively evaluated.

In order to obtain the optimal model, the fourfold cross-

validation method is adopted. The ratio of the training set to the

test set is 9:1. The number of particles is 10, the learning factor is

0.2, and the inertia weight is 0.7. The iteration stop condition is that

the number of cycle steps exceeds 100 or the training error is less

than 0.0010. Taking the obtained weight threshold as the initial

value, the network is trained using the GRNN algorithm.

Figure 6 shows the optimization curves of the fitness function

and the smoothing factor. Single-step prediction was adopted, and

the mean square error between the predicted and test values is used

as the fitness. The smaller the fitness, the better the training effect of

the model. Based on the characteristic variables of two

combinations (“LDH, b2-MG, and III-IV” and “ECOG, NLR, and

SII”), the optimal fitness values are 0.0052 and 0.0089, and the

optimal smoothing factors are 0.0753 and 0.0868, respectively. The

improved PSO algorithm can effectively avoid missing the optimal

solution and can find the global optimal solution. Using the

optimized GRNN, the risk level of the current state of POD12

is determined.

To predict the future risk level of POD12, the CNN-LSTM

model was first used to forecast the future state values of the

characteristic variables. Subsequently, the PSO-GRNN model was

employed to predict the future state value of the characteristic

variables (i.e., the risk level of POD12 at the time of t + 1). To

maintain methodological consistency, the training and verification

sets were kept unchanged. However, the prediction dataset

consisted of the forecasted future state values of the characteristic

variables associated with POD12. Fourfold cross-verification was
TABLE 6 MAPE (%) and MASE values of the different prediction models.

Evaluation
indicators

DB-LSTM GRNN DeepSurv CNN-
LSTM

MAPE 20.873 23.612 15.385 9.739

MASE 3.036 3.377 2.354 1.348
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adopted, with parameter settings remaining consistent throughout

the process.

Single-step prediction was adopted, and the mean square error

between the predicted and test values was used as the fitness. Figure 7

shows the optimization curves for the fitness function and the

smoothing factor for future POD12 prediction. The algorithm

demonstrated robustness; for example, in the combination of LDH,

b2-MG, and stages III–IV, the optimal fitness value and smoothing

factor were 0.0127 and 0.0859, respectively, which closely align with

the previously reported experimental results.

Using the optimized GRNN, the risk level of POD12 in the future

was predicted at Shanxi Bethune Hospital from January 2016 to June

2020. It can be seen that, with the help of the method in this work, not

only can the POD12 evolution state be accurately fitted, but the risk level

of the current state of POD12 can also be judged, and that in the future

can be predicted as well. The prediction accuracy of the characteristic

variable and risk level of the POD12 in the future is high. This can

provide an important basis for timely mastering the future state of

POD12 activities, i.e., the risk level of POD12 in the hospital.

To sum up, by analyzing the incidence and risk factors of POD12 in

patients with previously untreated DLBCL, a clinical prediction model

of POD12 was established, and the prediction efficiency of the model

was also verified. It was further found that the model can also predict
Frontiers in Immunology 14
OS. Therefore, the prediction model is helpful to evaluate, simply and

effectively, the risk of POD12 in previously untreated DLBCL patients,

and then formulate personalized therapy plans for high-risk patients to

reduce the risk of POD and prolong overall survival time. However, this

study is a single-center retrospective study with a limited sample size

and a lack of external validation, and it is unclear whether the POD12

prediction model based on clinical characteristics and

immunohistochemical molecules is applicable to populations in

different regions and various treatment cases. It is urgent to further

explore large-sample clinical trials under the cooperation of multiple

centers. The CNN-LSTM and PSO-GRNNmodels are themost suitable

to predict the risk level of the POD12 in the future. This can provide an

important basis for timely mastering the future state of POD12.
5 Conclusion

The POD12 prediction model, based on LDH, b2-MG, stage,

ECOG, NLR, and SII, can be used to effectively predict the early

recurrence and progression of DLBCL. Among the models evaluated,

CNN-LSTM and PSO-GRNN demonstrated the highest suitability

for forecasting the risk level of POD12, providing an important basis

for the timely assessment of patient prognosis. In addition, the model
FIGURE 6

Fitness function optimization curve and smoothing optimization curve. Combination (LDH, b2-MG, and III-IV) Combination (ECOG, NLR, and SII).
Combination (LDH, b2-MG, and III-IV) Combination (ECOG, NLR, and SII).
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can be applied clinically through the following steps to support

physicians in developing optimized treatment plans:
Fron
(1) Indicator input: clinicians input six routine clinical

indicators—LDH, b2-MG, stage, ECOG, NLR, and SII;

(2) Automatic scoring: the model calculates the POD12 risk

score in real time;

(3) Risk stratification: for low-risk patients, standard R-CHOP

therapy can be recommended; for high-risk patients,

personalized intensive regimens may be considered in

combination with other indicators;

(4) Dynamic monitoring: clinicians update patient indicators

every month and use the CNN-LSTM model to predict the

probability of disease progression within 12 months in a

single-step prediction.
6 Future directions

While this study primarily employs statistical and deep learning

methodologies to identify prognostic patterns in clinical data, we
tiers in Immunology 15
acknowledge that incorporating biological principles could enhance

model interpretability and generalizability. Our immediate next

steps include:
(1) Integrating single-cell transcriptomics to map molecular

subtypes to POD12 trajectories;

(2) Modeling tumor-immune ecosystem dynamics using

spatially resolved proteomics as biological constraints for

CNN-LSTM;

(3) Developing mechanistic hybrid models in which neural

networks parameterize differential equations describing

lymphoma proliferation and immune interactions. These

efforts aim to bridge data-driven predictions with causal

biological reasoning.
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