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Cardiac adipose tissue (CAT) has emerged as a critical and clinically relevant
factor in cardiovascular disease (CVD), yet its full impact remains largely
overlooked. The amount of fat surrounding the heart can influence major blood
vessels by promoting plaque formation. In conditions such as cardiac steatosis
or fatty heart disease, fat infiltration or accumulation within the heart muscle
compromises its function may play a role in heart failure (HF) and coronary artery
disease (CAD). This review explores the different types of fat deposits surrounding
the heart, focusing on the potential contribution of CAT to cardiovascular disease
(CVD). Three main imaging modalities for assessing cardiac fat are discussed,
including magnetic resonance imaging (MRI), computed tomography (CT), and
echocardiography. The segmentation and quantification of the fat for each
imaging modality are also presented, correlating these measurements with
CVD risk. Each imaging modality offers distinct advantages and limitations in
segmenting and quantifying fat. Despite its clinical significance, quantification
and characterization of CAT remain challenging, requiring advanced imaging
techniques for precise assessment. Future research should focus on unlocking
the mechanistic pathways that link CAT to adverse cardiovascular outcomes,
ultimately enhancing our ability to predict, prevent, and treat heart disease with
greater precision. As imaging technology advances, there is a need for refined
segmentation methods and consensus-driven guidelines to establish CAT as a
key biomarker in CVD risk stratification.

KEYWORDS
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1 Introduction

Adipose tissue (AT), commonly known as body fat, is a specialized form of connective
tissue. It is composed of adipocytes or “fat cells” and additional minor cell types such
as fibroblasts, endothelial cells, macrophages, stromal cells, immune cells, and pre-
adipocytes (Kim et al., 2023). Inside the adipocytes, lipid droplets surrounded by a
structural network of fibers perform the energy storage function of these cells, as shown
in Figure 1 (Hernandez et al., 2025). AT exists in two major forms: white adipose tissue
(WAT), which serves as the primary energy storage depot in the form of triglycerides and
secretes adipokines (Farese and Walther, 2009), and brown adipose tissue (BAT), which
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is metabolically active and involved in thermogenesis through
mitochondrial uncoupling proteins (Sacks and Symonds, 2013). In
adults, brown adipose tissue surrounds the vertebrae, is located
above the clavicles, is in the upper back, and is in the central
compartment of the thoracic cavity. White adipose tissue is
composed of white and beige adipocytes and is the most abundant
type of fat in humans, including the fat that surrounds the internal
body organs called visceral adipose tissue (VAT).

Within the cardiovascular system, most of the AT corresponds
to WAT. Distinct fat depots collectively referred to as cardiac
adipose tissue (CAT) include epicardial adipose tissue (EAT),
pericardial adipose tissue (PAT), and paracardial adipose tissue
(PcAT), each differing in anatomical location and physiological
impact (Fitzgibbons and Czech, 2014). EAT, located between
the myocardium and the visceral pericardium, is the most
clinically relevant depot because it shares microcirculation with
the myocardium and coronary arteries, allowing direct paracrine
and vasocrine interactions. Rather than being a passive energy
reservoir, CAT is a metabolically active organ that exerts local and
systemic effects through the secretion of adipokines, inflammatory
mediators, and bioactive molecules. These factors influence
myocardial structure, coronary artery function, and pericardial
dynamics, contributing to conditions such as coronary artery
disease, atrial fibrillation, and heart failure.

2 Cardiac tissue layers and adipose
depots

The tissue layers that enclose each heart’s chamber are
shown in Figure 2a, starting with the innermost tissue layer
(the endocardium), and extending outward to the paracardial fat
(Gaborit et al., 2017). A basic classification of the adipose tissue
around the heart consists of the epicardial adipose tissue (EAT) and
the pericardial adipose tissue (PAT); together, these two layers form
the cardiac adipose tissue (CAT), where the visceral pericardium
is the layer between them, as shown in Figure 2b (Iacobellis, 2015;
Cheładze et al., 2022; Konwerski et al., 2022). This classification
considers the EAT and PAT, but also includes the paracardial
adipose tissue (PcAT) and perivascular adipose tissue (PvAT).

2.1 Epicardial adipose tissue

The epicardial adipose tissue (EAT) is located beneath the
visceral pericardium and has anatomical, histological, embryonic,
and genetic differences from other types of fat (Gaborit et al.,
2017; Iacobellis, 2015). EAT does not have fascia separating it
from the vessels and myocardium. This allows both paracrine
and vasocrine effects via adipokines, cytokines, and chemokines
(Gaborit et al., 2017; Mazurek et al., 2003). It is vascularized by
the coronary circulation, and its cellular composition primarily
consists of white adipocytes, with some beige and brown adipocyte
concentrations (Chhabra and Gurukripa Kowlgi, 2015; Krauz et al.,
2024). On average, the EAT corresponds to 20% of the total heart
weight, but its amount and distribution vary from 4% to 52%
among individuals. EAT depots are found mainly over the base
of the heart, the left ventricular apex, the atrioventricular and
interventricular grooves, around the coronary arteries and veins,

and over the right ventricle, especially the free wall of the right
ventricle (Silaghi et al., 2008). Several mechanisms of the EAT are
linked to its contribution to CVD, including its proinflammatory
profile, the release of different reactive oxygen species (ROS), and
fatty infiltration into the atria and ventricles (Rhee et al., 2017;
Gaeta et al., 2017; Zhou et al., 2020). However, direct metabolic
assessment of EAT and its precise role in CVD remains challenging.
Instead, studies have associated EAT thickness (>6.2 mm) and
volume (>101.2 cm3) with major cardiovascular conditions such
as coronary artery disease (CAD), heart failure (HF), and atrial
fibrillation (AF; Iacobellis, 2015, 2022; Mahmoud et al., 2021;
Abdulkareem et al., 2022). Other studies have investigated the role
of EAT and atherosclerotic plaque development and rupture (Song
et al., 2023; Van Woerden et al., 2022; Si et al., 2023).

2.2 Pericardial adipose tissue

Pericardial adipose tissue (PAT) is located over the parietal and
fibrous pericardium layers and is also referred to as paracardial
adipose tissue (Chhabra and Gurukripa Kowlgi, 2015; Iacobellis,
2009). In some literature, PAT is combined with EAT for
quantification and correlation with heart disease (Gaborit et al.,
2017; Ding et al., 2008). PAT is separated physically from the
myocardium by a layer of visceral pericardium as shown in
Figures 2a, b. It receives blood supply from non-coronary arteries
such as the pericardiophrenic artery, musculophrenic artery, and
some branches of the bronchial and esophageal arteries (Drake
et al., 2014; Stauffer et al., 2024). Studies have linked PAT to body
mass index (BMI), visceral fat, triglycerides, and CAD (Ding et al.,
2008; Sicari et al., 2011).

2.3 Paracardial adipose tissue

The paracardial adipose tissue (PcAT) is located outside the
parietal and fibrous pericardium (Gaborit et al., 2017) on its
external surface (Yamaguchi et al., 2015), within the thoracic cavity
but external to the pericardial sac. This positioning means PcAT
is separated from the coronary arteries by the pericardial layers,
unlike epicardial adipose tissue (EAT) and pericoronary adipose
tissue (PCAT), which are in direct contact with the myocardium
and coronary vessels. Imaging studies using computed tomography
and magnetic resonance consistently describe the pericardium as
the anatomical boundary between EAT and PcAT, with PcAT
appearing external to this boundary (Demmert et al., 2025).
In some literature, this fat depot is called mediastinal fat or
intrathoracic fat (Mahabadi et al., 2009), but it can also include the
PAT (Rodrigues et al., 2022). Because PcAT lacks direct anatomical
continuity with the coronary vasculature, its influence on coronary
artery disease (CAD) is considered more systemic rather than
local. Reviews emphasize that PcAT influences cardiovascular
health indirectly through systemic inflammatory and metabolic
pathways (Fitzgibbons and Czech, 2014). Its volume is typically
assessed using multi-detector computed tomography (MDCT) by
subtracting PAT volume from total thoracic fat, as illustrated in
Figure 3.
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FIGURE 1

Types of adipocytes (Hernandez et al., 2025).

2.4 Perivascular adipose tissue

Perivascular adipose tissue (PvAT) surrounds adventitia of
blood vessels, including the coronary arteries and the aorta, where it
is specifically referred to as periaortic adipose tissue (PaAT; Gaborit
et al., 2017; Zhang P. et al., 2020; Figure 2b). The PaAT has an
average thickness of 3.34 ± 0.79 mm, while the mean aorta wall
thickness is 2.38 ± 0.79 mm. An important characteristic of the
PaAT is its distribution, which presents a regular pattern around
the aorta (Alkhalil et al., 2018). A notable subtype of PvAT is
peri-coronary AT (PCAT), which surrounds the coronary arteries
(Figures 2c, d). PvAT contributes to less than 0.3% of the total
human body adipose tissue (Grigoras et al., 2019). PvAT cellular
composition is characterized by adipocytes and inflammatory cells;
it also includes microvascular supply and nerve fiber structures,
as illustrated in Figure 2e. Its composition varies by location—
for instance, periaortic AT in the thoracic region contains brown
adipocytes, whereas periaortic AT in the abdominal region consists
primarily of white adipocytes (Tran et al., 2018; van Dam et al.,
2017). Dysfunctional PvAT has been implicated in obesity-related
hypertension, atherosclerotic plaque formation, ischemic coronary
artery disease development, atheromatous plaque formation, and
reduced vascular protective properties due to its production of

pro-inflammatory substances (Virdis et al., 2015; Withers et al.,
2014). Radiomics features extracted from PCAT, when combined
with clinical variables, have shown improved performance in
predicting ischemia and coronary atherosclerosis (Militello et al.,
2023). Additional studies have explored the use of PCAT radiomics
for evaluating ischemic stenosis, comparing vessel-based and
lesion-based segmentation approaches. However, these analyses
revealed no significant differences in the diagnosis accuracy
between the two methods (Wen et al., 2022). Beyond the coronary
context, PvAT has also been investigated using CT imaging. One
study demonstrated a correlation between alterations in PvAT
density and the presence of abdominal aortic aneurysms, suggesting
its potential role as an imaging biomarker for vascular disease
(Ginzburg et al., 2024).

3 Cardiac fat and cardiovascular
disease (CVD)

3.1 Coronary artery disease (CAD)

Coronary artery disease (CAD) results in a deficient supply
of oxygenated blood to the heart muscle due to the buildup of
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FIGURE 2

Heart wall tissue layers and classification of cardiac fat. (a) Tissue layers on the heart’s walls (Gaborit et al., 2017), (b) common classification of fat
around the heart (Kim et al., 2023; Iacobellis, 2015; Konwerski et al., 2022), (c) perivascular AT (PvAT) and pericoronary AT (PCAT), (d) PCAT detail
(Krauz et al., 2024), and (e) PvAT composition (Zhang P. et al., 2020).

FIGURE 3

PcAT identified as intrathoracic fat and 3D reconstructions of PAT and PcAT (Mahabadi et al., 2009).

atherosclerotic plaques (cholesterol deposits) inside the arteries,
causing narrowing and obstruction (Cleveland Clinic, 2023; Mayo
Clinic, 2024a). CAD is also referred to as coronary heart disease
(CHD) or coronary stenosis (Mancio et al., 2018). As shown in
Figure 4a, an obstructive plaque can trigger blood clot formation,
further reducing arterial blood flow. In Figure 4b, illustrates the
progression of plaque development, including plaque growth,
arterial wall damage, and eventual rupture. The lack of treatment
for CAD could lead to angina (chest pain and shortness of breath),
heart attack (complete artery blockage due to a clot), HF, and

arrhythmias. Studies using CT scans have identified PAT volumes
exceeding 300 cm3 as a reliable predictor of CAD, comparable with
the Framingham Risk Score (Mahabadi et al., 2009; Ding et al.,
2009). In studies using CT scans and echocardiography, it was
found that the EAT thickness at the left atrioventricular groove was
the best predictor for obstructive CAD (Wu et al., 2013; Hirata et al.,
2015). In healthy/asymptomatic subjects, a study demonstrated that
an EAT thickness larger than 2.4 mm is a predictor of coronary
stenosis exceeding 50% occlusion as determined by multidetector
computed tomography (MDCT; Bachar et al., 2012).
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FIGURE 4

Coronary artery disease. (a) Coronary arteries and obstructive plaque (Cleveland Clinic, 2023) and (b) plaque development (Mayo Clinic, 2024a).

3.2 Heart failure (HF)

Heart failure (HF), also known as congestive heart failure
(CHF), is a chronic condition that develops when the heart muscle
is unable to pump blood effectively throughout the body. This
impaired pumping function can be caused by various factors that
weaken or stiffen the heart muscle, ultimately leading to a shortage
of oxygen-rich blood reaching vital organs (Mayo Clinic, 2025b).
Heart failure is classified based on ejection fraction (EF)—the
percentage of blood ejected from the left ventricle per heartbeat.
HF is categorized as: HF with reduced EF (<40%, HFrEF), with
mildly reduced EF (41%−49%), and HF with preserved EF (>50%,
HFpEF; Malik et al., 2024). The relationship between EAT and
HF remains an area of active research. Some studies demonstrated
that increased EAT volume may have a protective role in HFrEF
(Pugliese et al., 2021), while in HFpEF, excess EAT is associated
with adverse cardiometabolic effects (Tromp et al., 2021).
EAT expansion and inflammation promote diastolic dysfunction
through mechanical restraint that limits ventricular compliance,
secretion of pro-inflammatory cytokines and adipokines that drive
myocardial fibrosis and endothelial dysfunction, and lipotoxicity
that exacerbates oxidative stress and metabolic derangements
(Qi et al., 2025; Menghoum et al., 2025). These mechanisms
collectively reproduce the HFpEF phenotype characterized by
elevated filling pressures, systemic inflammation, and exercise
intolerance, even in non-obese individuals. Furthermore, EAT
density and inflammatory profile have been associated with adverse
outcomes and are being explored as therapeutic targets, with
interventions such as caloric restriction (Iacobellis and Willens,
2009). Conversely, in HFrEF, some evidence suggests EAT may
provide local energy substrates and exert a protective role during
advanced systolic dysfunction (Pugliese et al., 2021), highlighting
the complex and phenotype-specific role of EAT in heart failure.

3.3 Atrial fibrillation

Atrial fibrillation (AF) is a common cardiac arrhythmia that
disrupts the heart’s natural electrical conduction. In a healthy heart,
the sinoatrial (SA) node acts as the pacemaker, generating electrical
impulses in a coordinated contraction of the heart muscle. These
impulses propagate through the atria, causing their contraction and
pumping blood into the ventricles. The ventricles then depolarize
and contract to circulate the blood throughout the body (Li
et al., 2023). However, in AF, the electrical activity within the
atria becomes chaotic and disorganized, disrupting the normal
contraction pattern. Consequently, the ventricles may not receive
these signals consistently, resulting in an irregular and often faster
heart rate. AF also causes the enlargement of the left atrium and
increased pressure within the atrium (Large et al., 1997; Schneider
et al., 2010). Several factors contribute to the development of AF,
including hypertension, CAD, valvular heart disease, sleep apnea,
obesity, and excessive alcohol consumption (Gaborit et al., 2017;
Schneider et al., 2010). Studies using CT scans have shown that
epicardial adipose tissue (EAT) around the atria plays a role in
AF recurrence (Tsao et al., 2011; Nakanishi et al., 2012; Nagashima
et al., 2011).

3.4 Ischemic heart disease

Ischemic heart disease is a group of syndromes caused by
myocardial ischemia, which occurs when blood flow to the
myocardium is restricted. This imbalance between blood supply
and demand deprives the cardiac tissue of the oxygen and nutrients
essential for normal function (Steenbergen and Frangogiannis,
2012). The most prevalent cause of myocardial ischemia is CAD,
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followed by coronary artery spasm (CAS). CAS is a transient
constriction of the coronary arteries that can reduce blood flow
and trigger ischemic events (Gul et al., 2024). Studies using non-
contrast CT assessed PAT and EAT volumes and found that larger
amounts, with concentrations above 96 ± 36 cm3 for EAT and
above 99 ± 4 cm3 for PAT, are strongly correlated with myocardial
ischemia (Tamarappoo et al., 2010; Hell et al., 2016b).

3.5 Heart valve stenosis

Stenosis refers to the narrowing of the diameter of a passage,
conduit, or tube in the body. Stenosis can affect the aortic, mitral,
tricuspid, or pulmonary valve, making blood flow more (Mayo
Clinic, 2024b). The most common cause of valve stenosis is the
accumulation of calcium or other mineral deposits and fat residues
over the valve leaflets. Excess EAT, particularly when its thickness
> 7 mm, has been linked to mitral annular calcification and
aortic valve stenosis (Mahabadi et al., 2017; Nabati et al., 2019).
Valve stenosis is uncommon in young individuals; however, studies
suggest that approximately 2% of people over 65 years old in the
United States have some degree of aortic valve stenosis. If left
untreated, mitral and aortic valve stenosis can lead to HF, stroke,
irregular heart rhythms, and death (Mayo Clinic, 2025a).

3.6 Cardiac steatosis

Cardiac steatosis, also known as myocardial steatosis,
lipomatosis cordis, or fatty heart disease, refers to the abnormal
accumulation of fat within the heart muscle. The excess fat
plays a significant role in diabetic cardiomyopathy, ventricular
dysfunction, and end-organ damage (Liu et al., 2010). The
infiltrative-lipotoxic and pericardial restraint hypotheses have
been postulated as the potential mechanisms that relate EAT
to cardiac steatosis (Van Woerden et al., 2022). (1) Infiltrative-
lipotoxic hypothesis—EAT infiltrates the myocardium, releasing
pro-inflammatory adipokines that impair heart function. (2)
Pericardial restraint hypothesis—Excessive EAT accumulation
mechanically restricts myocardial expansion, leading to diastolic
dysfunction (Figure 5). Myocardial steatosis is a common
condition, affecting up to 30% of the population. In severe cases,
it can lead to symptoms like fatigue, shortness of breath, chest
pain, heart failure, or arrhythmias, with a strong correlation to left
ventricular dysfunction (Wu et al., 2020).

3.7 Cardiac fibrosis

Cardiac fibrosis is characterized by the excessive deposition of
stiff and inflexible scar tissue in the myocardium that reduces the
heart’s ability to pump blood effectively (Schimmel et al., 2022). The
main cause of cardiac fibrosis is related to heart injuries from heart
attacks, hypertension, or diabetes, but the amount of EAT has also
been linked with myocardial fibrosis. EAT volume measured using
cardiac magnetic resonance (CMR) imaging has demonstrated a
strong correlation between EAT volume and myocardial fibrosis,

independent of traditional risk factors such as age, hypertension,
diabetes, or other HF causes (Wu et al., 2017).

3.8 Cardiac lipoma

Cardiac lipoma is a non-common degenerative process in
which myocardial cells are replaced with fat. It is a benign
tumor made up of mature fat cells (Ismail et al., 2015). This
process primarily affects the myocardial structures, the right
atrium, and can originate from the papillary muscle (Radswiki,
2025). Cardiac lipomas are correlated with heart arrhythmias,
syncope, palpitations, and angina. Another form of cardiac lipoma
is epicardial lipomatosis, sometimes called epicardial lipomatous
hypertrophy (ELH). This lipoma involves an excess of non-
encapsulated fatty tissue in the epicardium (Weerakkody, 2021).
EAT thickness above 20 mm has been linked to ELH, diastolic
dysfunction, and tamponade in clinical case reports (Myerson et al.,
2004; Miller and Schmitt, 2011). When affecting the interatrial
septum, the infiltration of fatty tissue leads to the development of
lipomatous hypertrophy of the interatrial septum. This uncommon
disorder is associated with arrhythmias, syncope, and sudden death
(Gaillard, 2025).

4 Imaging modalities to assess CAT

Accurate assessment of pericardial adipose tissue (PAT)
and epicardial adipose tissue (EAT) is crucial for evaluating
cardiovascular risk. This process involves segmentation and
quantification. Segmentation refers to manual, semi-automatic,
and automatic EAT and PAT region identification in medical
images. Quantification refers to the measurement of EAT and
PAT volume and thickness. This section explores various imaging
modalities employed for segmenting and quantifying cardiac
fat. Magnetic resonance imaging (MRI) offers exceptional soft
tissue contrast and differentiates fat types (Antonopoulos and
Antoniades, 2018). However, factors like cost, time, and patient
suitability can limit its use (Cheładze et al., 2022). Cardiac
computed tomography (cardiac CT) provides a fast and readily
available option for EAT measurement, though it involves ionizing
radiation (Marwan et al., 2019). Echocardiography, a widely
accessible and safe technique, offers estimates of EAT thickness, but
with limitations in fat type distinction and visceral fat measurement
(Iacobellis and Willens, 2009). This section investigates the
advantages, disadvantages, and clinical considerations for each
modality to guide the selection of the most appropriate method for
individual-specific patient needs.

4.1 Assessment metrics

Evaluation metrics are needed to assess the accuracy of
segmentation and quantification compared to expert tracing. First,
Dice Similarity Coefficient (DSC) is a popular and effective tool
to gauge the similarity of two data sets. It compares the overlap
between the ground truth and the predicted segmentation. Values
range between 0.0 (no overlap) and 1.0 (perfect overlap; Cuellar
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FIGURE 5

Cardiac steatosis by infiltration (left), and by pericardial restraint (right) (Van Woerden et al., 2022).

et al., 2025). Next, accuracy is a measure used to evaluate the overall
performance of a classification model. Accuracy is the proportion
of correct predictions (both true positives and true negatives)
out of the total number of predictions made. Similarly, precision,
sensitivity, and specificity are comparison metrics used to measure
classification performance.

• Precision—The proportion of true positive predictions among
all positive predictions made.

• Sensitivity—The proportion of actual positives correctly
identified (true positive rate).

• Specificity—The proportion of actual negatives correctly
identified (true negative rate).

• F1-score—The harmonic mean of precision and recall,
particularly useful for imbalanced datasets.

All four metrics, like DSC, range from 0.0 to 1.0, where values
close to 1.0 are considered better segmentation performance. These
metrics are commonly used in medical applications to measure the
performance of segmentation and quantification efforts. These are
among the most common metrics in the given literature used for
comparison of different segmentation and quantification methods,
as outlined in Tables 1–6.

4.2 Cardiac magnetic resonance (CMR)

MRI utilizes powerful magnetic fields and radio waves to
generate high-resolution images of anatomical structures. Cardiac
magnetic resonance (CMR) imaging provides excellent soft tissue
contrast, enabling detailed visualization of cardiac structures
and adipose tissue. Additionally, CMR assesses myocardial
fibrosis and myocardial perfusion, providing a comprehensive
evaluation of cardiac health (Pohost, 2008). This non-invasive
and radiation-free modality delivers high spatial and temporal
resolution, effectively distinguishing visceral and parietal layers
of the pericardium as shown in Figure 6 (Guglielmo et al.,
2021).

4.2.1 Imaging techniques
Novel MRI acquisition strategies have enabled high-resolution,

rapid imaging that enhances diagnostic accuracy and provides
clearer insights into cardiac structures (Salerno et al., 2017).

Cine MRI is a real-time imaging technique that captures cardiac
motion and creates a 3D video. Cine MRI uses steady-state free
precession sequencing to acquire a series of slices of the heart in
2-, 3-, and 4-chamber views (Ahmed et al., 2013). Images are then
fused to form a cine loop, which visualizes the complete cardiac
cycle. Cine imaging provides detailed anatomical information
about the heart (Curtis and Cheng, 2022), which helps assess CAT
volume and distribution around the beating heart.

The Dixon technique is considered the benchmark for assessing
visceral adipose tissue (Homsi et al., 2016). This specific pulse
sequence helps separate water and fat signals and relies on the
chemical shift difference between water and fat protons. Water
and fat have different resonant frequencies in a magnetic field, and
this shift enhances the ability to characterize and quantify the two
tissues. The Dixon technique can generate water-only and fat-only
images, improving the accuracy of EAT quantification.

Gradient echo sequencing provides high spatial resolution and
is sensitive to tissue property changes. This imaging technique
utilizes gradients to create images exploiting magnetic property
differences in different tissue types. The relatively high resolution
is beneficial to visualize the thin layers of CAT and distinguish it
from adjacent structures like the pericardium. Gradient echo scans
can also be combined with other imaging strategies, like the Dixon
sequence, to improve tissue separation and enhance visualization
of CAT.

4.2.2 CAT segmentation
The segmentation of CAT is particularly challenging compared

to other cardiovascular segmentation tasks. CAT’s shape is irregular
and unevenly distributed, making it hard to detect automatically.
Additionally, MRI partial volume effects can blur the pericardium
(Militello et al., 2019), leading to mislabeling of CAT as epicardial
or paracardial fat due to their similar intensities. Experts visually
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TABLE 1 Summary of CAT segmentation studies using MRI.

References Tissue Study Metrics Values

Feng et al. (2024) EAT Automatic double Res-Unet CNN based on fat
maps, Dixon MRI

DSC 0.8630

Chen et al. (2023) PAT Automatic triple-stage 3SUnet, 2D SA MRI Precision
Recall

0.766 ± 0.152
0.831 ± 0.126

Daudé et al. (2022) PAT
EAT

Automatic four-chamber FCNs, cine MRI DSC
MSD (mm)
DSC
MSD (mm)

0.7700
1.71
0.8000
2.38

Kulasekara et al. (2022) CAT Automatic 3D U-Net, cine MRI DSC 0.7170

Fulton et al. (2020) EAT Automatic double NN, cine MRI DSC 0.56 ± 0.12

SA, short axis; MSD, mean surface distance; NN, neural network.

TABLE 2 Summary of CAT quantification studies using cardiac MRI.

References Tissue Study Units Values Correlation

Guglielmo et al. (2024) EAT Automated deep learning volume
measurement

mL 43.5 ± 9.0 p < 0.001

Secchi et al. (2022) EAT Manual volume measurement
using open-bore MR, cine MRI

Systole cm3

Diastole cm3
88.25
87.00

p < 0.124
p < 0.551

Henningsson et al. (2020) EAT Manual volume measurement
using the cine Dixon technique, 3D
Dixon MRI

mL 145 ± 90 p < 0.01

identified and traced the outline of epicardial fat on each cross-
sectional image of the heart (Malavazos et al., 2010). However, this
method was labor-intensive, time-consuming, and subject to inter-
and intra-observer variability.

To overcome these limitations, machine learning (ML) and
deep learning (DL) algorithms have recently automated the
segmentation process by finding patterns in the medical images
(Karlapalem et al., 2019) or using specific features. ML models
are statistical models that map input features into output classes.
DL extends the concepts of ML. DL models learn the patterns
from the training data. Convolutional neural networks (CNNs)
are leveraged to perform tasks to recognize image features. These
models produce high accuracy and consistency, can rapidly process
large volumes of data, and improve with more training data. This
approach, however, requires large, annotated datasets for training,
high computational costs, and personnel with expertise in ML/DL.
Figure 7 below shows the qualitative results of various DL models
compared to manual tracings.

Manual tracings act as the ground truth to assess model
prediction accuracy. Table 1 below compares the performance of
several ML methods used for CAT segmentation from MRI.

4.2.3 CAT quantification
Much research shows that increased EAT volume is strongly

linked to CAD (Song et al., 2023). Therefore, quantifying CAT is
necessary for risk assessment and early identification of CAD and
other CVDs. CAT volume is calculated by summing the segmented
areas across all image slices and multiplying by the slice thickness
and pixel dimensions. This method accurately measures the total
CAT volume and accounts for the entire heart, calculating fat

volume from the base to the apex. This approach, often referred to
as the modified Simpson’s method, is considered the gold standard
for CAT measurement (Requena-Ibáñez et al., 2022). Furthermore,
to obtain CAT mass, the fat volume can be simply multiplied
by the specific fat density (0.92 g/cm3). Typically, this approach
is done semi-automatically. Experts trace the CAT contours, and
a software package is leveraged to sum the areas across all
images, taking into account slice thickness and intersection gaps
(Henningsson et al., 2020). However, these measurements are
time-consuming and cannot be easily incorporated into clinical
routine assessments. Recent DL efforts have been employed to
automatically quantify CAT. For example, a DL network was
developed to automatically quantify EAT on short-axis cine CMR
images (Guglielmo et al., 2024). Also, a novel model called
PAT-CNN was developed to automate the segmentation and
quantification of pericardial adipose tissue from T2-weighted CMR
scans (Li et al., 2022). However, manual tracings are still required
to validate the performance of such networks. Table 2 compares
manual and automatic approaches for CAT quantification in CMR.

4.2.4 Limitations
CAT segmentation and quantification remain complex tasks,

even with DL advancements. While DL techniques and methods
help mitigate challenges in CMR imaging and improve tissue
and EAT visualization, MRI remains an expensive and exclusive
imaging modality. It is a high-cost, resource-intensive modality
requiring specialized equipment, trained personnel, and extended
scan times. Additionally, not all medical centers offer cardiac MRI,
limiting accessibility. Patient compliance is another challenge, as
MRI requires individuals to remain still for an extended period,
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TABLE 3 Summary of CAT segmentation studies using CT.

References Tissue Study Metrics Values Correlation

Zhang Q. et al. (2020) EAT Automatic dual U-Nets,
CT

DSC 0.9119 0.9304

He et al. (2020) EAT Automatic 3D deep
attention U-Net, CCTA

DSC
Precision
Recall

0.8550
0.8640
0.8950

NA

Militello et al. (2019) EAT Semi-automatic image
analysis, CS and CCTA

DSC
MAD

0.9374, 0.9248
2.18, 2.87

(Pearson)
0.9591
0.9513

Priya and Sudha (2019) EAT
PAT

Adaptive Region
Growing Algorithm, NC
CT

Accuracy
DSC
Accuracy
DSC

0.9850
0.9870
0.9640
0.9530

NA

Norlén et al. (2016) Automatic supervised,
CCTA

DSC 0.9900 0.9900

Rodrigues et al. (2016) EAT
PAT

Automatic supervised,
CT

DSC
Accuracy

0.9810
0.9850

NA

NC, non-contrast; CS, calcium score; CCTA, coronary CT angiography; MAD, mean absolute distance.

TABLE 4 Summary of CAT quantification studies using CT.

References Tissue Study Units Values Correlation

Hoori et al. (2022) EATv Automatic DeepFat, NC low-dose
CS CT

cm3 100.2
138.6

R = 0.9833
R = 0.9852

Abdulkareem et al. (2022) EATv Automatic single multi-task
framework, ECG-gated CT

mL 101.16
103.29

R = 0.9540
R = 0.9430

Commandeur et al. (2019) EATv Automatic CNN, NC CS CT cm3 86.75
85.57

R = 0.9740
p < 0.001

Commandeur et al. (2018) EATv TATv Automatic dual ConvNet, NC
CCTA

cm3 130.35
130.94

R = 0.945
p < 0.001

D’Errico et al. (2017) T–EATv
RV–EATv
LV–EATv

Manual volume analysis, NC
CCTA

cm3 103.62, 94.96
67.23, 57.41
38.01, 35.27

ICC = 0.9900

EATv, EAT volume; T-EAT, total EAT; TAT, thoracic adipose tissue; NC, non-contrast; CCTA, coronary CT angiography; CS, calcium score; ICC, intra class correlation.

posing difficulties for those with claustrophobia or severe anxiety.
Furthermore, patients with pacemakers or certain metallic implants
are ineligible for MRI, further restricting its use. Despite these
challenges, MRI remains a desirable modality. With ongoing
research and technological advancements, it has the potential to
become the preferred method for CAT assessment, improving
cardiovascular risk evaluation and clinical decision-making.

4.3 Computed tomography (CT scan)

CT is a powerful imaging modality that uses X-rays to
create detailed cross-sectional images of the body. Advanced
algorithms combine multiple X-ray measurements from different
angles around the patient to reconstruct a 3D representation
of the desired anatomy, providing a comprehensive view of the
body’s internal structures. CT has demonstrated its feasibility and
reproducibility for segmenting and quantifying EAT (Tamarappoo
et al., 2010). By generating 3D images, CT enables accurate
assessment of CAT distribution and precise quantification of CAT
volume by measuring attenuation values of fat in Hounsfield
Units (HU). Moreover, specialized cardiac CT scans like Coronary

CT Angiography (CCTA) and Coronary Artery Calcium (CAC)
scoring further enhance characterization of CAT, as shown in
Figure 8. Recently, photon-counting CT (PCCT) has emerged as
an advanced technology offering improved spatial and contrast
resolution compared to conventional CT (Meloni et al., 2023).
PCCT scanners convert X-ray photons into electrical signals
that are counted and categorized by energy level, resulting
in superior image quality and significantly reduced radiation
exposure. Research has shown PCCT outperforming conventional
CT for the quantification of CAC and significant visual reduction
of artifacts on coronary calcified plaques (Flohr et al., 2023).
Lastly, CT is considered superior when compared to other imaging
modalities for segmenting CAT (Benčević et al., 2022). Unlike MRI,
CT does not suffer from pericardial blurring, which is beneficial
in distinguishing different adipose tissues. This makes CT the
preferred choice in the segmentation and quantification of CAT
(Greco et al., 2022).

4.3.1 Imaging techniques
Contrast and non-contrast enhanced CT are the two main

primary types of cardiac CT scans used to evaluate adipose
tissue and other cardiac structures. Contrast-enhanced CT involves

Frontiers in Imaging 09 frontiersin.org

https://doi.org/10.3389/fimag.2025.1694840
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org


Cuellar Buritica et al. 10.3389/fimag.2025.1694840

TABLE 5 Summary of CAT quantification studies using US.

References Tissue Study Units Values Correlation

Average from meta-analysis in
Wang et al. (2022)

EAT Meta-analysis of EAT in patients
with CAD and Non-CAD groups

mm 5.68 avg
3.61 avg

NA

Eren et al. (2021) EAT EAT for atrial fibrillation
prediction univariate, multivariate
regression ROC EAT > 6.5 mm

mm
mm
Sensitivity
Specificity

8.300, 6.100
5.850, 3.521

0.720
0.770

p < 0.001

Xiao et al. (2020) EAT EAT thickness and heart disease
(control)
Coronary heart disease
Single-vessel disease
Double vessel disease
Multi-vessel disease

mm 4.88
6.51
5.66
6.24
6.86

p < 0.01
vs.

control group

Parisi et al. (2020) EAT Validation of EAT thickness
assessment for predicting CAD

mm 11.00 (median)
1.00 mm (min)

29.00 mm (max)

p < 0.001

Meenakshi et al. (2016) EAT EAT thickness as CAD marker mm 0.9 min
13.5 max

5.56 avg. (men)
5.97 avg. (women)

p (CAD) = 0.0001
p (BMI) = 0.08

Iacobellis et al. (2003) RV—EAT Epicardial fat from
echocardiography, thickness

mm 1.90 min
15.70 max

7.30 avg. (men)
6.84 avg. (women)

r (VAT) = 0.798
r (WC) = 0.74

ROC, receiver operating curve; WC, waist circumference.

the use of contrast agents to enhance the visualization of
cardiovascular anatomy and can provide improved delineation of
epicardial adipose tissue. CCTA is a contrast-enhanced scan that
visualizes coronary arteries, providing high-resolution images of
the heart and adjacent structures. The enhanced detail allows for
precise visualization of EAT. However, the use of contrast agents
can pose risks to patients with allergies or other impairments.
In contrast, CAC scoring is a non-contrast scan that detects
coronary calcification. This imaging technique also delineates
cardiac structures, contrasting epicardial fat from other tissues.
La Grutta et al. (2016) compared the quantification metrics of
EAT of CCTA and CAC. In their study of 76 patients suspected
of CAD, the researchers measured EAT volume and thickness
with semi-automatic software. The EAT volume was measured
to be 122 ± 50 cm3 for CAC scoring and 101 ± 47 cm3 for
CCTA. They noted no significant difference in median values and
concluded that both imaging techniques may be equally employed
for EAT assessment. Nevertheless, it is important to note that the
most accurate quantification of EAT is achieved using thin-slice,
non-enhanced CT images, which remain the gold standard for
minimizing variability and avoiding contrast-related attenuation
bias (Balcer et al., 2020; Xu et al., 2022).

4.3.2 CAT segmentation
Even though manual tracing is time-consuming, manual

epicardial fat volume (EFV) segmentation procedures are currently
widely used in clinical practice due to their accuracy and
interpretability. Computer-aided tools have partially elevated the
burden by enhancing repeatability and reducing processing time.
However, this method remains costly. Semi-automated imaging
techniques, such as thresholding in CT images, have further

streamlined segmentation. These approaches rely on Hounsfield
Unit (HU) values to identify AT, with a broad attenuation range of
−250 HU to −30 HU encompassing the entire spectrum associated
with fat (Marwan and Achenbach, 2013). More specifically,
lower thresholds for fat detection range from −250 to −190
HU, whereas upper thresholds are generally set between −50
and −30 HU. A commonly applied reference range for fat
segmentation is −130 to −30 HU (Yin et al., 2022). Importantly,
differences in threshold selection can significantly affect volume
estimation, particularly in contrast-enhanced CT scans. Applying
the commonly reported upper limit of −30 HU for both enhanced
and non-enhanced datasets has been shown to underestimate
epicardial fat volumes in contrast-enhanced scans. To minimize
systematic bias, semiautomated software often adjusts thresholds,
with optimal upper limits reported as −43 HU for unenhanced
datasets and −15 HU for contrast-enhanced scans. With the
emergence of artificial intelligence (AI) in recent years, particularly
deep learning (DL) methods, fully automated, fast, and highly
accurate CAT segmentations are now achievable (He et al., 2020;
Bencevic et al., 2021; Commandeur et al., 2019). Automatic DL
methods can be generalized in a two-stage process: the first
stage is to localize the heart boundary in the 3D volume, and
the second stage is to delineate the pericardium (Commandeur
et al., 2019). Unlike traditional methods, the DL model uses the
direct training data to make CAT predictions without manual
intervention. With the increase in more annotated databases
and strong research interest, DL methods continue to improve.
Strong results in CAT prediction accuracy have been achieved,
as shown in Figure 9. However, DL efforts still rely on expert
tracing as ground truth to compare the predictions. Table 3
shows automatic and semi-automatic studies to quantify CAT
in CT.

Frontiers in Imaging 10 frontiersin.org

https://doi.org/10.3389/fimag.2025.1694840
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org


Cuellar Buritica et al. 10.3389/fimag.2025.1694840

TABLE 6 Comparison of main medical imaging modalities for CAT segmentation and quantification.

Feature MRI CT Echocardiography

Examination time Longer scan time Fast acquisition time Real-time imaging

Cost High Moderate Low

Image quality High spatial and temporal resolution,
Multiplanar imaging capabilities, High soft
tissue contrast, excellent for fat quantification

Good spatial resolution, accurate fat
attenuation, good for calcium scoring

Lower resolution, limited depth
penetration

CAT assessment Accurate quantification, can differentiate fat
types

Good for assessing fat distribution, but less
accurate for quantification

Limited ability to quantify fat,
primarily qualitative assessment,
free wall of RV thickness

CAT quantification Volume, thickness Volume, thickness Thickness

Contraindications Contraindicated for patients with certain
metal implants

Can be performed on patients with
pacemakers/defibrillators

None

Constraints Difficult for claustrophobic and robust
patients, requires specialized cardiac MRI
protocols

Motion artifacts can affect image quality, may
require contrast agents

Difficulty in imaging obese
patients, limited field of view,
operator-dependent

Availability Widely available Widely available Widely available

Infrastructure Large, requires a shielded room Moderate size room Minimal, portable

Radiation exposure None High radiation dose Minimal or no radiation

Contrast requirement Often (gadolinium; not
nephrotoxic—caution in severe renal failure)

Often (iodine-based; nephrotoxic risk) Rare (used in contrast echo in
specific cases)

Clinical feasibility Cardiac function, tissue characterization,
perfusion imaging

Chest imaging, vascular imaging Cardiac function, valve assessment,
cardiac chamber dimensions

Primary clinical applications Tissue viability, myocarditis,
cardiomyopathy, function

CAD, plaque burden, anatomy Valve disease, EF, wall motion,
pericardial effusion

FIGURE 6

Characterization of EAT (asterisk), PAT (star), and pericardium (arrow) for MRI on long-axis four-chamber view (left) and basal short-axis view (right)
at end-diastole frame (Bertaso et al., 2013).

4.3.3 CAT quantification
Once segmented, quantification of the volume and thickness of

CAT is necessary to assess CVD risk. Two primary metrics, CAT
volume and CAT density, are used to quantify EAT. CAT volume
reflects the total fat accumulation around the heart and has been
associated with the prevalence and recurrence of atrial fibrillation
(AF), as well as with atherosclerosis, myocardial infarction (MI),

and coronary artery calcification (CAC; Schneider et al., 2010). On
the other hand, CAT density is correlated with inflammation and
is linked to plaque presence and progression (Hell et al., 2016b,a).
It is increasingly recognized as a biomarker of tissue composition
and metabolic activity. Density reflects the relative lipid and water
content within adipose tissue; higher HU values indicate reduced
lipid content and increased water or fibrotic components, often
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FIGURE 7

Segmentation comparison of DL models with corresponding F1 in the upper left corners (Chen et al., 2023).

FIGURE 8

Visualization of the pericardium, EAT, and PAT on CT (Benčević et al., 2022).

associated with local inflammation. This principle parallels other
imaging biomarkers, such as myosteatosis or myocardial steatosis,
where fat infiltration lowers muscle density and predicts tissue
degeneration and functional decline (Anumonwo and Herron,
2018). Also, elevated epicardial or pericoronary adipose tissue
density has been linked to coronary inflammation and high-
risk plaque features, as demonstrated by studies using the Fat
Attenuation Index (FAI; Goeller et al., 2018; Klüner et al., 2021).

CAT volume can be quantified by counting the number of
fat voxels (measured in Hounsfield Units) inside the pericardium
border. The total volume can be estimated by summing the
interslice volumes across all CT slices. The mean CAT density can
be obtained by computing the mean attenuation across all slices
(Commandeur et al., 2019). Automation of the quantification task
significantly reduces the time burden, diminishes the variability of

tracings by different observers, and results in high reproducibility.
When measuring EAT volume on axial CT images, the superior-
to-inferior boundary is critical for consistency. Most studies define
the superior limit at the pulmonary artery bifurcation or the origin
of the main pulmonary artery, and the inferior limit at the cardiac
apex (Xu et al., 2022; Commandeur et al., 2019). This ensures
that the entire pericardial sac is included without extending into
mediastinal fat. Some protocols also use anatomical landmarks such
as the left main coronary artery for the superior boundary and the
diaphragmatic surface of the heart for the inferior boundary (Dey
et al., 2012).

Currently, DL methods are being extended from segmentation
to include quantification. Recently, Abdulkareem et al. (2022)
proposed the first DL method to simultaneously quantify both EAT
volume and density, building on the Commandeur et al. (2019)
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FIGURE 9

Result comparison of expert tracings, Li’s model, and U-Net variations for EAT segmentation on CT (Li et al., 2021).

and Li et al. (2021) approaches to segment and quantify CAT
volume. One notable investigation is the EPIDIAB Study (Gaborit
et al., 2024), a multicenter trial involving 1,253 patients with

type 2 diabetes. In this study, researchers developed and validated
a fully automated DL model for quantifying EAT volume from
cardiac CT scans. The analysis revealed strong associations between
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higher EAT volumes and the presence of chronic kidney disease,
coronary artery disease, peripheral arterial disease, and increased
coronary artery calcium scores. These findings highlight the clinical
importance of EAT as a marker of systemic vascular risk in patients
with metabolic disorders. Table 4 shows the quantitative results of
manual and automatic efforts to measure CAT density and volume.

4.3.4 Limitations
While CT can be more accessible than MRI, CT remains

a high-cost imaging modality with limited availability. CT also
exposes patients to ionizing radiation, which can pose health
risks, especially in repeated imaging protocols. Moreover, artifacts
are common in CT images, reducing the quality of images and
complicating accurate EAT and PAT assessments. For example,
partial volume effects can blur tissue types together, resulting in
a single voxel containing multiple tissues. This issue can cause
over- or underestimation of volume or density. Existing fully
automatic methods show promising results to combat limitations
and improve efficacy. However, segmentation and quantification
results are still equal to or inferior to inter-observer variability
(Benčević et al., 2022). A major limitation hindering progress is
the lack of large, annotated datasets. The development and release
of publicly available, well-labeled datasets are critical to enhance
model training and improve generalizability.

From a technical perspective, coronary artery calcium (CAC)
scoring scans differ from routine non-contrast chest CT in that
CAC scans are ECG-gated to the cardiac cycle, reducing motion
artifacts and improving visualization of cardiac structures. This
gating makes CAC scans particularly suitable for accurate epicardial
adipose tissue (EAT). Incorporating routine CAT segmentation
into CAC scoring protocols could be a cost-effective strategy,
leveraging existing imaging workflows to avoid additional radiation
exposure and reduce time and resource utilization. Several studies
have demonstrated feasibility of EAT quantification from CAC
scans and even non-gated chest CT, though gating remains
advantageous for precision (Xu et al., 2022; Commandeur et al.,
2019).

4.4 Echocardiography

Echocardiography, which utilizes the principles of ultrasound
(US), is a low-cost and non-invasive diagnostic and therapeutic
imaging modality that offers real-time visualization of internal
anatomic structures. This modality utilizes a transducer to transmit
low-energy, high-frequency sound waves (typically in the 3–30
MHz range) into the body. These ultrasound signals interact
with various tissue layers, and the resulting reflected echoes are
captured by the transducer and processed to create diagnostic
images (Vajihi et al., 2019; Insana, 2010). Echocardiograms typically
employ grayscale or B-mode images as presented in Figures 10, 11.
These images are constructed based on the envelope of the received
ultrasound wave signals and offer detailed cross-sectional views of
the heart in real time, making echocardiography an essential tool
for evaluating cardiac performance and surrounding fat structures
such as adipose tissue.

4.4.1 Imaging techniques
US waves are highly attenuated by bones and air, which

poses significant limitations for cardiac imaging. Two principal
approaches are employed: transthoracic echocardiography (TTE)
and transesophageal echocardiography (TEE; Finel, 2018). When
performing TTE, images are acquired through specific acoustic
windows, namely: (1) parasternal, (2) apical, or (3) subcostal,
and (4) suprasternal as shown in Figure 10. On each window,
by tilting, rotating, and translating the transducer, different
views of the cardiac structures can be obtained. Quantitative US
(QUS) is a US imaging technique that involves signal processing
methods used on the sound waves to provide estimates of the
attenuation and backscattering properties of the interrogated
tissue. Some clinical applications of QUS include the diagnosis
of fatty liver disease, the detection of preterm birth risk, and
the characterization of thyroid and kidney nodules (Vajihi et al.,
2019).

4.4.2 CAT segmentation
The segmentation of AT using echocardiograms is a complex

task that requires expertise, time investment, and good image
quality. Image quality is affected by several factors such as low
image contrast, shadows from body structures (ribs and dense
muscles), varying speckle noise, and low signal-to-noise ratio
(Chen et al., 2020). Many studies have focused on the segmentation
of the main cardiac structures, targeting the measurement of the
LV area and volume, subsequently used to compute EF, one of
the most relevant parameters for cardiac risk assessment (Chen
et al., 2020; Leclerc et al., 2019; MoosaviTayebi, 2014; Painchaud
et al., 2022; Zyuzin et al., 2020; Cuellar et al., 2024). Studies
using QUS have employed predefined ROIs to classify them as
containing AT or not containing AT (Klingensmith et al., 2022), or
have used the contours of the epicardium to segment and classify
AT around the heart (Cuellar et al., 2024). A limited number of
investigations identified on CAT segmentation via US were found;
this underscores the critical need for further exploration in this
domain, leading to a more precise, comprehensive, fast, and reliable
CAT quantification.

4.4.3 CAT quantification
Transthoracic echocardiography (TTE) is used for the

quantification of EAT using ultrasound (US). Parasternal long axes
(PLAX) and parasternal short axes (PSAX) echocardiographic
views are used for EAT quantification because they allow the most
accurate measurements (Iacobellis et al., 2003). The free wall of the
right ventricle has been identified as having the highest absolute
adipose tissue thickness, making it ideal for consistent and reliable
measurements that are less influenced by myocardial hypertrophy
(Schejbal, 1989). In this area of the heart, the adipose tissue is
most easily visible, and appears as an echo-free space between
the visceral layer of the pericardium and the outer wall of the
myocardium as shown in Figure 11 (Gaborit et al., 2017).

In the study performed by Iacobellis (Iacobellis et al.,
2003), measurements of EAT thickness were correlated with
anthropometric variables related to obesity. Their quantification of
EAT varies between 1.9 to 15.7 mm with an average thickness of
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FIGURE 10

Transthoracic echocardiography (TTE). (a) TTE acoustic windows (Cardiovascular Education, 2019), (b) parasternal long axis view—PLAX; RVOT, Right
ventricular outflow tract; LVOT, Left Ventricular Outflow Tract; AV, Aortic Valve; MV, Mitral Valve, LA, Left Atrium, LV, Left Ventricle, (c) parasternal
short axis view—PSAX (top right), (d) subcostal view—SC; TV, Tricuspid Valve, (e) apical two-chamber view—A2C, and (f) apical four-chamber
view—A4C (Patrick Lynch, 2017).

FIGURE 11

Fat quantification in ultrasound, (a) EAT linear measurements perpendicular to the aortic annulus below and above a 5 mm threshold (Nesti et al.,
2023), (b) differentiation between EAT and PAT in echocardiograms (Sicari et al., 2011).

7.3 ± 3.42 mm in men, and 6.84 ± 2.76 mm in women. To avoid
oblique measurements of EAT using US, in Nesti et al. (2023),
measurements have been taken perpendicular to the aortic annulus,
using it as an anatomic landmark, as shown in Figure 11a. Some
studies have shown their ability to differentiate and measure EAT
and PAT thicknesses as illustrated in Figure 11b (Sicari et al., 2011).
Table 5 summarizes the studies found in this literature review where
the CAT thickness measured over the RV was identified as a marker
for several types of CAD.

4.4.4 Limitations
Compared with MRI and CT, the main limitation

of echocardiography is image resolution. In addition, fat
quantification is limited to linear thickness measurements in
particular locations without volumetric computations (Nerlekar
et al., 2018), and the differentiation between EAT and PAT is
not possible (Iacobellis et al., 2008). Finally, the accuracy and
reproducibility of the adipose thickness measurements have lower
precision when compared to other imaging modalities (Song
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et al., 2023). US imaging is limited by anatomical constraints,
making it impossible to image the heart from all angles and
positions. Certain crucial regions, such as those adjacent to the
coronary arteries, where fat depositions are highly correlated
with plaque development, are often challenging to image
using echocardiography.

5 Discussion

In conclusion, this review has explored various medical
imaging modalities to assess the multifaceted relationship between
adipose tissue and cardiovascular health. We examined the
distinct types of fat surrounding the heart, highlighting the
potential role of CAT in promoting cardiovascular disease.
MRI, CT, and echocardiography were identified as the primary
imaging modalities for assessing cardiac fat, each offering unique
advantages and limitations in segmentation and quantification.
Recent advancements in cardiovascular imaging have significantly
deepened our understanding of the relationship between EAT and
cardiovascular disease risk. Several prospective and retrospective
studies have demonstrated the clinical value of quantifying EAT
and PAT using automated imaging and deep learning tools.
Guglielmo et al. (2024) studied 730 patients who underwent stress
CMR. His study showed that increased EAT volume, as quantified
from CMR images, was an independent predictor of major
adverse cardiovascular events—including non-fatal myocardial
infarctions and cardiac deaths. Li et al. (2022) developed and
tested PAT-CNN in a study conducted on 391 patients. He
found that higher PAT volumes were not only associated with
existing cardiovascular disease diagnoses but also served as
independent predictors of 1-year all-cause mortality. Commandeur
et al. explored “fat-omics,” a novel approach using handcrafted
radiomic features derived from EAT. The incorporation of
these features into predictive models significantly improved
the prediction of major adverse cardiovascular events (MACE),
reinforcing the biological and clinical relevance of EAT beyond
its volume. This evidence supports the notion that EAT is
not merely a passive fat depot but may actively contribute to
inflammation, atherosclerosis, and myocardial dysfunction (Hu
et al., 2024). Eisenberg et al. (2020) introduced a deep-learning
model capable of accurately quantifying EAT volume using cardiac
CT angiography. This automated approach not only demonstrated
high reproducibility but also proved effective in technically
challenging patients, highlighting the clinical utility of artificial
intelligence in enhancing EAT assessment. The accompanying
editorial emphasized that such automation could standardize EAT
measurement across institutions and help integrate this metric
into routine cardiovascular risk assessment workflows. Grinspoon
et al. evaluated the use of tesamorelin on visceral fat reduction
in HIV-infected patients revealed insights into the metabolic
behavior of fat depots adjacent to the heart (Stanley et al., 2014).
While EAT was not the primary focus, the implications for how
regional fat impacts systemic inflammation and cardiovascular
health remain highly relevant. Together, these studies suggest
a paradigm shift where adipose tissue—traditionally considered
secondary—may serve as a central player in cardiovascular

diagnostics. The results of these studies reinforce the prognostic
value of EAT in routine cardiac imaging and suggest its utility
in risk stratification. The use of deep learning for PAT analysis
presents an opportunity to explore less commonly evaluated fat
depots with significant clinical implications. Also, these studies
emphasize the growing importance of integrating machine learning
with advanced imaging to enhance the precision of cardiac
fat quantification. Such approaches hold promise for improving
early disease detection, refining cardiovascular risk models, and
personalizing therapeutic interventions based on adipose tissue
burden. In addition, the findings highlight the important need
for consistent and standardized imaging methods, along with
reliable tools to measure epicardial adipose tissue (EAT) accurately.
Without such standards, it becomes difficult to compare results
across studies or apply them in clinical settings. As research
continues to uncover the specific roles of both EAT and pericardial
adipose tissue (PAT) in heart disease, combining advanced imaging
technologies with machine learning offers a promising path. This
approach could not only improve early diagnosis of cardiovascular
conditions but also help tailor treatment strategies to each patient’s
individual risk profile, ultimately improving outcomes.

Table 6 summarizes and compares the key features offered for
each imaging modality for CAT segmentation and quantification.
While significant advancements have been made, challenges
remain in accurately measuring and interpreting fat distribution
around the heart. Future research efforts should focus on refining
segmentation techniques, establishing standardized protocols, and
elucidating the specific mechanisms by which adipose tissue
contributes to cardiovascular risk. By addressing these limitations,
we can leverage the power of cardiac fat imaging to improve
risk stratification, guide treatment strategies, and promote better
cardiovascular health outcomes.
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