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Editorial on the Research Topic
Deep learning for medical imaging applications

There is substantial scientific interest in leveraging artificial intelligence (AI),
particularly deep learning (DL), for radiological imaging, as these methods are driving
significant advancements in disease detection, diagnostic accuracy, and treatment
planning (Rubin, 2019). Over the past decade, annual publications on AI in radiology
have surged seven-fold, with MRI and CT dominating the field of data acquisition
techniques and neuroradiology leading in contributions, followed by musculoskeletal,
cardiovascular, breast, urogenital, thoracic, and abdominal subspecialties (Pesapane et al.,
2018). AI has evolved into numerous practical tools with significant clinical impact.
Modern systems largely depend on artificial neural networks (ANNSs) inspired by brain
circuitry, including Convolutional Neural Networks (CNNs), recurrent models, and
newer transformer architectures. These approaches achieve high performance across MRI,
CT, PET, and ultrasound data, uncovering subtle diagnostic features beyond human
perception and supporting earlier disease detection and more efficient clinical workflows
(Perez-Lopez et al.,, 2024). As datasets grow and computational frameworks mature,
DL continues to reshape the future of precision medicine. Ongoing challenges include
model interpretability, generalizability, and unbiased clinical deployment, but the field is
rapidly progressing toward robust, trustworthy, and clinically integrated AI systems (Yang
et al., 2024). Despite strong research potential on Al, its real-world clinical deployment
remains limited, as effective integration into healthcare requires coordinated efforts among
stakeholders and careful resolution of ethical challenges (Yang et al., 2024; Saw and Ng,
2022).

Gabriel et al. explored the critical challenge of integrating Al into patient monitoring
to support continuous, real-time clinical assessment. Developed by LookDeep Health, the
system showed strong performance in object detection and patient-role classification. Their
study demonstrated the feasibility of computer vision as a core technology for passive,
uninterrupted patient monitoring within operational hospital environments. Performance
evaluation showed high accuracy in both object detection and patient-role classification.
Using this platform, the investigators compiled a substantial dataset comprising computer-
vision, derived predictions from more than 300 high-risk fall patients, totaling over 1,000
monitored patient-days.
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Abulajiang et al. explored important insights into the
association between age at menopause and the risk of major
gynecologic malignancies, including cervical, ovarian, and uterine
cancers. Using restricted cubic spline (RCS) regression models,
the study rigorously characterized non-linear relationships between
menopausal age and subsequent cancer risk. The findings
suggest that menopausal age may serve as a meaningful clinical
indicator, with potential value in refining individualized cancer risk
assessment and informing personalized screening strategies.

Chen, Han et al. conducted a systematic review and meta-
analysis evaluating the prognostic significance of growth pattern-
based grading in mucinous ovarian carcinoma (MOC). The analysis
indicates that expansile MOC is associated with more favorable
outcomes, whereas infiltrative MOC correlates with advanced
disease and poorer prognosis. The findings further underscore the
importance of complete surgical staging for infiltrative MOC, while
suggesting that comprehensive staging may be optional in patients
with early stage expansile MOC.

Li, Ding et al. investigated radiomic features derived from
ultrasound imaging and developed an externally validated
predictive model integrating clinical variables with ultrasound-
based radiomics to assess residual tumor status in patients
with advanced epithelial ovarian cancer. The combined model
demonstrated superior performance in preoperatively identifying
patients likely to achieve complete resection of all visible disease
and exhibited stronger generalizability compared with models
based solely on clinical or radiomic features.

Yang et al. presented a comprehensive review of recent advances
in the application of Al for the early screening and diagnosis of
thyroid diseases. The authors summarized progress across multiple
domains, including thyroid pathology and ultrasound-based
assessment, and highlight emerging trends in AlI-driven clinical
decision support. The review further emphasized the potential
of integrated AI frameworks that combine ultrasound imaging
with clinical data to improve diagnostic accuracy for thyroid
cancer and to enable more precise prediction of postoperative
survival outcomes.

Chen, Liu et al. introduced a novel multi-class brain tumor
classification model, EnSLDe, designed to capture both short-
range and long-range dependencies in neuroimaging data. The
architecture comprised three key components: a Feature Extraction
Module (FExM), a Feature Enhancement Module (FEnM), and a
Classification Module. Evaluation on two publicly available datasets
demonstrated excellent performance, underscoring the model’s
ability to effectively integrate multi-scale feature dependencies and
thereby enhance brain tumor classification accuracy.

Ma et al. validated a DL signature for non-invasive
prediction of spread through air spaces (STAS) in clinical
stage I lung adenocarcinoma and compared its performance with
a conventional clinical-semantic model. The Swin Transformer-
based signature demonstrated superior predictive accuracy,
outperforming traditional approaches. This end-to-end DL
framework shows strong potential as a reliable tool for estimating
STAS preoperatively, providing valuable guidance for surgical
planning and supporting more informed decisions regarding
adjuvant therapy selection in early-stage disease.
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Han et al. developed a radiomics nomogram integrating
chest CT features with the ILD-GAP index to improve clinical
management of rheumatoid arthritis-associated interstitial lung
disease (RA-ILD). CT scans were retrospectively analyzed and
staged using ILD-GAP. The model demonstrated strong accuracy
in identifying low-risk RA-ILD patients. These findings suggest that
this non-invasive, quantitative tool may enhance clinical decision-
making by enabling more precise risk stratification and supporting
individualized management strategies for RA-ILD. This integrated
approach offers added clinical value for patient care.

VanBerlo et al. investigated a self-supervised learning (SSL)
approach to address the scarcity of labeled data in medical imaging
by leveraging representations learned from unlabeled images. Their
findings showed that constructing positive pairs from nearby
frames within the same video improves performance compared
with pairs derived from the same image, although optimal IVPP
hyperparameters vary across downstream tasks. Notably, SimCLR
consistently achieved top performance for key B-mode and M-
mode lung ultrasound tasks, suggesting that contrastive learning
may be better suited than non-contrastive methods for ultrasound
imaging applications.

Saavedra et al. developed a novel two-step DL framework
to automate the assessment of supraspinatus fatty infiltration
in shoulder MRIs. Their method sequentially employs a U-Net
architecture to segment the muscle’s region of interest, followed
by a VGG-19 network to perform binary classification based on
Goutallier’s scale. Utilizing transfer learning on a dataset of 606 T2-
weighted images, the study reported robust performance, achieving
a segmentation Dice score of 0.94 and a classification AUROC of
0.99. This approach demonstrates the feasibility of fully automating
the diagnostic workflow, significantly reducing the reliance on
time-consuming manual segmentation by radiologists.

Li, Chen et al. proposed UnetTransCNN, a hybrid architecture
designed for 3D medical image segmentation that effectively
integrates CNNs with Transformers. Addressing the limitations of
prior sequential fusion models, UnetTransCNN employs a parallel
design where a CNN-based module captures local details while a
Transformer-based module, enhanced with an Adaptive Fourier
Neural Operator, captures global contextual dependencies. The
model utilizes adaptive global-local coupling units to dynamically
fuse features across multiple scales. Validated on the BTCV
and MSD datasets, UnetTransCNN demonstrated state-of-the-art
performance, significantly outperforming existing hybrid baselines
like TransUNet and CoTr in segmenting both large and small
anatomical structures.

Rabah et al. introduced a Vision Transformer (ViT) framework
for automated detection of diabetic peripheral neuropathy (DPN)
using corneal confocal microscopy (CCM) images. To address
the subjectivity and labor-intensive nature of manual assessment,
they developed a streamlined ViT model that classifies images
as healthy or DPN without requiring pixel-level segmentation.
Using a dataset of 692 images, the model achieved state-of-the-art
performance (AUC 0.99; F1-score 95%), outperforming CNNs such
as ResNet50. Grad-CAM-based interpretability confirmed that the
model accurately focused on corneal nerve fiber loss as the key
discriminative feature.

frontiersin.org


https://doi.org/10.3389/fimag.2025.1761718
https://doi.org/10.3389/fonc.2025.1541585
https://doi.org/10.3389/fonc.2025.1541572
https://doi.org/10.3389/fonc.2025.1540734
https://doi.org/10.3389/fonc.2025.1536039
https://doi.org/10.3389/fonc.2025.1512739
https://doi.org/10.3389/fonc.2024.1482965
https://doi.org/10.3389/fimmu.2024.1417156
https://doi.org/10.3389/fimag.2024.1416114
https://doi.org/10.3389/fmed.2024.1416169
https://doi.org/10.3389/fonc.2025.1467672
https://doi.org/10.3389/fimag.2025.1542128
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org

Bonechi et al.

Luo et al. introduced a DL-driven data-enhancement
framework that sharpens the classification of endometrial lesions
in ultrasound imaging. Drawing on 1,875 images from 734 patients
across six hospitals, the team couples feature-space anomaly
detection for image-quality cleaning with a clustering-based
soften-label strategy. After benchmarking multiple CNNs and
Vision Transformers, they assembled an ensemble of ResNet50,
DenseNet169, DenseNet201, and ViT-B. This model delivers
0.809 accuracy and a 0.911 macro-AUC, markedly outperforming
baseline CNNs and demonstrating how targeted data curation can
meaningfully elevate diagnostic performance.

Liu et al. investigated the impact of Al-guided MRI instance
segmentation on laparoscopic myomectomy, with particular focus
on broad-ligament fibroids, which are challenging due to their
proximity to critical pelvic anatomy. The DL model segmented
fibroids, uterine wall, and uterine cavity on preoperative MRI. In a
randomized cohort of 120 patients, Al assistance significantly
(118 vs. 140min),
blood loss (50 vs. 85mL), and improved early postoperative

reduced operative time intraoperative
recovery. The authors conclude that millimeter-level anatomical
mapping can substantially enhance surgical precision in complex
gynecologic procedures.

Xiong et al. explored the anticancer actions of 6-gingerol in
SKOV3 ovarian carcinoma cells, revealing a targeted apoptotic
mechanism. The compound suppressed clonogenic growth
and triggers caspase-dependent apoptosis while selectively
downregulating the transcription factor Gli3, independent of
Bcl-2 family alterations. Notably, 6-gingerol robustly elevated
miR-506, typically diminished in ovarian tumors and miR-506
overexpression itself reduces Gli3 and promotes apoptosis.
Blocking miR-506 reversed these effects, supporting a model in
which 6-gingerol activated a miR-506/Gli3 axis, highlighting its
therapeutic promise.

Xie et al. conducted a systematic literature review, spanning
the last decade, on the application of machine learning (ML)
and DL techniques to psoriasis image analysis. Fifty-three
articles were retrieved from major publication repositories (WoS,
PubMed, and IEEE Xplore) addressing the problems of lesion
localization, lesion recognition, and severity assessment. The
authors evaluated commonly used public datasets, summarized
prevailing ML/DL architectures and their limitations, and
identified persistent challenges, including dataset heterogeneity
and limited interpretability. They also outlined emerging trends
and proposed future research directions to advance automated
psoriasis assessment.

Chen, Shang et al. presented a case study of a patient with
recurrent low-grade endometrial stromal sarcoma (LGESS) who
refused standard surgery or ablative treatment. After discontinuing
chemotherapy due to impaired liver function, the patient was
administered high-intensity focused ultrasound (HIFU) together
with chemotherapy, which resulted in a significant reduction in
tumor volume, inhibition of its progression, and restoration of
liver function. This result suggests that HIFU-based combination
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therapy may represent a valid option for metastatic LGESS or for
patients unsuitable for surgery, particularly when integrated with
real-time monitoring and precise post-treatment assessment.
Overall, this compilation demonstrates the researchers
collectively push forward the development of advanced deep-
learning models, reflecting their strong commitment to improving
accuracy, reliability, and impact in medical imaging applications.
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