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The trade-off between
maximizing reconstruction and
physiological interpretation of
muscle synergies with
autoencoders

Cristina Brambilla*, Nicol Moscatelli, Valentina Lanzani,
Lorenzo Molinari Tosatti, Alessandro Brusaferri and
Alessandro Scano

Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA),
Italian National Research Council (CNR), Milan, Italy

Introduction: In neuroscience, the muscle synergy method is a widely known
computational approach for studying motor control from electromyographic
(EMQ) recordings. Standard algorithms for synergy extraction rely on a linearity
assumption for synergy combination. However, the interactions between
muscle groups and movement dynamics often exhibit non-linear characteristics,
suggesting the need for alternative approaches. In this context, autoencoders
(AEs) have been proposed as promising tools. However, previous studies focused
on the reconstruction accuracy optimization and not on the structure of the
synergies, and the influence of AE design parameters has not been thoroughly
investigated. This study aims to explore the impact of different activation
functions on the effectiveness of AEs.

Methods: To this end, we used a rich dataset of upper-limb EMG signals
recorded from 16 muscles in 15 participants performing reaching movements
toward 9 targets across 5 planes. We evaluated the effects of combining four
activation functions in the encoder and decoder layers—linear, RelLU, sigmoid,
and tanh—and compared to standard non-negative matrix factorization (NMF).

Results: Our findings show that the extracted synergies are highly sensitive
to the AE architecture. Notably, the configurations obtaining the best signal
reconstruction do not correspond to the most physiologically meaningful
synergies, which were instead achieved with the ReLU+tanh configuration.

Discussion: This suggests that optimizing reconstruction accuracy may result
in non-interpretable synergy structures. This research emphasizes the role of
non-linear techniques in extracting muscle synergy from different datasets
(e.g., lower limbs, full-body movements, patient populations) and identifies the
optimal combination of transfer functions for the encoder and decoder layers.
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1 Introduction

Muscle synergies are a computational framework used to
explain how the central nervous system (CNS) simplifies motor
control. Instead of activating each muscle independently, the
CNS organizes movement through the coordinated activation of
groups of muscles, or synergies (Bizzi et al., 2002). In this view,
complex motor tasks are generated by combining a small set of
synergies, each with a fixed pattern of muscle weights (spatial
weights) modulated over time by activation coefficients (temporal
components).

Traditionally, synergy analysis has been performed using linear
factorization techniques of electromyographic (EMG) signals,
such as non-negative matrix factorization (NMF) and principal
component analysis (PCA), based on the assumption that muscle
activations result from the linear combination of a limited
number of synergies. Although this approach has proven to
be effective in many contexts and derives from experiments
on animals (Hart and Giszter, 2004; Kargo et al., 2010) and
humans (Tresch et al., 2006), and the linearity assumption has
been demonstrated to well reproduce experimental findings, non-
linear approaches have not been rigorously tested with large
and variable datasets. Given the inherently non-linear dynamics
of the musculoskeletal system, including muscle activation-
contraction coupling and joint biomechanics, it may be plausible
that non-linear models might provide a more accurate and
flexible description of motor control strategies (Cheung and
Seki, 2021). In linear synergy models, the muscle activation
matrix X is approximated as X ~ WH, where W contains
the synergy weights and H the activation coefficients. This
formula assumes that the combination function is linear. However,
non-linear models may even better capture the interactions
between muscle groups and the dynamics of movement. For
example, non-linear interactions may be especially relevant in
clinical contexts, where abnormal coordination patterns emerge
(Levin et al, 2000; Clark et al, 2010). Moreover, recent
developments also aimed to connect muscle synergies to task
space variables, such as kinematics or force outputs. Multi-
domain relationships may contain some non-linearities. The
mixed matrix factorization (MMF) algorithm, which linearly
combines kinematic and muscular data into joint kinematic-
muscular synergies (Scano et al., 2022), was introduced as a tool
to link the synergistic domain with the task space. Other studies
employed non-linear information-theoretic approaches to measure
how much information about a task is encoded in each synergy
(O’Reilly and Delis, 2024). These contributions underscore the
relevance of non-linear models in advancing our understanding of
sensorimotor integrations.

Recent research has begun to explore the use of non-linear
machine learning methods—particularly artificial neural networks
(ANNs)—in EMG signal processing. Among these, autoencoders
(AEs) have emerged as a promising alternative for muscle synergy
analysis. AEs consist of an encoder that compresses the input
data into a low-dimensional representation, and a decoder that
reconstructs the original input from this compressed form. Initial
studies using AEs for muscle synergy analysis demonstrated
that AEs could achieve a comparable reconstruction accuracy to
standard linear methods such as NMF and PCA and capture

Frontiers in Human Neuroscience

10.3389/fnhum.2025.1699799

the inhibition of agonist and antagonist muscles (Spiiler et al,
2016). A convolutional AE was successfully applied in a study,
demonstrating the effective reconstruction of EMG signals (Ding
et al, 2021). In another investigation, Buongiorno et al. (2019)
reported that AEs significantly outperformed NMF in terms
of reconstruction accuracy during planar isometric force tasks.
A comparative analysis of several factorization techniques showed
that the AE outperformed factor analysis (FA) but not NMF
(Zhao et al., 2022). In the context of clinical applications,
Lee (2024) used an AE to extract muscle synergies from gait
data, comparing healthy individuals and stroke patients. AEs
have also been applied to extract kinematic synergies with a
comparable performance to the PCA (De Feudis et al., 2021).
A recent work conducted a systematic analysis on the use
of AEs to extract muscle synergies (Giraud et al, 2025) and
concluded that NMF and AE have similar performances; in
specific setups (upper-limb workplace sectors), AE might perform
slightly better.

The use of AEs in muscle synergy analysis remains limited,
and existing studies can be improved in terms of clarification
of the optimal setup for AEs. In general, the performance of
the AE on synergy extraction has still been poorly investigated.
First, no systematic investigation of the activation functions of
the encoder and decoder layers has been conducted. Then, most
studies focus on the quality of the reconstruction, but only a
few directly assess synergy composition. Indeed, even when good
reconstruction accuracy is achieved, synergies may not correctly
reflect real neuromuscular modular organization, losing their
physiological significance. Indeed, most of the previous studies
did not compare in detail the synergy compositions between AE
and NMF. The optimization of these parameters may be one
of the fundamental steps for improving the performance and
identifying the AE configuration that reconstructs the synergies
underlying motor control.

Following these considerations, we performed a comprehensive
evaluation of AEs for synergy extraction using a comprehensive
dataset of multi-directional upper-limb reaching movements,
combining four activation functions (linear, rectified linear unit—
ReLU, sigmoid, and hyperbolic tangent). The dataset includes EMG
signals from 16 muscles from 15 healthy subjects. Sixteen AE
architectures were evaluated, defined by different combinations of
encoder and decoder transfer functions. The AE performance was
compared to the NMF using both reconstruction metrics (RMSE,
R?) and synergy similarity metrics (cosine similarity for spatial
weights and Pearson’s correlation for temporal activations). Our
aim is to identify the most effective AE configuration for EMG
decomposition and to explore the feasibility of using AEs as a
flexible, non-linear alternative to linear synergy models.

The main contributions of our study are:

i) the systematic comparison of autoencoder architectures based
on all the possible combinations of 4 commonly employed
transfer functions (16 total combinations).

ii) the assessment of the performance of the AE, comparing
reconstruction  accuracy, synergy composition, and
temporal components.

iii) the use of a comprehensive upper limb dataset featuring

movements in wide portions of the workspace.
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2 Materials and methods

2.1 Participants

Fifteen healthy volunteers (42 £ 18 years old) participated
in the study. Eligibility criteria required a full joint range of
motion, absence of chronic or current musculoskeletal pain, no
orthopedic impairments, and no history of musculoskeletal or
neurological diseases. Individuals reporting acute injury, persistent
pain, neurological symptoms, or current use of medication
affecting neuromuscular function were excluded. The research
was conducted at the Human Motion Analysis Laboratory,
Consiglio Nazionale delle Ricerche (CNR—Lecco, Italy). Ethical
approval was obtained from the CNR Ethical Committee (Rome,
Italy). Before participation, all subjects provided written informed
consent, and the study was conducted in accordance with the
Declaration of Helsinki.

2.2 Experimental setup

The experimental setup was previously detailed in Scano
et al. (2019). In summary, participants completed a point-to-
point task, which involved reaching nine targets arranged on
a board, starting from a reference position (R) located near
the subject’s thigh in a comfortable position. Eight targets were
positioned along a circumference of a 0.6 meter diameter circle
at the cardinal and intercardinal directions [north (N), north-east
(NE), east (E), south-east (SE), south (S), south-west (SW), west
(W), north-west (NW)], while the 9th target (O) was placed at
the center of the circle, following established protocols (d’Avella
et al, 2006). Participants moved from R to each target and
then returned to R. To comprehensively map the upper limb
workspace, the target board was repositioned in five distinct
locations relative to the participant: Frontal, Right, Left, upward
(Up), and downward (Horizontal), ensuring a wide range of
movement variability. For each orientation, ten trials of the
reaching task were performed.

Kinematic data were collected using the Vicon motion
capture system (Oxford, United Kingdom). Five reflective markers
were placed on anatomical landmarks: the fifth dorsal vertebra
(D5), seventh cervical vertebra (C7), acromion (representing the
shoulder—S), right lateral elbow epicondyle (E), and ulnar styloid
process (W). Participants held a 20-cm pointer equipped with
two additional markers (EE1 and EE2). Movement onset and
offset were determined using the velocity profile of the wrist
marker. To emphasize phasic (dynamic) muscle activity in the
EMG recordings, participants were instructed to perform the
movements quickly. Surface EMG was recorded using 16 SEMG
electrodes (Cometa, Milan, Italy), placed according to the SENIAM
guidelines (Hermens et al., 2000), when available, on the following
muscles: erector spinae (ES), teres major (TM), infraspinatus (IF),
lower trapezius (LT), middle trapezius (MT), upper trapezius (UT),
deltoid anterior (DA), deltoid middle (DM), deltoid posterior (DP),
pectoralis (PT), triceps long head (TL), triceps lateral head (TLa),
biceps long head (BL), biceps short head (BS), pronator teres (PR),
and brachioradialis (BR).
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2.3 EMG processing

Kinematic data were processed using the upper-limb model
and a custom target model within the VICON Nexus System.
Then, analysis of both kinematic and EMG data was performed
in Matlab 2022 (Natick, USA), while muscle synergy extraction
through AE was conducted in Python. EMG signals were filtered
with a Butterworth 20-450 Hz bandpass filter, full-wave rectified,
and filtered with a 6 Hz low-pass Butterworth filter. Movement
phases were identified based on kinematic data as the movement
from R to each target. To fully capture EMG activity, including
electromechanical delay, a 200-ms interval was added before the
movement onset and after the movement offset (Begovic et al,
2014). Only the phasic (motion-related) component of the EMG
was analyzed. The tonic component was modeled as a linear ramp,
interpolating between constant activation levels estimated from the
average EMG activity 200 ms before movement onset and 200 ms
after movement completion (d’Avella et al., 2006). The phasic EMG
was obtained by subtracting this tonic component from the total
EMG signal, with any resulting negative values set to zero. Each
movement phase was temporally normalized to 100 equally spaced
time points. All repetitions across all movement directions were
concatenated into a single matrix. EMG channels were normalized
to the maximum amplitude observed for each respective muscle
across all trials. After preprocessing, the dataset was divided into
training and testing subsets. The training set included data from
nine out of ten trials for each point-to-point movement, while
the remaining trial was allocated to the testing set. This data split
follows standard practice in training autoencoders (Qian et al.,
2020; Salehi et al., 2021).

2.4 Synergy extraction

An autoencoder is a type of neural network that implements
two main architectures: an encoder that maps the input data X
to a latent representation h (Equation 1), and a decoder that
reconstructs the input into X” from this latent code (Equation 2).

These transformations are mathematically defined as follows:

h:a(WI'X“f‘b]) (1)

X =w - h+ by ()

Equation 2 parallels the muscle synergy model, wherein the hidden
representation h corresponds to the synergy activation coefficients,
and the decoder weights w represent the muscle synergy vectors.
The architecture of the AE followed the configuration proposed
in previous studies (Buongiorno et al., 2020; Giraud et al., 2025),
employing a single hidden layer with a number of neurons equal
to the number of muscle synergies to be extracted. Four and six
neurons were set for the hidden layer.

The model was implemented in Python using the Keras library,
based on the toolbox! (Giraud et al., 2025) with the following
hyperparameters: learning rate = 0.001; epochs number = 2,000;

1 https://github.com/cbrambilla/musclesynergyextractionbench-main
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FIGURE 1

Activation functions used for the encoder and decoder layers.

optimizer = RMSprop; loss function = mean squared error (MSE).
These values were chosen to balance convergence quality and
overfitting prevention. Additionally, the bias terms in both the
encoder and decoder layers were removed to enhance performance,
and the decoder weights were constrained to be positive (as
muscle synergies are). Four different activation functions (linear,
rectified linear unit (ReLU), sigmoid, and hyperbolic tangent) were
evaluated and combined for the encoder and decoder layers, and
the resulting solutions were compared. Chosen functions were
linear, rectified linear unit (ReLU), sigmoid, and hyperbolic tangent
(tanh), as shown in Figure 1. It should be noted that when using
encoder activation functions that allow negative values and without
positivity constraints, such as linear and tanh, negative temporal
components may appear, which are physiologically unrealistic;
however, we explored this scenario to assess the impact on the
learned representations. The AE was trained using concatenated
EMG data from all movement planes, learning a unified synergy
representation across the full workspace. The AE was then
tested for each plane, reproducing the multiple-plane architecture
by Giraud et al. (2025).

For comparison, muscle synergies were also extracted using
the NMF algorithm implemented in Python with the Coordinate
Descent solver. The decomposition was iterated with randomly
initialized matrices until the Frobenius norm between the original
and the reconstructed matrices fell below 107%, or a maximum
of 500 iterations was reached. Four-synergy and six-synergy
solutions were tested, and to mitigate the risk of local minima,
20 repetitions of the decompositions were performed on the test
dataset. The solution with the lowest reconstruction error was
selected for analysis.

2.5 Outcome measures and statistics

To evaluate the performance of each AE, the root mean
square error (RMSE) and the reconstruction accuracy R? were
computed. The quality of reconstruction R? of the original signal
was defined as 1—SSE/SST, where SSE is the sum of the squared
residuals, and SST is the sum of the squared differences with the
mean EMG vector. Both RMSE and R? are commonly used both
in synergy analysis and in neural network training to quantify
how well the input signal is reproduced, thus providing a direct
assessment of the model performance. Additionally, the similarity
between matched synergies extracted by each configuration and
the one extracted by NMF was assessed using cosine similarity.
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Correspondence between the temporal activation coefficients of
matched synergies was evaluated using Pearson’s correlation
coefficient. These measures are crucial to assess whether the
extracted synergies remain physiologically meaningful. Since NMF-
derived synergies are considered as physiologically interpretable,
comparing AE-based synergies against them allows to evaluate
not only the reconstruction quality but also the preservation of
physiologically meaningful structure in both spatial and temporal
domains. Finally, the sparsity index of the spatial synergies was
computed as the ratio between the number of zero-valued elements
and the total number of elements in the synergy vector.

The statistical evaluation of AE’s performance was carried out
through repeated measures ANOVA, with the AE configuration as
within-subject factor. In case of significant main effect, pairwise
post-hoc comparisons with Holm correction were performed to
identify which AE configurations differed significantly.

3 Results

The mean spatial synergies (W) across participants extracted
with NMF and all the AE configurations are shown in Figure 2,
while the mean temporal coefficients reported for the frontal
plane only are shown in Figure 3. Two combinations of AE
(ReLU+sigmoid and sigmoid+sigmoid) are not analyzed because
the temporal coeflicients resulted in NaN. Further remedies for
numerical instabilities, such as gradient clipping and initialization
strategies, were adopted, but the reconstruction accuracy was
negative, indicating that these combinations are not suitable for our
analysis.

In the muscle synergies extracted using NMF, synergy W1 is
primarily characterized by strong activation of the forearm muscles
(BR and PR) alongside the biceps, with moderate contributions
from pectoralis and UT. This synergy flexes the elbow at the
beginning of the movement and controls the forearm at the end.
Synergy W2 involves the activation of pectoralis, ES, DA, and DM
supporting shoulder elevation during the reaching phase. Synergy
W3 is dominated by the triceps and deltoids (mainly DP and
DM), with contributions from the trapezii, reflecting a role in
elbow extension. Synergy W4 mainly recruits the trapezii and back
muscles, suggesting involvement in trunk stabilization and scapular
control throughout the movement.

When comparing muscle synergies derived from AE to those
from NME six AE configurations produced synergies closely
resembling the NMF results. In contrast, the remaining AE
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FIGURE 2

Comparison between the extracted synergies. Configurations are reported in the columns, while synergies are reported in the rows. Bold lines
represent the mean value, while the light gray lines represent each participant. NMF synergies are reported in blue, while the configurations with the
highest similarity to the NMF-based synergies are in black. In the label, the first term represents the encoder function, while the second term

represents the decoder function.

combinations yielded synergies with widespread, non-specific
activation across all muscles, reducing interpretability and
functional relevance.

Regarding the NMF temporal coefficients, C1 is predominantly
active at the beginning of the movement, reflecting initiation
and forearm stabilization. C2 shows a peak midway through the
movement, especially in upper directions, and is associated with
shoulder flexion. C3 is activated toward the end of the motion,
consistent with triceps involvement in elbow extension. Finally,
C4 exhibits broad and sustained activation across all directions,
indicating a role in continuous postural stabilization.

When comparing AE temporal coeflicients to those from NME,
six AE configurations yielded comparable results. In contrast,
combinations using a linear or hyperbolic tangent activation
function in the encoder produced temporal coefficients with
present negative values, which are incompatible with the non-
negative structure of typical synergy models, and therefore may not
be physiologically meaningful.

In Table 1, the results for all AE configurations are presented
for the four-synergy solution. For NMF, RMSE was 0.073 (0.007)
and R? was 0.76 (0.03), with a sparsity index of 0.37 (0.04).
The factor “AE configuration” was significant for all parameters
(p < 0.001), indicating that some configurations performed
significantly better or worse than others. The tanh+sigmoid
configuration yielded the highest errors and lowest reconstruction
(p < 0.03 compared to all other conditions). The best trconstruction
accuracy was obtained with linear+linear, linear+tanh, tanh+linear,
and tanh+tanh, although these differences were not significant
relative to all the remaining configurations. In contrast, the
highest similarity and correlation were observed for ReLU+tanh,
ReLU+linear, and ReLU+tanh (p < 0.03 with respect to all the other
configurations), which did not correspond to the most accurate
reconstructions. The sparsity index was significantly higher in
configurations using ReLU or sigmoid in the encoder (p < 0.001).

Frontiers in Human Neuroscience

In Table 2, the results are shown for the six-synergy solution.
For NME, RMSE was 0.062 (0.007) and R?> was 0.83 (0.03),
with a sparsity index of 0.51 (0.03). Again, the factor “AE
configuration” was significant for each parameter (p < 0.001),
with some configurations performing significantly better or worse.
The tanh+sigmoid configuration resulted in the highest errors
and lowest reconstruction accuracy (p < 0.002), while the
best reconstruction accuracy was achieved with linear+ReLU,
tanh+ReLU, and tanh+linear. Configurations including ReLU
or sigmoid in the encoder showed the highest similarity and
correlation (p < 0.01). The sparsity index was significantly higher in
configurations using ReLU or sigmoid in the encoder (p < 0.001).

4 Discussion

In this study, multiple AE architectures for muscle synergy
extraction have been investigated, focusing on the influence
of encoder and decoder activation functions. Our results
show that specific configurations can effectively approximate
the performance of linear NMEFE both in terms of EMG
reconstruction accuracy and synergy interpretability. Notably,
six AE configurations demonstrated synergy patterns and
temporal activations closely resembling those obtained from NMF,
highlighting the potential of AEs as feasible non-linear alternatives
for muscle synergy extraction.

4.1 AE configurations and physiological
interpretability

The most used activation functions were systematically
tested in all possible encoder-decoder combinations. This choice
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function.

Comparison between the temporal coefficients in the frontal plane for all nine directions. Configurations are reported in the rows, while temporal
coefficients are reported in the columns. Bold lines represent the mean value, while the light gray lines represent the average activation of each
participant. NMF temporal coefficients are reported in blue, while the configurations with the highest correlations to the NMF-based temporal
coefficients are in black. In the combination names, the first term represents the encoder function, while the second term represents the decoder

was motivated by the fact that activation functions influence
the resulting synergies, although their impact has not been
systematically investigated in previous studies. Moreover, earlier
work primarily emphasized reconstruction accuracy, often
overlooking whether the extracted synergies were physiologically
meaningful. Indeed, a high reconstruction R? does not necessarily
guarantee physiologically valid synergies. The choice of activation
functions in both the encoder and decoder influences the quality
and interpretability of the extracted synergies. Configurations
employing ReLU or sigmoid for the encoder layer generally
produced physiologically meaningful synergies, preserving spatial
specificity and muscle grouping consistent with NMF.

Conversely, configurations with linear or hyperbolic tangent
functions in the encoder often resulted in widespread, non-
selective muscle activations associated with negative temporal
coefficients, which are inconsistent with the synergy model and
compromise physiological validity, as negative coefficients have
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no physiological interpretation in standard synergy models. When
using linear or tanh, the temporal coefficients include negative
values, as expected, because these functions allow both positive
and negative outputs. The specificity of the extracted synergies is
reduced, as negative coefficients enable the model to reconstruct
EMG activity by both subtracting and adding synergies, effectively
increasing the flexibility of the decomposition. While this may
improve the reconstruction accuracy, it leads to spatial synergies
that are less selective, often involving widespread co-activation
of many muscles. Consequently, the resulting synergies lack
the spatial specificity and interpretability typically expected in
standard synergy models.

Using ReLU in the encoder combined with a sigmoid decoder,
or sigmoid functions in both encoder and decoder, led to NaN
values in the temporal coefficients. This behavior can be attributed
to numerical instabilities. In the first case (ReLU+sigmoid),
the unbonded positive outputs of the ReLU can drive the
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TABLE 1 Results for all AE configurations for the four-synergy solution.

10.3389/fnhum.2025.1699799

linear-+linear 0.072 (0.007) 0.76 (0.03) 0.73 (0.05) 0.59 (0.12) 0.02 (0.02)
linear+ReLU 0.076 (0.011) 0.74 (0.06) 0.61 (0.05) 0.54 (0.10) 0.16 (0.06)
linear+sigmoid 0.080 (0.007) 0.71 (0.05) 0.75 (0.06) —0.63 (0.09) 0.08 (0.03)
linear+tanh 0.073 (0.007) 0.76 (0.04) 0.72 (0.04) 0.56 (0.17) 0.02 (0.02)
ReLU-+linear 0.073 (0.007) 0.75 (0.04) 0.89 (0.11) 0.89 (0.11) 0.37 (0.04)
ReLU+ReLU 0.084 (0.015) 0.68 (0.08) 0.90 (0.10) 0.92 (0.09) 0.42 (0.07)
ReLU-+tanh 0.075 (0.007) 0.75 (0.04) 0.96 (0.08) 0.96 (0.08) 0.35 (0.04)
sigmoid-+linear 0.079 (0.008) 0.72 (0.04) 0.86 (0.10) 0.83 (0.09) 0.39 (0.04)
sigmoid+ReLU 0.087 (0.010) 0.66 (0.08) 0.81 (0.12) 0.80 (0.11) 0.4 (0.07)
sigmoid+tanh 0.080 (0.009) 0.71 (0.04) 0.83 (0.10) 0.81 (0.08) 0.39 (0.05)
tanh+linear 0.073 (0.007) 0.76 (0.03) 0.79 (0.04) 0.67 (0.07) 0.13 (0.02)
tanh+ReLU 0.077 (0.009) 0.73 (0.06) 0.75 (0.06) 0.63 (0.07) 0.27 (0.05)
tanh+sigmoid 0.097 (0.009) 0.58 (0.08) 0.66 (0.03) —0.39 (0.09) 0.02 (0.04)
tanh+tanh 0.074 (0.007) 0.76 (0.03) 0.78 (0.04) 0.64 (0.08) 0.12 (0.03)

RMSE, R?, sparsity index, similarities of synergies, and correlations of temporal coefficients of matched synergies between AE and NMF are reported. Standard deviations are reported in

brackets. The highest values are reported in bold.

TABLE 2 Results for all AE configurations for the six-synergy solution.

Methods Similarities Correlations ity i
linear+linear 0.062 (0.006) 0.82 (0.04) 0.60 (0.04) 0.47 (0.10) 0.02 (0.01)
linear+ReLU 0.058 (0.008) 0.85 (0.04) 0.54 (0.04) 0.39 (0.22) 0.11 (0.03)
linear-+sigmoid 0.071 (0.007) 0.77 (0.03) 0.67 (0.04) —0.58 (0.08) 0.10 (0.01)
linear+tanh 0.062 (0.007) 0.82 (0.03) 0.60 (0.04) 0.38 (0.10) 0.02 (0.01)
ReLU+linear 0.065 (0.007) 0.81 (0.03) 0.88 (0.09) 0.89 (0.09) 0.46 (0.05)
ReLU+ReLU 0.065 (0.009) 0.81 (0.03) 0.82 (0.08) 0.83 (0.09) 0.47 (0.04)
ReLU+tanh 0.065 (0.008) 0.81 (0.04) 0.86 (0.10) 0.87 (0.09) 0.47 (0.04)
sigmoid-+linear 0.072 (0.007) 0.77 (0.04) 0.82 (0.06) 0.81 (0.05) 0.52 (0.04)
sigmoid+ReLU 0.075 (0.010) 0.74 (0.07) 0.80 (0.07) 0.78 (0.09) 0.54 (0.04)
sigmoid+tanh 0.072 (0.007) 0.77 (0.03) 0.83 (0.09) 0.81 (0.09) 0.52 (0.04)
tanh+linear 0.062 (0.007) 0.83 (0.03) 0.70 (0.03) 0.57 (0.04) 0.14 (0.02)
tanh+ReLU 0.060 (0.008) 0.84 (0.03) 0.68 (0.05) 0.55 (0.06) 0.24 (0.04)
tanh-+sigmoid 0.086 (0.008) 0.67 (0.04) 0.62 (0.03) —0.46 (0.06) 0.05 (0.03)
tanh+tanh 0.064 (0.007) 0.82 (0.03) 0.70 (0.03) 0.55 (0.06) 0.14 (0.02)

RMSE, R?, sparsity index, similarities of synergies, and correlations of temporal coefficients of matched synergies between AE and NMF are reported. Standard deviations are reported in

brackets. The highest values are reported in bold.

sigmoid activation in the decoder into saturation, resulting in
extreme gradients or numerical overflow. In the second case
(sigmoid+sigmoid), stacking sigmoids in both the encoder and
decoder increases the risk of saturation at either end of the
activation range, which leads to vanishing gradients and unstable
weight updates. Both scenarios disrupt the training dynamics and
ultimately cause the coefficients to diverge to NaN. Additional
remedies for improving their performance were employed, such as
gradient clipping and initialization strategies, but the R? became
negative, indicating that the reconstruction error was larger than
the signal variance. These combinations are not suitable for the
present architecture, and an exhaustive hyperparameter tuning or
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architecture redesign for these two combinations is outside the
scope of the present study.

In line with previous works (Buongiorno et al., 2019
Giraud et al.,, 2025), our results confirm that AEs can match
or slightly outperform NMF in terms of EMG reconstruction
metrics. However, similar performance in reconstruction does
not guarantee equivalent synergy structure, a distinction often
overlooked, or at least not clarified, in prior studies. Our
analysis directly addressed this by evaluating spatial (cosine
similarity) and temporal (Pearson’s correlation) similarity between
AE- and NMF-derived synergies, revealing that only a subset
of AE configurations maintains the physiological coherence of
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muscle co-activations, even when reconstruction metrics are solid.
Our conclusions remained consistent at both 4-synergy and 6-
synergy solutions. Indeed, our findings highlighted an important
distinction between reconstruction accuracy and physiological
interpretability. Linear autoencoders, in particular, often reach
high R? values, reflecting strong linear contributions to the
reconstruction of EMG signals. However, such high reconstruction
performance does not necessarily guarantee that the extracted
components correspond to physiologically meaningful synergies,
such as in the case of a linear activation function in the encoder
layer. Rather, it may simply indicate that the model is efficiently
capturing the variance in the data through linear combinations.
Therefore, while linear AEs may serve as powerful tools for
data compression and reconstruction, their outputs should be
interpreted with caution in physiological contexts.

4.2 Advantages and challenges of
AE-based synergy extraction

AEs offer several advantages over linear methods. Their
flexibility allows modeling complex, non-linear dependencies in
muscle activations, which may even better reflect the underlying
biomechanics and neurophysiology of the movement with respect
to linear models (which are already deemed as effective to
model standard combinations of synergies). Moreover, it could be
interesting to explore the application of AE-based methods in other
domains that may exhibit non-linear characteristics, such as task
space (Scano et al., 2022) or torque space (Russo et al., 2014), in
which the contributions of non-linear models might be crucial. This
is particularly relevant in clinical settings, where a more accurate
representation of the relationship between muscle activity and task
execution can enhance diagnostic and therapeutic approaches. For
instance, the MMF algorithm, which extracts kinematic-muscular
synergies, assumes a linear mapping between kinematic and
muscular spaces; however, this simplification may not fully capture
the underlying dynamics (Scano et al., 2022). Additionally, research
using non-linear models to assess the informal content of synergies
in task performance has shown that these models can detect motor
impairments that standard NMF-based methods do not capture
(O’Reilly and Delis, 2024). Future work will focus on applying AEs
to extract synergies across multiple domains characterized by non-
linear interactions, to evaluate whether this approach surpasses
traditional linear techniques. Establishing robust links between
muscle activity and task space can support the development of
assistive rehabilitation technologies, such as exoskeletons and end-
effector robots, by leveraging kinematic-muscular synergies that
integrate both motor command and movement output.

4.3 Clinical and research applications

Given their ability to model non-linear relationships, AEs
show strong potential for applications in rehabilitation, particularly
for patient populations with atypical coordination patterns (e.g.,
stroke). The adaptability of AE architectures may allow detection
of subtle deviations in synergy structure that linear models
might miss, potentially offering biomarkers for diagnosis, therapy
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planning, or motor recovery assessment. Moreover, the success
of AEs in healthy participants supports their use as a tool for
understanding normative motor control strategies. With proper
tuning, AEs could also be instrumental in tasks involving robotic
assistance, prosthesis control, or biofeedback training. Non-linear
synergy models may reveal motor control deficits that may not be
detected when using linear approaches. In fact, motor impairments
might induce non-linearities in the neuromuscular system that
are absent in healthy individuals. Moreover, establishing a direct
link between muscle activation and task space is particularly
valuable in clinical contexts. Understanding how neural drive
translates to motor outcomes can help identify intact synergies
that are deployed in biomechanically suboptimal ways. This
distinction could guide rehabilitation strategies that not only
aim to restore normal synergy patterns but also enhance their
functional implementation during task performance. While non-
linear models hold considerable clinical promise, they typically
require large datasets with many movement repetitions to ensure
reliable training and generalization. This practical consideration
should be taken into account when designing future clinical studies
or therapeutic protocols based on these methods.

4.4 Limitations and future directions

Our findings also expose limitations. The AE’s performance
is sensitive to architectural choices such as transfer functions,
and our conclusions are specific to the dataset used. To assess
the generalizability of AE-based synergy extraction, future studies
should involve different datasets, such as those involving lower
limb movements or hand grasps. This will help determine whether
AEs can provide more robust or complementary insights compared
to NME and whether the assumption of linearity holds across
different muscle groups. Previous research has shown that both
the selected task and muscle set can significantly influence the
resulting synergies, revealing novel intermuscular relationships
(Steele et al., 2013; Brambilla and Scano, 2022). Therefore,
validating AE performance across multiple datasets is a crucial
next step. Additionally, this study employed a relatively simple
AE architecture, with a single hidden layer and the number of
synergies fixed at four. Future work should explore more diverse
architectures, including deeper networks and varying numbers
of synergies, to better understand how these factors influence
performance. Extending the analysis to pathological populations
could also offer important insights into the clinical applicability of
AE-based models.

Interestingly, while the extracted synergies were similar to the
NMEF in some combinations, variations depending on AE settings
suggest that one approach may outperform the others. However,
due to the presence of noise in EMG signals, it is currently not
possible to definitively establish which method produces superior
results. One promising strategy for benchmarking performance
would be to use simulated ground truth synergies and temporal
coefficients defined a priori by the experimenter. By multiplying
these to generate synthetic EMG envelopes, one could then
apply NMF and the best combination of AE to extract synergies
and quantitatively compare their accuracy. The success of this
approach depends on designing physiologically plausible ground
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truth datasets, a challenge that future work will address, following
methodologies similar to those proposed by Scano et al. (2022).

5 Conclusion

This study systematically evaluated AE architectures for
muscle synergy extraction, focusing on activation function
combinations. We found that while some configurations offered
high reconstruction accuracy, they did not always produce
physiologically meaningful synergies. The ReLU+tanh setup
provided the most similar synergies to the NMF. These findings
highlight the importance of selecting appropriate activation
functions when using AEs for EMG analysis and suggest that non-
linear methods can capture motor control features missed by linear
models. Future research should explore AE applications in more
complex or clinical datasets.
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