AUTHOR=Esteves Daniela , Vagaja Katarina , Andrade Alexandre , Vourvopoulos Athanasios TITLE=When embodiment matters most: a confirmatory study on VR priming in motor imagery brain-computer interfaces training JOURNAL=Frontiers in Human Neuroscience VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2025.1681538 DOI=10.3389/fnhum.2025.1681538 ISSN=1662-5161 ABSTRACT=BackgroundVirtual Reality (VR) feedback is increasingly integrated into Brain-Computer Interface (BCI) applications, enhancing the Sense of Embodiment (SoE) toward virtual avatars and fostering more vivid motor imagery (MI). VR-based MI-BCIs hold promise for motor rehabilitation, but their effectiveness depends on neurofeedback quality. Although SoE may enhance MI training, its role as a priming strategy prior to VR-BCI has not been systematically examined, as prior work assessed embodiment only after interaction. This study investigates whether embodiment priming influences MI-BCI outcomes, focusing on event-related desynchronization (ERD) and BCI performance.MethodsUsing a within-subject design, we combined data from a pilot study with an extended experiment, yielding 39 participants. Each completed an embodiment induction phase followed by MI training with EEG recordings. ERD and lateralization indices were analyzed across conditions to test the effect of prior embodiment.ResultsEmbodiment induction reliably increased SoE, yet no significant ERD differences were found between embodied and control conditions. However, lateralization indices showed greater variability in the embodied condition, suggesting individual differences in integrating embodied feedback.ConclusionOverall, findings indicate that real-time VR-based feedback during training, rather than prior embodiment, is the main driver of MI-BCI performance improvements. These results corroborate earlier findings that real-time rendering of embodied feedback during MI-BCI training constitutes the primary mechanism supporting performance gains, while highlighting the complex role of embodiment in VR-based MI-BCIs.