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Trauma is the fourth leading cause of death globally and the primary cause of

mortality in the 15–45 age group, with traumatic brain injury (TBI) at the core

of trauma care. Annually, over 50 million TBI patients are reported worldwide.

The complex and heterogeneous pathophysiology of TBI presents substantial

diagnostic and therapeutic challenges. In recent years, multimodal monitoring

has emerged as a crucial tool to guide clinical management. The integration

of multimodal monitoring with machine learning offers novel opportunities for

TBI assessment and management, given the rapid development and widespread

application of machine learning approaches. Therapeutic hypothermia has

shown potential neuroprotective benefits in experimental and clinical contexts,

though evidence remains mixed and its implementation in practice faces

significant challenges. This review summarizes recent advancements in

multimodal monitoring and explores how machine learning can optimize the

application of therapeutic hypothermia in conjunction with multimodal data.

For example, predictive models trained on multimodal signals (e.g., EEG, ICP,

cerebral blood flow, and oxygenation) can help identify patient subgroups most

likely to benefit from targeted temperature management. By enabling such

stratification and adaptive treatment strategies, machine learning may support

the development of more personalized and effective therapeutic approaches

for TBI.

KEYWORDS
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1 Introduction

Traumatic brain injury (TBI) is a severe public health issue, affecting 10’s of millions of
patients globally each year (Dewan et al., 2019; Maas et al., 2022). TBI is typically caused by
external force impacting the head or penetrating injuries, potentially leading to a series of
complex neurological pathological changes, including primary and secondary injuries (Wu
et al., 2022). Primary injuries refer to brain tissue damage caused directly by mechanical
forces, such as contusions and hemorrhages, while secondary injuries involve a series of
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biochemical and physiological cascades, such as brain edema, 
blood-brain barrier damage, inflammatory responses, oxidative 
stress, and apoptosis (Minta et al., 2020; Shao et al., 2019; 
Unadkat et al., 2025). These pathological processes often interact, 
leading to more extensive neuronal damage and functional 
impairment (Zhao et al., 2019). Clinical manifestations of TBI are 
diverse, including consciousness disturbances, motor dysfunction, 
cognitive deficits, and changes in mood and behavior (Yen et al., 
2018; Zhang and Ioachimescu, 2025). Due to the complexity 
of TBI pathophysiological mechanisms, traditional treatment 
strategies often face multiple challenges. For example, single drug 
treatments struggle to address multiple concurrent pathological 
mechanisms (Lins et al., 2023), and while surgical interventions can 
quickly address intracranial hematomas and skull fractures, they 
cannot resolve microscopic neuronal damage. Moreover, individual 
dierences result in varying eects of the same treatment plan 
among dierent patients, further increasing the diÿculty of TBI 
treatment (Tenovuo et al., 2021; Zheng et al., 2020). 

In recent years, hypothermic neuroprotection has gained 
widespread attention as a treatment strategy in TBI management. 
Hypothermic therapy reduces brain metabolic demands by 
lowering body temperature, thereby alleviating inflammatory 
responses and oxidative stress, and protecting brain tissue to 
some extent (Liang et al., 2023; Yan et al., 2022). However, 
implementing hypothermic therapy requires precise control, 
including cooling extent, duration, and initiation timing, to achieve 
optimal therapeutic eects and minimize potential side eects 
(Kendall et al., 2023). Despite the positive eects shown in 
clinical and experimental studies, standardization and personalized 
implementation of hypothermic neuroprotection still require 
further exploration (Wang et al., 2024; Wu et al., 2021). 

Meanwhile, with continuous advancements in medical 
technology, machine learning techniques have increasingly been 
applied in the medical field (Greener et al., 2022). Machine 
learning analyzes and integrates large amounts of complex 
physiological data, extracting valuable feature information to 
support clinical decision-making (Cobianchi et al., 2023; Zhang 
et al., 2021). In TBI management, machine learning can improve 
diagnostic accuracy and treatment eectiveness by analyzing 
multimodal monitoring data to identify key physiological and 
pathological features (Bischof and Cross, 2023; Schroder et al., 
2021). Thus, machine learning can monitor and analyze patients’ 
physiological states in real-time, providing personalized treatment 
recommendations and optimizing therapeutic strategies like 
hypothermic neuroprotection. 

Abbreviations: AUC, area under the curve; CBF, cerebral blood flow; 
CNN, convolutional neural network; CT, computed tomography; CV, 
cross-validation; CVRi, cerebrovascular reactivity index; DBS, deep brain 
stimulation; EEG, electroencephalography; EtCO2, end-tidal carbon 
dioxide; GCS, Glasgow Coma Scale; GOS, Glasgow Outcome Scale; 
ICA, Independent Component Analysis; ICP, Intracranial Pressure; IoU, 
intersection over Union; LMIC, low- and middle-income countries; MAE, 
mean absolute error; MAP, mean arterial pressure; ML, machine learning; 
MRI, magnetic resonance imaging; MSE, Mean Squared Error; NIRS, near-
infrared spectroscopy; PbtO2, brain tissue oxygen pressure; PCA, Principal 
Component Analysis; PPV, Positive Predictive Value; RCT, randomized 
controlled trial; RMSE, Root Mean Squared Error; RNN, recurrent neural 
network; ROC, receiver operating characteristic; rSO2, regional oxygen 
saturation; SVM, Support Vector Machine; TBI, traumatic brain injury; TH, 
therapeutic hypothermia; TMS, transcranial magnetic stimulation; TTM, 
targeted temperature management. 

Multimodal monitoring technologies play a crucial role in the 
diagnosis and management of TBI (Roldán et al., 2020). These 
technologies include electroencephalography (EEG), cerebral 
blood flow monitoring, intracranial pressure (ICP) monitoring, 
imaging (such as CT and MRI), and brain oxygen saturation 
monitoring. Integrating various physiological parameters provides 
a comprehensive assessment of the brain’s condition (Rohaut et al., 
2024). However, the large and complex data volumes make it 
challenging to eÿciently extract key information using traditional 
methods. The introduction of machine learning oers new tools for 
analyzing and integrating multimodal monitoring data, enhancing 
the precision and personalization of TBI diagnosis and treatment 
(Acosta et al., 2022). 

This review adopts a narrative synthesis approach rather 
than a systematic review method, focusing on the application of 
multimodal monitoring and machine learning in the management 
of traumatic brain injury (TBI), with particular emphasis on 
the integration of therapeutic hypothermia (TTM) and machine 
learning for personalized treatment strategies. The search 
strategy involved a comprehensive literature review conducted 
across PubMed, Scopus, and IEEE Xplore in July 2024, with 
studies published from January 2000 to June 2025. Key search 
terms included “Traumatic Brain Injury (TBI),” “Multimodal 
monitoring,” “Machine learning,” “Hypothermic neuroprotection,” 
“Therapeutic Hypothermia (TTM),” “Electroencephalography 
(EEG),” “Cerebral Blood Flow (CBF),” “Intracranial Pressure 
(ICP),” “Brain Oxygen Saturation (PbtO2)”, and “Clinical 
Decision Support.” Studies were included if they discussed the 
application of multimodal monitoring or machine learning in 
TBI diagnosis, treatment, or management, and those focused 
on therapeutic hypothermia or the integration of multiple 
data modalities with machine learning for personalized care. 
Exclusion criteria comprised articles not addressing TBI or 
multimodal monitoring, studies limited to animal models, and 
publications outside the defined time range (before 2000 or 
after June 2025). The studies were grouped based on monitoring 
modality (e.g., EEG, CBF, ICP, PbtO2, CT/MRI imaging), task 
(e.g., diagnosis, prognosis, prediction, therapeutic intervention), 
and outcome (e.g., eectiveness of monitoring methods, clinical 
outcomes, machine learning model performance). This review 
does not perform a formal systematic quality assessment, instead 
providing a qualitative synthesis of key themes and trends. 
While areas of conflicting or insuÿcient evidence were noted, 
especially concerning the integration of machine learning with 
therapeutic hypothermia, the methodology remains transparent 
and reproducible, ensuring that the review’s findings are grounded 
in the existing literature. By clearly defining inclusion and 
exclusion criteria, the review enables a comprehensive analysis 
of multimodal monitoring and machine learning in TBI, oering 
valuable insights into current practices and highlighting areas for 
further research and innovation. 

This article will delve into the application of hypothermic 
neuroprotection in TBI management and analyze the role 
of machine learning in optimizing hypothermic therapy. 
Additionally, it will review the importance of multimodal 
monitoring technologies in TBI assessment and how machine 
learning improves the eectiveness and personalization of TBI 
treatment through data analysis. Future research will explore 
advancing personalized and precise TBI management based 
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on these emerging technologies. This review is intended for 
neurocritical care clinicians, biomedical engineers, and researchers 
focused on traumatic brain injury (TBI) management and 
treatment innovation. Its primary aim is to provide decision-
support insights for healthcare professionals involved in the 
acute management of TBI, particularly in the application of 
multimodal monitoring and machine learning for personalized 
treatment strategies. 

2 Multimodal monitoring 
technologies 

Multimodal monitoring technologies provide clinicians with 
rich information sources to more comprehensively and accurately 
assess patients’ neurological states (Appavu et al., 2021; Hwang 
et al., 2025; Tas et al., 2022). As shown in Figure 1A, the 
key components of multimodal monitoring are EEG, Cerebral 
Blood Flow Monitoring, ICP Monitoring, Imaging, Brain Oxygen 
Saturation Monitoring, etc., Figure 1B shows the typical workflow 
of a typical machine learning algorithm. The following Table 1 
summarizes the key technical parameters and applications of 
various monitoring techniques used during dierent phases of 
Traumatic Brain Injury (TBI). It highlights the core technical 
features of each technology, such as sampling frequency, spatial 
resolution, and monitoring depth. In the acute phase, these 
technologies focus on quick diagnosis and timely intervention, 
with an emphasis on monitoring brain function, detecting ischemic 
events, and identifying high intracranial pressure (ICP). In the 
subacute phase, the technologies are used to assess treatment 
eÿcacy and monitor brain recovery. Finally, in the recovery 
phase, these tools help evaluate long-term outcomes and support 
decisions regarding rehabilitation strategies. This table provides a 
comprehensive overview of how each technology is applied in TBI 
management and recovery, oering insights into their role and 
eectiveness across dierent stages of the injury. 

2.1 EEG 

Electroencephalography records electrical activity from the 
brain’s cortex, providing a non-invasive and real-time method 
for assessing brain function. In TBI patients, EEG can monitor 
phenomena such as seizures, consciousness changes, and brain 
dysfunction. Common EEG technical parameters include: 
Sampling Frequency: Typically, between 250 and 500 Hz, used 
to capture high-frequency cortical activity. Spatial Resolution: 
Generally, 2–3 cm, used to localize electrical activity in the 
cerebral cortex. 

Patients with TBI often face the risk of seizures; EEG helps 
in the timely identification and monitoring of seizure activities 
for early intervention (Pyrzowski et al., 2024; Sconzo et al., 
2025). Additionally, EEG is used to evaluate consciousness 
levels and the extent of brain dysfunction, aiding clinical 
decision-making (Bai et al., 2021). However, traditional EEG 
data interpretation relies on experienced neurologists and is 
susceptible to noise. Combining machine learning technology 
allows for automated analysis of EEG data, identifying specific 

brain wave patterns and improving analysis eÿciency and 
accuracy (Parsa et al., 2023). For example, machine learning 
algorithms can quickly detect abnormal brain activities 
and assist clinicians in making more accurate diagnoses, 
using deep learning to automatically detect epileptiform 
abnormalities in EEG from TBI. They demonstrated that a 
recurrent neural network (RNN) trained with continuous 
electroencephalogram (EEG) data can eectively identify 
epileptiform activity (EA), achieving an accuracy of up to 80.78%. 
This lays the foundation for robust and automated detection 
of epileptiform activity in traumatic brain injury (TBI) patients 
(Faghihpirayesh et al., 2021). 

In the acute phase of TBI, EEG is primarily used to 
monitor epileptic activity for early detection and intervention. 
During the subacute phase, EEG can assess the recovery of 
brain function. In the recovery phase, EEG is used to evaluate 
long-term neurological recovery. Machine learning techniques 
can analyze abnormal waveforms in EEG signals, automatically 
detect seizures, and assist clinical diagnosis, thus enhancing the 
eÿciency of analysis. 

2.2 Cerebral blood flow monitoring 

Cerebral blood flow monitoring assesses the brain’s blood 
perfusion status, providing crucial information about ischemia and 
hypoxia. The technical parameters are as follows: Laser Doppler 
Flowmetry: Spatial Resolution: Approximately 0.5–2 mm, used to 
monitor dynamic changes in local cerebral blood flow. Sampling 
Frequency: Typically 1–10 Hz, used for real-time blood flow 
fluctuation assessment. NIRS: Oxygen Saturation Detection Range: 
Usually between 60% and 100%. Depth: NIRS is generally used for 
monitoring oxygenation status of superficial brain tissue, with a 
depth of 2–3 cm. 

The stability of cerebral blood flow is vital for maintaining 
normal brain function (Vu et al., 2024) In TBI, cerebral blood flow 
monitoring can be achieved through techniques like laser Doppler 
flowmetry, thermal diusion, and near-infrared spectroscopy. 
Laser Doppler flowmetry evaluates local brain blood flow changes 
by measuring laser reflection (Ayasse et al., 2025), while thermal 
diusion uses thermal probes to measure temperature changes in 
local tissues, indirectly reflecting blood flow (Hartings et al., 2020). 
Near-infrared spectroscopy measures cerebral oxygen saturation, 
providing continuous and non-invasive information on central 
nervous system hemoglobin oxygen saturation (Barud et al., 2021). 
These technologies play a crucial role in identifying ischemic 
events and assessing treatment eects. Cerebral blood flow data 
are often complex and dynamic, and machine learning can more 
accurately interpret these data through pattern recognition and 
trend analysis, providing decision support. By analyzing real-
time cerebral blood flow data, machine learning can identify 
potential ischemic risks and oer recommendations for clinical 
intervention. 

In the acute phase of TBI, laser Doppler flowmetry helps 
identify cerebral ischemic events. During the subacute phase, NIRS 
can continuously monitor the oxygenation status of brain tissue. 
In the recovery phase, these techniques assist in evaluating cerebral 
blood flow recovery. 

Frontiers in Human Neuroscience 03 frontiersin.org 

https://doi.org/10.3389/fnhum.2025.1695336
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-19-1695336 October 21, 2025 Time: 12:35 # 4

Wei et al. 10.3389/fnhum.2025.1695336 

FIGURE 1 

(A) Multimodal monitoring technology for traumatic brain injury (TBI) and (B) typical workflow of a machine learning algorithm, illustrating the main 
steps including data preprocessing, feature extraction/selection, model training, model validation, hyperparameter optimization, and performance 
evaluation. This pipeline ensures robust and generalizable model performance for biomedical data analysis. 

2.3 ICP monitoring 

Intracranial pressure monitoring is a key tool for evaluating 
intracranial hypertension and brain edema (Shang et al., 2024). 
Elevated ICP is a common complication in TBI, potentially 
leading to insuÿcient brain perfusion and neuronal damage. 
Common monitoring methods include external sensors and non-
invasive techniques. Key parameters include: Sampling Frequency: 
Typically, 1–10 Hz, used for real-time ICP fluctuation monitoring. 
Non-invasive ICP Monitoring: ICP changes are estimated using 
cranial acoustic techniques, suitable for initial assessments in acute 
phase patients. 

Intracranial pressure monitoring is typically performed using 
external sensors and non-invasive techniques. External sensors 
measure ICP directly through intracranial pressure sensors, 
while non-invasive monitoring estimates ICP changes using 
cranial acoustic techniques. Real-time monitoring of ICP changes 
provides a basis for managing intracranial hypertension and 
aids in determining whether surgical intervention or treatment 
adjustments are necessary (Fernando et al., 2019). However, due 
to the dynamic nature of ICP data and individual variations, 
personalized solutions are required (Zeiler et al., 2022). Machine 
learning can help identify potential crisis moments through 
big data analysis and provide personalized management plans. 
Machine learning models can also predict ICP trends, helping 
doctors take preventive measures in advance. 

In the acute phase, ICP monitoring is used to identify 
elevated intracranial pressure early and guide treatment. During 
the subacute phase, ICP monitoring helps assess changes in brain 
edema, and in the recovery phase, it is used to evaluate ICP recovery 
and guide long-term management. 

2.4 Imaging 

Imaging is a fundamental method for TBI assessment, 
providing structural and functional information (Hu et al., 2022). 
Common imaging techniques include computed tomography (CT) 
(Mader et al., 2021), magnetic resonance imaging (MRI) (Pinggera 
et al., 2020), and proton magnetic resonance spectroscopy (Bartnik-
Olson et al., 2021). Technical parameters include: CT: Resolution: 
Typically, 0.5–1 mm, used for rapid identification of intracranial 
hemorrhage and fractures. Scan Time: The rapidity of CT scanning 
makes it the method of choice during the acute phase. MRI: 
Resolution: Typically, 1 mm, used for assessing soft brain tissue 
damage, diuse axonal injury, and white matter lesions. 

Computed tomography scans quickly identify intracranial 
hemorrhages, fractures, and edema, making it the preferred 
imaging method in emergency situations, while MRI oers 
higher-resolution imaging of brain soft tissues, detecting diuse 
axonal injury and parenchymal changes. Imaging provides 
precise localization of lesions, assesses the extent and nature 
of damage, and forms the basis for personalized treatment 
plans. However, interpreting imaging data requires expertise, 
and machine learning can enhance analysis eÿciency through 
automated image recognition and segmentation. Machine learning 
algorithms can automatically identify lesion areas in CT or 
MRI scans, assisting doctors in more accurate evaluations 
(Ling et al., 2025). 

In the acute phase, CT is used for rapid screening of 
hemorrhage and fractures. In the subacute phase, MRI helps assess 
diuse injuries and white matter changes, with advantages in 
evaluating soft brain tissues. During the recovery phase, MRI is 
used to detect neural repair and functional brain recovery. 
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TABLE 1 Technical parameters and phase-specific applications of monitoring technologies in traumatic brain injury (TBI). 

Technology Core 
parameters 

Technical 
features 

Acute phase 
application 

Subacute phase 
application 

Recovery phase 
application 

EEG Sampling frequency: 
250–500 Hz 

Records electrical activity 

from the brain’s cortex, 
reflecting brain function 

Monitors seizures, 
consciousness changes, and 

brain dysfunction in real-time 

Assesses brain activity 

recovery and aids in 

post-injury brain 

function evaluation 

Long-term monitoring of 
brain electrical activity 

for recovery assessment 

Spatial resolution: 
2–3 cm 

Can be combined with 

machine learning for 

improved diagnostic 

accuracy 

Helps identify abnormal brain 

waves for early intervention 

Monitors brain electrical 
activity recovery, aids in 

developing recovery 

plans 

Long-term monitoring to 

evaluate recovery 

outcomes 

Laser doppler 

flowmetry 

Spatial resolution: 
0.5–2 mm 

Assesses local cerebral 
blood flow, detects 
ischemia and hypoxia 

Quickly diagnoses ischemic 

events, evaluates brain 

perfusion status 

Assesses treatment 
eects, evaluates blood 

flow changes 

Monitors brain blood 

flow recovery and 

evaluates perfusion 

restoration 

Sampling frequency: 
1–10 Hz 

Suitable for dynamic 

brain blood flow 

monitoring 

Identifies ischemic events for 

clinical intervention 

Evaluates treatment 
eects, optimizes 
therapeutic strategies 

Long-term monitoring of 
blood flow recovery in 

the brain 

NIRS Sampling frequency: 
1–10 Hz 

Measures brain tissue 

oxygenation, provides 
continuous monitoring 

of cerebral oxygen 

saturation 

Real-time monitoring of 
oxygen saturation, identifies 
hypoxia and low perfusion 

Assesses oxygenation 

status, helps adjust 
therapeutic strategies 

Continuous monitoring 

of brain oxygenation 

status during recovery 

Depth: 2–3 cm Provides oxygenation 

status for shallow brain 

tissue 

Helps guide treatment of 
hypoxic events 

Assesses oxygenation 

recovery, monitors the 

eectiveness of hypoxic 

treatments 

Evaluates long-term 

oxygenation status 
during recovery 

ICP monitoring Sampling frequency: 
1–10 Hz 

Assesses intracranial 
pressure, evaluates brain 

edema and hypertension 

Monitors ICP fluctuation, 
timely intervention in high 

ICP situations 

Assesses edema changes, 
evaluates treatment 
eects 

Long-term ICP 

monitoring to assess 
brain edema and 

recovery status 

Non-invasive 

monitoring (acoustic 

methods) 

Quick, non-invasive 

method for ICP 

assessment 

Provides real-time ICP data 

for urgent clinical decisions 
Monitors ICP and edema 

for treatment 
adjustments 

Monitors ICP during 

recovery, aiding in later 

treatment decisions 

CT Resolution: 
0.5–1 mm 

Rapid imaging for 

intracranial 
hemorrhages, fractures, 
and edema 

Quickly identifies brain 

hemorrhages and fractures in 

emergency settings 

Assesses diuse injuries, 
brain tissue damage 

Evaluates recovery of 
brain injuries, guides 
post-treatment decisions 

Scan time: seconds 
to a few minutes 

Fast imaging for urgent 
diagnosis 

Used for emergency screening 

in acute phase to avoid missed 

fatal injuries 

Helps assess chronic 

damage, assists in 

treatment decisions 

Provides follow-up 

imaging to assess 
recovery progress 

MRI Resolution: 1 mm High-resolution imaging 

of soft brain tissues, 
assesses deep brain 

injuries 

Identifies diuse axonal 
injury, parenchymal changes 
in acute phase 

Provides detailed 

imaging of soft tissue 

damage, assesses chronic 

injury recovery 

Long-term imaging to 

assess white matter 

damage and evaluate 

recovery outcomes 

Scan time: 
10–30 min 

Ideal for assessing soft 
brain tissue injuries in 

subacute and recovery 

phases 

Suitable for subacute phase to 

evaluate white matter injury 

and guide treatment 

Evaluates soft tissue 

recovery, determines 
therapeutic strategy 

Long-term assessment of 
white matter damage and 

neurological recovery 

2.5 Brain oxygen saturation monitoring 

Brain oxygen saturation monitoring assesses the oxygenation 

status of brain tissue, providing critical information for identifying 

hypoxia and low perfusion. Technical parameters include: Oxygen 

Saturation Detection Range: Typically, between 60% and 100%, 
reflecting the oxidative status of brain tissue in real time. 
Monitoring Depth: NIRS is typically used for monitoring 

superficial brain tissue with a depth of 2–3 cm. 

Near-infrared spectroscopy (NIRS) is a commonly used 
technique for monitoring brain oxygen saturation (Gomez et al., 
2023a). This technology evaluates oxygenation status by measuring 
changes in tissue light absorption, enabling real-time monitoring 
of brain oxygen saturation, identifying potential hypoxic events, 
and assessing the impact of treatment on brain oxygenation. 
An article from the Canadian High-Resolution Traumatic Brain 
Injury (CAHR-TBI) cohort study explored the predictive value of 
regional oxygen saturation (rSO2) and cerebrovascular reactivity 
index (CVRi) measured by near-infrared spectroscopy in acute 
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traumatic brain injury patients’ prognosis. The study found that 
these two indicators were significantly correlated with patients’ 
clinical outcomes, with low rSO2 and CVRi associated with poor 
prognosis, suggesting that NIRS may become an eective tool 
for assessing acute TBI prognosis and guiding clinical treatment 
decisions (Gomez et al., 2024). Brain oxygen saturation data 
are easily influenced by external environment and physiological 
factors. Machine learning can improve data accuracy through data 
cleaning and feature extraction, help identify potential oxygenation 
issues, and detect key features related to prognosis, thus guiding 
personalized treatment (Gomez et al., 2023b). 

In the acute phase of TBI, NIRS is used for continuous 
monitoring of brain tissue oxygenation. During the subacute phase, 
combined with other multimodal data, NIRS helps evaluate brain 
hypoxia and guide treatment. In the recovery phase, this technology 
assists in evaluating the oxygenation status during the process of 
neurological recovery. 

In addition to non-invasive modalities such as NIRS, invasive 
brain tissue oxygenation techniques [e.g., LICOX (Früh et al., 
2024), Raumedic (Rot et al., 2020)] remain the standard in many 
centers, and recent trials such as BOOST and BONANZA are 
exploring their role in TBI management. 

3 Application of machine learning in 
TBI 

The application of machine learning in TBI management is 
increasingly widespread, demonstrating significant potential. The 
success of machine learning models in diagnosing and assessing 
TBI relies heavily on eÿcient feature extraction. To achieve this, 
both traditional statistical methods, such as Principal Component 
Analysis (PCA) and Independent Component Analysis (ICA), 
and deep learning approaches, such as Convolutional Neural 
Networks (CNN), are employed to extract key information from 
multimodal data, including EEG, CT, and MRI. In the training 
and validation process, the dataset is typically split into training 
and validation sets at ratios of 70%–30% or 80%–20%, with 
cross-validation occasionally used to further assess the model’s 
generalization capability. During model training, hyperparameters 
are optimized through techniques like grid search or random 
search to enhance model accuracy and stability. For model 
validation and performance evaluation, a test set is used, and 
performance is assessed through tools such as AUC-ROC curves 
and confusion matrices. In addition to standard metrics like 
accuracy, precision, and recall, supplementary indicators such 
as F1-score and Mean Squared Error (MSE) are used for a 
more comprehensive evaluation. Common algorithms used in this 
context include CNNs, which automatically extract spatial features 
from EEG data to aid in TBI diagnosis, and Support Vector 
Machines (SVM), which are eective for classifying small, high-
dimensional datasets, often used to distinguish between mild and 
severe TBI. Through automated analysis and data-driven insights, 
machine learning is transforming TBI diagnosis and treatment, 
especially in the integration of multimodal monitoring data, 
development of personalized treatment plans, and optimization of 
treatment strategies (as shown in Figure 2). T
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FIGURE 2 

Application of machine learning in traumatic brain injury (TBI). 

3.1 Data integration and feature 
extraction 

Traumatic brain injury patients often undergo multiple 
monitoring techniques, generating large amounts of complex 
physiological data. Machine learning can integrate these 
multimodal monitoring data to extract key features that help 
identify important information related to TBI. For example, 
extracting brain activity patterns from EEG, detecting lesion areas 
from imaging data, and identifying ischemic states from cerebral 
blood flow and oxygen saturation data. This feature extraction 
capability not only improves diagnostic accuracy but also provides 
strong support for developing personalized treatment plans. 

EEG data analysis: Machine learning can automate the analysis 
of EEG signals to identify specific brain activity patterns, such as 
warning signals for seizures. This helps in early intervention before 
the patient shows obvious symptoms. For instance, Vishwanath 
et al. (2021), explored the possibility of detecting mild traumatic 
brain injury (mTBI) through machine learning and deep learning 
techniques applied to human sleep EEG data. The study found 
that these algorithms eectively identified mTBI patients from EEG 
data, showing high accuracy and sensitivity. 

Imaging data processing: In CT and MRI imaging data, deep 
learning algorithms can automatically identify and segment lesion 
areas, reducing the burden on doctors and increasing diagnostic 
eÿciency. For example, Muller et al. (2023) successfully developed 
a model for classifying chronic TBI using machine learning 
techniques on mixed diusion imaging data. This study revealed 
the potential of machine learning to enhance the accuracy of 
chronic TBI diagnosis, especially in identifying damage patterns 
and dierentiating stages of injury. This work provides clinicians 
with a data-driven tool to improve the diagnosis and treatment 
planning for chronic TBI patients (Muller et al., 2023). 

Multisource data integration: By integrating data from 
dierent monitoring technologies, machine learning can generate 
a comprehensive patient status model, enabling more accurate 
disease assessment and prognosis prediction. 

The following Table 2 provides a comparison of various 
monitoring modalities used in TBI management, detailing their 
respective data sources, prediction or diagnosis tasks, model 
types, validation methods, performance metrics, and limitations. It 
summarizes the application of dierent machine learning models 
across diverse modalities such as EEG, ICP, CBF, PbtO2, and 
imaging (CT/MRI), highlighting key aspects like the model class, 
primary metrics (e.g., AUC, accuracy, sensitivity), and potential 
limitations. By examining these parameters, the table oers insights 
into the strengths and challenges associated with each monitoring 
modality, aiding in the selection of the most appropriate method 
for personalized TBI management. 

3.2 Diagnostic support and decision 
assistance 

Machine learning applications in TBI extend beyond data 
analysis to provide substantial support for clinical decision-making. 
Through predictive models and data-driven insights, machine 
learning assists doctors in formulating more precise diagnostic and 
treatment plans. 

Diagnostic support systems: Based on multimodal data, 
machine learning models can not only automate diagnostic 
suggestions for doctors, help identify the severity and type of TBI, 
but also predict mental state levels. For example, Dabek et al. (2021) 
studied the potential of various machine learning techniques in 
predicting the development of psychological issues in patients with 
first-time mild traumatic brain injury (mTBI). The study found 
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that these technologies could predict mental health risks based 
on patient data with high accuracy, providing a promising tool 
for early identification and intervention of psychological problems 
post-mTBI. 

Decision support: By analyzing patient historical data, machine 
learning can predict the eectiveness of specific treatment plans, 
helping doctors choose the most appropriate treatment methods. 
For example, Moyer et al. (2022) developed a predictive model 
using machine learning techniques that accurately predicts whether 
moderate-to-severe traumatic brain injury (TBI) patients will 
require emergency neurosurgery within 24 h post-injury. The 
model uses key clinical factors for prediction, providing doctors 
with a rapid decision-making tool to improve patient outcomes 
(Moyer et al., 2022). 

3.3 Real-time monitoring and risk 
assessment 

During TBI treatment, patients’ conditions can change rapidly, 
making real-time monitoring and risk assessment crucial. Machine 
learning can analyze multimodal monitoring data in real time 
to identify early signals of condition changes and guide dynamic 
adjustments to treatment plans. 

Dynamic monitoring systems: Through real-time data flow 
analysis, machine learning models can continuously monitor 
patients’ physiological states and automatically detect potential 
danger signals. For instance, when monitoring ICP, models can 
identify patterns of abnormal intracranial pressure elevation and 
alert doctors to take intervention measures. Ye et al. (2022) 
proposed a machine learning-based method for continuously 
predicting intracranial pressure changes in traumatic brain injury 
patients. By analyzing clinical data and training models, the study 
showed that this method could accurately predict short- and long-
term changes in intracranial pressure, providing a new tool for non-
invasive intracranial pressure monitoring and improving clinical 
management. The model’s overall performance includes an average 
accuracy of 94.62%, sensitivity of 74.91%, specificity of 94.83%, and 
a root mean square error of approximately 2.18 mmHg (Ye et al., 
2022). 

Risk assessment tools: Machine learning models can identify 
risk factors associated with complications and mortality by 
analyzing patients’ multimodal data. For example, Amorim et al. 
(2019) developed a model predicting early TBI mortality in low-
and middle-income countries (LMIC) using machine learning 
methods. This model predicts early mortality risk based on key 
clinical features, providing a tool for early identification of high-
risk TBI patients in LMIC regions and improving treatment and 
survival rates (Amorim et al., 2019). 

During TTM, it is important to address the potential trade-
os between ICP and PbtO2. In some cases, PbtO2 (brain tissue 
oxygen pressure) may decrease during cooling, particularly when 
ventilation settings are suboptimal (e.g., latent over-ventilation). 
This phenomenon can result in hypoxia despite maintaining ICP 
control, and thus, balancing both ICP and PbtO2 becomes critical 
for eective neuroprotection. To guide clinicians, the following 
4-step control heuristic can be proposed: 

1. Prioritize ICP control: Keep ICP below a specified threshold 
(e.g., ICP < 20 mmHg) while maintaining PbtO2 within the target 
range (e.g., PbtO2 ≥ 20 mmHg). 

2. Adjust ventilation if PbtO2 drops: If PbtO2 decreases below 
the target, first consider adjusting ventilation parameters (e.g., 
PaCO2 or FiO2) to optimize brain oxygenation, before raising 
body temperature. 

3. Guardrails for shivering: If shivering is detected, consider 
sedation or muscle relaxants to prevent shivering induced ICP 
spikes and ensure the target temperature range is maintained. 

4. Rewarming considerations: During the rewarming phase, 
carefully monitor both ICP and PbtO2. Rebound ICP is a common 
concern, and rewarming rates should be personalized, ideally 
predicted by machine learning models that take into account 
patient-specific physiological data. 

Machine learning can significantly aid in this process by 
predicting the risk of PbtO2 drops or ICP elevation based on real-
time monitoring data. For example, a machine learning model 
could analyze ICP, PbtO2, EtCO2, and other critical variables 
to forecast potential crises, helping clinicians to take proactive 
actions such as adjusting ventilation or cooling rates. By integrating 
multiple monitoring modalities, machine learning models can oer 
personalized recommendations, optimizing both ICP control and 
PbtO2 maintenance, and improving the safety and eÿcacy of TTM. 

3.4 Personalized medicine and prognosis 
prediction 

Personalized medicine is the future direction of TBI 
management (Savulich et al., 2018), with machine learning 
showing enormous potential in this area. By analyzing patient-
specific physiological and pathological features, machine learning 
can tailor treatment and management plans for each patient. 

Personalized treatment plan development: Machine 
learning can analyze multimodal monitoring data to identify 
dierent patients’ response patterns to treatments, thus creating 
personalized treatment plans for precise treatment and discharge 
planning (Azad et al., 2022). For instance, Satyadev et al. 
(2022) successfully developed a model predicting the discharge 
destination of traumatic brain injury patients using machine 
learning techniques. The model identified key factors aecting 
discharge outcomes from clinical data and showed high predictive 
accuracy, aiding healthcare professionals in making more precise 
decisions for patient rehabilitation paths and resource allocation 
(Satyadev et al., 2022). Their study developed a machine learning 
model to predict three-class discharge disposition in TBI patients 
(n = 5,292) using 84 features, including vital signs, demographics, 
and injury details. The random forest model demonstrated the 
best performance, with a weighted average area under the receiver 
operating characteristic curve (AUC) of 0.84 (95% CI 0.81–0.87) 
and a weighted average precision-recall AUC of 0.85 (95% CI 0.82– 
0.88). These models can improve patient triage and treatment, 
particularly for mild and moderate TBI cases. 

Prognosis prediction models: By combining historical and 
multimodal monitoring data, machine learning models can predict 
patients’ long-term prognosis and recovery progress. This not only 
helps doctors assess treatment eectiveness but also provides more 

Frontiers in Human Neuroscience 08 frontiersin.org 

https://doi.org/10.3389/fnhum.2025.1695336
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-19-1695336 October 21, 2025 Time: 12:35 # 9

Wei et al. 10.3389/fnhum.2025.1695336 

accurate prognosis information for patients and their families. 
Courville et al. (2023) conducted a systematic review and meta-
analysis to assess the performance and accuracy of various machine 
learning algorithms in predicting TBI patient clinical outcomes. 
Despite limitations such as sample size and data quality, these 
algorithms generally showed potential in predicting TBI outcomes, 
providing valuable decision support tools for medical decisions 
(Courville et al., 2023). 

To provide a clearer overview of the performance of dierent 
machine learning approaches applied in TBI management, we 
further summarized key models, their data modalities, validation 
methods, and performance metrics in Table 3. This comparison 
highlights both the potential and the limitations of each model, 
emphasizing the heterogeneity of current evidence and the 
necessity of rigorous external validation before clinical deployment. 

4 Hypothermic neuroprotection and 
other treatment strategies 

Targeted Temperature Management (TTM), also known 
as Therapeutic Hypothermia (TH), is a cornerstone of 
neuroprotective strategies. Hypothermic neuroprotection and 
other treatment strategies play a crucial role in TBI management 
by improving patient outcomes and reducing mortality and 
morbidity. These strategies include hypothermic neuroprotection, 
pharmacological treatments, and rehabilitation training, which will 
be discussed in detail below along with their potential integration 
with machine learning technologies (Andresen et al., 2015; Hong 
et al., 2022; Kawakita et al., 2024) (as shown in Figure 3). 

4.1 Basic concepts and processes of 
hypothermic neuroprotection 

Hypothermic neuroprotection, as a treatment strategy with 
significant neuroprotective eects, has gained widespread attention 
in TBI management. Its basic principle is to reduce the patient’s 
body temperature to slow down metabolic processes after brain 
injury, thereby reducing energy consumption and oxidative stress 
in brain cells (Parranto et al., 2025): lowering metabolic rate and 
restoring oxygen supply-demand balance. It reduces excitotoxicity, 
limits inflammation, prevents ATP depletion, reduces free radical 
production, and prevents intracellular calcium overload, avoiding 
apoptosis. Methods include external cooling methods such as ice 
blankets, ice packs, alcohol baths, cold water immersion, cold 
saline gastric lavage, helmet devices, and internal methods such 
as infusion of cold saline via central venous catheter or direct 
reduction of blood temperature (Andresen et al., 2015). Cooling 
treatment parameters should be adjusted according to the patient’s 
GCS (Glasgow Coma Scale) score. For patients with a GCS score 
of 3–5, a faster cooling rate may be required to minimize neural 
damage, while patients with higher GCS scores (e.g., 6–8) may 
not need as aggressive cooling treatment. The target temperature 
should be maintained between 32 ◦C and 35 ◦C, but the specific 
temperature range and duration of treatment should be further 
personalized based on the patient’s physiological state. 

In TBI, hypothermic treatment can reduce brain edema, inhibit 
inflammatory responses, and decrease free radical production, all 
of which contribute to neurofunctional recovery. Hypothermic 
treatment is mainly divided into induction phase, maintenance 
phase, and rewarming phase, with physiological changes occurring 
at each stage (Jo, 2022). Additionally, it is worth noting that 
for severe traumatic brain injury (sTBI) patients, therapeutic 
hypothermia may require extended treatment time (Hui et al., 
2021). 

4.2 Expert consensus on hypothermic 
neuroprotection 

In 2024, the ESICM/NACCS (European Society of Intensive 
Care Medicine/Neurocritical Care Society) consensus on best 
practices for targeted temperature management post-TBI provides 
guidelines for managing patients to optimize outcomes (Lavinio 
et al., 2024). Key recommendations include: (1). Indications: 
Initiate targeted temperature management (TTM) for severe TBI 
patients (Glasgow Coma Scale score ≤ 8) who do not comply 
with post-resuscitation orders. (2). Target Temperature: Maintain 
32 ◦C and 35 ◦C (89.6–95◦F) for at least 48 h to minimize 
secondary brain injury and improve neurological outcomes. 
(3). Initiation and Duration: Start TTM within 6 h of injury; 
duration should be personalized based on clinical response and 
evolving brain injury. (4). Methods: Use surface cooling devices, 
intravascular cooling catheters, or other methods to achieve and 
maintain target temperature. (5). Monitoring and Complications: 
Continuously monitor temperature and neurological status; 
manage complications such as hypotension, electrolyte imbalances, 
infections, and coagulopathy during TTM. (6). Multimodal 
Approach: TTM should be part of a multimodal approach to 
managing severe TBI, which may include surgical interventions, 
pharmacological treatments, and rehabilitation strategies tailored 
to individual patient needs. These consensus recommendations 
aim to standardize and improve the treatment and care of severe 
TBI patients by providing evidence-based guidelines for targeted 
temperature control, potentially improving outcomes and reducing 
morbidity associated with secondary brain injury. 

The following Table 4 summarizes the use of therapeutic 
hypothermia across dierent TBI populations, outlining the target 
temperature range, timing and duration of cooling, primary 
outcomes, complications, and the net signal of the treatment’s 
eectiveness. It also highlights key caveats associated with each 
treatment approach, oering insights into the complexities of 
managing TBI with hypothermic neuroprotection. By reviewing the 
data from various studies on severe and mixed TBI, the table helps 
contextualize the varying responses to therapeutic hypothermia, 
guiding personalized treatment strategies for optimal patient care. 

4.3 Necessity and potential approaches 
of machine learning in hypothermic 
brain protection 

In clinical applications, hypothermic brain protection faces 
challenges such as determining the optimal cooling timing, 
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TABLE 3 Comparative performance of machine learning models applied in traumatic brain injury (TBI) management. 

Model Data modality Task Validation Performance Key limitations 

CNN EEG Seizure detection, 
consciousness prediction 

Internal cross-validation AUC≈0.81; 
Accuracy≈80% 

Sensitive to noise; 
requires large datasets 

RNN EEG (continuous) Epileptiform 

abnormality detection 

External validation Accuracy≈80.8% Risk of overfitting; 
interpretability 

challenges 

Random forest ICP + Clinical ICP prediction, crisis 
detection 

Multi-site external validation RMSE≈2.18 mmHg; 
Accuracy≈94%; 
Sensitivity≈75% 

Data drift across sites; 
artifact sensitivity 

SVM CBF (LDF/NIRS) Ischemia detection Internal CV; temporal split AUC≈0.75; 
Sensitivity≈70% 

Small sample sizes; 
limited imaging 

resolution 

Logistic regression PbtO2 Prognosis, oxygenation 

prediction 

External validation AUC≈0.72; PPV 

moderate 

Calibration issues; poor 

external generalization 

U-Net/CNN-based CT/MRI imaging Lesion segmentation, 
severity classification 

Multi-site external validation Dice≈0.85; IoU≈0.80 Limited generalizability; 
time-consuming training 

FIGURE 3 

Targeted temperature management for traumatic brain injury (TBI). (A) Variations in the approach to temperature management in severe traumatic 
brain injury. Conventional therapeutic hypothermia is depicted on the left, while the concept of therapeutic hypotherm (TTM) for severe TBI is 
illustrated on the right. (B). Cooling phase vs. events. 

temperature range, and duration. These parameters may vary 
among patients, necessitating personalized implementation 
of hypothermia therapy. For instance, Targeted Temperature 
Management (TTM) combined with brain tissue oxygen pressure 
(PbtO2) monitoring plays a crucial role in TBI treatment. TTM 
may reduce intracranial pressure by lowering body temperature, 
but its eect on PbtO2 can vary between patients, sometimes 
even causing a decrease in PbtO2, possibly related to latent 
overventilation during cooling. Therefore, TTM and PbtO2 

monitoring need to be personalized and adjusted based on 
the patient’s specific condition and risk assessment (Cujkevic-
Plecko et al., 2023). Machine learning can play a significant 
role in this process by analyzing large amounts of multimodal 

monitoring data to identify personalized optimal treatment 
parameters. Additionally, hypothermia therapy may lead to 
complications such as increased infection risk and arrhythmias, 
so close monitoring of the patient’s physiological status is 
essential. Machine learning can identify potential risks early 

through real-time data analysis, guiding clinical intervention 
decisions to improve the safety and eÿcacy of hypothermic 

brain protection. Machine learning can optimize hypothermic 
treatment parameters by analyzing multimodal monitoring data 
such as ICP (intracranial pressure) and PbtO2 (brain tissue 
oxygen pressure). For instance, when ICP exceeds a certain 
threshold, machine learning models can suggest increasing 
the cooling rate or adjusting the target temperature based on 
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e changes in PbtO2 to ensure adequate oxygenation of brain 
tissue. 

Machine learning applications in brain injury hypothermia 
therapy are an emerging and promising field. Although still in 
the research stage, it has shown some potential applications and 
advantages: 

1. Prediction and personalization of treatment: Machine 
learning can analyze large datasets, including clinical, 
imaging, and physiological data, to predict a patient’s 
response to hypothermia therapy. This helps doctors create 
personalized treatment plans to improve outcomes. 

2. Optimization of treatment strategies: By analyzing patient 
data under dierent treatment strategies, machine learning 
can help determine the best hypothermia parameters (e.g., 
cooling rate, target temperature), thus optimizing the 
treatment plan and improving success rates. 

3. Prediction of complications and patient outcomes: 
Machine learning can identify risks of complications 
and predict long-term outcomes such as survival rates and 
neurological recovery. 

4. Imaging analysis support: Machine learning has potential in 
analyzing brain imaging data. It can automatically identify 
types, locations, and severity of brain injuries, providing more 
accurate diagnostic and treatment recommendations. 

5. Real-time monitoring and feedback: Combining real-time 
monitoring technology with machine learning can analyze 
physiological parameters and feedback data, helping adjust 
the implementation of hypothermia therapy to ensure eÿcacy 
and patient safety. 

Despite its early stage and need for extensive clinical validation, 
machine learning shows promise in improving treatment strategies 
and personalized medicine. As technology and data accumulate, 
machine learning is expected to play a greater role in providing 
more eective treatment and care solutions for patients. 

The following Table 5 summarizes key aspects of the validation 
process, data handling methods, performance stability, and clinical 
utility for various machine learning models applied to TBI 
monitoring, including EEG, ICP, CBF, PbtO2, and imaging. It 
provides an overview of the validation techniques used, such as 
cross-validation, temporal splits, and multi-site external validation, 
as well as how missing data and potential data leakage were 
addressed. Additionally, the table highlights the performance 
stability and clinical utility of these models, shedding light on 
their current state and limitations for practical application in TBI 
management. 

4.4 Clinical uncertainties and challenges 
in the application of hypothermic 
therapy for traumatic brain injury 

4.4.1 Theoretical basis of hypothermic therapy vs. 
clinical uncertainties 

Theoretical basis of hypothermic therapy: Hypothermic 
therapy (Targeted Temperature Management, TTM) is based on the 
principle of reducing brain temperature to slow down metabolic 
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TABLE 5 Performance evaluation and validation of machine learning models in traumatic brain injury (TBI) monitoring. 

Study type Validation 
type 

Data leakage 
checks 

Missing-data 
handling 

Performance 
stability 

Calibration/clinical 
utility 

Machine learning 

models for EEG 

Internal CV, 
temporal split, 
external Validation 

Leakage not reported Imputation techniques used 

(mean imputation, 
regression) 

Moderate stability, 
Further validation 

required 

Calibration reported in 

internal studies, not 
external 

Machine learning 

models for ICP 

Multi-site external 
validation 

Leakage checks not 
performed 

Imputation with regression 

techniques 
High stability with slight 
drift over time 

Calibration not reported, 
potential for clinical 
utility uncertain 

Machine learning 

models for CBF 

Internal CV, external 
validation 

Leakage checks reported Missing data handled via 

multiple imputation 

Stable performance with 

limited data variance 

No clinical utility or 

decision-curve analysis 

Machine learning 

models for PbtO2 

Temporal split, 
Cross-validation, 
external validation 

Leakage checks not 
reported 

Missing data handled by 

mean imputation and 

regression 

Performance stable with 

small sample size 

No calibration, Clinical 
utility unclear 

Machine learning 

models for imaging 

Cross-validation, 
Multi-site validation 

Leakage checks reported Missing data handled via 

deletion methods 
Stability issues, Variance 

across sites 
Calibration and clinical 
utility reported for most 
models 

processes, thereby reducing energy consumption and oxidative 
stress. The main mechanisms are: 

1. Metabolic Suppression: By lowering body temperature, 
the metabolic rate of brain cells is slowed, reducing energy 
consumption and preventing cell death and tissue necrosis due to 
energy deficiency. 

2. Reduction of ICP (Intracranial Pressure): Lowering the 
temperature may help reduce brain edema, thus lowering ICP. This 
can alleviate secondary brain injury caused by elevated ICP by 
reducing cerebral blood flow. 

3. Suppression of Inflammatory Response: Cooling reduces 
the activity of the immune system, inhibiting inflammation 
and minimizing neuronal damage caused by inflammatory 
cell infiltration. 

Clinical uncertainties and challenges: Despite the promising 
theoretical benefits, the clinical application of TTM faces several 
uncertainties and challenges: 

1. Heterogeneity of patient populations: The eectiveness 
of TTM may vary significantly between dierent patients. For 
instance, patients with severe traumatic brain injury (sTBI) may 
respond dierently compared to those with mild traumatic brain 
injury (mTBI). Age, comorbidities, and other factors contribute to 
these dierences. 

2. Timing of treatment: The optimal timing to initiate TTM 
is still unclear. Research suggests that earlier initiation of cooling 
may provide better outcomes, but determining the exact window 
for treatment remains challenging. 

3. Rewarming risks: The rewarming phase (the process of 
gradually raising the body temperature) poses a risk of ICP 
rebound. If rewarming is not controlled carefully, it could lead to 
an increase in ICP, exacerbating brain injury. 

4. Infection and coagulopathy: Hypothermic therapy may 
suppress the immune system, increasing the risk of infections. 
Additionally, hypothermia can impair coagulation, raising the risk 
of bleeding, which complicates the treatment further. 

4.4.2 Rewarming process and ICP rebound 
analysis 

ICP rebound during rewarming: The rewarming process is 
critical in TTM. While hypothermia helps reduce brain edema and 

control ICP, it may lead to ICP rebound during the rewarming 
phase. This rebound could be due to changes in cerebral blood 
flow and blood-brain barrier permeability as the brain temperature 
rises. Studies have shown that rewarming too quickly can lead to a 
sudden increase in ICP, which may further impair brain function 
and increase secondary injury. 

It is essential to control the rewarming rate precisely to avoid a 
rapid rise in ICP. Research suggests that the ideal rewarming rate 
should be slow and controlled to minimize ICP fluctuations. 

Machine learning’s role in predicting safe rewarming 
trajectories: Machine learning (ML) could be pivotal in predicting 
safe rewarming trajectories by analyzing multimodal data from 
various monitoring systems (such as ICP, PbtO2, EtCO2, MAP, 
and ventilation settings). By integrating data from these dierent 
sources, ML models could help predict potential ICP spikes during 
rewarming and recommend adjustments to minimize risks. 

1. Multimodal Data Integration: ML models can integrate real-
time data from EEG, ICP, PbtO2, and other monitoring systems to 
create a comprehensive patient status model. This could forecast 
the risk of ICP increase and provide recommendations for adjusting 
treatment strategies. 

2. Personalized Rewarming Strategies: ML could enable the 
development of personalized rewarming plans for each patient 
based on their individual response to TTM. For example, if ICP is 
approaching a critical threshold, the model could suggest adjusting 
ventilation parameters (e.g., PaCO2 or FiO2) or delay rewarming 
to ensure safety. 

3. Real-Time Monitoring: By continuously monitoring multiple 
physiological parameters, ML models can detect early signs 
of ICP rebound and prompt timely interventions, such as 
adjusting sedation levels or ventilation settings to maintain ICP 
within a safe range. 

4.4 Other treatment strategies 

Machine learning plays a crucial role in optimizing treatment 
strategies for TBI, particularly in drug therapy and rehabilitation 
training. By analyzing large amounts of patient data, machine 
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FIGURE 4 

Integration pipeline of multimodal monitoring and machine learning for personalized treatment in traumatic brain injury (TBI). 

learning can facilitate the personalization of treatment plans, 
optimizing their eectiveness. 

4.4.1 Personalized drug dosage prediction 
Drug therapy is another crucial component in TBI 

management, aiming to mitigate secondary pathological 
processes following brain injury. Commonly used drugs include 
antioxidants, anti-inflammatory agents, and neuroprotective 
agents. Antioxidants neutralize free radicals generated during 
injury, reducing oxidative stress on neurons (Fesharaki-Zadeh, 
2022). Anti-inflammatory agents reduce brain edema and 
inflammation by inhibiting the release of inflammatory mediators 
(Kalra et al., 2022; Lu et al., 2025). Neuroprotective agents such 
as creatine (Newman et al., 2023) and adenosine (Bozdemir et al., 
2021) help maintain cell membrane integrity and prevent neuronal 
apoptosis (Tang et al., 2023; Zamanian et al., 2022). Medications 
may vary based on the disease stage: during the acute phase, 
tranexamic acid, antiepileptic drugs, hyperosmotic agents, and 
anesthetics are primary treatments and have proven eective. In 
later stages, SSRIs, SNRIs, antipsychotics, zolpidem, amantadine, 
and other drugs are used for neuropsychological issues, while 
muscle relaxants and botulinum toxin are used for spasticity (Tani 
et al., 2022). 

Although drug therapy shows eÿcacy in TBI, its use requires 
careful consideration of individual factors. Machine learning 
can help optimize drug therapy (Lipponen et al., 2019) by 
analyzing patient data to predict responses to specific drugs, 
enabling precision medicine. Moreover, machine learning models 
can identify potential side eects and guide physicians in risk 
assessment and treatment adjustments (Fucich et al., 2020). 
Suppose a severe TBI patient with a GCS score of 5 has an initial 

ICP of 25 mmHg and a PbtO2 of 12 mmHg. Based on this data, the 
machine learning model can predict that the cooling rate should 
be set to a decrease of 0.5 ◦C per hour, and the target temperature 
should be adjusted to 33 ◦C for a duration of 48 hours, to ensure 
optimal neuroprotective eects. 

Machine learning can predict the optimal drug dosage based on 
a patient’s genotype, particularly genes related to drug metabolism. 
For example, the metabolism rates of antiepileptic drugs such 
as phenytoin and carbamazepine are influenced by variations 
in the CYP450 gene family. By establishing machine learning 
models, it is possible to predict the most appropriate drug 
dosage based on a patient’s genetic data, drug concentration, 
and clinical symptoms, thereby optimizing therapeutic eects. 
With this personalized prediction, doctors can more accurately 
adjust drug dosages, minimizing the risks of overdose or 
insuÿcient dosage. 

4.4.2 Dynamic adjustment of rehabilitation plans 
Rehabilitation training is an essential component of recovery 

for TBI patients, aimed at promoting functional recovery and 
improving long-term prognosis (Bayley et al., 2023). Physical 
rehabilitation includes exercise training, balance training, and 
functional training to enhance motor abilities and daily living 
functions (Gmelig Meyling et al., 2022). Cognitive rehabilitation 
addresses common cognitive impairments in TBI patients, such 
as memory, attention, and executive function deficits, through 
specialized training to improve cognitive function (Paggetti 
et al., 2025). Additionally, psychological support is crucial in 
TBI recovery, helping patients cope with emotional disorders 
and psychological stress through interventions and supportive 
therapy, promoting holistic recovery (Howlett et al., 2022). 
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Machine learning can analyze rehabilitation training data, assess 
training eectiveness, and recommend personalized rehabilitation 
plans (Appiah Balaji et al., 2023). By tracking patient progress, 
machine learning models can adjust training plans in real-
time to ensure each patient receives the most appropriate 
rehabilitation program, thereby improving recovery and quality of 
life. 

In rehabilitation training, machine learning can dynamically 
adjust the intensity and frequency of exercises by analyzing large 
amounts of data from motion sensors (such as accelerometers and 
gyroscopes). For instance, machine learning models can monitor 
patients’ motion data in real-time (e.g., gait, limb movement 
amplitude) to assess rehabilitation progress. Based on changes in 
motor abilities, the training plan can be automatically adjusted. 
By making these dynamic adjustments, machine learning helps 
optimize the rehabilitation process, preventing overtraining or 
insuÿcient training. 

4.4.3 Example of machine learning in drug 
dosage and rehabilitation training 

Drug dosage optimization: Take the antiepileptic drug 
phenytoin as an example. Machine learning can establish 
personalized drug dosage prediction models using patient 
genotype data (e.g., CYP450 gene variations), blood drug 
concentrations, and clinical symptoms. For instance, patients with 
CYP2C9 gene variants may require lower doses of phenytoin, and 
machine learning can automatically optimize the dosage based on 
this information. 

Rehabilitation training adjustment: Using motion sensors (such 
as smart gloves) to monitor hand movements in TBI patients, 
machine learning models can adjust the intensity and duration of 
rehabilitation training based on movement amplitude, frequency, 
and training progress. If the patient’s hand movements recover 
more slowly, the model can automatically increase the training 
intensity; conversely, if the patient feels fatigued or limited in 
movement, the model can reduce the training load accordingly. 

To illustrate the practical implementation of multimodal 
monitoring combined with machine learning in TBI management, 
we present an integration pipeline in Figure 4. This schematic 
demonstrates how raw physiological data from various monitoring 
modalities—such as EEG, intracranial pressure (ICP), cerebral 
blood flow (CBF), and brain tissue oxygenation (PbtO2)—are 
first preprocessed, followed by feature extraction and data fusion. 
Machine learning models then integrate these processed data 
to enable event prediction, patient stratification, and adaptive 
optimization of treatment strategies. The outputs are delivered 
through a decision-support system, providing clinicians with 
guidance for personalized interventions. Importantly, a feedback 
loop facilitates continuous refinement, ensuring that treatment 
personalization adapts dynamically to each patient’s evolving 
condition. 

The following Table 6 outlines the optimal cooling parameters, 
including target temperature, cooling rate, and maintenance 
duration, based on the patient’s GCS score. It also highlights the 
correlation between these parameters and the 6-month Glasgow 
Outcome Scale (GOS) score, reflecting their potential impact on 
recovery. This personalized approach aims to improve the eÿcacy 
of hypothermic therapy for TBI patients. 

5 Discussion 

5.1 Current evidence and principal 
limitations 

The integration of multimodal bedside monitoring with ML has 
emerged as a promising approach to refine TBI management. By 
leveraging physiological signals such as EEG, ICP, CBF, and PbtO2, 
ML models have demonstrated potential in detecting seizures, 
forecasting ICP crises, stratifying risk, and guiding therapeutic 
interventions including TTM. For instance, recurrent neural 
networks trained on continuous EEG have achieved accuracies of 
∼80% in detecting epileptiform discharges, while deep learning– 
based approaches for short-term ICP prediction have reported 
clinically meaningful error margins. 

Nevertheless, enthusiasm must be tempered by several 
limitations. First, evidence from hypothermia trials illustrates the 
challenges of translating promising physiological mechanisms 
into consistent clinical benefit. Large-scale RCTs such as 
Eurotherm3235 and POLAR failed to establish uniform 
improvements in long-term functional outcomes, suggesting 
that non-stratified cooling strategies may obscure subgroup-
specific benefits. Second, the heterogeneity of multimodal 
data—arising from dierences in acquisition devices, protocols, 
and patient populations—complicates model generalizability. 
Small sample sizes further increase the risk of overfitting, with 
many studies still limited to retrospective, single-center cohorts. 
Finally, interpretability remains a key barrier: while deep learning 
can capture non-linear interactions, its “black-box” nature 
undermines clinical trust, especially for high-stakes interventions. 
More transparent methods such as logistic regression oer 
clarity but lack the capacity to model complex physiology. 
Together, these limitations underscore that while ML-enhanced 
multimodal monitoring is technically feasible, its clinical utility 
remains provisional. 

5.2 Challenges in clinical translation 

Moving from research to bedside deployment requires 
addressing methodological, operational, and regulatory challenges. 

Validation hierarchy: A rigorous stepwise validation pathway 
is essential: internal cross-validation, temporal split validation, 
multi-site external validation, silent prospective deployment, 
and ultimately interventional RCTs. Yet, few published models 
progress beyond internal validation, raising concerns about 
reproducibility across centers. 

Data governance and multi-center collaboration: FL oers a 
promising framework for training robust models without sharing 
raw patient data, thereby circumventing privacy barriers. However, 
its clinical adoption necessitates standardized data dictionaries, 
synchronized sampling frequencies, and harmonized labeling 
criteria across institutions. 

Interpretability and human oversight: Clinical decision-
support systems must output not only predictions but also 
interpretable rationales and uncertainty estimates. Approaches 
such as SHAP-based feature attribution and counterfactual 
explanations should be integrated as default outputs. When 
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TABLE 6 Personalized cooling parameters based on GCS score and recovery outcomes in traumatic brain injury (TBI) patients. 

Treatment 
parameter 

GCS score Optimal 
temperature 

Cooling rate Maintenance 
duration 

6-month GOS 
score correlation 

Target temperature 3–5 32 ◦C–33 ◦C 0.5 ◦C/h 48 h High correlation with 

good recovery 

6–8 33 ◦C–34 ◦C 0.2 ◦C/h 24 h Moderate correlation 

with recovery 

Cooling rate 3–5 32 ◦C 0.5 ◦C/h 48 h Strong impact on 

recovery 

6–8 34 ◦C 0.3 ◦C/h 24 h Moderate impact 

confidence is low, ML systems should trigger a human-in-the-loop 
fallback, ensuring that responsibility remains with the clinical team. 

Safety and workflow integration: To avoid alert fatigue, models 
should provide prioritized, threshold-based outputs that align 
with existing clinical response pathways. Continuous performance 
monitoring and automatic recalibration are equally critical, given 
device drift and evolving patient populations. 

Cost-eectiveness: Multimodal monitoring infrastructures and 
ML deployment impose substantial costs. Strategies should balance 
precision against feasibility, for example by developing lightweight 
models that rely on widely available variables (vital signs, basic ICP, 
or NIRS indices) in resource-limited settings. 

5.3 Future directions and testable 
proposals 

Future research must move beyond proof-of-concept toward 
rigorous clinical evaluation and real-world implementation. We 
propose the following priorities: 

1. Adaptive, stratified clinical trials for ML-guided TTM. Future 
RCTs should employ adaptive or sequential multiple assignment 
randomized trial (SMART) designs, where ML algorithms stratify 
patients based on multimodal phenotypes and guide individualized 
cooling parameters. Hypotheses such as whether ML-optimized 
cooling rates improve ICP control without increasing infection risk 
can be explicitly tested. 

2. Federated, multi-center model development. Large-scale 
federated learning initiatives should be established, enabling 
joint model training while preserving patient privacy. Such 
collaborations would mitigate site-specific biases and accelerate 
model generalizability. 

3. Explainability and uncertainty quantification as regulatory 
standards. Clinical-grade ML systems must provide interpretable 
rationales and calibrated confidence intervals as part of routine 
outputs. For example, a recommendation to adjust temperature 
targets should be accompanied by explicit features driving 
the prediction (e.g., rising ICP trend, stable PbtO2, EEG 
desynchronization). 

4. Model maintenance and drift monitoring. Post-deployment 
surveillance pipelines are needed to detect covariate drift, label 
drift, and performance degradation. Automatic recalibration 
and periodic retraining should be mandated to maintain 
safety and eÿcacy. 

5. Lightweight models for resource-constrained settings. 
Developing simplified algorithms that rely on low-cost modalities 

such as vital signs and NIRS will expand accessibility, ensuring that 
ML benefits are not limited to high-resource centers. 

6. Physiology-informed feature engineering. In addition 
to end-to-end deep learning, incorporating physiologically 
interpretable features—such as ICP pulse morphology or dynamic 
cerebrovascular reactivity indices—can both improve predictive 
accuracy and facilitate clinical acceptance. 

7. Optimizing the role of NIRS. Evidence suggests that raw 
NIRS values alone provide limited prognostic power; however, 
derived indices such as cerebrovascular reactivity metrics may add 
value when integrated into multimodal ML models. 

In summary, ML-enabled multimodal monitoring has 
demonstrated technical feasibility and early promise in TBI 
management, particularly in enhancing seizure detection, ICP 
prediction, and personalization of hypothermia protocols. Yet 
the field remains in an early translational stage, constrained by 
heterogeneous data, limited external validation, and interpretability 
challenges. Moving forward, the development of multicenter 
federated learning frameworks, stratified adaptive trial designs, and 
interpretable outputs with uncertainty quantification will be critical 
for bridging the gap between computational potential and bedside 
utility. Only through such interdisciplinary and methodologically 
rigorous eorts can ML evolve from experimental tool to a 
clinically transformative paradigm in TBI care. 

6 Conclusion 

Traumatic brain injury remains a heterogeneous and complex 
condition where conventional monitoring and treatment 
approaches often fail to capture individual variability. The 
integration of multimodal monitoring with machine learning 
provides a promising framework to address this challenge, 
oering opportunities for earlier event prediction, individualized 
therapeutic adjustment, and data-driven clinical decision support. 

Current evidence demonstrates technical feasibility, with 
encouraging results in tasks such as seizure detection, ICP 
forecasting, and imaging-based lesion characterization. Yet 
translation into routine clinical care is limited by small sample 
sizes, insuÿcient external validation, and the lack of interpretability 
in complex models. Large-scale RCTs of hypothermia have further 
highlighted that “one-size-fits-all” strategies are unlikely to succeed, 
underscoring the need for stratified, personalized protocols. 

Looking ahead, progress will depend on three key pillars: 
(i) building high-quality, multicenter datasets through federated 
learning and standardized protocols; (ii) embedding explainability, 
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uncertainty quantification, and robust validation into all clinical-
grade ML systems; and (iii) designing adaptive, phenotype-driven 
clinical trials to test whether ML-guided interventions can yield 
measurable improvements in outcomes. 

In summary, ML-enabled multimodal monitoring represents 
an emerging paradigm in TBI care. While challenges in validation, 
interpretability, and deployment remain, the convergence of 
computational advances, collaborative data sharing, and rigorous 
clinical evaluation has the potential to transform TBI management 
from generalized protocols toward truly personalized, precision 
neurocritical care. 
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