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Trauma is the fourth leading cause of death globally and the primary cause of
mortality in the 15-45 age group, with traumatic brain injury (TBI) at the core
of trauma care. Annually, over 50 million TBI patients are reported worldwide.
The complex and heterogeneous pathophysiology of TBI presents substantial
diagnostic and therapeutic challenges. In recent years, multimodal monitoring
has emerged as a crucial tool to guide clinical management. The integration
of multimodal monitoring with machine learning offers novel opportunities for
TBI assessment and management, given the rapid development and widespread
application of machine learning approaches. Therapeutic hypothermia has
shown potential neuroprotective benefits in experimental and clinical contexts,
though evidence remains mixed and its implementation in practice faces
significant challenges. This review summarizes recent advancements in
multimodal monitoring and explores how machine learning can optimize the
application of therapeutic hypothermia in conjunction with multimodal data.
For example, predictive models trained on multimodal signals (e.g., EEG, ICP,
cerebral blood flow, and oxygenation) can help identify patient subgroups most
likely to benefit from targeted temperature management. By enabling such
stratification and adaptive treatment strategies, machine learning may support
the development of more personalized and effective therapeutic approaches
for TBI.

KEYWORDS

traumatic brain injury, multimodal monitoring, machine learning, hypothermic
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1 Introduction

Traumatic brain injury (TBI) is a severe public health issue, affecting 10’s of millions of
patients globally each year (Dewan et al., 2019; Maas et al., 2022). TBI is typically caused by
external force impacting the head or penetrating injuries, potentially leading to a series of
complex neurological pathological changes, including primary and secondary injuries (Wu
et al., 2022). Primary injuries refer to brain tissue damage caused directly by mechanical
forces, such as contusions and hemorrhages, while secondary injuries involve a series of
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biochemical and physiological cascades, such as brain edema,
blood-brain barrier damage, inflammatory responses, oxidative
stress, and apoptosis (Minta et al., 2020; Shao et al, 2019;
Unadkat et al., 2025). These pathological processes often interact,
leading to more extensive neuronal damage and functional
impairment (Zhao et al., 2019). Clinical manifestations of TBI are
diverse, including consciousness disturbances, motor dysfunction,
cognitive deficits, and changes in mood and behavior (Yen et al,,
2018; Zhang and Ioachimescu, 2025). Due to the complexity
of TBI pathophysiological mechanisms, traditional treatment
strategies often face multiple challenges. For example, single drug
treatments struggle to address multiple concurrent pathological
mechanisms (Lins et al., 2023), and while surgical interventions can
quickly address intracranial hematomas and skull fractures, they
cannot resolve microscopic neuronal damage. Moreover, individual
differences result in varying effects of the same treatment plan
among different patients, further increasing the difficulty of TBI
treatment (Tenovuo et al., 2021; Zheng et al., 2020).

In recent years, hypothermic neuroprotection has gained
widespread attention as a treatment strategy in TBI management.
Hypothermic therapy reduces brain metabolic demands by
lowering body temperature, thereby alleviating inflammatory
responses and oxidative stress, and protecting brain tissue to
some extent (Liang et al, 2023; Yan et al, 2022). However,
implementing hypothermic therapy requires precise control,
including cooling extent, duration, and initiation timing, to achieve
optimal therapeutic effects and minimize potential side effects
(Kendall et al., 2023). Despite the positive effects shown in
clinical and experimental studies, standardization and personalized
implementation of hypothermic neuroprotection still require
further exploration (Wang et al., 2024; Wu et al., 2021).

Meanwhile,
technology, machine learning techniques have increasingly been
applied in the medical field (Greener et al, 2022). Machine
learning analyzes and integrates large amounts of complex

with continuous advancements in medical

physiological data, extracting valuable feature information to
support clinical decision-making (Cobianchi et al., 2023; Zhang
et al., 2021). In TBI management, machine learning can improve
diagnostic accuracy and treatment effectiveness by analyzing
multimodal monitoring data to identify key physiological and
pathological features (Bischof and Cross, 2023; Schroder et al,
2021). Thus, machine learning can monitor and analyze patients’
physiological states in real-time, providing personalized treatment
recommendations and optimizing therapeutic strategies like
hypothermic neuroprotection.

Abbreviations: AUC, area under the curve; CBF, cerebral blood flow;
CNN, convolutional neural network; CT, computed tomography; CV,
cross-validation; CVRI, cerebrovascular reactivity index; DBS, deep brain
stimulation; EEG, electroencephalography; EtCO2, end-tidal carbon
dioxide; GCS, Glasgow Coma Scale; GOS, Glasgow Outcome Scale;
ICA, Independent Component Analysis; ICP, Intracranial Pressure; loU,
intersection over Union; LMIC, low- and middle-income countries; MAE,
mean absolute error; MAP, mean arterial pressure; ML, machine learning;
MRI, magnetic resonance imaging; MSE, Mean Squared Error; NIRS, near-
infrared spectroscopy; PbtO2, brain tissue oxygen pressure; PCA, Principal
Component Analysis; PPV, Positive Predictive Value; RCT, randomized
controlled trial; RMSE, Root Mean Squared Error; RNN, recurrent neural
network; ROC, receiver operating characteristic; rSO2, regional oxygen
saturation; SVM, Support Vector Machine; TBI, traumatic brain injury; TH,
therapeutic hypothermia; TMS, transcranial magnetic stimulation; TTM,
targeted temperature management.
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Multimodal monitoring technologies play a crucial role in the
diagnosis and management of TBI (Rolddn et al., 2020). These
technologies include electroencephalography (EEG), cerebral
blood flow monitoring, intracranial pressure (ICP) monitoring,
imaging (such as CT and MRI), and brain oxygen saturation
monitoring. Integrating various physiological parameters provides
a comprehensive assessment of the brain’s condition (Rohaut et al.,
2024). However, the large and complex data volumes make it
challenging to efficiently extract key information using traditional
methods. The introduction of machine learning offers new tools for
analyzing and integrating multimodal monitoring data, enhancing
the precision and personalization of TBI diagnosis and treatment
(Acosta et al., 2022).

This review adopts a narrative synthesis approach rather
than a systematic review method, focusing on the application of
multimodal monitoring and machine learning in the management
of traumatic brain injury (TBI), with particular emphasis on
the integration of therapeutic hypothermia (TTM) and machine
learning for personalized treatment strategies. The search
strategy involved a comprehensive literature review conducted
across PubMed, Scopus, and IEEE Xplore in July 2024, with
studies published from January 2000 to June 2025. Key search
terms included “Traumatic Brain Injury (TBI) “Multimodal

monitoring,” Hypothermic neuroprotection,”

»

Machine learning;
“Therapeutic Hypothermia (TTM),” “Electroencephalography
(EEG),” “Cerebral Blood Flow (CBF),” “Intracranial Pressure
(ICP)] “Brain Oxygen Saturation (PbtO2)”, and “Clinical
Decision Support.” Studies were included if they discussed the
application of multimodal monitoring or machine learning in
TBI diagnosis, treatment, or management, and those focused
on therapeutic hypothermia or the integration of multiple
data modalities with machine learning for personalized care.
Exclusion criteria comprised articles not addressing TBI or
multimodal monitoring, studies limited to animal models, and
publications outside the defined time range (before 2000 or
after June 2025). The studies were grouped based on monitoring
modality (e.g., EEG, CBE ICP, PbtO2, CT/MRI imaging), task
(e.g., diagnosis, prognosis, prediction, therapeutic intervention),
and outcome (e.g., effectiveness of monitoring methods, clinical
outcomes, machine learning model performance). This review
does not perform a formal systematic quality assessment, instead
providing a qualitative synthesis of key themes and trends.
While areas of conflicting or insufficient evidence were noted,
especially concerning the integration of machine learning with
therapeutic hypothermia, the methodology remains transparent
and reproducible, ensuring that the review’s findings are grounded
in the existing literature. By clearly defining inclusion and
exclusion criteria, the review enables a comprehensive analysis
of multimodal monitoring and machine learning in TBI, offering
valuable insights into current practices and highlighting areas for
further research and innovation.

This article will delve into the application of hypothermic
neuroprotection in TBI management and analyze the role
of machine learning in optimizing hypothermic therapy.
Additionally, it will review the importance of multimodal
monitoring technologies in TBI assessment and how machine
learning improves the effectiveness and personalization of TBI
treatment through data analysis. Future research will explore
advancing personalized and precise TBI management based
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on these emerging technologies. This review is intended for
neurocritical care clinicians, biomedical engineers, and researchers
focused on traumatic brain injury (TBI) management and
treatment innovation. Its primary aim is to provide decision-
support insights for healthcare professionals involved in the
acute management of TBI, particularly in the application of
multimodal monitoring and machine learning for personalized
treatment strategies.

2 Multimodal monitoring
technologies

Multimodal monitoring technologies provide clinicians with
rich information sources to more comprehensively and accurately
assess patients neurological states (Appavu et al, 2021; Hwang
et al., 2025; Tas et al, 2022). As shown in Figure 1A, the
key components of multimodal monitoring are EEG, Cerebral
Blood Flow Monitoring, ICP Monitoring, Imaging, Brain Oxygen
Saturation Monitoring, etc., Figure 1B shows the typical workflow
of a typical machine learning algorithm. The following Table 1
summarizes the key technical parameters and applications of
various monitoring techniques used during different phases of
Traumatic Brain Injury (TBI). It highlights the core technical
features of each technology, such as sampling frequency, spatial
resolution, and monitoring depth. In the acute phase, these
technologies focus on quick diagnosis and timely intervention,
with an emphasis on monitoring brain function, detecting ischemic
events, and identifying high intracranial pressure (ICP). In the
subacute phase, the technologies are used to assess treatment
efficacy and monitor brain recovery. Finally, in the recovery
phase, these tools help evaluate long-term outcomes and support
decisions regarding rehabilitation strategies. This table provides a
comprehensive overview of how each technology is applied in TBI
management and recovery, offering insights into their role and
effectiveness across different stages of the injury.

2.1 EEG

Electroencephalography records electrical activity from the
brain’s cortex, providing a non-invasive and real-time method
for assessing brain function. In TBI patients, EEG can monitor
phenomena such as seizures, consciousness changes, and brain
dysfunction. Common EEG technical parameters include:
Sampling Frequency: Typically, between 250 and 500 Hz, used
to capture high-frequency cortical activity. Spatial Resolution:
Generally, 2-3 cm, used to localize electrical activity in the
cerebral cortex.

Patients with TBI often face the risk of seizures; EEG helps
in the timely identification and monitoring of seizure activities
for early intervention (Pyrzowski et al., 2024; Sconzo et al,
2025). Additionally, EEG is used to evaluate consciousness
levels and the extent of brain dysfunction, aiding clinical
decision-making (Bai et al., 2021). However, traditional EEG
data interpretation relies on experienced neurologists and is
susceptible to noise. Combining machine learning technology

allows for automated analysis of EEG data, identifying specific
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brain wave patterns and improving analysis efficiency and
accuracy (Parsa et al., 2023). For example, machine learning
algorithms can quickly detect abnormal brain activities
and assist clinicians in making more accurate diagnoses,
using deep learning to automatically detect epileptiform
abnormalities in EEG from TBI. They demonstrated that a
recurrent neural network (RNN) trained with continuous
(EEG) data can identify

epileptiform activity (EA), achieving an accuracy of up to 80.78%.

electroencephalogram effectively
This lays the foundation for robust and automated detection
of epileptiform activity in traumatic brain injury (TBI) patients
(Faghihpirayesh et al., 2021).

In the acute phase of TBI, EEG is primarily used to
monitor epileptic activity for early detection and intervention.
During the subacute phase, EEG can assess the recovery of
brain function. In the recovery phase, EEG is used to evaluate
long-term neurological recovery. Machine learning techniques
can analyze abnormal waveforms in EEG signals, automatically
detect seizures, and assist clinical diagnosis, thus enhancing the
efficiency of analysis.

2.2 Cerebral blood flow monitoring

Cerebral blood flow monitoring assesses the brain’s blood
perfusion status, providing crucial information about ischemia and
hypoxia. The technical parameters are as follows: Laser Doppler
Flowmetry: Spatial Resolution: Approximately 0.5-2 mm, used to
monitor dynamic changes in local cerebral blood flow. Sampling
Frequency: Typically 1-10 Hz, used for real-time blood flow
fluctuation assessment. NIRS: Oxygen Saturation Detection Range:
Usually between 60% and 100%. Depth: NIRS is generally used for
monitoring oxygenation status of superficial brain tissue, with a
depth of 2-3 cm.

The stability of cerebral blood flow is vital for maintaining
normal brain function (Vu et al., 2024) In TBI, cerebral blood flow
monitoring can be achieved through techniques like laser Doppler
flowmetry, thermal diffusion, and near-infrared spectroscopy.
Laser Doppler flowmetry evaluates local brain blood flow changes
by measuring laser reflection (Ayasse et al., 2025), while thermal
diffusion uses thermal probes to measure temperature changes in
local tissues, indirectly reflecting blood flow (Hartings et al., 2020).
Near-infrared spectroscopy measures cerebral oxygen saturation,
providing continuous and non-invasive information on central
nervous system hemoglobin oxygen saturation (Barud et al., 2021).
These technologies play a crucial role in identifying ischemic
events and assessing treatment effects. Cerebral blood flow data
are often complex and dynamic, and machine learning can more
accurately interpret these data through pattern recognition and
trend analysis, providing decision support. By analyzing real-
time cerebral blood flow data, machine learning can identify
potential ischemic risks and offer recommendations for clinical
intervention.

In the acute phase of TBI, laser Doppler flowmetry helps
identify cerebral ischemic events. During the subacute phase, NIRS
can continuously monitor the oxygenation status of brain tissue.
In the recovery phase, these techniques assist in evaluating cerebral
blood flow recovery.
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Data Preprocessing
Cleaning, normalization, augmentation

4

Feature Extraction / Selection
Dimensionality reduction, feature engineering

\4

Model Training

SVM, Random Forest, Neural Networks
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Model Validation

Hyperparameter Optimization
Cross-validation, avoiding overfitting J

Grid search, random search, Bayesian

A4

Performance Evaluation
Accuracy, Precision, Recall, F1-score,

(A) Multimodal monitoring technology for traumatic brain injury (TBI) and (B) typical workflow of a machine learning algorithm, illustrating the main
steps including data preprocessing, feature extraction/selection, model training, model validation, hyperparameter optimization, and performance
evaluation. This pipeline ensures robust and generalizable model performance for biomedical data analysis

2.3 ICP monitoring

Intracranial pressure monitoring is a key tool for evaluating
intracranial hypertension and brain edema (Shang et al., 2024).
Elevated ICP is a common complication in TBI, potentially
leading to insufficient brain perfusion and neuronal damage.
Common monitoring methods include external sensors and non-
invasive techniques. Key parameters include: Sampling Frequency:
Typically, 1-10 Hz, used for real-time ICP fluctuation monitoring.
Non-invasive ICP Monitoring: ICP changes are estimated using
cranial acoustic techniques, suitable for initial assessments in acute
phase patients.

Intracranial pressure monitoring is typically performed using
external sensors and non-invasive techniques. External sensors
measure ICP directly through intracranial pressure sensors,
while non-invasive monitoring estimates ICP changes using
cranial acoustic techniques. Real-time monitoring of ICP changes
provides a basis for managing intracranial hypertension and
aids in determining whether surgical intervention or treatment
adjustments are necessary (Fernando et al,, 2019). However, due
to the dynamic nature of ICP data and individual variations,
personalized solutions are required (Zeiler et al., 2022). Machine
learning can help identify potential crisis moments through
big data analysis and provide personalized management plans.
Machine learning models can also predict ICP trends, helping
doctors take preventive measures in advance.

In the acute phase, ICP monitoring is used to identify
elevated intracranial pressure early and guide treatment. During
the subacute phase, ICP monitoring helps assess changes in brain
edema, and in the recovery phase, it is used to evaluate ICP recovery
and guide long-term management.

Frontiers in Human Neuroscience

2.4 Imaging

Imaging is a fundamental method for TBI assessment,
providing structural and functional information (Hu et al., 2022).
Common imaging techniques include computed tomography (CT)
(Mader et al., 2021), magnetic resonance imaging (MRI) (Pinggera
etal., 2020), and proton magnetic resonance spectroscopy (Bartnik-
Olson et al., 2021). Technical parameters include: CT: Resolution:
Typically, 0.5-1 mm, used for rapid identification of intracranial
hemorrhage and fractures. Scan Time: The rapidity of CT scanning
makes it the method of choice during the acute phase. MRI:
Resolution: Typically, 1 mm, used for assessing soft brain tissue
damage, diffuse axonal injury, and white matter lesions.

Computed tomography scans quickly identify intracranial
hemorrhages, fractures, and edema, making it the preferred
imaging method in emergency situations, while MRI offers
higher-resolution imaging of brain soft tissues, detecting diffuse
axonal injury and parenchymal changes. Imaging provides
precise localization of lesions, assesses the extent and nature
of damage, and forms the basis for personalized treatment
plans. However, interpreting imaging data requires expertise,
and machine learning can enhance analysis efficiency through
automated image recognition and segmentation. Machine learning
algorithms can automatically identify lesion areas in CT or
MRI scans, assisting doctors in more accurate evaluations
(Ling et al., 2025).

In the acute phase, CT is used for rapid screening of
hemorrhage and fractures. In the subacute phase, MRI helps assess
diffuse injuries and white matter changes, with advantages in
evaluating soft brain tissues. During the recovery phase, MRI is
used to detect neural repair and functional brain recovery.
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TABLE 1 Technical parameters and phase-specific applications of monitoring technologies in traumatic brain injury (TBI).

Technology

Core
parameters

Technical
features

Acute phase
application

Subacute phase
application

Recovery phase
application

1-10Hz

oxygenation, provides
continuous monitoring
of cerebral oxygen
saturation

oxygen saturation, identifies
hypoxia and low perfusion

EEG Sampling frequency: Records electrical activity | Monitors seizures, Assesses brain activity Long-term monitoring of
250-500 Hz from the brain’s cortex, consciousness changes, and recovery and aids in brain electrical activity
reflecting brain function brain dysfunction in real-time | post-injury brain for recovery assessment
function evaluation
Spatial resolution: Can be combined with Helps identify abnormal brain | Monitors brain electrical Long-term monitoring to
2-3cm machine learning for waves for early intervention activity recovery, aids in evaluate recovery
improved diagnostic developing recovery outcomes
accuracy plans
Laser doppler Spatial resolution: Assesses local cerebral Quickly diagnoses ischemic Assesses treatment Monitors brain blood
flowmetry 0.5-2 mm blood flow, detects events, evaluates brain effects, evaluates blood flow recovery and
ischemia and hypoxia perfusion status flow changes evaluates perfusion
restoration
Sampling frequency: Suitable for dynamic Identifies ischemic events for Evaluates treatment Long-term monitoring of
1-10 Hz brain blood flow clinical intervention effects, optimizes blood flow recovery in
monitoring therapeutic strategies the brain
NIRS Sampling frequency: Measures brain tissue Real-time monitoring of Assesses oxygenation Continuous monitoring

status, helps adjust
therapeutic strategies

of brain oxygenation
status during recovery

Depth: 2-3 cm

Provides oxygenation
status for shallow brain
tissue

Helps guide treatment of
hypoxic events

Assesses oxygenation
recovery, monitors the
effectiveness of hypoxic
treatments

Evaluates long-term
oxygenation status
during recovery

ICP monitoring

Sampling frequency:
1-10 Hz

Assesses intracranial
pressure, evaluates brain

Monitors ICP fluctuation,
timely intervention in high

Assesses edema changes,
evaluates treatment

Long-term ICP
monitoring to assess

edema and hypertension ICP situations effects brain edema and
recovery status
Non-invasive Quick, non-invasive Provides real-time ICP data Monitors ICP and edema Monitors ICP during

of soft brain tissues,
assesses deep brain

injuries

injury, parenchymal changes
in acute phase

monitoring (acoustic method for ICP for urgent clinical decisions for treatment recovery, aiding in later
methods) assessment adjustments treatment decisions
CT Resolution: Rapid imaging for Quickly identifies brain Assesses diffuse injuries, Evaluates recovery of
0.5-1 mm intracranial hemorrhages and fractures in brain tissue damage brain injuries, guides
hemorrhages, fractures, emergency settings post-treatment decisions
and edema
Scan time: seconds Fast imaging for urgent Used for emergency screening | Helps assess chronic Provides follow-up
to a few minutes diagnosis in acute phase to avoid missed | damage, assists in imaging to assess
fatal injuries treatment decisions recovery progress
MRI Resolution: 1 mm High-resolution imaging Identifies diffuse axonal Provides detailed Long-term imaging to

imaging of soft tissue
damage, assesses chronic

injury recovery

assess white matter
damage and evaluate

recovery outcomes

Scan time:
10-30 min

Ideal for assessing soft
brain tissue injuries in
subacute and recovery
phases

Suitable for subacute phase to
evaluate white matter injury

and guide treatment

Evaluates soft tissue
recovery, determines
therapeutic strategy

Long-term assessment of
white matter damage and

neurological recovery

2.5 Brain oxygen saturation monitoring

Brain oxygen saturation monitoring assesses the oxygenation
status of brain tissue, providing critical information for identifying
hypoxia and low perfusion. Technical parameters include: Oxygen
Saturation Detection Range: Typically, between 60% and 100%,
reflecting the oxidative status of brain tissue in real time.

Monitoring Depth: NIRS is typically used for monitoring

superficial brain tissue with a depth of 2-3 cm.

Frontiers in Human Neuroscience

Near-infrared spectroscopy (NIRS)
technique for monitoring brain oxygen saturation (Gomez et al,,

is a commonly used

2023a). This technology evaluates oxygenation status by measuring
changes in tissue light absorption, enabling real-time monitoring
of brain oxygen saturation, identifying potential hypoxic events,
and assessing the impact of treatment on brain oxygenation.
An article from the Canadian High-Resolution Traumatic Brain
Injury (CAHR-TBI) cohort study explored the predictive value of
regional oxygen saturation (rSO;) and cerebrovascular reactivity

index (CVRi) measured by near-infrared spectroscopy in acute
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traumatic brain injury patients’ prognosis. The study found that _

these two indicators were significantly correlated with patients’ ; E" »

clinical outcomes, with low rSO, and CVRi associated with poor § g g % ) §
prognosis, suggesting that NIRS may become an effective tool 5 »| 2 5 £3
for assessing acute TBI prognosis and guiding clinical treatment ] g 5 :g gﬂ g ?; g
decisions (Gomez et al., 2024). Brain oxygen saturation data _2 ";§ %D §o § go ;o
are easily influenced by external environment and physiological S Z & % E . é g E
factors. Machine learning can improve data accuracy through data g g z § 5 § 2 8§ :5 g
cleaning and feature extraction, help identify potential oxygenation & 4 g E é B ;E £ é é
issues, and detect key features related to prognosis, thus guiding = 28 253 %8 43
personalized treatment (Gomez et al., 2023b).

In the acute phase of TBI, NIRS is used for continuous 2 -
monitoring of brain tissue oxygenation. During the subacute phase, E TE 3| . b=t %
combined with other multimodal data, NIRS helps evaluate brain 8 2 g é‘ :: ?
hypoxia and guide treatment. In the recovery phase, this technology § ?: % o S §
assists in evaluating the oxygenation status during the process of 5 S % § ; %
neurological recovery. .‘E § g § § g

In addition to non-invasive modalities such as NIRS, invasive = 2 £03 & E
brain tissue oxygenation techniques [e.g., LICOX (Frith et al, 8 E 5‘ 2 E 5
2024), Raumedic (Rot et al., 2020)] remain the standard in many
centers, and recent trials such as BOOST and BONANZA are 4 . .
exploring their role in TBI management. 1= gl & §

3 = £ £ %
. . . . . s B <2} . B I o
3 Application of machine learning in c% S2 25215 g3
1o = g .

The application of machine learning in TBI management is E @ g i; =
increasingly widespread, demonstrating significant potential. The 3 BS = E % E §
success of machine learning models in diagnosing and assessing g < g £ 5 F F
TBI relies heavily on efficient feature extraction. To achieve this, 5 '% § é § o g ; g
both traditional statistical methods, such as Principal Component = © E g E g 5 ES
Analysis (PCA) and Independent Component Analysis (ICA), E g k= 2 E ES|EF
and deep learning approaches, such as Convolutional Neural %

Networks (CNN), are employed to extract key information from » X
multimodal data, including EEG, CT, and MRL In the training = " % § g
and validation process, the dataset is typically split into training E B » 33 3 »
and validation sets at ratios of 70%-30% or 80%-20%, with § = g :g 1§ o %
cross-validation occasionally used to further assess the model’s g % ?‘; Z| 2 ; :é; ;
generalization capability. During model training, hyperparameters § = 2z 2 3 S &
are optimized through techniques like grid search or random ] .
search to enhance model accuracy and stability. For model ; . § .
validation and performance evaluation, a test set is used, and § -2 °§’ é g §
performance is assessed through tools such as AUC-ROC curves E 2 2 g & é
and confusion matrices. In addition to standard metrics like 2 _8 g = 5 =
- g B © B 5 g =
accuracy, precision, and recall, supplementary indicators such § = § £l o 3 g g
as Fl-score and Mean Squared Error (MSE) are used for a E, o g3 :é g g g E
more comprehensive evaluation. Common algorithms used in this £ % b E 'g E g g ’§ ;3
context include CNNs, which automatically extract spatial features -‘cé) § g Tl *?: g = 2 §
from EEG data to aid in TBI diagnosis, and Support Vector 2 el Ball Bl B -
Machines (SVM), which are effective for classifying small, high- E
dimensional datasets, often used to distinguish between mild and 2 .
severe TBI. Through automated analysis and data-driven insights, g B é‘
machine learning is transforming TBI diagnosis and treatment, § 'g g’ 5
especially in the integration of multimodal monitoring data, N = S - ks
development of personalized treatment plans, and optimization of E g g é B é? % g
treatment strategies (as shown in Figure 2). = - n
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Data Integration Diagnostic Support
and Feature Extraction and Decision Assistance
Machine learning can Through predictive
integrate these models and data-
multimodal monitoring driven insights,
data to extract key machine learning
features that help assists doctors in
identify important formulating more
information related to precise diagnostic and
TBI. treatment plans.

FIGURE 2

Application of machine learning in traumatic brain injury (TBI)

3.1 Data integration and feature
extraction

Traumatic brain injury patients often undergo multiple
monitoring techniques, generating large amounts of complex
data. integrate these
multimodal monitoring data to extract key features that help

physiological Machine learning can
identify important information related to TBI. For example,
extracting brain activity patterns from EEG, detecting lesion areas
from imaging data, and identifying ischemic states from cerebral
blood flow and oxygen saturation data. This feature extraction
capability not only improves diagnostic accuracy but also provides
strong support for developing personalized treatment plans.

EEG data analysis: Machine learning can automate the analysis
of EEG signals to identify specific brain activity patterns, such as
warning signals for seizures. This helps in early intervention before
the patient shows obvious symptoms. For instance, Vishwanath
et al. (2021), explored the possibility of detecting mild traumatic
brain injury (mTBI) through machine learning and deep learning
techniques applied to human sleep EEG data. The study found
that these algorithms effectively identified mTBI patients from EEG
data, showing high accuracy and sensitivity.

Imaging data processing: In CT and MRI imaging data, deep
learning algorithms can automatically identify and segment lesion
areas, reducing the burden on doctors and increasing diagnostic
efficiency. For example, Muller et al. (2023) successfully developed
a model for classifying chronic TBI using machine learning
techniques on mixed diffusion imaging data. This study revealed
the potential of machine learning to enhance the accuracy of
chronic TBI diagnosis, especially in identifying damage patterns
and differentiating stages of injury. This work provides clinicians
with a data-driven tool to improve the diagnosis and treatment
planning for chronic TBI patients (Muller et al., 2023).
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Real-Time Monitoring
and Risk Assessment

Personalized Medicine
and Prognosis Prediction

Machine learning can
analyze multimodal
monitoring data in real
time to identify early
signals of condition
changes and guide
dynamic adjustments
to treatment plans.

By analyzing patient-
specific physiological
and pathological
features, machine
learning can tailor
treatment and
management plans for
each patient.

Multisource data integration: By integrating data from
different monitoring technologies, machine learning can generate
a comprehensive patient status model, enabling more accurate
disease assessment and prognosis prediction.

The following Table 2 provides a comparison of various
monitoring modalities used in TBI management, detailing their
respective data sources, prediction or diagnosis tasks, model
types, validation methods, performance metrics, and limitations. It
summarizes the application of different machine learning models
across diverse modalities such as EEG, ICP, CBE, PbtO2, and
imaging (CT/MRI), highlighting key aspects like the model class,
primary metrics (e.g., AUC, accuracy, sensitivity), and potential
limitations. By examining these parameters, the table offers insights
into the strengths and challenges associated with each monitoring
modality, aiding in the selection of the most appropriate method
for personalized TBI management.

3.2 Diagnostic support and decision
assistance

Machine learning applications in TBI extend beyond data
analysis to provide substantial support for clinical decision-making.
Through predictive models and data-driven insights, machine
learning assists doctors in formulating more precise diagnostic and
treatment plans.

Diagnostic support systems: Based on multimodal data,
machine learning models can not only automate diagnostic
suggestions for doctors, help identify the severity and type of TBI,
but also predict mental state levels. For example, Dabek et al. (2021)
studied the potential of various machine learning techniques in
predicting the development of psychological issues in patients with
first-time mild traumatic brain injury (mTBI). The study found
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that these technologies could predict mental health risks based
on patient data with high accuracy, providing a promising tool
for early identification and intervention of psychological problems
post-mTBIL.

Decision support: By analyzing patient historical data, machine
learning can predict the effectiveness of specific treatment plans,
helping doctors choose the most appropriate treatment methods.
For example, Moyer et al. (2022) developed a predictive model
using machine learning techniques that accurately predicts whether
moderate-to-severe traumatic brain injury (TBI) patients will
require emergency neurosurgery within 24 h post-injury. The
model uses key clinical factors for prediction, providing doctors
with a rapid decision-making tool to improve patient outcomes
(Moyer et al., 2022).

3.3 Real-time monitoring and risk
assessment

During TBI treatment, patients’ conditions can change rapidly,
making real-time monitoring and risk assessment crucial. Machine
learning can analyze multimodal monitoring data in real time
to identify early signals of condition changes and guide dynamic
adjustments to treatment plans.

Dynamic monitoring systems: Through real-time data flow
analysis, machine learning models can continuously monitor
patients’ physiological states and automatically detect potential
danger signals. For instance, when monitoring ICP, models can
identify patterns of abnormal intracranial pressure elevation and
alert doctors to take intervention measures. Ye et al. (2022)
proposed a machine learning-based method for continuously
predicting intracranial pressure changes in traumatic brain injury
patients. By analyzing clinical data and training models, the study
showed that this method could accurately predict short- and long-
term changes in intracranial pressure, providing a new tool for non-
invasive intracranial pressure monitoring and improving clinical
management. The model’s overall performance includes an average
accuracy of 94.62%, sensitivity of 74.91%, specificity of 94.83%, and
a root mean square error of approximately 2.18 mmHg (Ye et al,,
2022).

Risk assessment tools: Machine learning models can identify
risk factors associated with complications and mortality by
analyzing patients’ multimodal data. For example, Amorim et al.
(2019) developed a model predicting early TBI mortality in low-
and middle-income countries (LMIC) using machine learning
methods. This model predicts early mortality risk based on key
clinical features, providing a tool for early identification of high-
risk TBI patients in LMIC regions and improving treatment and
survival rates (Amorim et al., 2019).

During TTM, it is important to address the potential trade-
offs between ICP and PbtO2. In some cases, PbtO2 (brain tissue
oxygen pressure) may decrease during cooling, particularly when
ventilation settings are suboptimal (e.g., latent over-ventilation).
This phenomenon can result in hypoxia despite maintaining ICP
control, and thus, balancing both ICP and PbtO2 becomes critical
for effective neuroprotection. To guide clinicians, the following
4-step control heuristic can be proposed:
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1. Prioritize ICP control: Keep ICP below a specified threshold
(e.g., ICP < 20 mmHg) while maintaining PbtO2 within the target
range (e.g., PbtO2 > 20 mmHg).

2. Adjust ventilation if PbtO2 drops: If PbtO2 decreases below
the target, first consider adjusting ventilation parameters (e.g.,
PaCO2 or FiO2) to optimize brain oxygenation, before raising
body temperature.

3. Guardrails for shivering: If shivering is detected, consider
sedation or muscle relaxants to prevent shivering induced ICP
spikes and ensure the target temperature range is maintained.

4. Rewarming considerations: During the rewarming phase,
carefully monitor both ICP and PbtO2. Rebound ICP is a common
concern, and rewarming rates should be personalized, ideally
predicted by machine learning models that take into account
patient-specific physiological data.

Machine learning can significantly aid in this process by
predicting the risk of PbtO2 drops or ICP elevation based on real-
time monitoring data. For example, a machine learning model
could analyze ICP, PbtO2, EtCO2, and other critical variables
to forecast potential crises, helping clinicians to take proactive
actions such as adjusting ventilation or cooling rates. By integrating
multiple monitoring modalities, machine learning models can offer
personalized recommendations, optimizing both ICP control and
PbtO2 maintenance, and improving the safety and efficacy of TTM.

3.4 Personalized medicine and prognosis
prediction

is the future direction of TBI
management (Savulich et al., 2018), with machine learning

Personalized medicine

showing enormous potential in this area. By analyzing patient-
specific physiological and pathological features, machine learning
can tailor treatment and management plans for each patient.

Machine
learning can analyze multimodal monitoring data to identify

Personalized treatment plan development:
different patients’ response patterns to treatments, thus creating
personalized treatment plans for precise treatment and discharge
planning (Azad et al, 2022). For instance, Satyadev et al.
(2022) successfully developed a model predicting the discharge
destination of traumatic brain injury patients using machine
learning techniques. The model identified key factors affecting
discharge outcomes from clinical data and showed high predictive
accuracy, aiding healthcare professionals in making more precise
decisions for patient rehabilitation paths and resource allocation
(Satyadev et al., 2022). Their study developed a machine learning
model to predict three-class discharge disposition in TBI patients
(n = 5,292) using 84 features, including vital signs, demographics,
and injury details. The random forest model demonstrated the
best performance, with a weighted average area under the receiver
operating characteristic curve (AUC) of 0.84 (95% CI 0.81-0.87)
and a weighted average precision-recall AUC of 0.85 (95% CI 0.82—-
0.88). These models can improve patient triage and treatment,
particularly for mild and moderate TBI cases.

Prognosis prediction models: By combining historical and
multimodal monitoring data, machine learning models can predict
patients’ long-term prognosis and recovery progress. This not only
helps doctors assess treatment effectiveness but also provides more
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accurate prognosis information for patients and their families.
Courville et al. (2023) conducted a systematic review and meta-
analysis to assess the performance and accuracy of various machine
learning algorithms in predicting TBI patient clinical outcomes.
Despite limitations such as sample size and data quality, these
algorithms generally showed potential in predicting TBI outcomes,
providing valuable decision support tools for medical decisions
(Courville et al., 2023).

To provide a clearer overview of the performance of different
machine learning approaches applied in TBI management, we
further summarized key models, their data modalities, validation
methods, and performance metrics in Table 3. This comparison
highlights both the potential and the limitations of each model,
emphasizing the heterogeneity of current evidence and the
necessity of rigorous external validation before clinical deployment.

4 Hypothermic neuroprotection and
other treatment strategies

Targeted Temperature Management (TTM), also known
(TH), is
neuroprotective strategies. Hypothermic neuroprotection and

as Therapeutic Hypothermia a cornerstone of
other treatment strategies play a crucial role in TBI management
by improving patient outcomes and reducing mortality and
morbidity. These strategies include hypothermic neuroprotection,
pharmacological treatments, and rehabilitation training, which will
be discussed in detail below along with their potential integration
with machine learning technologies (Andresen et al., 2015; Hong
et al., 2022; Kawakita et al., 2024) (as shown in Figure 3).

4.1 Basic concepts and processes of
hypothermic neuroprotection

Hypothermic neuroprotection, as a treatment strategy with
significant neuroprotective effects, has gained widespread attention
in TBI management. Its basic principle is to reduce the patient’s
body temperature to slow down metabolic processes after brain
injury, thereby reducing energy consumption and oxidative stress
in brain cells (Parranto et al., 2025): lowering metabolic rate and
restoring oxygen supply-demand balance. It reduces excitotoxicity,
limits inflammation, prevents ATP depletion, reduces free radical
production, and prevents intracellular calcium overload, avoiding
apoptosis. Methods include external cooling methods such as ice
blankets, ice packs, alcohol baths, cold water immersion, cold
saline gastric lavage, helmet devices, and internal methods such
as infusion of cold saline via central venous catheter or direct
reduction of blood temperature (Andresen et al., 2015). Cooling
treatment parameters should be adjusted according to the patient’s
GCS (Glasgow Coma Scale) score. For patients with a GCS score
of 3-5, a faster cooling rate may be required to minimize neural
damage, while patients with higher GCS scores (e.g., 6-8) may
not need as aggressive cooling treatment. The target temperature
should be maintained between 32 °C and 35 °C, but the specific
temperature range and duration of treatment should be further
personalized based on the patient’s physiological state.
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In TBI, hypothermic treatment can reduce brain edema, inhibit
inflammatory responses, and decrease free radical production, all
of which contribute to neurofunctional recovery. Hypothermic
treatment is mainly divided into induction phase, maintenance
phase, and rewarming phase, with physiological changes occurring
at each stage (Jo, 2022). Additionally, it is worth noting that
for severe traumatic brain injury (sTBI) patients, therapeutic
hypothermia may require extended treatment time (Hui et al,
2021).

4.2 Expert consensus on hypothermic
neuroprotection

In 2024, the ESICM/NACCS (European Society of Intensive
Care Medicine/Neurocritical Care Society) consensus on best
practices for targeted temperature management post-TBI provides
guidelines for managing patients to optimize outcomes (Lavinio
et al, 2024). Key recommendations include: (1). Indications:
Initiate targeted temperature management (TTM) for severe TBI
patients (Glasgow Coma Scale score < 8) who do not comply
with post-resuscitation orders. (2). Target Temperature: Maintain
32 °C and 35 °C (89.6-95°F) for at least 48 h to minimize
secondary brain injury and improve neurological outcomes.
(3). Initiation and Duration: Start TTM within 6 h of injury;
duration should be personalized based on clinical response and
evolving brain injury. (4). Methods: Use surface cooling devices,
intravascular cooling catheters, or other methods to achieve and
maintain target temperature. (5). Monitoring and Complications:
Continuously monitor temperature and neurological status;
manage complications such as hypotension, electrolyte imbalances,
infections, and coagulopathy during TTM. (6). Multimodal
Approach: TTM should be part of a multimodal approach to
managing severe TBI, which may include surgical interventions,
pharmacological treatments, and rehabilitation strategies tailored
to individual patient needs. These consensus recommendations
aim to standardize and improve the treatment and care of severe
TBI patients by providing evidence-based guidelines for targeted
temperature control, potentially improving outcomes and reducing
morbidity associated with secondary brain injury.

The following Table 4 summarizes the use of therapeutic
hypothermia across different TBI populations, outlining the target
temperature range, timing and duration of cooling, primary
outcomes, complications, and the net signal of the treatment’s
effectiveness. It also highlights key caveats associated with each
treatment approach, offering insights into the complexities of
managing TBI with hypothermic neuroprotection. By reviewing the
data from various studies on severe and mixed TBI, the table helps
contextualize the varying responses to therapeutic hypothermia,
guiding personalized treatment strategies for optimal patient care.

4.3 Necessity and potential approaches
of machine learning in hypothermic
brain protection

In clinical applications, hypothermic brain protection faces
challenges such as determining the optimal cooling timing,
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TABLE 3 Comparative performance of machine learning models applied in traumatic brain injury (TBI) management.

severity classification

CNN Seizure detection, Internal cross-validation AUC~0.81; Sensitive to noise;
consciousness prediction Accuracy~80% requires large datasets
RNN EEG (continuous) Epileptiform External validation Accuracy~80.8% Risk of overfitting;
abnormality detection interpretability
challenges
Random forest ICP + Clinical ICP prediction, crisis Multi-site external validation RMSEA22.18 mmHg; Data drift across sites;
detection Accuracy~:94%; artifact sensitivity
Sensitivity~75%
SVM CBF (LDF/NIRS) Ischemia detection Internal CV; temporal split AUC=0.75; Small sample sizes;
Sensitivity~70% limited imaging
resolution
Logistic regression PbtO2 Prognosis, oxygenation External validation AUC=0.72; PPV Calibration issues; poor
prediction moderate external generalization
U-Net/CNN-based CT/MRI imaging Lesion segmentation, Multi-site external validation Dice~0.85; IoU~0.80 Limited generalizability;

time-consuming training

TTM to prevent

Induction

Maintenance Re-warmi

/ hyperthermia

TTM for ICP control
(Determination of
target temperature
based on ICP)

Temperature management approaches in TBI

Sinus tachycardia

Vasodilatation
Sinus bradycardia
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Hypoglycemia
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Hypomagnesaemia of Infections
Hyperglycemia

Slow metabolism of drugs ’“

< 30° Ventricular arrhythmias

20 25 30 35 40
Cooling phase vs Events

FIGURE 3

illustrated on the right. (B). Cooling phase vs. events.

Targeted temperature management for traumatic brain injury (TBI). (A) Variations in the approach to temperature management in severe traumatic
brain injury. Conventional therapeutic hypothermia is depicted on the left, while the concept of therapeutic hypotherm (TTM) for severe TBI is

temperature range, and duration. These parameters may vary

among patients, necessitating personalized implementation
of hypothermia therapy. For instance, Targeted Temperature
Management (TTM) combined with brain tissue oxygen pressure
(PbtO;) monitoring plays a crucial role in TBI treatment. TTM
may reduce intracranial pressure by lowering body temperature,
but its effect on PbtO, can vary between patients, sometimes
even causing a decrease in PbtO,, possibly related to latent
overventilation during cooling. Therefore, TTM and PbtO,
monitoring need to be personalized and adjusted based on
the patient’s specific condition and risk assessment (Cujkevic-
Plecko et al.,

role in this process by analyzing large amounts of multimodal

2023). Machine learning can play a significant
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monitoring data to identify personalized optimal treatment
parameters. Additionally, hypothermia therapy may lead to
complications such as increased infection risk and arrhythmias,
so close monitoring of the patient’s physiological status is
essential. Machine learning can identify potential risks early
through real-time data analysis, guiding clinical intervention
decisions to improve the safety and efficacy of hypothermic
brain protection. Machine learning can optimize hypothermic
treatment parameters by analyzing multimodal monitoring data
such as ICP (intracranial pressure) and PbtO2 (brain tissue
oxygen pressure). For instance, when ICP exceeds a certain
threshold, machine learning models can suggest increasing
the cooling rate or adjusting the target temperature based on
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changes in PbtO2 to ensure adequate oxygenation of brain
tissue.

Machine learning applications in brain injury hypothermia
therapy are an emerging and promising field. Although still in
the research stage, it has shown some potential applications and
advantages:

1. Prediction and personalization of treatment: Machine
learning can analyze large datasets, including clinical,
imaging, and physiological data, to predict a patients
response to hypothermia therapy. This helps doctors create
personalized treatment plans to improve outcomes.

2. Optimization of treatment strategies: By analyzing patient
data under different treatment strategies, machine learning
can help determine the best hypothermia parameters (e.g.,
cooling rate, target temperature), thus optimizing the
treatment plan and improving success rates.

3. Prediction of complications and patient outcomes:
Machine learning can identify risks of complications
and predict long-term outcomes such as survival rates and
neurological recovery.

4. Imaging analysis support: Machine learning has potential in
analyzing brain imaging data. It can automatically identify
types, locations, and severity of brain injuries, providing more
accurate diagnostic and treatment recommendations.

5. Real-time monitoring and feedback: Combining real-time
monitoring technology with machine learning can analyze
physiological parameters and feedback data, helping adjust
the implementation of hypothermia therapy to ensure efficacy
and patient safety.

Despite its early stage and need for extensive clinical validation,
machine learning shows promise in improving treatment strategies
and personalized medicine. As technology and data accumulate,
machine learning is expected to play a greater role in providing
more effective treatment and care solutions for patients.

The following Table 5 summarizes key aspects of the validation
process, data handling methods, performance stability, and clinical
utility for various machine learning models applied to TBI
monitoring, including EEG, ICP, CBE, PbtO2, and imaging. It
provides an overview of the validation techniques used, such as
cross-validation, temporal splits, and multi-site external validation,
as well as how missing data and potential data leakage were
addressed. Additionally, the table highlights the performance
stability and clinical utility of these models, shedding light on
their current state and limitations for practical application in TBI
management.

4.4 Clinical uncertainties and challenges
in the application of hypothermic
therapy for traumatic brain injury

4.4.1 Theoretical basis of hypothermic therapy vs.
clinical uncertainties

Theoretical basis of hypothermic therapy: Hypothermic
therapy (Targeted Temperature Management, TTM) is based on the
principle of reducing brain temperature to slow down metabolic
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TABLE 5 Performance evaluation and validation of machine learning models in traumatic brain injury (TBI) monitoring.

Machine learning
models for EEG

Internal CV,
temporal split,
external Validation

Leakage not reported

Validatio Data leakage Missing-data
type checks handling

Imputation techniques used
(mean imputation,

regression)

Performance
stability

Moderate stability,
Further validation

required

Calibrati linical
ty

Calibration reported in
internal studies, not

external

Machine learning
models for ICP

Multi-site external
validation

Leakage checks not

performed

Imputation with regression

techniques

High stability with slight
drift over time

Calibration not reported,
potential for clinical
utility uncertain

Machine learning
models for CBF

Internal CV, external
validation

Leakage checks reported

Missing data handled via
multiple imputation

Stable performance with
limited data variance

No clinical utility or
decision-curve analysis

Machine learning
models for PbtO2

Temporal split,
Cross-validation,

external validation

Leakage checks not
reported

Missing data handled by
mean imputation and
regression

Performance stable with

small sample size

No calibration, Clinical

utility unclear

Machine learning

Cross-validation,
Multi-site validation

Leakage checks reported

Missing data handled via
deletion methods

Stability issues, Variance
across sites

Calibration and clinical

models for imaging

utility reported for most
models

processes, thereby reducing energy consumption and oxidative
stress. The main mechanisms are:

1. Metabolic Suppression: By lowering body temperature,
the metabolic rate of brain cells is slowed, reducing energy
consumption and preventing cell death and tissue necrosis due to
energy deficiency.

2. Reduction of ICP (Intracranial Pressure): Lowering the
temperature may help reduce brain edema, thus lowering ICP. This
can alleviate secondary brain injury caused by elevated ICP by
reducing cerebral blood flow.

3. Suppression of Inflammatory Response: Cooling reduces
the activity of the immune system, inhibiting inflammation
and minimizing neuronal damage caused by inflammatory
cell infiltration.

Clinical uncertainties and challenges: Despite the promising
theoretical benefits, the clinical application of TTM faces several
uncertainties and challenges:

1. Heterogeneity of patient populations: The effectiveness
of TTM may vary significantly between different patients. For
instance, patients with severe traumatic brain injury (sTBI) may
respond differently compared to those with mild traumatic brain
injury (mTBI). Age, comorbidities, and other factors contribute to
these differences.

2. Timing of treatment: The optimal timing to initiate TTM
is still unclear. Research suggests that earlier initiation of cooling
may provide better outcomes, but determining the exact window
for treatment remains challenging.

3. Rewarming risks: The rewarming phase (the process of
gradually raising the body temperature) poses a risk of ICP
rebound. If rewarming is not controlled carefully, it could lead to
an increase in ICP, exacerbating brain injury.

4. Infection and coagulopathy: Hypothermic therapy may
suppress the immune system, increasing the risk of infections.
Additionally, hypothermia can impair coagulation, raising the risk
of bleeding, which complicates the treatment further.

4.4.2 Rewarming process and ICP rebound
analysis

ICP rebound during rewarming: The rewarming process is
critical in TTM. While hypothermia helps reduce brain edema and
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control ICP, it may lead to ICP rebound during the rewarming
phase. This rebound could be due to changes in cerebral blood
flow and blood-brain barrier permeability as the brain temperature
rises. Studies have shown that rewarming too quickly can lead to a
sudden increase in ICP, which may further impair brain function
and increase secondary injury.

It is essential to control the rewarming rate precisely to avoid a
rapid rise in ICP. Research suggests that the ideal rewarming rate
should be slow and controlled to minimize ICP fluctuations.

Machine learning’s role in predicting safe rewarming
trajectories: Machine learning (ML) could be pivotal in predicting
safe rewarming trajectories by analyzing multimodal data from
various monitoring systems (such as ICP, PbtO2, EtCO2, MAP,
and ventilation settings). By integrating data from these different
sources, ML models could help predict potential ICP spikes during
rewarming and recommend adjustments to minimize risks.

1. Multimodal Data Integration: ML models can integrate real-
time data from EEG, ICP, PbtO2, and other monitoring systems to
create a comprehensive patient status model. This could forecast
the risk of ICP increase and provide recommendations for adjusting
treatment strategies.

2. Personalized Rewarming Strategies: ML could enable the
development of personalized rewarming plans for each patient
based on their individual response to TTM. For example, if ICP is
approaching a critical threshold, the model could suggest adjusting
ventilation parameters (e.g., PaCO2 or FiO2) or delay rewarming
to ensure safety.

3. Real-Time Monitoring: By continuously monitoring multiple
physiological parameters, ML models can detect early signs
of ICP rebound and prompt timely interventions, such as
adjusting sedation levels or ventilation settings to maintain ICP
within a safe range.

4.4 Other treatment strategies

Machine learning plays a crucial role in optimizing treatment
strategies for TBI, particularly in drug therapy and rehabilitation
training. By analyzing large amounts of patient data, machine
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FIGURE 4

learning can facilitate the personalization of treatment plans,
optimizing their effectiveness.

4.4.1 Personalized drug dosage prediction
Drug therapy is in TBI

secondary pathological

another crucial component

management, aiming to mitigate
processes following brain injury. Commonly used drugs include
antioxidants, anti-inflammatory agents, and neuroprotective
agents. Antioxidants neutralize free radicals generated during
injury, reducing oxidative stress on neurons (Fesharaki-Zadeh,
2022). Anti-inflammatory agents reduce brain edema and
inflammation by inhibiting the release of inflammatory mediators
(Kalra et al., 2022; Lu et al., 2025). Neuroprotective agents such
as creatine (Newman et al., 2023) and adenosine (Bozdemir et al.,
2021) help maintain cell membrane integrity and prevent neuronal
apoptosis (Tang et al., 2023; Zamanian et al., 2022). Medications
may vary based on the disease stage: during the acute phase,
tranexamic acid, antiepileptic drugs, hyperosmotic agents, and
anesthetics are primary treatments and have proven effective. In
later stages, SSRIs, SNRIs, antipsychotics, zolpidem, amantadine,
and other drugs are used for neuropsychological issues, while
muscle relaxants and botulinum toxin are used for spasticity (Tani
etal., 2022).

Although drug therapy shows efficacy in TBI, its use requires
careful consideration of individual factors. Machine learning
can help optimize drug therapy (Lipponen et al., 2019) by
analyzing patient data to predict responses to specific drugs,
enabling precision medicine. Moreover, machine learning models
can identify potential side effects and guide physicians in risk
assessment and treatment adjustments (Fucich et al, 2020).
Suppose a severe TBI patient with a GCS score of 5 has an initial
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ICP of 25 mmHg and a PbtO2 of 12 mmHg. Based on this data, the
machine learning model can predict that the cooling rate should
be set to a decrease of 0.5 °C per hour, and the target temperature
should be adjusted to 33 °C for a duration of 48 hours, to ensure
optimal neuroprotective effects.

Machine learning can predict the optimal drug dosage based on
a patient’s genotype, particularly genes related to drug metabolism.
For example, the metabolism rates of antiepileptic drugs such
as phenytoin and carbamazepine are influenced by variations
in the CYP450 gene family. By establishing machine learning
models, it is possible to predict the most appropriate drug
dosage based on a patients genetic data, drug concentration,
and clinical symptoms, thereby optimizing therapeutic effects.
With this personalized prediction, doctors can more accurately
adjust drug dosages, minimizing the risks of overdose or
insufficient dosage.

4.4.2 Dynamic adjustment of rehabilitation plans
Rehabilitation training is an essential component of recovery
for TBI patients, aimed at promoting functional recovery and
improving long-term prognosis (Bayley et al, 2023). Physical
rehabilitation includes exercise training, balance training, and
functional training to enhance motor abilities and daily living
functions (Gmelig Meyling et al., 2022). Cognitive rehabilitation
addresses common cognitive impairments in TBI patients, such
as memory, attention, and executive function deficits, through
specialized training to improve cognitive function (Paggetti
et al, 2025). Additionally, psychological support is crucial in
TBI recovery, helping patients cope with emotional disorders
and psychological stress through interventions and supportive
therapy, promoting holistic recovery (Howlett et al, 2022).
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Machine learning can analyze rehabilitation training data, assess
training effectiveness, and recommend personalized rehabilitation
plans (Appiah Balaji et al., 2023). By tracking patient progress,
machine learning models can adjust training plans in real-
time to ensure each patient receives the most appropriate
rehabilitation program, thereby improving recovery and quality of
life.

In rehabilitation training, machine learning can dynamically
adjust the intensity and frequency of exercises by analyzing large
amounts of data from motion sensors (such as accelerometers and
gyroscopes). For instance, machine learning models can monitor
patients’ motion data in real-time (e.g., gait, limb movement
amplitude) to assess rehabilitation progress. Based on changes in
motor abilities, the training plan can be automatically adjusted.
By making these dynamic adjustments, machine learning helps
optimize the rehabilitation process, preventing overtraining or
insufficient training.

4.4.3 Example of machine learning in drug
dosage and rehabilitation training

Drug dosage optimization: Take the antiepileptic drug
phenytoin as an example. Machine learning can establish
personalized drug dosage prediction models using patient
genotype data (e.g, CYP450 gene variations), blood drug
concentrations, and clinical symptoms. For instance, patients with
CYP2C9 gene variants may require lower doses of phenytoin, and
machine learning can automatically optimize the dosage based on
this information.

Rehabilitation training adjustment: Using motion sensors (such
as smart gloves) to monitor hand movements in TBI patients,
machine learning models can adjust the intensity and duration of
rehabilitation training based on movement amplitude, frequency,
and training progress. If the patient’s hand movements recover
more slowly, the model can automatically increase the training
intensity; conversely, if the patient feels fatigued or limited in
movement, the model can reduce the training load accordingly.

To illustrate the practical implementation of multimodal
monitoring combined with machine learning in TBI management,
we present an integration pipeline in Figure 4. This schematic
demonstrates how raw physiological data from various monitoring
modalities—such as EEG, intracranial pressure (ICP), cerebral
blood flow (CBF), and brain tissue oxygenation (PbtO2)—are
first preprocessed, followed by feature extraction and data fusion.
Machine learning models then integrate these processed data
to enable event prediction, patient stratification, and adaptive
optimization of treatment strategies. The outputs are delivered
through a decision-support system, providing clinicians with
guidance for personalized interventions. Importantly, a feedback
loop facilitates continuous refinement, ensuring that treatment
personalization adapts dynamically to each patients evolving
condition.

The following Table 6 outlines the optimal cooling parameters,
including target temperature, cooling rate, and maintenance
duration, based on the patient’s GCS score. It also highlights the
correlation between these parameters and the 6-month Glasgow
Outcome Scale (GOS) score, reflecting their potential impact on
recovery. This personalized approach aims to improve the efficacy
of hypothermic therapy for TBI patients.
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5 Discussion

5.1 Current evidence and principal
limitations

The integration of multimodal bedside monitoring with ML has
emerged as a promising approach to refine TBI management. By
leveraging physiological signals such as EEG, ICP, CBE, and PbtO2,
ML models have demonstrated potential in detecting seizures,
forecasting ICP crises, stratifying risk, and guiding therapeutic
interventions including TTM. For instance, recurrent neural
networks trained on continuous EEG have achieved accuracies of
~80% in detecting epileptiform discharges, while deep learning—
based approaches for short-term ICP prediction have reported
clinically meaningful error margins.

Nevertheless, enthusiasm must be tempered by several
limitations. First, evidence from hypothermia trials illustrates the
challenges of translating promising physiological mechanisms
into consistent clinical benefit. Large-scale RCTs such as
Eurotherm3235 and POLAR failed to
improvements in long-term functional outcomes, suggesting
that non-stratified cooling strategies may obscure subgroup-

establish uniform

specific benefits. Second, the heterogeneity of multimodal
data—arising from differences in acquisition devices, protocols,
and patient populations—complicates model generalizability.
Small sample sizes further increase the risk of overfitting, with
many studies still limited to retrospective, single-center cohorts.
Finally, interpretability remains a key barrier: while deep learning
can capture non-linear interactions, its “black-box” nature
undermines clinical trust, especially for high-stakes interventions.
More transparent methods such as logistic regression offer
clarity but lack the capacity to model complex physiology.
Together, these limitations underscore that while ML-enhanced
multimodal monitoring is technically feasible, its clinical utility
remains provisional.

5.2 Challenges in clinical translation

Moving from research to bedside deployment requires
addressing methodological, operational, and regulatory challenges.

Validation hierarchy: A rigorous stepwise validation pathway
is essential: internal cross-validation, temporal split validation,
multi-site external validation, silent prospective deployment,
and ultimately interventional RCTs. Yet, few published models
progress beyond internal validation, raising concerns about
reproducibility across centers.

Data governance and multi-center collaboration: FL offers a
promising framework for training robust models without sharing
raw patient data, thereby circumventing privacy barriers. However,
its clinical adoption necessitates standardized data dictionaries,
synchronized sampling frequencies, and harmonized labeling
criteria across institutions.

Interpretability and human oversight: Clinical decision-
support systems must output not only predictions but also
interpretable rationales and uncertainty estimates. Approaches
such as SHAP-based feature attribution and counterfactual
explanations should be integrated as default outputs. When
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TABLE 6 Personalized cooling parameters based on GCS score and recovery outcomes in traumatic brain injury (TBI) patients.

Treatment

GCS score Optimal Cooling rate Maintenance onth GOS
temperature duration score correlation

parameter
Target temperature 32°C-33°C 0.5°C/h 48h High correlation with
good recovery
6-8 33°C-34°C 0.2°C/h 24h Moderate correlation
with recovery
Cooling rate 3-5 32°C 0.5°C/h 48h Strong impact on
recovery
6-8 34°C 0.3°C/h 24h Moderate impact

confidence is low, ML systems should trigger a human-in-the-loop
fallback, ensuring that responsibility remains with the clinical team.

Safety and workflow integration: To avoid alert fatigue, models
should provide prioritized, threshold-based outputs that align
with existing clinical response pathways. Continuous performance
monitoring and automatic recalibration are equally critical, given
device drift and evolving patient populations.

Cost-effectiveness: Multimodal monitoring infrastructures and
ML deployment impose substantial costs. Strategies should balance
precision against feasibility, for example by developing lightweight
models that rely on widely available variables (vital signs, basic ICP,
or NIRS indices) in resource-limited settings.

5.3 Future directions and testable
proposals

Future research must move beyond proof-of-concept toward
rigorous clinical evaluation and real-world implementation. We
propose the following priorities:

1. Adaptive, stratified clinical trials for ML-guided TTM. Future
RCTs should employ adaptive or sequential multiple assignment
randomized trial (SMART) designs, where ML algorithms stratify
patients based on multimodal phenotypes and guide individualized
cooling parameters. Hypotheses such as whether ML-optimized
cooling rates improve ICP control without increasing infection risk
can be explicitly tested.

2. Federated, multi-center model development. Large-scale
federated learning initiatives should be established, enabling
joint model training while preserving patient privacy. Such
collaborations would mitigate site-specific biases and accelerate
model generalizability.

3. Explainability and uncertainty quantification as regulatory
standards. Clinical-grade ML systems must provide interpretable
rationales and calibrated confidence intervals as part of routine
outputs. For example, a recommendation to adjust temperature
targets should be accompanied by explicit features driving
the prediction (e.g., rising ICP trend, stable PbtO2, EEG
desynchronization).

4. Model maintenance and drift monitoring. Post-deployment
surveillance pipelines are needed to detect covariate drift, label
drift, and performance degradation. Automatic recalibration
and periodic retraining should be mandated to maintain
safety and efficacy.

5. Lightweight models for resource-constrained settings.
Developing simplified algorithms that rely on low-cost modalities
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such as vital signs and NIRS will expand accessibility, ensuring that
ML benefits are not limited to high-resource centers.

6. Physiology-informed feature engineering. In addition
to end-to-end deep learning, incorporating physiologically
interpretable features—such as ICP pulse morphology or dynamic
cerebrovascular reactivity indices—can both improve predictive
accuracy and facilitate clinical acceptance.

7. Optimizing the role of NIRS. Evidence suggests that raw
NIRS values alone provide limited prognostic power; however,
derived indices such as cerebrovascular reactivity metrics may add
value when integrated into multimodal ML models.

ML-enabled multimodal monitoring has
demonstrated technical feasibility and early promise in TBI

In summary,
management, particularly in enhancing seizure detection, ICP
prediction, and personalization of hypothermia protocols. Yet
the field remains in an early translational stage, constrained by
heterogeneous data, limited external validation, and interpretability
challenges. Moving forward, the development of multicenter
federated learning frameworks, stratified adaptive trial designs, and
interpretable outputs with uncertainty quantification will be critical
for bridging the gap between computational potential and bedside
utility. Only through such interdisciplinary and methodologically
rigorous efforts can ML evolve from experimental tool to a
clinically transformative paradigm in TBI care.

6 Conclusion

Traumatic brain injury remains a heterogeneous and complex

condition where conventional monitoring and treatment
approaches often fail to capture individual variability. The
integration of multimodal monitoring with machine learning
provides a promising framework to address this challenge,
offering opportunities for earlier event prediction, individualized
therapeutic adjustment, and data-driven clinical decision support.
Current evidence demonstrates technical feasibility, with
encouraging results in tasks such as seizure detection, ICP
forecasting, and imaging-based lesion characterization. Yet
translation into routine clinical care is limited by small sample
sizes, insufficient external validation, and the lack of interpretability
in complex models. Large-scale RCTs of hypothermia have further
highlighted that “one-size-fits-all” strategies are unlikely to succeed,
underscoring the need for stratified, personalized protocols.
Looking ahead, progress will depend on three key pillars:
(i) building high-quality, multicenter datasets through federated

learning and standardized protocols; (ii) embedding explainability,
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uncertainty quantification, and robust validation into all clinical-
grade ML systems; and (iii) designing adaptive, phenotype-driven
clinical trials to test whether ML-guided interventions can yield
measurable improvements in outcomes.

In summary, ML-enabled multimodal monitoring represents
an emerging paradigm in TBI care. While challenges in validation,
interpretability, and deployment remain, the convergence of
computational advances, collaborative data sharing, and rigorous
clinical evaluation has the potential to transform TBI management
from generalized protocols toward truly personalized, precision
neurocritical care.
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