TYPE Correction
PUBLISHED 12 November 2025
DOI 10.3389/fnhum.2025.1732546

OPEN ACCESS

EDITED AND REVIEWED BY Aron T. Hill, Deakin University, Australia

*CORRESPONDENCE
Shinri Ohta
☑ ohta@lit.kyushu-u.ac.jp

RECEIVED 26 October 2025 ACCEPTED 28 October 2025 PUBLISHED 12 November 2025

CITATION

Gallagher D, Huang Z and Ohta S (2025) Correction: Modeling dyslexia in neurotypical adults by combining neuroimaging and neuromodulation techniques: a hypothesis paper. Front. Hum. Neurosci. 19:1732546. doi: 10.3389/fnhum.2025.1732546

COPYRIGHT

© 2025 Gallagher, Huang and Ohta. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these

Correction: Modeling dyslexia in neurotypical adults by combining neuroimaging and neuromodulation techniques: a hypothesis paper

Daniel Gallagher¹, Zian Huang² and Shinri Ohta^{1*}

¹Department of Linguistics, Faculty of Humanities, Kyushu University, Fukuoka, Japan, ²Department of Linguistics, Graduate School of Humanities, Kyushu University, Fukuoka, Japan

KEYWORDS

dyslexia, dyslexia subtypes, human models, functional magnetic resonance imaging (fMRI), neuropathological clustering, neuromodulation, non-invasive brain stimulation (NIBS), transcranial temporal interference stimulation (tTIS)

A Correction on

Modeling dyslexia in neurotypical adults by combining neuroimaging and neuromodulation techniques: a hypothesis paper

by Gallagher, D., Huang, Z., and Ohta, S. (2025) *Front. Hum. Neurosci.* 19:1651332. doi: 10.3389/fnhum.2025.1651332

In the published article, there was an error in the legend for **Figure 2** as published. The authors reported the wrong electrode combinations. The corrected legend appears below.

Figure 2. Anodal simulation of HD-tDCS using a 4×1 ring electrode montage attempting to stimulate VWFA from the lowest available electrode positions. We used a central anode at T7, with cathodes at FT9, TP9, FC5, and CP5. SimNIBS software was used for the simulation (Thielscher et al., 2015). For ease of visualization, stimulation electrodes were overlaid on the original image. (A) HD-tDCS simulation, (B) HD-tDCS simulation with adjusted color scale to show field magnitudes exceeding the minimum effective dose (MED). Because the scalp is not depicted in the rendering, the electrodes may appear to be floating due to perspective distortion when projecting a 3D image onto a 2D plane. This distortion affects the perceived distance between the electrodes and the brain surface.

In the published article, there was an error in the legend for **Figure 3** as published. The authors reported the wrong electrode combinations. The corrected legend appears below.

Figure 3. Simulation of tTIS on the VWFA, based on two pairs: FT7/F10 and TP7/P10. SimNIBS software was used for the simulation (Thielscher et al., 2015). **(A)** Individual tACS pairs used for tTIS, **(B)** Combined tTIS field, **(C)** Combined tTIS field with adjusted color scale to show field magnitudes exceeding the minimum effective dose (MED). Because the scalp is not depicted in the rendering, the electrodes may appear to be floating due to perspective distortion when projecting a 3D image onto a 2D plane. This distortion affects the perceived distance between the electrodes and the brain surface.

In the published article, there was an error. The authors reported the wrong electrode combinations.

Gallagher et al. 10.3389/fnhum.2025.1732546

A correction has been made to 4 Transcranial temporal interference stimulation (tTIS) for modeling dyslexia subtypes, 4.2 Transcranial temporal interference (tTIS), Paragraph 5. This sentence previously stated:

"We manually selected a subset of all electrodes based on geometry of the brain and the target region, at which point the software exhaustively tested all possible combinations therein and determined that the optimal electrode combinations were F7/F10 and T7/P8."

The corrected sentence appears below:

"We manually selected a subset of all electrodes based on geometry of the brain and the target region, at which point the software exhaustively tested all possible combinations therein and determined that the optimal electrode combinations were FT7/F10 and TP7/P10."

The original article has been updated.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.