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Editorial on the Research Topic

Deep learning for medical imaging applications

There is substantial scientific interest in leveraging artificial intelligence (AI),

particularly deep learning (DL), for radiological imaging, as these methods are driving

significant advancements in disease detection, diagnostic accuracy, and treatment

planning (Rubin, 2019). Over the past decade, annual publications on AI in radiology

have surged seven-fold, with MRI and CT dominating the field of data acquisition

techniques and neuroradiology leading in contributions, followed by musculoskeletal,

cardiovascular, breast, urogenital, thoracic, and abdominal subspecialties (Pesapane et al.,

2018). AI has evolved into numerous practical tools with significant clinical impact.

Modern systems largely depend on artificial neural networks (ANNs) inspired by brain

circuitry, including Convolutional Neural Networks (CNNs), recurrent models, and

newer transformer architectures. These approaches achieve high performance across MRI,

CT, PET, and ultrasound data, uncovering subtle diagnostic features beyond human

perception and supporting earlier disease detection and more efficient clinical workflows

(Perez-Lopez et al., 2024). As datasets grow and computational frameworks mature,

DL continues to reshape the future of precision medicine. Ongoing challenges include

model interpretability, generalizability, and unbiased clinical deployment, but the field is

rapidly progressing toward robust, trustworthy, and clinically integrated AI systems (Yang

et al., 2024). Despite strong research potential on AI, its real-world clinical deployment

remains limited, as effective integration into healthcare requires coordinated efforts among

stakeholders and careful resolution of ethical challenges (Yang et al., 2024; Saw and Ng,

2022).

Gabriel et al. explored the critical challenge of integrating AI into patient monitoring

to support continuous, real-time clinical assessment. Developed by LookDeep Health, the

system showed strong performance in object detection and patient-role classification. Their

study demonstrated the feasibility of computer vision as a core technology for passive,

uninterrupted patient monitoring within operational hospital environments. Performance

evaluation showed high accuracy in both object detection and patient-role classification.

Using this platform, the investigators compiled a substantial dataset comprising computer-

vision, derived predictions from more than 300 high-risk fall patients, totaling over 1,000

monitored patient-days.
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Abulajiang et al. explored important insights into the

association between age at menopause and the risk of major

gynecologic malignancies, including cervical, ovarian, and uterine

cancers. Using restricted cubic spline (RCS) regression models,

the study rigorously characterized non-linear relationships between

menopausal age and subsequent cancer risk. The findings

suggest that menopausal age may serve as a meaningful clinical

indicator, with potential value in refining individualized cancer risk

assessment and informing personalized screening strategies.

Chen, Han et al. conducted a systematic review and meta-

analysis evaluating the prognostic significance of growth pattern-

based grading inmucinous ovarian carcinoma (MOC). The analysis

indicates that expansile MOC is associated with more favorable

outcomes, whereas infiltrative MOC correlates with advanced

disease and poorer prognosis. The findings further underscore the

importance of complete surgical staging for infiltrative MOC, while

suggesting that comprehensive staging may be optional in patients

with early stage expansile MOC.

Li, Ding et al. investigated radiomic features derived from

ultrasound imaging and developed an externally validated

predictive model integrating clinical variables with ultrasound-

based radiomics to assess residual tumor status in patients

with advanced epithelial ovarian cancer. The combined model

demonstrated superior performance in preoperatively identifying

patients likely to achieve complete resection of all visible disease

and exhibited stronger generalizability compared with models

based solely on clinical or radiomic features.

Yang et al. presented a comprehensive review of recent advances

in the application of AI for the early screening and diagnosis of

thyroid diseases. The authors summarized progress across multiple

domains, including thyroid pathology and ultrasound-based

assessment, and highlight emerging trends in AI-driven clinical

decision support. The review further emphasized the potential

of integrated AI frameworks that combine ultrasound imaging

with clinical data to improve diagnostic accuracy for thyroid

cancer and to enable more precise prediction of postoperative

survival outcomes.

Chen, Liu et al. introduced a novel multi-class brain tumor

classification model, EnSLDe, designed to capture both short-

range and long-range dependencies in neuroimaging data. The

architecture comprised three key components: a Feature Extraction

Module (FExM), a Feature Enhancement Module (FEnM), and a

ClassificationModule. Evaluation on two publicly available datasets

demonstrated excellent performance, underscoring the model’s

ability to effectively integrate multi-scale feature dependencies and

thereby enhance brain tumor classification accuracy.

Ma et al. validated a DL signature for non-invasive

prediction of spread through air spaces (STAS) in clinical

stage I lung adenocarcinoma and compared its performance with

a conventional clinical-semantic model. The Swin Transformer-

based signature demonstrated superior predictive accuracy,

outperforming traditional approaches. This end-to-end DL

framework shows strong potential as a reliable tool for estimating

STAS preoperatively, providing valuable guidance for surgical

planning and supporting more informed decisions regarding

adjuvant therapy selection in early-stage disease.

Han et al. developed a radiomics nomogram integrating

chest CT features with the ILD-GAP index to improve clinical

management of rheumatoid arthritis-associated interstitial lung

disease (RA-ILD). CT scans were retrospectively analyzed and

staged using ILD-GAP. The model demonstrated strong accuracy

in identifying low-risk RA-ILD patients. These findings suggest that

this non-invasive, quantitative tool may enhance clinical decision-

making by enabling more precise risk stratification and supporting

individualized management strategies for RA-ILD. This integrated

approach offers added clinical value for patient care.

VanBerlo et al. investigated a self-supervised learning (SSL)

approach to address the scarcity of labeled data in medical imaging

by leveraging representations learned from unlabeled images. Their

findings showed that constructing positive pairs from nearby

frames within the same video improves performance compared

with pairs derived from the same image, although optimal IVPP

hyperparameters vary across downstream tasks. Notably, SimCLR

consistently achieved top performance for key B-mode and M-

mode lung ultrasound tasks, suggesting that contrastive learning

may be better suited than non-contrastive methods for ultrasound

imaging applications.

Saavedra et al. developed a novel two-step DL framework

to automate the assessment of supraspinatus fatty infiltration

in shoulder MRIs. Their method sequentially employs a U-Net

architecture to segment the muscle’s region of interest, followed

by a VGG-19 network to perform binary classification based on

Goutallier’s scale. Utilizing transfer learning on a dataset of 606 T2-

weighted images, the study reported robust performance, achieving

a segmentation Dice score of 0.94 and a classification AUROC of

0.99. This approach demonstrates the feasibility of fully automating

the diagnostic workflow, significantly reducing the reliance on

time-consuming manual segmentation by radiologists.

Li, Chen et al. proposed UnetTransCNN, a hybrid architecture

designed for 3D medical image segmentation that effectively

integrates CNNs with Transformers. Addressing the limitations of

prior sequential fusion models, UnetTransCNN employs a parallel

design where a CNN-based module captures local details while a

Transformer-based module, enhanced with an Adaptive Fourier

Neural Operator, captures global contextual dependencies. The

model utilizes adaptive global-local coupling units to dynamically

fuse features across multiple scales. Validated on the BTCV

and MSD datasets, UnetTransCNN demonstrated state-of-the-art

performance, significantly outperforming existing hybrid baselines

like TransUNet and CoTr in segmenting both large and small

anatomical structures.

Rabah et al. introduced a Vision Transformer (ViT) framework

for automated detection of diabetic peripheral neuropathy (DPN)

using corneal confocal microscopy (CCM) images. To address

the subjectivity and labor-intensive nature of manual assessment,

they developed a streamlined ViT model that classifies images

as healthy or DPN without requiring pixel-level segmentation.

Using a dataset of 692 images, the model achieved state-of-the-art

performance (AUC 0.99; F1-score 95%), outperforming CNNs such

as ResNet50. Grad-CAM–based interpretability confirmed that the

model accurately focused on corneal nerve fiber loss as the key

discriminative feature.
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Luo et al. introduced a DL-driven data-enhancement

framework that sharpens the classification of endometrial lesions

in ultrasound imaging. Drawing on 1,875 images from 734 patients

across six hospitals, the team couples feature-space anomaly

detection for image-quality cleaning with a clustering-based

soften-label strategy. After benchmarking multiple CNNs and

Vision Transformers, they assembled an ensemble of ResNet50,

DenseNet169, DenseNet201, and ViT-B. This model delivers

0.809 accuracy and a 0.911 macro-AUC, markedly outperforming

baseline CNNs and demonstrating how targeted data curation can

meaningfully elevate diagnostic performance.

Liu et al. investigated the impact of AI-guided MRI instance

segmentation on laparoscopic myomectomy, with particular focus

on broad-ligament fibroids, which are challenging due to their

proximity to critical pelvic anatomy. The DL model segmented

fibroids, uterine wall, and uterine cavity on preoperative MRI. In a

randomized cohort of 120 patients, AI assistance significantly

reduced operative time (118 vs. 140min), intraoperative

blood loss (50 vs. 85mL), and improved early postoperative

recovery. The authors conclude that millimeter-level anatomical

mapping can substantially enhance surgical precision in complex

gynecologic procedures.

Xiong et al. explored the anticancer actions of 6-gingerol in

SKOV3 ovarian carcinoma cells, revealing a targeted apoptotic

mechanism. The compound suppressed clonogenic growth

and triggers caspase-dependent apoptosis while selectively

downregulating the transcription factor Gli3, independent of

Bcl-2 family alterations. Notably, 6-gingerol robustly elevated

miR-506, typically diminished in ovarian tumors and miR-506

overexpression itself reduces Gli3 and promotes apoptosis.

Blocking miR-506 reversed these effects, supporting a model in

which 6-gingerol activated a miR-506/Gli3 axis, highlighting its

therapeutic promise.

Xie et al. conducted a systematic literature review, spanning

the last decade, on the application of machine learning (ML)

and DL techniques to psoriasis image analysis. Fifty-three

articles were retrieved from major publication repositories (WoS,

PubMed, and IEEE Xplore) addressing the problems of lesion

localization, lesion recognition, and severity assessment. The

authors evaluated commonly used public datasets, summarized

prevailing ML/DL architectures and their limitations, and

identified persistent challenges, including dataset heterogeneity

and limited interpretability. They also outlined emerging trends

and proposed future research directions to advance automated

psoriasis assessment.

Chen, Shang et al. presented a case study of a patient with

recurrent low-grade endometrial stromal sarcoma (LGESS) who

refused standard surgery or ablative treatment. After discontinuing

chemotherapy due to impaired liver function, the patient was

administered high-intensity focused ultrasound (HIFU) together

with chemotherapy, which resulted in a significant reduction in

tumor volume, inhibition of its progression, and restoration of

liver function. This result suggests that HIFU-based combination

therapy may represent a valid option for metastatic LGESS or for

patients unsuitable for surgery, particularly when integrated with

real-time monitoring and precise post-treatment assessment.

Overall, this compilation demonstrates the researchers

collectively push forward the development of advanced deep-

learning models, reflecting their strong commitment to improving

accuracy, reliability, and impact in medical imaging applications.
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