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The concept of connectome gradients, which represents the continuous spatial
variation of brain connectivity, offers a robust framework for exploring the
hierarchical organization of the cortex and its relationship with cognitive
function. We hypothesize that structural gradients in frontal and parietal regions
play a significant role in shaping individual cognitive abilities during early
childhood. To evaluate this hypothesis, we identified macroscale structural
connectome gradients in children aged 1–6 years, where the principal
gradient exhibited a left-to-right axis, and the secondary gradient exhibited an
anterior-to-posterior axis. Next, we employed machine learning approaches to
predict the future cognitive outcomes assessed at ages 4, 6, and 8, specifically
intelligence quotient (IQ), based on the structural connectome gradients
measured at age 1. We achieved consistent and robust prediction results (mean
Spearman’s correlation > 0.25). The regional relevance maps highlighted regions
in control network, and associated sensory processing networks. Our findings
indicate that the structural connectome, which undergoes maturation during
early childhood, plays a crucial role in the individual variability of IQ observed
in early and middle childhood. Our approach underscores the utility of structural
gradients as compact and interpretable representations of the brain’s complex
network architecture, effectively capturing individual differences that contribute
to cognitive development.

KEYWORDS

structural connectome, diffusion MRI, connectome gradient, graph convolutional
neural, IQ prediction

1 Introduction

Early childhood is widely recognized as a critical period for the development of lifelong
cognitive abilities and behaviors. Moreover, it is a crucial window for understanding and
mitigating risk factors for neuropsychiatric disorders (Gilmore et al., 2018). Cognitive
performance plays a key role in the academic and social adjustment of school children
(Durlak et al., 2011; DeRosier and Lloyd, 2010; Racz et al., 2017). Identifying early imaging
biomarkers of brain development can potentially predict and track cognitive trajectories,
allowing for timely interventions to optimize learning outcomes and support. Studies
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have found significant associations between IQ and cortical
attributes or microstructures. For example, there is evidence of
positive correlations between IQ and cortical thickness (Narr
et al., 2007; Karama et al., 2011), surface area (Girault et al.,
2020), and mean occipital fractional anisotropy (FA) (Dubner
et al., 2019). However, the specific pathways linking early brain
network organization to subsequent cognitive outcomes remain
largely unknown.

A continuous spatial representation of connectivity across the
cortical surface, referred to as connectome gradients, provides a
valuable framework for exploring the topographical organization
of the cortex and its relationship to cognitive functions. A series
of low-dimensional manifold representations can be obtained by
non-linear dimensionality reduction techniques, so-called diffusion
map embedding (Coifman et al., 2005; Margulies et al., 2016).
These gradients provide interpretable, topographic summaries that
capture distributed patterns of brain organization that may be
missed by traditional node-based or graph centrality metrics.

An increasing body of research has shown that the functional
connectome gradient runs from primary sensorimotor and visual to
higher-order transmodal regions (Margulies et al., 2016; Xia et al.,
2022; Paquola et al., 2019). Xia et al. (2023) demonstrated that
the functional connectome gradient present at birth significantly
predicts cognitive outcomes at the age two, highlighting its
early role in neurodevelopment. Yang et al. (2024) showed
that alterations in the brain’s primary-to-transmodal functional
connectome gradient are linked to the severity of white matter
(WM) hyperintensities and partially account for the consequent
decline in executive cognitive function. Further research has
found that disruptions in functional connectome gradients across
various conditions are associated with a range of cognitive deficits,
suggesting that gradient dysfunction may serve as a biomarker of
disease-related cognitive impairment (Li et al., 2025). Collectively,
these studies establish functional connectome gradients as essential
organizational frameworks of brain networks, with their integrity
and development closely associated with diverse cognitive abilities.

In contrast to extensive investigations into functional
connectome gradients, the understanding of structural connectome
gradients and their relationship to cognition remains more limited.
A substantial body of research has shown that the WM connectome
is established very early in childhood and remains relatively stable
thereafter (Gilmore et al., 2018; Bagonis et al., 2022; Hong
et al., 2023). Diffusion magnetic resonance imaging (dMRI)
is a non-invasive imaging technique that characterizes tissue
microstructure and white matter tracts (Johansen-Berg and
Behrens, 2013), allowing the computation of anatomical brain
networks or structural connectomes (SC). Because the SC
provides the anatomical constraints on functional connectivity
and reflects the underlying white matter architecture established
in early development, structural connectome gradients could
offer a distinct and complementary perspective on cortical
organization not captured by functional gradients alone. Notably,
Park et al. reported that structural connectome gradients mature
progressively during adolescence in ways that predict individual
differences in cognitive functions, including intelligence (Park
et al., 2021). However, it is still unknown whether structural
connectome patterns in infancy can predict IQ at later ages, and

specifically whether higher-order association networks implicated
in adult intelligence are already the most predictive features
during infancy.

Extensive research has established that higher-order association
networks, particularly the frontoparietal network, cingulo-
opercular network, and default-mode network, are consistently
associated with cognitive ability and intelligence (Jung and Haier,
2007; Chang et al., 2019; Davis and Cabeza, 2015; Sheffield et al.,
2015; Smallwood et al., 2021; Menon and Uddin, 2010). Girault
et al. demonstrated that WM connectomes at birth can be used to
predict the individual differences in 2-year cognitive performance
using machine learning approaches, highlighting the importance
of the WM connectome as an imaging biomarker of subsequent
cognitive development (Girault et al., 2019). Previous studies based
on graph centrality metrics have not found significant associations
between the structural or functional connectome and cognitive
abilities in early childhood (Bagonis et al., 2022; Jiang et al.,
2023). This discrepancy suggests that traditional regional or graph
centrality metrics may miss the distributed, low-rank topographic
patterns that the structural gradients can capture. Although it is
widely known that the SC is related to cognition and behavior
in adults and adolescents (Seguin et al., 2020; Dhamala et al.,
2021), little is known about their relationships in early childhood.
Understanding when these network patterns emerge and whether
they can predict later cognitive outcomes would have important
implications for early identification and intervention (Ji et al.,
2024).

We hypothesize that structural connectome gradients are
detectable at age 1, show stability across early childhood, and
predict later cognitive performance. Specifically, we propose
that structural connectome gradients in regions important for
cognitive function and intelligence, particularly the dorsolateral
prefrontal cortex and superior parietal cortex (Jung and Haier,
2007; Deary et al., 2010; Basten et al., 2015), will be associated with
individual cognitive differences in young children. Furthermore, we
hypothesize that individual differences in the spatial organization
of structural connectome gradients may correlate with variations
in individual cognitive outcomes. These structural connectome
patterns likely emerge within the first year of life, suggesting that
interventions aimed at normalizing developmental trajectories may
need to be implemented during very early childhood (Gilmore
et al., 2020). To test these hypotheses, we aim to predict the
individual’s cognitive outcomes measured via the Stanford–Binet
Intelligence scales from their structural gradients at age 1, using a
graph convolutional neural network model where the input features
are the structural gradients and the adjacency matrix is the whole
brain SC. This approach underscores the potential of structural
gradients as early predictors of cognitive development.

2 Materials and methods

2.1 Datasets

Multi-modal neuroimaging data from the University of North
Carolina (UNC) early brain development study (EBDS) were
used for this study. In this study, we included subjects who
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underwent brain scans at ages 1, 2, 4, and/or 6 years, along
with cognitive assessments conducted at ages 4, 6, and 8 years.
One twin from each twin pair was included in the study; twin
A was selected when both twins had usable scans. Subjects were
excluded if they had an abnormality on MRI or a major medical
or surgical illness, including head injury or seizure disorder (see
Supplementary Table 1). Here, the number of excluded diffusion
weighted images (DWIs) and the number of DWIs with large
translation (> 1 mm) were employed as estimates of head motion
and image quality. We additionally excluded the subjects if the
number of excluded DWIs are greater than 14.

Structural T1w/T2w images and diffusion-weighted images
(DWIs) were acquired using either a Siemens Allegra scanner
or a Siemens Tim Trio scanner. T1-weighted images on the
Siemens Allegra scanner were acquired using a 3-dimensional
magnetization-prepared rapid acquisition gradient-echo
(MPRAGE) sequence: TR = 1,880–1,900 ms, TE = 4.38 ms,
flip angle = 7◦, voxel size = 1 × 1 × 1 mm3. T2w images on the
Allegra scanner were collected using a dual echo sequence: TR =
7,380–8,010 ms, TE1 = 20 ms, TE2 = 119 ms, flip angle = 150◦,
voxel size = 1.25 × 1.25 × 1.5 mm3. T1w images on the Tim Trio
scanner were acquired using a lower echo time: TR = 1,900–1,940
ms, TE = 3.74 ms, flip angle = 7◦, voxel size = 1 × 1 × 1 mm3.
T2w images on the Tim Trio scanner were collected using a 3DT2
SPACE protocol: TR = 3,200 ms, TE = 406–497 ms, flip angle =
120◦, voxel size = 1 × 1 × 1 mm3.

DWIs were obtained using both scanners following an identical
protocol. This protocol utilized 42 unique gradient-sensitizing
directions, uniformly distributed across the sphere, with a b-value
of 1,000 s/mm2 in addition to seven b = 0 images. The following
acquisition parameters were used: twice refocused spin echo, TR =
7680 ms, TE = 82 ms, flip angle = 90◦, voxel size = 2 × 2 × 2 mm3.

The cognitive performance of each subject was assessed by
the 5th Edition of the Stanford–Binet Intelligence scales (Roid,
2003). The Stanford–Binet is a standardized set of assessments used
to assess intelligence (IQ) across the lifespan. This study focuses
primarily on the full-scale IQ (FSIQ) score, with exploratory
analyses examining effects on abbreviated IQ (ABIQ), verbal IQ
(VIQ), and nonverbal IQ (NVIQ). The composite scores generated
from the Stanford–Binet have strong inter-rater reliability (ranging
from 0.74 to 0.97 with a median of 0.90) and test–test reliability
(correlations in the 0.80s and 0.90s). All of the scores utilized
in this study are normalized standard scores, with means of 100
and standard deviations of 15. The distribution of FSIQ scores
across ages 4, 6, and 8 years is presented in Figure 1. Detailed
demographic and scan information for participants in the FSIQ
prediction analysis can be found in Table 1.

2.2 Structural connectome processing

Diffusion MRI data were pre-processed using DTIPrep (Oguz
et al., 2014) to correct eddy current and motion artifacts. DTIPrep
also removed DWI volumes with significant motion artifacts. Both
the T1w image and the white matter (WM) surface were brought
into DWI space by applying rigid and non-linear transforms.
Probabilistic tractography was initiated from each labeled vertex

on the WM surface using probtrackx2 (Behrens et al., 2007). For
each seed, 1,000 streamlines were generated, with a step size of 0.75
mm and a seed sphere sampling radius of 0.5 mm. More details can
be found in our previous work (Hong et al., 2023). Connectome
matrices with dimensions 148×148 from the Destrieux parcellation
and 78×78 from the AAL parcellation were generated by counting
the number of streamlines connecting each pair of regions. We note
that a surface-based labeling with the AAL parcellation was created
from voxel-level parcellation (Kim et al., 2005). The raw streamline
counts were symmetrized. We then normalize the matrices so that
the summation of the lower triangular parts equals to 1.

2.3 Connectome gradients

We computed SC gradients using BrainSpace toolbox (Vos de
Wael et al., 2020). The SC matrix was converted to an affinity matrix
using a cosine similarity, where the cosine similarity of two row
vectors in SC is defined as

cos(vi, vj) =
vi · vj

‖vi‖‖vj‖ . (1)

Then, the diffusion map embedding, a non-linear dimensionality
reduction technique, was applied (Coifman et al., 2005). A set
of gradient vectors was calculated and sorted based on their
corresponding eigenvalues. The eigenvector corresponding to the
largest eigenvalue is defined as the principal gradient. Since each
subject’s gradients represent relative distances and can be mapped
to arbitrary axes, we applied Procrustes rotation approaches to align
each subject’s gradient vectors to the template (Langs et al., 2015).
We created a reference template from an independent set of 10
subjects from same dataset at age 1 not included in our analysis. To
correct the scanner batch effect, the computed SC gradients were
harmonized using ComBat (Fortin et al., 2018) with gestational age
at birth, sex, the number of DWIs with large motion translation,
and the number of excluded DWIs as covariates. A schematic
overview of the SC gradients generation is illustrated in Figure 2.

2.4 IQ prediction model

We applied a graph-convolutional neural network model
(GCN) to predict each individual’s IQ score from their SC gradients
at age 1. The principal structural gradient vector as well as the
secondary gradient were used as input features, and two layers
of GCN with SC matrix as an adjacency matrix were applied to
extract the latent vector. The final regression score was predicted
with a multi-layer perceptron. A new loss function was employed to
ensure that the subjects having similar cognitive scores had higher
agreement in their prediction.

Our GCN model is based on a spectral graph convolutional
operation. The input features are the structural gradients, and the
adjacency matrix is the SC matrix. Let A be the weighted graph
adjacency matrix and N be the number of nodes in the graph.
Then graph Laplacian operator L can be defined as L = IN×N −
D−1/2AD−1/2 with IN×N being the identity matrix and D being the
diagonal degree matrix Dii = ∑

j Aij. Let H(l) ∈ R
N×d(l)

be l-th
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FIGURE 1

Histogram of FSIQs at different ages. FSIQ4: mean = 112.04, std = 12.34, FSIQ6: mean = 111.43, std = 12.33, FSIQ8: mean = 105.55, std = 11.54.

TABLE 1 Participant demographic and scan information for subjects used
for the IQ prediction.

Variable FSIQ4 FSIQ6 FSIQ8
N=92 N=101 N=96

Mean (SD) Mean (SD) Mean (SD)

Age at scan (months) 12.95 (0.94) 12.95 (0.89) 12.93 (0.85)

Number of excluded DWIs 1.46 (1.84) 1.63 (2.05) 1.61 (1.94)

Number of DWIs with large
translation (> 1mm)

0.32 (0.77) 0.53 (1.42) 0.55 (1.42)

N(%) N(%) N(%)

Allegra 62 (67%) 69 (68%) 65 (68%)

Tim Trio 30 (33%) 32 (32%) 31 (32%)

Sex, male 50 (54%) 54 (53%) 51 (53%)

layer features, where d(l) is the number of features at l-th layer. The
output features in GCN layers are updated as

H(l+1) = ξ
( K∑

k=0

Tk(L̃)H(l)W(l)
k

)
, (2)

where ξ is a non-linear activation function and W(l)
k ∈ R

d(l)×d(l+1)

is the matrix of learnable parameters at l-th layer, representing
k-th order Chebyshev polynomial coefficients. Here, Tk(L̃) is the
k-th order Chebyshev polynomial evaluated on the scaled graph
Laplacian L̃ : = 2L/λmax − I with λmax being the maximal
eigenvalue of L. Note that the spectral filters learned as K-th order
Chebyshev polynomial coefficients are exactly K-localized and can
be computed recursively (Defferrard et al., 2016).

Let xi be an input SC gradient, yi ground-truth IQ, and f (xi)
predicted IQ. The loss function is the weighted sum of the mean-
squared error and the Siamese loss which are defined as:

L = LMSE + wsiameseLsiamese, (3)

where

LMSE =
∑

i

|yi − f (xi)|2, (4)

Lsiamese =
∑

i�=j

[
(yi − yj) − (f (xi) − f (xj))

]2. (5)

Here, we added a paired inter-subject difference loss Lsiamese
to ensure that the difference of the predicted IQs across
different subjects are comparable to the difference of ground-
truth IQs. This regularization function helps to retain inter-subject
heterogeneity, avoiding the case that the prediction converges to the
group-averaged IQs.

We trained the prediction model with principal and secondary
structural gradients and performed 10-fold cross-validation to
evaluate the model and repeated the prediction 10 times with
different training and test splits to mitigate the bias with respect to
subject selection. To avoid information leakage, within each cross-
validation fold, structural gradients from both training and test sets
were aligned to the external reference generated in Subsection 2.3.
Prediction accuracy was evaluated by mean absolute error (MAE),
the Spearman’s rank correlation, and the Pearson’s correlation
between the ground-truth score and the predicted score.

Notably, we applied ComBat harmonization to the combined
training and testing data within each cross-validation fold. While
best practice recommends applying ComBat separately to training
and testing sets to prevent data leakage, our limited sample size
(∼ 10 per test fold) precluded reliable scanner effect estimation for
individual test sets. This limitation is discussed further in Section 4.

2.5 Implementation details

We implemented our machine learning prediction model in
PyTorch 1.7.0, and the model training and testing were performed
on an NVIDIA Titan Xp GPU machine with CUDA 12.0. The
initial learning rate was set to 0.005 and the ADAM optimizer was
used. The weight for the Siamese loss was set to wsiamese = 10.
The total number of training epochs was 300, with the model
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FIGURE 2

Schematic overview. The structural connectome (SC) matrix is generated from dMRI by counting the number of streamlines connecting each pair
regions in surface parcellation. Diffusion map embedding, a non-linear dimensionality reduction technique, is applied to the affinity matrix computed
from the SC. A set of gradient vectors was calculated and sorted based on their corresponding eigenvalues.

evaluated at the final epoch, rather than using early stopping or
validation-based checkpointing. This choice was made to maximize
the use of training data within each cross-validation fold given the
limited sample size. The batch size was set to 10. The order of
the Chebyshev polynomial in the GCN was set to K = 3. The
training time was about 2 min, depending on the sample sizes
(82–91 subjects) for each cross-validation fold.

We applied z-score normalization to each gradient component
separately for each hemisphere, and performed min-max
normalization on IQ scores, setting the minimum to 50 and the
maximum to 150.

3 Results

3.1 Macroscale structural connectome
gradients

Structural connectome gradients were identified as
eigenvectors of the similarity matrix of the SC from non-
linear dimensionality reduction technique. The principal gradient
exhibited a left-to-right axis, and the secondary gradient exhibited
an anterior-to-posterior axis (Figure 3a, Supplementary Figure 1a).
The principal gradient explained about 30% of information
(Figure 3b, Supplementary Figure 1b). We also computed the
structural gradients at 2, 4, and 6 years, and found they appear
similar at ages 1, 2, 4, and 6 (Figure 3c).

Each gradient component (eigenvector) captures a different
structural axis. Our principal gradient demonstrated a left-to-right
hemispheric axis, primarily driven by weak interhemispheric
connections, suggesting that it captures within-hemisphere
connectivity patterns rather than interhemispheric integration.
This spatial separation reflects the relative independence of
left and right hemisphere connectivity architectures, with each
hemisphere forming distinct connectivity due to limited inter-
hemispheric structural connections. The secondary gradient
exhibits an anterior-to-posterior axis, which typically reflects the
transition from primary sensorimotor area located posteriorly to
higher-order association and executive regions located anteriorly.
This axis represents a structural network identity dimension
that distinguishes regions based on their position in the brain’s

processing hierarchy, ranging from areas involved in basic sensory-
motor processes to those supporting complex cognitive functions.
These two structural gradient axes provide the anatomical
foundation that constrains functional network organization.
The hemisphere segregation axis may influence the efficiency of
bilateral coordination required for many cognitive tasks (Herve
et al., 2013), while the anterior-to-posterior axis reflects the
structural scaffolding supporting the functional hierarchy from
perception to cognition (Mahjoory et al., 2020).

To further examine within-hemisphere organization, we
analyzed hemisphere-specific gradients by excluding inter-
hemispheric connections and aligning the right hemisphere’s
structural gradients to their left hemisphere counterparts to
facilitate hemisphere-wise comparison. In this analysis, the
principal gradient (G1) showed an anterior-to-posterior axis, the
secondary gradient (G2) a lateral-to-medial axis, and the third
gradient (G3) a superior-to-inferior axis (Supplementary Figure 2).
Notably, we observe an evident correspondence between these
gradients and those reported in Park et al. (2021) with our G1
corresponding to E3, G2 to E1, and G3 to E2.

3.2 Individual prediction of IQ from
structural gradients

Using the proposed GCN-based approach, we were able
to predict each individual’s cognitive outcome from their
structural gradients at age 1. Representative prediction results
from our model are shown in Figure 4, where the statistical
significance was assessed using permutation tests (Good, 2000;
Manly, 2006), which provide exact p-values without distributional
assumptions. The correlation between predicted and observed
IQ scores was evaluated by shuffling predicted values 10,000
times to generate a null distribution under the hypothesis of
no association.

We compared the prediction accuracy of our model with other
existing machine learning methods in Tables 2, 3. We utilized
the scikit-learn package in Python to implement other machine
learning methods, using the default hyperparameters except for
the following changes: for Random Forest, max_depth was set to
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FIGURE 3

(a) Average structural gradients at each age using Destrieux parcellation. (b) Explanation ratio: the principal gradient explains 26%, 28%, 29%, and 29%
of information for ages 1, 2, 4, and 6, respectively. (c) Histogram of the principal and secondary gradients at each age.

100 and n_estimators to 50; for MLP, hidden_layer_sizes was set to
(64, 64, 64, 64). Compared to other methods, our model provided
consistent and robust prediction results (mean Spearman’s
correlation > 0.25). We note that the results summarized in
Tables 2, 3 are the average MAE, Spearman correlation, and
Pearson correlation across 10 repetitions of 10-fold cross-
validation. For each repetition, the results are aggregated across
the 10 folds. In addition, we compared our model against a naïve
baseline predictor that assigns the mean IQ of the training set to all
test samples within each cross-validation fold. Our model exhibited
competitive MAE values while showing substantial improvement
in predictive correlation. These results demonstrate that the
model captures meaningful individual differences in cognitive
ability, with performance comparable to prior neuroimaging
studies (R = 0.35–0.50 for general intelligence Vieira et al.,
2022).

We performed additional exploratory analyses with different
numbers of gradient components as input features as well as
employing the gradients computed from the AAL parcellation. The
quantitative results are summarized in Supplementary Tables 2–4.
Using only the principal gradient resulted in greater error and
lower correlation at FSIQ4 and FSIQ8 compared to the models
incorporating both primary and secondary gradients. For the
AAL parcellation, inclusion of secondary gradient components
improved correlation. Adding secondary gradients helped achieve
a more stable training, resulting in consistently higher prediction
accuracy across the IQ at different ages.

In addition to full-scale IQ, we examined prediction models for
VIQ, NVIQ, and ABIQ. We trained the prediction model for each
of the IQs, and the results are shown in Supplementary Table 5.
Our model consistently predicted each individual’s VIQ, NVIQ,
and ABIQ at later ages with high prediction accuracy.
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FIGURE 4

Representative prediction of full-scale IQ (FSIQ) at 4, 6, and 8 years from structural connectome gradients at age 1.

TABLE 2 Quantitative results for full-scale IQ (FSIQ) prediction at different ages where the input features are the principal and secondary gradients with
Destrieux parcellation at age 1.

Method Mean absolute error (MAE) Average Spearman correlation ρ

FSIQ4 FSIQ6 FSIQ8 FSIQ4 FSIQ6 FSIQ8

naïve prediction 10.07 ± 0.03 10.23 ± 0.03 9.01 ± 0.04 −0.21 ± 0.05 −0.27 ± 0.03 −0.23 ± 0.07

SVR 9.97 ± 0.05 10.17 ± 0.10 8.99 ± 0.11 0.18 ± 0.02 0.18 ± 0.03 0.08 ± 0.07

Kernel Ridge 10.58 ± 0.31 11.75 ± 0.32 11.31 ± 0.39 0.19 ± 0.03 0.12 ± 0.04 −0.03 ± 0.06

MLP 10.40 ± 0.30 12.24 ± 0.39 11.23 ± 0.53 0.21 ± 0.03 0.05 ± 0.05 −0.07 ± 0.07

Random Forest 9.72 ± 0.19 10.35 ± 0.18 9.40 ± 0.19 0.22 ± 0.05 0.13 ± 0.05 −0.02 ± 0.07

GCN 9.69 ± 0.57 10.79 ± 0.26 9.53 ± 0.40 0.36 ± 0.08 0.25 ± 0.05 0.33 ± 0.06

The results with the best prediction accuracy were highlighted in bold. The second-best results were highlighted in underline. The standard deviations were computed over the 10 repetitions of
cross-validations.

TABLE 3 Pearson correlation coefficients and their squared values (r2) for FSIQ prediction at different ages where the input features are the principal
and secondary gradients with Destrieux parcellation at age 1.

Method Average Pearson correlation r r2

FSIQ4 FSIQ6 FSIQ8 FSIQ4 FSIQ6 FSIQ8

naïve prediction −0.21 ± 0.04† −0.28 ± 0.03† −0.22 ± 0.05† 0.04 ± 0.02 0.08 ± 0.02 0.05 ± 0.02

SVR 0.17 ± 0.02 0.19 ± 0.03 0.09 ± 0.06 0.03 ± 0.01 0.04 ± 0.01 0.01 ± 0.01

Kernel Ridge 0.27 ± 0.03 0.10 ± 0.04 −0.01 ± 0.06† 0.08 ± 0.02 0.01 ± 0.01 0.00 ± 0.00

MLP 0.23 ± 0.04 0.04 ± 0.04 −0.04 ± 0.06† 0.05 ± 0.02 0.01 ± 0.00 0.00 ± 0.00

Random Forest 0.22 ± 0.06 0.15 ± 0.04 −0.01 ± 0.09† 0.05 ± 0.03 0.02 ± 0.01 0.01 ± 0.01

GCN 0.37 ± 0.07 0.25 ± 0.04 0.31 ± 0.05 0.15 ± 0.05 0.06 ± 0.02 0.10 ± 0.03

The results with the best prediction accuracy were highlighted in bold. The second-best results were highlighted in underline. The standard deviations were computed over the 10 repetitions of
cross-validations. Note that † indicates negative Pearson correlation.

3.3 Regional relevance maps

Our machine learning methods were able to identify important
features for predicting subsequent cognitive outcomes. Using
Captum (Kokhlikyan et al., 2020), an explainable AI pytorch
library that contains generic implementations of a variety of model
gradient and perturbation-based attribution algorithms, we can
determine the features relevant to our model’s predictions.

The weight attributions of regional relevance for predicting
each target IQ obtained by Saliency Maps (Simonyan, 2013)
are shown in Figure 5, where the weights are averaged across
different cross-validation folds for each region. It is important
to note that individual feature importance maps may not
always align perfectly with the average pattern. The regions
consistently selected in the top 5% weights for all target IQ
scores were found in the left hemisphere’s lateral orbital sulcus,
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opercular part of the inferior frontal gyrus, and subcallosal gyrus,
which are included in the FrontoParietal, CinguloOperc, and
default mode network. We also applied other feature attribution
methods, specifically Integrated Gradients (IG) (Sundararajan et al.,
2017) as well as the feature attribution for AAL parcellation.
The corresponding feature importance maps are shown in
Supplementary Figures 3, 4, respectively.

It is crucial to note that the regional relevance maps in Figure 5,
Supplementary Figures 3, 4 are widely distributed across the
cortex. Regions with nearly zero weights were not highlighted,
while only those with large magnitudes were emphasized. Although
each feature attribution method and each parcellation provides
a slightly different importance map, the regional relevance maps
demonstrated remarkable consistency across FSIQ4, FSIQ6,
and FSIQ8 measures including frontoparietal regions and other
regions previously implicated in intelligence, with minor variations
likely attributable to methodological differences rather than
developmental changes. Notably, the relevance map derived from
the principal gradient predominantly highlighted regions within
the executive control network, encompassing areas crucial for
working memory, attention control, and cognitive flexibility. In
contrast, the secondary gradient’s relevance map emphasized
associative and sensory processing networks, reflecting regions
essential for information integration and sensory-cognitive
processing. These distinct patterns emphasize the complementary
gradient roles.

4 Discussion

Using our approach, we found that WM connectome gradients
at age 1 can be a stable, low-dimensional predictor of IQ at ages 4,
6, and 8. This suggests that the WM connectome, which matures
in early childhood and appear similar at ages 1, 2, 4, and 6, is
an important basis for individual variation of IQ in early and
middle childhood and may be useful as an early imaging potential
biomarker of future intelligence.

In our prediction model, regions identified by the feature
attribution model were distributed across the frontal, temporal
and parietal lobes, consistent with the distributed nature of
intelligence detected in prior structural imaging studies (Jung
and Haier, 2007; Basten et al., 2015; Deary et al., 2010).
These regions include the left hemisphere’s lateral orbital sulcus,
opercular part of the inferior frontal gyrus, and subcallosal
gyrus, and are part of the FrontoParietal, CinguloOperc, and
default mode networks. Notably, several regions identified in
the relevance maps correspond to hub nodes characterized
by high degree centrality (Supplementary Figure 5). However,
the relevance maps demonstrate greater selectivity compared
to hub identification alone, indicating that the gradient-based
approach captures functionally specific connectivity patterns
embedded within the broader hub architecture. This selective
engagement of hub regions based on their gradient-specific
contributions provides a more neurobiologically meaningful
framework for understanding intelligence than simply identifying
highly connected nodes. We previously found that individually,
high centrality WM connectome hubs were not related to IQ

at 6 years (Bagonis et al., 2022), where the association was
analyzed using partial correlation, with statistical significance
adjusted through an FDR correction. In contrast, this study
employed a machine learning prediction model that considers
the whole brain network architecture. Another limitation of
previous study is small sample sizes in age-specific comparisons.
These small samples reduce statistical power to detect the true
effects. The current analysis suggests that high centrality hubs
are important for intelligence, but only in relation to the
entire connectome.

While our study focused on general intelligence (IQ) as
a comprehensive measure of cognitive outcome, exploring the
structural connectome in relation to more specific cognitive
subdomains is an important next step. For example, previous
research from our group established that early verbal and
nonverbal cognitive abilities were differentially predictive of
later cognitive outcomes (Stephens et al., 2018). Further, these
domain-specific differences in cognitive abilities may extend
to regional connectivity patterns. For instance, left frontal
connectivity may predict verbal more strongly compared to
non-verbal intelligence (Suprano et al., 2020). Future studies
employing comprehensive neuropsychological batteries that assess
specific cognitive subdomains would provide a more nuanced
understanding of how different properties of the structural
connectome relate to diverse aspects of cognitive development.

In addition to the conventional sensorimotor-to-transmodal
axis derived from functional connectome gradients, anatomically-
derived structural gradients provide different information about
individual variations of cortical organization, and may help identify
variance in cognitive outcomes relevant to the functions organized
along those gradients. Regions at one end of an anterior-posterior
gradient such as frontal areas which are connected with subcortical
regions such as the striatum and thalamus, potentially influencing
foundational processes (Tekin and Cummings, 2002; Rae et al.,
2015), while regions at the other end such as the parietal and
occipital areas tend to be related to particular functions such
as visuospatial processing, sensorimotor integration, or memory
(Rolls et al., 2023; Dalton et al., 2022).

Our graph convolutional neural network (GCN)-based
prediction model demonstrated consistent and robust predictive
performance from age 1 (mean absolute error 9.5–10.8, mean
Spearman correlation 0.3–0.4). Additional experiments confirm
that our method is robust with the different parcellation and
different number of gradient components as input features. Using
the principal gradient as the sole input feature yielded comparable
prediction results, though it was less stable compared to using
secondary gradients as an additional input feature.

We noted the challenges associated with explaining positive
and negative relevance maps from IG methods in the context
of a regression task. Interpreting the signed values of regional
relevance maps can be quite ambiguous, and the choice to use the
absolute values of the relevance map is influenced by the specific
characteristics of the dataset (Smilkov et al., 2017). Additionally,
we observed that some regions in Supplementary Figures 3, 4
displayed different signs. It is also important to mention that
the input SC gradients are unitless and indicate relative positions
along the computed axes. Therefore, we present the raw relevance
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FIGURE 5

Regional relevance map averaged across all subjects using Saliency map method (Destrieux parcellation) for IQ at ages 4, 6, and 8.

maps but focus on their magnitudes when identifying the most
important regions.

Previous studies have identified different cortical connectivity
gradients from different datasets and in cohorts of different ages
(Margulies et al., 2016; Paquola et al., 2019; Vos de Wael et al.,
2021; Xia et al., 2022; He et al., 2024). This suggests that observed
gradients are very sensitive to differences in acquisition and
analytic methodologies, as well as subject variables. Indeed, it
has recently been argued that the conceptualization of smooth,
continuous gradients is not supported by what is known about the
neurobiological basis of discrete cortical realization in the human
cortex (Petersen et al., 2024). Cortical gradients may be telling us
something useful about cortical organization and its relationship to
behavior, but future research is needed to figure out exactly what
it is.

Structural connectivity was derived by quantifying the relative
number of streamlines, which serves as a measure of connectivity
strength. Structural connectivity quantification via streamline
counting has known limitations, such as reduced streamline counts
due to motion during acquisition, or due to passing through brain
regions with multiple crossing fibers. Additionally, the choice of
cortical parcellations (Destrieux or AAL) influences both the spatial
resolution and regional boundaries used to define network nodes,
which may affect gradient topography and the specific regions
identified as most predictive, though our results demonstrated
robustness across these different parcellation approaches. Further,
the use of different kernels or gradient templates may yield
different or flipped gradient axes (Supplementary Figure 6). Bajada
et al. highlighted the importance of the similarity metric (Bajada
et al., 2020). Cosine similarity, a commonly used measure, ranges
from -1 to 1 and is less sensitive to small angular differences
between vectors. In contrast, normalized angle similarity, derived

by applying the inverse cosine function to cosine similarity,
ranges from 0 to 1 and provides a direct measure of angular
differences. In the future, we plan to explore alternative
methods for reconstructing structural connectivity and analyzing
connectome gradients.

In our machine learning prediction model, we did not
consider any demographic information such as maternal education,
gestational age at birth, or gender. It is widely known that maternal
education is highly associated with the child’s cognitive outcome,
as mothers with higher education typically provide richer language
environments, more learning resources at home, and stronger
educational values that directly support brain development and
cognitive growth (Bradley and Corwyn, 2002; Noble et al., 2015).
We applied a linear regression model to demographic information
and found that it outperformed imaging features for IQ prediction
in our sample (Supplementary Table 7). This finding is consistent
with previous studies showing that demographic variables often
equal or exceed neuroimaging-based predictions, particularly with
modest sample sizes (Vieira et al., 2022). In the future, we
will perform additional analyses to investigate whether the WM
connectome mediates the association between maternal education
and cognitive ability (Baron and Kenny, 1986). We will also utilize
the demographics as additional features in the prediction model to
examine whether they have a higher predictive power than the WM
connectome only.

A limitation of our prediction model relates to the
harmonization procedure. We applied ComBat harmonization to
the structural gradients using the combined training and testing
data for each cross-validation fold. Ideally, ComBat should be
applied separately to training and testing sets to avoid potential
data leakage; however, our limited sample sizes made separate
harmonization of individual testing sets statistically unreliable.
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To address this concern, we conducted sensitivity analyses by
training prediction models without ComBat harmonization,
which yielded comparable results to the harmonized models
(Supplementary Table 6), suggesting that this methodological
choice did not substantially influence our findings.

Recently, multi-scale structural connectome gradients were
constructed using microstructural similarity and cortico-cortical
proximity as well as white matter tractography (He et al., 2024).
The identified multi-scale/multi-modal gradients were consistent
with the well-known primary-to-association and anterior-posterior
gradients. These multi-scale connectome gradients may open up
new possibilities for uncovering the comprehensive principles of
cortical network organization during brain development. In the
future, we plan to generate such multi-scale gradients in our dataset
and investigate the developmental changes and the association to
functional specialization in early childhood.

In summary, in this work, we identified structural
gradients at age 1 and showed their association with
cognitive outcomes. We developed a machine learning
model to predict IQ scores by utilizing the structural
gradients as input features. Our model demonstrated
moderate prediction accuracy in predicting IQs at later ages.
These findings suggest that the structural gradients serve
as compact and interpretable representations of complex
brain networks, effectively capturing individual differences in
early childhood.
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