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maximizing reconstruction and
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Alessandro Scano
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Introduction: In neuroscience, the muscle synergy method is a widely known

computational approach for studying motor control from electromyographic

(EMG) recordings. Standard algorithms for synergy extraction rely on a linearity

assumption for synergy combination. However, the interactions between

muscle groups and movement dynamics often exhibit non-linear characteristics,

suggesting the need for alternative approaches. In this context, autoencoders

(AEs) have been proposed as promising tools. However, previous studies focused

on the reconstruction accuracy optimization and not on the structure of the

synergies, and the influence of AE design parameters has not been thoroughly

investigated. This study aims to explore the impact of different activation

functions on the effectiveness of AEs.

Methods: To this end, we used a rich dataset of upper-limb EMG signals

recorded from 16 muscles in 15 participants performing reaching movements

toward 9 targets across 5 planes. We evaluated the effects of combining four

activation functions in the encoder and decoder layers—linear, ReLU, sigmoid,

and tanh—and compared to standard non-negative matrix factorization (NMF).

Results: Our findings show that the extracted synergies are highly sensitive

to the AE architecture. Notably, the configurations obtaining the best signal

reconstruction do not correspond to the most physiologically meaningful

synergies, which were instead achieved with the ReLU+tanh configuration.

Discussion: This suggests that optimizing reconstruction accuracy may result

in non-interpretable synergy structures. This research emphasizes the role of

non-linear techniques in extracting muscle synergy from different datasets

(e.g., lower limbs, full-body movements, patient populations) and identifies the

optimal combination of transfer functions for the encoder and decoder layers.

KEYWORDS

muscle, synergies, autoencoder, non-negative, matrix, factorization,
electromyography, accuracy
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1 Introduction 

Muscle synergies are a computational framework used to 
explain how the central nervous system (CNS) simplifies motor 
control. Instead of activating each muscle independently, the 
CNS organizes movement through the coordinated activation of 
groups of muscles, or synergies (Bizzi et al., 2002). In this view, 
complex motor tasks are generated by combining a small set of 
synergies, each with a fixed pattern of muscle weights (spatial 
weights) modulated over time by activation coeÿcients (temporal 
components). 

Traditionally, synergy analysis has been performed using linear 
factorization techniques of electromyographic (EMG) signals, 
such as non-negative matrix factorization (NMF) and principal 
component analysis (PCA), based on the assumption that muscle 
activations result from the linear combination of a limited 
number of synergies. Although this approach has proven to 
be eective in many contexts and derives from experiments 
on animals (Hart and Giszter, 2004; Kargo et al., 2010) and 
humans (Tresch et al., 2006), and the linearity assumption has 
been demonstrated to well reproduce experimental findings, non-
linear approaches have not been rigorously tested with large 
and variable datasets. Given the inherently non-linear dynamics 
of the musculoskeletal system, including muscle activation-
contraction coupling and joint biomechanics, it may be plausible 
that non-linear models might provide a more accurate and 
flexible description of motor control strategies (Cheung and 
Seki, 2021). In linear synergy models, the muscle activation 
matrix X is approximated as X ≈ WH, where W contains 
the synergy weights and H the activation coeÿcients. This 
formula assumes that the combination function is linear. However, 
non-linear models may even better capture the interactions 
between muscle groups and the dynamics of movement. For 
example, non-linear interactions may be especially relevant in 
clinical contexts, where abnormal coordination patterns emerge 
(Levin et al., 2000; Clark et al., 2010). Moreover, recent 
developments also aimed to connect muscle synergies to task 
space variables, such as kinematics or force outputs. Multi-
domain relationships may contain some non-linearities. The 
mixed matrix factorization (MMF) algorithm, which linearly 
combines kinematic and muscular data into joint kinematic-
muscular synergies (Scano et al., 2022), was introduced as a tool 
to link the synergistic domain with the task space. Other studies 
employed non-linear information-theoretic approaches to measure 
how much information about a task is encoded in each synergy 
(O’Reilly and Delis, 2024). These contributions underscore the 
relevance of non-linear models in advancing our understanding of 
sensorimotor integrations. 

Recent research has begun to explore the use of non-linear 
machine learning methods—particularly artificial neural networks 
(ANNs)—in EMG signal processing. Among these, autoencoders 
(AEs) have emerged as a promising alternative for muscle synergy 
analysis. AEs consist of an encoder that compresses the input 
data into a low-dimensional representation, and a decoder that 
reconstructs the original input from this compressed form. Initial 
studies using AEs for muscle synergy analysis demonstrated 
that AEs could achieve a comparable reconstruction accuracy to 
standard linear methods such as NMF and PCA and capture 

the inhibition of agonist and antagonist muscles (Spüler et al., 
2016). A convolutional AE was successfully applied in a study, 
demonstrating the eective reconstruction of EMG signals (Ding 
et al., 2021). In another investigation, Buongiorno et al. (2019) 
reported that AEs significantly outperformed NMF in terms 
of reconstruction accuracy during planar isometric force tasks. 
A comparative analysis of several factorization techniques showed 
that the AE outperformed factor analysis (FA) but not NMF 
(Zhao et al., 2022). In the context of clinical applications, 
Lee (2024) used an AE to extract muscle synergies from gait 
data, comparing healthy individuals and stroke patients. AEs 
have also been applied to extract kinematic synergies with a 
comparable performance to the PCA (De Feudis et al., 2021). 
A recent work conducted a systematic analysis on the use 
of AEs to extract muscle synergies (Giraud et al., 2025) and 
concluded that NMF and AE have similar performances; in 
specific setups (upper-limb workplace sectors), AE might perform 
slightly better. 

The use of AEs in muscle synergy analysis remains limited, 
and existing studies can be improved in terms of clarification 
of the optimal setup for AEs. In general, the performance of 
the AE on synergy extraction has still been poorly investigated. 
First, no systematic investigation of the activation functions of 
the encoder and decoder layers has been conducted. Then, most 
studies focus on the quality of the reconstruction, but only a 
few directly assess synergy composition. Indeed, even when good 
reconstruction accuracy is achieved, synergies may not correctly 
reflect real neuromuscular modular organization, losing their 
physiological significance. Indeed, most of the previous studies 
did not compare in detail the synergy compositions between AE 
and NMF. The optimization of these parameters may be one 
of the fundamental steps for improving the performance and 
identifying the AE configuration that reconstructs the synergies 
underlying motor control. 

Following these considerations, we performed a comprehensive 
evaluation of AEs for synergy extraction using a comprehensive 
dataset of multi-directional upper-limb reaching movements, 
combining four activation functions (linear, rectified linear unit— 
ReLU, sigmoid, and hyperbolic tangent). The dataset includes EMG 
signals from 16 muscles from 15 healthy subjects. Sixteen AE 
architectures were evaluated, defined by dierent combinations of 
encoder and decoder transfer functions. The AE performance was 
compared to the NMF using both reconstruction metrics (RMSE, 
R2) and synergy similarity metrics (cosine similarity for spatial 
weights and Pearson’s correlation for temporal activations). Our 
aim is to identify the most eective AE configuration for EMG 
decomposition and to explore the feasibility of using AEs as a 
flexible, non-linear alternative to linear synergy models. 

The main contributions of our study are: 

i) the systematic comparison of autoencoder architectures based 
on all the possible combinations of 4 commonly employed 
transfer functions (16 total combinations). 

ii) the assessment of the performance of the AE, comparing 
reconstruction accuracy, synergy composition, and 
temporal components. 

iii) the use of a comprehensive upper limb dataset featuring 
movements in wide portions of the workspace. 
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2 Materials and methods 

2.1 Participants 

Fifteen healthy volunteers (42 ± 18 years old) participated 
in the study. Eligibility criteria required a full joint range of 
motion, absence of chronic or current musculoskeletal pain, no 
orthopedic impairments, and no history of musculoskeletal or 
neurological diseases. Individuals reporting acute injury, persistent 
pain, neurological symptoms, or current use of medication 
aecting neuromuscular function were excluded. The research 
was conducted at the Human Motion Analysis Laboratory, 
Consiglio Nazionale delle Ricerche (CNR—Lecco, Italy). Ethical 
approval was obtained from the CNR Ethical Committee (Rome, 
Italy). Before participation, all subjects provided written informed 
consent, and the study was conducted in accordance with the 
Declaration of Helsinki. 

2.2 Experimental setup 

The experimental setup was previously detailed in Scano 
et al. (2019). In summary, participants completed a point-to-
point task, which involved reaching nine targets arranged on 
a board, starting from a reference position (R) located near 
the subject’s thigh in a comfortable position. Eight targets were 
positioned along a circumference of a 0.6 meter diameter circle 
at the cardinal and intercardinal directions [north (N), north-east 
(NE), east (E), south-east (SE), south (S), south-west (SW), west 
(W), north-west (NW)], while the 9th target (O) was placed at 
the center of the circle, following established protocols (d’Avella 
et al., 2006). Participants moved from R to each target and 
then returned to R. To comprehensively map the upper limb 
workspace, the target board was repositioned in five distinct 
locations relative to the participant: Frontal, Right, Left, upward 
(Up), and downward (Horizontal), ensuring a wide range of 
movement variability. For each orientation, ten trials of the 
reaching task were performed. 

Kinematic data were collected using the Vicon motion 
capture system (Oxford, United Kingdom). Five reflective markers 
were placed on anatomical landmarks: the fifth dorsal vertebra 
(D5), seventh cervical vertebra (C7), acromion (representing the 
shoulder—S), right lateral elbow epicondyle (E), and ulnar styloid 
process (W). Participants held a 20-cm pointer equipped with 
two additional markers (EE1 and EE2). Movement onset and 
oset were determined using the velocity profile of the wrist 
marker. To emphasize phasic (dynamic) muscle activity in the 
EMG recordings, participants were instructed to perform the 
movements quickly. Surface EMG was recorded using 16 sEMG 
electrodes (Cometa, Milan, Italy), placed according to the SENIAM 
guidelines (Hermens et al., 2000), when available, on the following 
muscles: erector spinae (ES), teres major (TM), infraspinatus (IF), 
lower trapezius (LT), middle trapezius (MT), upper trapezius (UT), 
deltoid anterior (DA), deltoid middle (DM), deltoid posterior (DP), 
pectoralis (PT), triceps long head (TL), triceps lateral head (TLa), 
biceps long head (BL), biceps short head (BS), pronator teres (PR), 
and brachioradialis (BR). 

2.3 EMG processing 

Kinematic data were processed using the upper-limb model 
and a custom target model within the VICON Nexus System. 
Then, analysis of both kinematic and EMG data was performed 
in Matlab 2022 (Natick, USA), while muscle synergy extraction 
through AE was conducted in Python. EMG signals were filtered 
with a Butterworth 20–450 Hz bandpass filter, full-wave rectified, 
and filtered with a 6 Hz low-pass Butterworth filter. Movement 
phases were identified based on kinematic data as the movement 
from R to each target. To fully capture EMG activity, including 
electromechanical delay, a 200-ms interval was added before the 
movement onset and after the movement oset (Begovic et al., 
2014). Only the phasic (motion-related) component of the EMG 
was analyzed. The tonic component was modeled as a linear ramp, 
interpolating between constant activation levels estimated from the 
average EMG activity 200 ms before movement onset and 200 ms 
after movement completion (d’Avella et al., 2006). The phasic EMG 
was obtained by subtracting this tonic component from the total 
EMG signal, with any resulting negative values set to zero. Each 
movement phase was temporally normalized to 100 equally spaced 
time points. All repetitions across all movement directions were 
concatenated into a single matrix. EMG channels were normalized 
to the maximum amplitude observed for each respective muscle 
across all trials. After preprocessing, the dataset was divided into 
training and testing subsets. The training set included data from 
nine out of ten trials for each point-to-point movement, while 
the remaining trial was allocated to the testing set. This data split 
follows standard practice in training autoencoders (Qian et al., 
2020; Salehi et al., 2021). 

2.4 Synergy extraction 

An autoencoder is a type of neural network that implements 
two main architectures: an encoder that maps the input data X 
to a latent representation h (Equation 1), and a decoder that 
reconstructs the input into X’ from this latent code (Equation 2). 

These transformations are mathematically defined as follows: 

h = a 
� 
w1 · X + b1 

 
(1) 

X 
= w2 · h + b2 (2) 

Equation 2 parallels the muscle synergy model, wherein the hidden 
representation h corresponds to the synergy activation coeÿcients, 
and the decoder weights w2 represent the muscle synergy vectors. 
The architecture of the AE followed the configuration proposed 
in previous studies (Buongiorno et al., 2020; Giraud et al., 2025), 
employing a single hidden layer with a number of neurons equal 
to the number of muscle synergies to be extracted. Four and six 
neurons were set for the hidden layer. 

The model was implemented in Python using the Keras library, 
based on the toolbox1 (Giraud et al., 2025) with the following 
hyperparameters: learning rate = 0.001; epochs number = 2,000; 

1 https://github.com/cbrambilla/musclesynergyextractionbench-main 
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FIGURE 1 

Activation functions used for the encoder and decoder layers. 

optimizer = RMSprop; loss function = mean squared error (MSE). 
These values were chosen to balance convergence quality and 
overfitting prevention. Additionally, the bias terms in both the 
encoder and decoder layers were removed to enhance performance, 
and the decoder weights were constrained to be positive (as 
muscle synergies are). Four dierent activation functions (linear, 
rectified linear unit (ReLU), sigmoid, and hyperbolic tangent) were 
evaluated and combined for the encoder and decoder layers, and 
the resulting solutions were compared. Chosen functions were 
linear, rectified linear unit (ReLU), sigmoid, and hyperbolic tangent 
(tanh), as shown in Figure 1. It should be noted that when using 
encoder activation functions that allow negative values and without 
positivity constraints, such as linear and tanh, negative temporal 
components may appear, which are physiologically unrealistic; 
however, we explored this scenario to assess the impact on the 
learned representations. The AE was trained using concatenated 
EMG data from all movement planes, learning a unified synergy 
representation across the full workspace. The AE was then 
tested for each plane, reproducing the multiple-plane architecture 
by Giraud et al. (2025). 

For comparison, muscle synergies were also extracted using 
the NMF algorithm implemented in Python with the Coordinate 
Descent solver. The decomposition was iterated with randomly 
initialized matrices until the Frobenius norm between the original 
and the reconstructed matrices fell below 10−4 , or a maximum 
of 500 iterations was reached. Four-synergy and six-synergy 
solutions were tested, and to mitigate the risk of local minima, 
20 repetitions of the decompositions were performed on the test 
dataset. The solution with the lowest reconstruction error was 
selected for analysis. 

2.5 Outcome measures and statistics 

To evaluate the performance of each AE, the root mean 
square error (RMSE) and the reconstruction accuracy R2 were 
computed. The quality of reconstruction R2 of the original signal 
was defined as 1—SSE/SST, where SSE is the sum of the squared 
residuals, and SST is the sum of the squared dierences with the 
mean EMG vector. Both RMSE and R2 are commonly used both 
in synergy analysis and in neural network training to quantify 
how well the input signal is reproduced, thus providing a direct 
assessment of the model performance. Additionally, the similarity 
between matched synergies extracted by each configuration and 
the one extracted by NMF was assessed using cosine similarity. 

Correspondence between the temporal activation coeÿcients of 
matched synergies was evaluated using Pearson’s correlation 
coeÿcient. These measures are crucial to assess whether the 
extracted synergies remain physiologically meaningful. Since NMF-
derived synergies are considered as physiologically interpretable, 
comparing AE-based synergies against them allows to evaluate 
not only the reconstruction quality but also the preservation of 
physiologically meaningful structure in both spatial and temporal 
domains. Finally, the sparsity index of the spatial synergies was 
computed as the ratio between the number of zero-valued elements 
and the total number of elements in the synergy vector. 

The statistical evaluation of AE’s performance was carried out 
through repeated measures ANOVA, with the AE configuration as 
within-subject factor. In case of significant main eect, pairwise 
post-hoc comparisons with Holm correction were performed to 
identify which AE configurations diered significantly. 

3 Results 

The mean spatial synergies (W) across participants extracted 
with NMF and all the AE configurations are shown in Figure 2, 
while the mean temporal coeÿcients reported for the frontal 
plane only are shown in Figure 3. Two combinations of AE 
(ReLU+sigmoid and sigmoid+sigmoid) are not analyzed because 
the temporal coeÿcients resulted in NaN. Further remedies for 
numerical instabilities, such as gradient clipping and initialization 
strategies, were adopted, but the reconstruction accuracy was 
negative, indicating that these combinations are not suitable for our 
analysis. 

In the muscle synergies extracted using NMF, synergy W1 is 
primarily characterized by strong activation of the forearm muscles 
(BR and PR) alongside the biceps, with moderate contributions 
from pectoralis and UT. This synergy flexes the elbow at the 
beginning of the movement and controls the forearm at the end. 
Synergy W2 involves the activation of pectoralis, ES, DA, and DM 
supporting shoulder elevation during the reaching phase. Synergy 
W3 is dominated by the triceps and deltoids (mainly DP and 
DM), with contributions from the trapezii, reflecting a role in 
elbow extension. Synergy W4 mainly recruits the trapezii and back 
muscles, suggesting involvement in trunk stabilization and scapular 
control throughout the movement. 

When comparing muscle synergies derived from AE to those 
from NMF, six AE configurations produced synergies closely 
resembling the NMF results. In contrast, the remaining AE 
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FIGURE 2 

Comparison between the extracted synergies. Configurations are reported in the columns, while synergies are reported in the rows. Bold lines 
represent the mean value, while the light gray lines represent each participant. NMF synergies are reported in blue, while the configurations with the 
highest similarity to the NMF-based synergies are in black. In the label, the first term represents the encoder function, while the second term 
represents the decoder function. 

combinations yielded synergies with widespread, non-specific 
activation across all muscles, reducing interpretability and 
functional relevance. 

Regarding the NMF temporal coeÿcients, C1 is predominantly 
active at the beginning of the movement, reflecting initiation 
and forearm stabilization. C2 shows a peak midway through the 
movement, especially in upper directions, and is associated with 
shoulder flexion. C3 is activated toward the end of the motion, 
consistent with triceps involvement in elbow extension. Finally, 
C4 exhibits broad and sustained activation across all directions, 
indicating a role in continuous postural stabilization. 

When comparing AE temporal coeÿcients to those from NMF, 
six AE configurations yielded comparable results. In contrast, 
combinations using a linear or hyperbolic tangent activation 
function in the encoder produced temporal coeÿcients with 
present negative values, which are incompatible with the non-
negative structure of typical synergy models, and therefore may not 
be physiologically meaningful. 

In Table 1, the results for all AE configurations are presented 
for the four-synergy solution. For NMF, RMSE was 0.073 (0.007) 
and R2 was 0.76 (0.03), with a sparsity index of 0.37 (0.04). 
The factor “AE configuration” was significant for all parameters 
(p < 0.001), indicating that some configurations performed 
significantly better or worse than others. The tanh+sigmoid 
configuration yielded the highest errors and lowest reconstruction 
(p < 0.03 compared to all other conditions). The best trconstruction 
accuracy was obtained with linear+linear, linear+tanh, tanh+linear, 
and tanh+tanh, although these dierences were not significant 
relative to all the remaining configurations. In contrast, the 
highest similarity and correlation were observed for ReLU+tanh, 
ReLU+linear, and ReLU+tanh (p < 0.03 with respect to all the other 
configurations), which did not correspond to the most accurate 
reconstructions. The sparsity index was significantly higher in 
configurations using ReLU or sigmoid in the encoder (p < 0.001). 

In Table 2, the results are shown for the six-synergy solution. 
For NMF, RMSE was 0.062 (0.007) and R2 was 0.83 (0.03), 
with a sparsity index of 0.51 (0.03). Again, the factor “AE 
configuration” was significant for each parameter (p < 0.001), 
with some configurations performing significantly better or worse. 
The tanh+sigmoid configuration resulted in the highest errors 
and lowest reconstruction accuracy (p < 0.002), while the 
best reconstruction accuracy was achieved with linear+ReLU, 
tanh+ReLU, and tanh+linear. Configurations including ReLU 
or sigmoid in the encoder showed the highest similarity and 
correlation (p < 0.01). The sparsity index was significantly higher in 
configurations using ReLU or sigmoid in the encoder (p < 0.001). 

4 Discussion 

In this study, multiple AE architectures for muscle synergy 
extraction have been investigated, focusing on the influence 
of encoder and decoder activation functions. Our results 
show that specific configurations can eectively approximate 
the performance of linear NMF, both in terms of EMG 
reconstruction accuracy and synergy interpretability. Notably, 
six AE configurations demonstrated synergy patterns and 
temporal activations closely resembling those obtained from NMF, 
highlighting the potential of AEs as feasible non-linear alternatives 
for muscle synergy extraction. 

4.1 AE configurations and physiological 
interpretability 

The most used activation functions were systematically 
tested in all possible encoder-decoder combinations. This choice 

Frontiers in Human Neuroscience 05 frontiersin.org 

https://doi.org/10.3389/fnhum.2025.1699799
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-19-1699799 October 28, 2025 Time: 17:18 # 6

Brambilla et al. 10.3389/fnhum.2025.1699799 

FIGURE 3 

Comparison between the temporal coefficients in the frontal plane for all nine directions. Configurations are reported in the rows, while temporal 
coefficients are reported in the columns. Bold lines represent the mean value, while the light gray lines represent the average activation of each 
participant. NMF temporal coefficients are reported in blue, while the configurations with the highest correlations to the NMF-based temporal 
coefficients are in black. In the combination names, the first term represents the encoder function, while the second term represents the decoder 
function. 

was motivated by the fact that activation functions influence 
the resulting synergies, although their impact has not been 
systematically investigated in previous studies. Moreover, earlier 
work primarily emphasized reconstruction accuracy, often 
overlooking whether the extracted synergies were physiologically 
meaningful. Indeed, a high reconstruction R2 does not necessarily 
guarantee physiologically valid synergies. The choice of activation 
functions in both the encoder and decoder influences the quality 
and interpretability of the extracted synergies. Configurations 
employing ReLU or sigmoid for the encoder layer generally 
produced physiologically meaningful synergies, preserving spatial 
specificity and muscle grouping consistent with NMF. 

Conversely, configurations with linear or hyperbolic tangent 
functions in the encoder often resulted in widespread, non-
selective muscle activations associated with negative temporal 
coeÿcients, which are inconsistent with the synergy model and 
compromise physiological validity, as negative coeÿcients have 

no physiological interpretation in standard synergy models. When 
using linear or tanh, the temporal coeÿcients include negative 
values, as expected, because these functions allow both positive 
and negative outputs. The specificity of the extracted synergies is 
reduced, as negative coeÿcients enable the model to reconstruct 
EMG activity by both subtracting and adding synergies, eectively 
increasing the flexibility of the decomposition. While this may 
improve the reconstruction accuracy, it leads to spatial synergies 
that are less selective, often involving widespread co-activation 
of many muscles. Consequently, the resulting synergies lack 
the spatial specificity and interpretability typically expected in 
standard synergy models. 

Using ReLU in the encoder combined with a sigmoid decoder, 
or sigmoid functions in both encoder and decoder, led to NaN 
values in the temporal coeÿcients. This behavior can be attributed 
to numerical instabilities. In the first case (ReLU+sigmoid), 
the unbonded positive outputs of the ReLU can drive the 
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TABLE 1 Results for all AE configurations for the four-synergy solution. 

Methods RMSE R2 Similarities Correlations Sparsity index 

linear+linear 0.072 (0.007) 0.76 (0.03) 0.73 (0.05) 0.59 (0.12) 0.02 (0.02) 

linear+ReLU 0.076 (0.011) 0.74 (0.06) 0.61 (0.05) 0.54 (0.10) 0.16 (0.06) 

linear+sigmoid 0.080 (0.007) 0.71 (0.05) 0.75 (0.06) −0.63 (0.09) 0.08 (0.03) 

linear+tanh 0.073 (0.007) 0.76 (0.04) 0.72 (0.04) 0.56 (0.17) 0.02 (0.02) 

ReLU+linear 0.073 (0.007) 0.75 (0.04) 0.89 (0.11) 0.89 (0.11) 0.37 (0.04) 

ReLU+ReLU 0.084 (0.015) 0.68 (0.08) 0.90 (0.10) 0.92 (0.09) 0.42 (0.07) 

ReLU+tanh 0.075 (0.007) 0.75 (0.04) 0.96 (0.08) 0.96 (0.08) 0.35 (0.04) 

sigmoid+linear 0.079 (0.008) 0.72 (0.04) 0.86 (0.10) 0.83 (0.09) 0.39 (0.04) 

sigmoid+ReLU 0.087 (0.010) 0.66 (0.08) 0.81 (0.12) 0.80 (0.11) 0.44 (0.07) 

sigmoid+tanh 0.080 (0.009) 0.71 (0.04) 0.83 (0.10) 0.81 (0.08) 0.39 (0.05) 

tanh+linear 0.073 (0.007) 0.76 (0.03) 0.79 (0.04) 0.67 (0.07) 0.13 (0.02) 

tanh+ReLU 0.077 (0.009) 0.73 (0.06) 0.75 (0.06) 0.63 (0.07) 0.27 (0.05) 

tanh+sigmoid 0.097 (0.009) 0.58 (0.08) 0.66 (0.03) −0.39 (0.09) 0.02 (0.04) 

tanh+tanh 0.074 (0.007) 0.76 (0.03) 0.78 (0.04) 0.64 (0.08) 0.12 (0.03) 

RMSE, R2 , sparsity index, similarities of synergies, and correlations of temporal coeÿcients of matched synergies between AE and NMF are reported. Standard deviations are reported in 
brackets. The highest values are reported in bold. 

TABLE 2 Results for all AE configurations for the six-synergy solution. 

Methods RMSE R2 Similarities Correlations Sparsity index 

linear+linear 0.062 (0.006) 0.82 (0.04) 0.60 (0.04) 0.47 (0.10) 0.02 (0.01) 

linear+ReLU 0.058 (0.008) 0.85 (0.04) 0.54 (0.04) 0.39 (0.22) 0.11 (0.03) 

linear+sigmoid 0.071 (0.007) 0.77 (0.03) 0.67 (0.04) −0.58 (0.08) 0.10 (0.01) 

linear+tanh 0.062 (0.007) 0.82 (0.03) 0.60 (0.04) 0.38 (0.10) 0.02 (0.01) 

ReLU+linear 0.065 (0.007) 0.81 (0.03) 0.88 (0.09) 0.89 (0.09) 0.46 (0.05) 

ReLU+ReLU 0.065 (0.009) 0.81 (0.03) 0.82 (0.08) 0.83 (0.09) 0.47 (0.04) 

ReLU+tanh 0.065 (0.008) 0.81 (0.04) 0.86 (0.10) 0.87 (0.09) 0.47 (0.04) 

sigmoid+linear 0.072 (0.007) 0.77 (0.04) 0.82 (0.06) 0.81 (0.05) 0.52 (0.04) 

sigmoid+ReLU 0.075 (0.010) 0.74 (0.07) 0.80 (0.07) 0.78 (0.09) 0.54 (0.04) 

sigmoid+tanh 0.072 (0.007) 0.77 (0.03) 0.83 (0.09) 0.81 (0.09) 0.52 (0.04) 

tanh+linear 0.062 (0.007) 0.83 (0.03) 0.70 (0.03) 0.57 (0.04) 0.14 (0.02) 

tanh+ReLU 0.060 (0.008) 0.84 (0.03) 0.68 (0.05) 0.55 (0.06) 0.24 (0.04) 

tanh+sigmoid 0.086 (0.008) 0.67 (0.04) 0.62 (0.03) −0.46 (0.06) 0.05 (0.03) 

tanh+tanh 0.064 (0.007) 0.82 (0.03) 0.70 (0.03) 0.55 (0.06) 0.14 (0.02) 

RMSE, R2 , sparsity index, similarities of synergies, and correlations of temporal coeÿcients of matched synergies between AE and NMF are reported. Standard deviations are reported in 
brackets. The highest values are reported in bold. 

sigmoid activation in the decoder into saturation, resulting in 
extreme gradients or numerical overflow. In the second case 
(sigmoid+sigmoid), stacking sigmoids in both the encoder and 
decoder increases the risk of saturation at either end of the 
activation range, which leads to vanishing gradients and unstable 
weight updates. Both scenarios disrupt the training dynamics and 
ultimately cause the coeÿcients to diverge to NaN. Additional 
remedies for improving their performance were employed, such as 
gradient clipping and initialization strategies, but the R2 became 
negative, indicating that the reconstruction error was larger than 
the signal variance. These combinations are not suitable for the 
present architecture, and an exhaustive hyperparameter tuning or 

architecture redesign for these two combinations is outside the 
scope of the present study. 

In line with previous works (Buongiorno et al., 2019; 
Giraud et al., 2025), our results confirm that AEs can match 
or slightly outperform NMF in terms of EMG reconstruction 
metrics. However, similar performance in reconstruction does 
not guarantee equivalent synergy structure, a distinction often 
overlooked, or at least not clarified, in prior studies. Our 
analysis directly addressed this by evaluating spatial (cosine 
similarity) and temporal (Pearson’s correlation) similarity between 
AE- and NMF-derived synergies, revealing that only a subset 
of AE configurations maintains the physiological coherence of 
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muscle co-activations, even when reconstruction metrics are solid. 
Our conclusions remained consistent at both 4-synergy and 6-
synergy solutions. Indeed, our findings highlighted an important 
distinction between reconstruction accuracy and physiological 
interpretability. Linear autoencoders, in particular, often reach 
high R2 values, reflecting strong linear contributions to the 
reconstruction of EMG signals. However, such high reconstruction 
performance does not necessarily guarantee that the extracted 
components correspond to physiologically meaningful synergies, 
such as in the case of a linear activation function in the encoder 
layer. Rather, it may simply indicate that the model is eÿciently 
capturing the variance in the data through linear combinations. 
Therefore, while linear AEs may serve as powerful tools for 
data compression and reconstruction, their outputs should be 
interpreted with caution in physiological contexts. 

4.2 Advantages and challenges of 
AE-based synergy extraction 

AEs oer several advantages over linear methods. Their 
flexibility allows modeling complex, non-linear dependencies in 
muscle activations, which may even better reflect the underlying 
biomechanics and neurophysiology of the movement with respect 
to linear models (which are already deemed as eective to 
model standard combinations of synergies). Moreover, it could be 
interesting to explore the application of AE-based methods in other 
domains that may exhibit non-linear characteristics, such as task 
space (Scano et al., 2022) or torque space (Russo et al., 2014), in 
which the contributions of non-linear models might be crucial. This 
is particularly relevant in clinical settings, where a more accurate 
representation of the relationship between muscle activity and task 
execution can enhance diagnostic and therapeutic approaches. For 
instance, the MMF algorithm, which extracts kinematic-muscular 
synergies, assumes a linear mapping between kinematic and 
muscular spaces; however, this simplification may not fully capture 
the underlying dynamics (Scano et al., 2022). Additionally, research 
using non-linear models to assess the informal content of synergies 
in task performance has shown that these models can detect motor 
impairments that standard NMF-based methods do not capture 
(O’Reilly and Delis, 2024). Future work will focus on applying AEs 
to extract synergies across multiple domains characterized by non-
linear interactions, to evaluate whether this approach surpasses 
traditional linear techniques. Establishing robust links between 
muscle activity and task space can support the development of 
assistive rehabilitation technologies, such as exoskeletons and end-
eector robots, by leveraging kinematic-muscular synergies that 
integrate both motor command and movement output. 

4.3 Clinical and research applications 

Given their ability to model non-linear relationships, AEs 
show strong potential for applications in rehabilitation, particularly 
for patient populations with atypical coordination patterns (e.g., 
stroke). The adaptability of AE architectures may allow detection 
of subtle deviations in synergy structure that linear models 
might miss, potentially oering biomarkers for diagnosis, therapy 

planning, or motor recovery assessment. Moreover, the success 
of AEs in healthy participants supports their use as a tool for 
understanding normative motor control strategies. With proper 
tuning, AEs could also be instrumental in tasks involving robotic 
assistance, prosthesis control, or biofeedback training. Non-linear 
synergy models may reveal motor control deficits that may not be 
detected when using linear approaches. In fact, motor impairments 
might induce non-linearities in the neuromuscular system that 
are absent in healthy individuals. Moreover, establishing a direct 
link between muscle activation and task space is particularly 
valuable in clinical contexts. Understanding how neural drive 
translates to motor outcomes can help identify intact synergies 
that are deployed in biomechanically suboptimal ways. This 
distinction could guide rehabilitation strategies that not only 
aim to restore normal synergy patterns but also enhance their 
functional implementation during task performance. While non-
linear models hold considerable clinical promise, they typically 
require large datasets with many movement repetitions to ensure 
reliable training and generalization. This practical consideration 
should be taken into account when designing future clinical studies 
or therapeutic protocols based on these methods. 

4.4 Limitations and future directions 

Our findings also expose limitations. The AE’s performance 
is sensitive to architectural choices such as transfer functions, 
and our conclusions are specific to the dataset used. To assess 
the generalizability of AE-based synergy extraction, future studies 
should involve dierent datasets, such as those involving lower 
limb movements or hand grasps. This will help determine whether 
AEs can provide more robust or complementary insights compared 
to NMF, and whether the assumption of linearity holds across 
dierent muscle groups. Previous research has shown that both 
the selected task and muscle set can significantly influence the 
resulting synergies, revealing novel intermuscular relationships 
(Steele et al., 2013; Brambilla and Scano, 2022). Therefore, 
validating AE performance across multiple datasets is a crucial 
next step. Additionally, this study employed a relatively simple 
AE architecture, with a single hidden layer and the number of 
synergies fixed at four. Future work should explore more diverse 
architectures, including deeper networks and varying numbers 
of synergies, to better understand how these factors influence 
performance. Extending the analysis to pathological populations 
could also oer important insights into the clinical applicability of 
AE-based models. 

Interestingly, while the extracted synergies were similar to the 
NMF in some combinations, variations depending on AE settings 
suggest that one approach may outperform the others. However, 
due to the presence of noise in EMG signals, it is currently not 
possible to definitively establish which method produces superior 
results. One promising strategy for benchmarking performance 
would be to use simulated ground truth synergies and temporal 
coeÿcients defined a priori by the experimenter. By multiplying 
these to generate synthetic EMG envelopes, one could then 
apply NMF and the best combination of AE to extract synergies 
and quantitatively compare their accuracy. The success of this 
approach depends on designing physiologically plausible ground 

Frontiers in Human Neuroscience 08 frontiersin.org 

https://doi.org/10.3389/fnhum.2025.1699799
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-19-1699799 October 28, 2025 Time: 17:18 # 9

Brambilla et al. 10.3389/fnhum.2025.1699799 

truth datasets, a challenge that future work will address, following 
methodologies similar to those proposed by Scano et al. (2022). 

5 Conclusion 

This study systematically evaluated AE architectures for 
muscle synergy extraction, focusing on activation function 
combinations. We found that while some configurations oered 
high reconstruction accuracy, they did not always produce 
physiologically meaningful synergies. The ReLU+tanh setup 
provided the most similar synergies to the NMF. These findings 
highlight the importance of selecting appropriate activation 
functions when using AEs for EMG analysis and suggest that non-
linear methods can capture motor control features missed by linear 
models. Future research should explore AE applications in more 
complex or clinical datasets. 
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