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When embodiment matters
most: a confirmatory study on VR
priming in motor imagery
brain-computer interfaces
training
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Institute for Systems and Robotics (ISR-Lisboa), Bioengineering Department, Instituto Superior
Técnico, Lisbon, Portugal, 2Instituto de Biofisica e Engenharia Biomédica, Faculdade de Ciéncias da
Universidade de Lisboa, Lisbon, Portugal

Background: Virtual Reality (VR) feedback is increasingly integrated into Brain-
Computer Interface (BCI) applications, enhancing the Sense of Embodiment
(SoE) toward virtual avatars and fostering more vivid motor imagery (Ml). VR-
based MI-BCls hold promise for motor rehabilitation, but their effectiveness
depends on neurofeedback quality. Although SoE may enhance MI training, its
role as a priming strategy prior to VR-BCI has not been systematically examined,
as prior work assessed embodiment only after interaction. This study investigates
whether embodiment priming influences MI-BCl outcomes, focusing on event-
related desynchronization (ERD) and BCI performance.

Methods: Using a within-subject design, we combined data from a pilot study
with an extended experiment, yielding 39 participants. Each completed an
embodiment induction phase followed by MI training with EEG recordings. ERD
and lateralization indices were analyzed across conditions to test the effect of
prior embodiment.

Results: Embodiment induction reliably increased SoE, yet no significant ERD
differences were found between embodied and control conditions. However,
lateralization indices showed greater variability in the embodied condition,
suggesting individual differences in integrating embodied feedback.
Conclusion: Overall, findings indicate that real-time VR-based feedback
during training, rather than prior embodiment, is the main driver of MI-BCI
performance improvements. These results corroborate earlier findings that
real-time rendering of embodied feedback during MI-BCI training constitutes
the primary mechanism supporting performance gains, while highlighting the
complex role of embodiment in VR-based MI-BCls.

KEYWORDS

sense of embodiment, virtual reality, motor imagery, brain-computer interfaces, event-
related desynchronization

1 Introduction

Virtual Reality (VR) has emerged as a powerful tool for enhancing Brain-Computer
Interface (BCI) applications, particularly in the domain of motor imagery (MI) training.
MI-BCIs enable volitional and direct brain-to-device communication by bypassing
conventional neuromuscular pathways, allowing users to control external devices through

01 frontiersin.org


https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2025.1681538
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2025.1681538&domain=pdf&date_stamp=2025-09-25
mailto:athanasios.vourvopoulos@tecnico.ulisboa.pt
mailto:athanasios.vourvopoulos@tecnico.ulisboa.pt
https://doi.org/10.3389/fnhum.2025.1681538
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2025.1681538/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

Esteves et al.

the mental rehearsal of movement without actual muscle activation
(Pfurtscheller and Neuper, 2001). When integrated with VR, these
systems benefit from immersive and ecologically valid interactive
environments, which have been shown to enhance the Sense of
Embodiment (SoE), allowing users to perceive a virtual avatar as
part of their own body (Kilteni et al., 2012; Botvinick and Cohen,
1998; Lenggenhager et al., 2007; Petkova and Ehrsson, 2008). This
embodiment illusion plays a crucial role in engaging users more
effectively and influencing neural activity patterns (Esteves et al.,
2025), making VR an ideal medium for neurorehabilitation and
BCI training (Vourvopoulos et al., 2022; Batista et al., 2024; Skola
and Liarokapis, 2018).

SoE arises from the integration of multiple sensory
and cognitive cues, including visuomotor, visuotactile, and
proprioceptive feedback (Guy et al., 2023). When these cues are
congruent, users experience a heightened sense of ownership
over the virtual body, along with an increased sense of agency—
the feeling of control over avatar movements (Jeong and Kim,
2021). Research has demonstrated that inducing SoE through
VR enhances engagement, immersion, and neurophysiological
responses, making it a powerful tool for MI-BCI training (Petkova
and Ehrsson, 2008; Slater et al., 2008).

VR-based MI-BCIs provide an integrated system where
neurophysiological data recorded through electroencephalography
(EEG)
environments. By leveraging multimodal sensory feedback, such

drive real-time interactions in immersive virtual
as: visual; auditory; and haptic stimulation, VR has been shown to
enhance MI performance, engagement, and neuroplasticity (Wang
et al., 2019; Choi et al., 2020b). In particular, the effectiveness
of VR-enhanced MI training is supported by its ability to
strengthen sensorimotor activity, as measured by event-related
desynchronization (ERD) in the Alpha and Beta frequency bands
(Chen et al., 2023; Pichiorri et al,, 2015; Vourvopoulos et al.,
2016). Stronger ERD is associated with more effective motor
learning, making VR-based MI-BCI systems promising for stroke
rehabilitation and other motor impairments (Vourvopoulos et al.,
2016; Choi et al., 2020a; Wen et al., 2021).

While VR has demonstrated clear benefits in MI-BCI training,
for instance studies show that motor priming in VR can enhance
ERD and improve BCI control (Vourvopoulos and Badia, 2016;
Amini Gougeh and Falk, 2023), its potential as a preparatory
mechanism suggests that sensorimotor engagement before training
may facilitate subsequent MI performance. Nonetheless, the role
of prior virtual embodiment (embodiment priming) in modulating
MI-related EEG activity remains an open question. This priming
familiarization with the virtual body by allowing participants to
explore the virtual environment from a first-person embodied
perspective, may augment the embodiment effect during training.
Still, to our knowledge, only the study from Vagaja et al. (2024) has
directly addressed this question, comparing MI-BCI performance
with and without prior embodiment exposure. In that pilot work,
we found no significant advantage of prior embodied over MI
conditions, however, we noted important limitations, particularly
the relatively small sample size and the use of a between-
subject design, which may have introduced inter-subject variability.
Thus, a gap remains in the literature regarding the potential
effects of inducing embodiment in the virtual environment before
MI training.
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To address these, the present study builds upon our prior
research (Vagaja et al., 2024) by implementing a within-subject
design with an expanded sample size. This methodological
improvement minimizes variability in individual MI responses,
allowing for a more precise assessment of SoE’s impact on
MI-BCI training. By analyzing ERD patterns and lateralization
indices under different embodiment conditions, this study aims to
elucidate the extent to which prior virtual embodiment influences
MI performance.

We hypothesize that exposure to an embodied virtual scenario
prior to MI training will lead to stronger ERD responses, due to
enhance users’ ability to feel embodied during the MI task itself.
Nonetheless, given the highly individual nature of embodiment
experiences and the previous results of Vagaja et al. (2024)s
work, we also expect that this effect will depend on the subject
personal ability to immerse themselves in virtual scenarios, feeling
embodiment and ability to modulate their brain activity. Therefore,
we anticipate a general trend toward stronger ERD when prior
embodiment is present, but with inter-subject variability potentially
moderating the effect.

Understanding the underlying neural mechanisms associated
with SoE in VR-BCI applications will help to the expansion
of theoretical models of embodiment and immersion in virtual
scenarios, particularly in how it affects the brain activity, as
well as contribute to the optimization of neurorehabilitation
strategies and the development of more effective personalized
training protocols. If prior embodiment can reliably enhance
ERD induction during MI tasks, this would support the
integration of a priming phase in MI-BCI training protocols for
neurorehabilitation, for example, leading to improved engagement,
and training outcomes, increasing the chances of neuroplastic
changes. Furthermore, this study also elaborates on possible
individual effects of embodiment experiences, contributing to
personalized neurofeedback approaches.

2 Related work

Previous research has investigated the relationship between
SoE and MI-induced brain activity. For instance, Evans and
Blanke (2013) demonstrated that Virtual Hand Illusions (VHIs)
and hand MI tasks share similar electrophysiological correlates,
specifically ERD in frontoparietal brain areas, suggesting that
SoE can enhance ERD patterns during MI training. Building on
this, several studies have investigated the potential benefits of
embodiment feedback in MI-based training. For example, Song
and Kim (2019) demonstrated that an RHI-based paradigm with
a motorized rubber hand significantly amplified MI-induced ERD.

The advent of VR has further expanded this line of research
by enabling the replacement of a users real body with a
responsive virtual avatar, providing visual and proprioceptive
feedback and facilitating VHI (Khademi et al., 2023; Lotte et al.,
2013; Lenggenhager et al., 2007; Petkova and Ehrsson, 2008; Guy
et al,, 2023). Integration with BCI systems, as shown by Pérez-
Marcos et al. (2009), demonstrates that SOE can be induced even in
real-time online BCI paradigms, moving research from traditional
non-digital RHI settings into fully immersive VR environments.
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Multiple studies have confirmed that VR-induced SoE feedback
positively modulates brain activity during MI tasks, enhancing
motor learning and BCI control (Batista et al., 2024; Juliano
et al., 2020; Skola and Liarokapis, 2018, 2022; Jeong and Kim,
2021). For example, Vourvopoulos et al. (2022) demonstrated that
vibrotactile feedback combined with embodied VR led to stronger
and more lateralized Alpha ERD compared to conventional 2D
screen-based MI training. Similarly, Du et al. (2021) found that
visuotactile stimulation of a virtual hand preceding an MI task
resulted in greater ERD compared to stimulation of a rubber hand.
However, these studies did not directly quantify embodiment or
analyze their relationship with MI-induced ERD. Other studies
examining this relationship reported inconsistent findings. While
Braun et al. (2016) observed positive correlations, Skola and
Liarokapis (2018) found no association, Skola et al. (2019) reported
positive correlations for SoO but negative correlations for SoA, and
Nierula et al. (2021) reported the opposite effects.

Overall, the literature supports the use of VR-embodied
feedback to enhance ERD during MI-BCI training, particularly
by inducing SoE during the MI task. This is consistent with the
growing use of VR-based MI-BCI systems for neurorehabilitation,
as MI
neuroplasticity and supporting motor recovery (Daly and

stimulates lesioned sensorimotor areas, promoting
Huggins, 2015). By providing real-time embodied feedback, these
systems enhance the effects of MI and facilitate brain activity
modulation, thereby accelerating rehabilitation (Pichiorri et al,
2015; Vourvopoulos et al., 2016, 2019; Choi et al., 2020b). However,
the optimal settings for embodiment induction remain unclear.
For instance, Choi et al. (2020a) showed that head-mounted VR
feedback improved MI-BCI performance by increasing immersion,
presence, and cortical activation compared to non-immersive
feedback, whereas Jeong and Kim (2021) found that VHIs and
RHI conditions produced comparable ERD patterns. Individual
differences in embodiment strength further complicate these
results, as users may experience SoE differently even under
identical VR conditions (Guy et al., 2023).

Most studies have focused on inducing embodiment during
MI tasks and have assessed SoE only after VR training, rather
than exploring its role in preparatory scenarios. To date, only
Vagaja et al. (2024) has investigated whether inducing embodiment
prior to MI training (priming) can enhance MlI-related ERD,
reporting no significant increase in ERD amplitude, no changes
in ERD lateralization, and no improvement in BCI performance.
Consequently, a substantial gap remains in understanding the
optimal procedures for VR-embodied feedback to enhance ERD
during MI training, as well as the potential benefits of prior
embodiment exposure.

3 Methods

This study builds on data from a previously conducted Pilot
study (Study 1), integrating it with newly collected data from an
Extended study (Study 2), conducted with improved protocol and
increased sample size. The resulting Combined Dataset includes a
total of 39 participants. To maintain methodological consistency,
identical procedures and analytical methods were applied across
both datasets.
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3.1 Study 1: pilot

The dataset from the Pilot study* included 26 right-handed
healthy participants (10 males, 16 females) randomly assigned to
either the Control (five males, eight females) or Embodied (six
males, seven females) group, with a mean age of 24.12 & 5.99 years.
More demographic information can be found in the original paper
(Vagaja et al., 2024).

The experiment took place in a Virtual Environment (VE)
resembling the real physical room, where participants viewed a
gender-matched avatar seated at a desk with a virtual mirror above
it. The VE was created using the Unity 3D engine, with avatars
generated via Ready Player Me. Immersive feedback was delivered
through an Oculus Rift CV1 headset, Oculus Touch controllers,
and Constellation sensors for hand tracking. Furthermore, EEG
signals were recorded using a wearable LiveAmp EEG amplifier
(Brain Products GmbH) with 32 active electrodes placed according
to the 10-20 system, sampled at 500 Hz.

Data collection consisted of three phases: (1) resting-state EEG
recording (4 min), (2) embodiment phase in VR (5 min, induction
or disruption), and (3) MI training in a similar VR scenario
(15 min). During the embodiment phase, group conditions
differed, in a between-subject design. The Embodied group
experienced VR-induced SoE through visuomotor, visuotactile, and
visuoproprioceptive triggers. For 3 min, they explored the VE
from a first-person perspective, with their avatar synchronizing
with their movements. This was followed by a 2-min VHI, where
a virtual brush stroked their right virtual hand while they felt
the corresponding real-hand stimulation. In contrast, the Control
group experienced the same phase, but with disrupted triggers
to break the illusion, specifically, viewing a third-person avatar
moving independently and receiving incongruent brush strokes
on the opposite hand during the VHI. A video illustrating
the experimental phases is also available online®. Afterward, all
participants completed a validated SoE and physical presence
questionnaire using a 7-point Likert scale, adapted from Peck
and Gonzalez-Franco (2021) and the Multimodal Presence Scale
(MPS) (Makransky et al., 2017). They then performed a hand-grasp
MI training task in the same VE from a first-person perspective.
Training included 40 trials (20 per hand, randomly presented),
each consisting of a 10-second resting period, followed by a 10-
second MI period where a visual cue (arrow) indicated which hand
to imagine grasping while observing the corresponding virtual
hand move.

3.2 Study 2: extended

The data collection procedure of the extended study followed
the same approach as the Pilot study (Vagaja et al, 2024)
but implemented a within-subject design. Figure 1 illustrates the
procedure, outlining the data collection phases and the VE used.

1 The online dataset used in this study is available at: https://zenodo.org/
records/8086086.
2 Video illustration of the experimental procedure is available at: https://

www.youtube.com/watch?v=txPpFjRKlos.
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3.2.1 Participants

Only adults aged between 18 and 75 years, with a minimum of 9
years of schooling, and who do not suffer from severe neurological
or psychiatric illness (defined as preventing participation in
working life at the time of the study) were considered for
the experiment.

A total of 15 participants were initially recruited for this
study; however, two were subsequently excluded due to issues
encountered during EEG recordings, specifically extensive artifacts
or malfunctioning electrodes. Therefore, the newly Extended
Dataset comprised data from 13 healthy subjects (seven females,
53.85%; 6 males, 46.15%), with a mean age of 26.08 +6.57 years and
little to no prior experience with MI tasks. articipants completed
the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2)
(Roberts et al., 2008) before the experiment, revealing low imagery
ability (internal visual imagery: 1.711 £ 0.582; kinaesthetic imagery:
1.928 £ 0.840; external visual imagery: 2.111 4 0.745, on a 5-
point Likert scale). The Edinburgh Handedness Inventory (EHI)
(Oldfield, 1971) confirmed all were right-handed with an average
laterality quotient (LQ) of 62.05+21.74, and all signed an informed
consent following the ethical guidelines of the 1964 Declaration
of Helsinki.

3.2.2 Experimental design

The experiment consisted of seven recording phases, beginning
with information and demographic questionnaires, followed by the
EEG setup and a resting-state EEG recording. The VR headset
was then carefully positioned over the electrodes and remained
in place throughout the experiment to prevent displacement.
Participants then proceeded to either the “Embodied" or “Control"
condition in a randomized order. Each of these conditions
concluded with the completion of a SOE and presence questionnaire
before moving on to the hand-grasping MI training phase.
After finishing one condition and its corresponding MI training,
participants transitioned to the next, ensuring that each individual
experienced MI training after Embodied (MI Embodied condition)
and MI training after Control (MI Control condition; Figure 1).
Additionally, after the MI training associated with the Embodied
condition, participants completed two online BCI phases in a
randomized order.

3.2.2.1 Information and EEG setup

Participants were provided with a consent form, relevant
study information, the EHI questionnaire, and a demographic
questionnaire. The EEG setup was subsequently carried out using
conductive gel to maintain electrode impedance below 10 k€2.

3.2.2.2 Resting state
This phase consisted of 2 min of eyes-open followed by 2 min
of eyes-closed resting-state EEG recording, totaling 4 min.

3.2.2.3 Embodied condition

Participants underwent a VR-induced SoE using visuomotor,
visuotactile, and visuoproprioceptive cues. The phase began with
instructions before participants entered the VE, where they
viewed a gender-matched avatar from a first-person perspective
(visuoproprioceptive trigger; Figure 1A). They then explored the
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VE for 3 min, looking around, seeing their reflection in the
mirror upon the table, and moving their virtual hands, head,
and torso while remaining seated. The avatar’s movements were
synchronized with their own (visuomotor trigger; Figure 1C).
Following this, participants remained still and the VHI was
implemented. They focused on their right hand as a virtual
brush appeared, stroking the virtual hand for 2 min in perfect
sync with the experimenter brushing their real hand (visuotactile
trigger; Figure 1B). Afterward, participants exited the VE, resulting
in a 5-min EEG recording, and verbally responded to the
embodiment questionnaire.

3.2.2.4 Control condition

This condition mirrored the Embodied condition but
with disrupted embodiment cues. Participants entered the
VE and viewed a gender-matched avatar from a third-person
trigger). The

avatar’s movements were independent of their real movements

perspective  (incongruent visuoproprioceptive
(incongruent visuomotor trigger). They then explored the VE for
3 min, followed by 2 min of disrupted VHI. Participants focused
on their right virtual hand for a disrupted VHI, while felt their
real hand being brushed, without visual confirmation in the
VE (incongruent visuotactile trigger). After 2 min, the brushing
stopped, participants exited the VE, and they verbally responded
to the same embodiment questionnaire. Thus, by systematically
introducing incongruence across visuoproprioceptive, visuomotor,
and visuotactile triggers, this condition controlled for multisensory
congruency effects and ensure that embodiment could not emerge,
serving as a disembodied/control condition.

3.2.2.5 Ml training

This phase began with instructions explaining to the participant
how to perform the MI task before participants re-entered the
VE, which resembled the Embodied/Control scene but without
the virtual mirror so participants could only focus on their virtual
hands upon the table. Training consisted of 30 randomly presented
trials, with 15 trials per class (left/right-hand grasp). Each trial
included a 5-second rest period followed by a 5-second MI task
period. Participants focused on a cross positioned between two
virtual hands. When an arrow appeared pointing to one hand
(visual cue), they were instructed to repeatedly imagine a grasping
movement while observing at the same time the hand move (MI
task; Figure 1E). After completing the trials, participants exited the
VE and verbally responded to an embodiment question (“MIQ1—I
felt like the body that I was seeing was my own body.") on a 7-point
Likert scale.

3.2.2.6 Online BCI

Participants re-entered the same virtual environment (VE) used
during the MI training phase and repeated the task. In this phase,
real-time feedback was provided by a machine learning classifier,
trained on data collected during the MI training phase under the
Embodied condition. This testing phase included two sessions, each
offering distinct types of feedback based on the classifier’s outputs
(Bendor et al., 2025). As BCI performance results are not the
focus of the present analysis, further details regarding the machine
learning methods are not included here; these methods strictly
followed those previously described by Vagaja et al. (2024).
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General Information and
Questionnaires

v
[ EEG setup
v
[ Resting State J

[ Embodied condition ] [ Control condition
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[ MI training ] [ Ml training

[ Online BCI ]

FIGURE 1

Schematic representation of the experimental design and VE. The left side illustrates the procedural sequence, while the right depicts the VE, where
(A) Shows the VE and virtual avatar during the exploration phase of the Embodied condition, while (B) represents the brushing phase (VHI) of the
same condition. (C) Represents the VE during the exploration phase of the Control condition. (D) Shows a female participant during the Control
condition. (E) Illustrates the MI trial sequence, beginning with the resting period followed by the visual cue (arrow) indicating the start of the

hand-grasping action.

3.2.3 Experimental setup
3.2.3.1 EEG equipment and acquisition

The EEG setup followed the same configuration as our pilot
study, using 32 active electrodes arranged according to the 10-
20 system, with the reference electrode over the left mastoid.
EEG signals were recorded at a 250 Hz sampling rate using
a LiveAmp 32 EEG wireless amplifier (Brain Products GmbH,
Gilching, Germany) and BrainVision Recorder software (Brain
Products GmbH, Gilching, Germany). Moreover, the online signal
processing and classification was performed by NeuXus, a python
based EEG signal processing tool (Legeay et al., 2022). To prevent
interference with the VR headset, the electrodes were carefully
positioned underneath it (Figure 1).

3.2.3.2 VR scene and equipment

The experiment was conducted in the same VE as our Pilot
study, where participants were seated in front of a virtual desk,
facing a mirror resting on the table, within a room that replicated
their real-world environment. This VE was developed using the
Unity 3D game engine and is publicly available online®. Participants
interacted with a gender-matched avatar generated via Ready
Player Me2, with feedback provided through an Oculus Rift CV1
headset (Oculus VR, a subsidiary of Meta, Inc., United States),

3 Source code and virtual environment used in the study are available
at: https://github.com/noisys- project/Virtual- Embodiment-and- Motor-

Imagery-BCls.
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resorting to Oculus Touch controllers and Constellation sensors for
hand tracking.

3.3 Embodiment and presence
questionnaires

To evaluate SoE, 16 questions were taken from Peck and
Gonzalez-Franco (2021), along with five additional questions
adapted from the Multimodal Presence Scale (MPS) (Makransky
etal., 2017). Participants provided verbal responses using a 7-point
Likert scale.

From this questionnaire, seven features were computed:

Appearance = (E1 + E2 + E3 + E4 + E5 + E6 + E9 + E16)/8
Response = (E4 + E6 + E7 + E8 + E9 + E15)/6

Ownership = (E5 + E10 + E11 + E12 + E13 + E14)/6
Multi-sensory = (E3 + E12 + E13 + E14 + E15 + E16)/6
Agency = (E3 + E13)/2

Embodiment = (Appearance + response + ownership + multi-
sensory)/4

Physical Presence = (P1 + P2 + P3 + P4 + P5)/5

In addition, for the newly recorded data exclusively, one more
feature was added, referring to the SoE felt by the subjects during
the MI training phases (“MIQ1—I felt like the body that I was
seeing was my own body."):

05 frontiersin.org
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e Embodiment MI = MIQ1

3.4 EEG signals analysis

The analysis focused on the MI training phases to address the
study’s objectives. Specifically, the MI training conducted after the
Embodied condition is referred to as MI Embodied, while the MI
training following the Control condition is termed MI Control.
Moreover, the dataset from Vagaja et al. (2024) also underwent the
following signal pre-processing, ensuring all signals were processed
using the same strategies when analyzing both Recorded and
Combined Datasets.

EEG signals were processed using the EEGLAB toolbox
(v2023.1) (Delorme and Makeig, 2004), in MATLAB version
R2022a and R2023b.

3.4.1 Pre-processing

The signals were first downsampled to 125 Hz, filtered between
1 and 40 Hz, and cleaned from noise and artifacts using the Artifact
Subspace Reconstruction (ASR) algorithm (Chang et al., 2019).
Using this technique, channels were removed if they remained flat
for more than 5 s, contained artifacts in over 15% of windows, had
a correlation below 0.5 with other channels, or exhibited excessive
line noise. A burst criterion of 10 standard deviations was used
to detect artifacts without applying high-pass filtering or segment
removal, aiming to preserve the signal entirely. Next, eliminated
channels were interpolated, and signals were re-referenced to the
common average, followed by Independent Component Analysis
(ICA) to further remove artifactual components. Components
identified by ICLabel (Pion-Tonachini et al., 2019) as eye or muscle
artifacts with a probability greater than 90% were flagged for
automatic rejection. Additionally, all components were visually
inspected, and up to a maximum of six components were manually
selected for removal. Finally, the signals were epoched from —5 to
5 s for both the left- and right-hand trials, corresponding to the
trial structure (5s baseline followed by 5s MI training) and ensuring
the entire imagery period is captured. Each epoch was visually
inspected, and bad epochs were removed (Figure 2).

3.4.2 Time/frequency analysis

The Event-Related Spectral Perturbation (ERSP) was extracted
from the pre-processed signals, isolating the Alpha band range
(8-12 Hz), as it is the most responsive during MI tasks, and
converting it to ERD using Equation 1. The ERD values represent
the percentage decrease in Alpha power during the MI task
relative to baseline (the symmetrical seconds before the MI period)
(Pfurtscheller and da Silva, 1999). To further analyze it, the average
ERD between 1 and 5 s for each electrode was calculated, enabling
the creation of ERD scalp maps for each subject and trial. The first
second following the MI task trigger was excluded, as participants
require some time to initiate the task (reaction time), leading to an
initial peak in band power unrelated to the ERD of interest.

ERD(%) = (10ERSP/10 _ 1) % 100 (1)
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Additionally, the ERD power over C3 and C4 during the
MI task was compared to the baseline (0% ERD), aiming to
examine each participants ability to generate significant ERD.
These electrodes were chosen for analysis, similar to the Pilot study
(Vagaja et al., 2024), as they are located over the left and right
sensorimotor cortices, respectively, and are the most responsive
during MI tasks.

Lastly, the Lateralization Index (LI) was calculated using
Equation 2. LI is a common metric in neural imaging studies that
quantifies the imbalance in neural activation between hemispheres
(Doyle et al., 2005), where a positive LI value indicates greater
contralateral desynchronization (Figure 2).

_ ERDc3(iefiy — ERDcalefry + RDca(righty — ERDc3(right)
- 2

LI

2

3.5 Linear modeling

To further investigate the relationship between embodiment
strength (measured through the questionnaire) and brain activity
metrics (ERD and LI values), linear models were developed using
the Combined Dataset. Two approaches were used, Simple Linear
Regression (LR; Equation 3), serving as baseline, and Linear Mixed
Effects (LME) models (Equation 4). LME models extend linear
regression by incorporating random effects, allowing them to
account for individual variations within population subgroups,
which may arise due to the between-subject design of Vagaja et al.
(2024)’s dataset. For ERD, models for each hand trail were applied
separately to account for possible differences in the correlation
between SoE and a specific hand, since hand dominance can
influence ERD modulation during MI tasks (Schomer et al., 2017;
Stancdk and Pfurtscheller, 1996; Crotti et al., 2022; Stancak and
Pfurtscheller, 1996; Bai et al., 2005).

ERDye(%) = Bo + P * Embodiment
ERD;ign(%) = Bo + B1 * Embodiment
LI(%) = Bo + B1 * Embodiment (3)

ERDye(%) = Bo + p1 * Embodiment + (1|Subject)
ERD,ight(%) = Bo + Bi1 * Embodiment + (1|Subject)
LI(%) = Bo + B1 * Embodiment + (1|Subject) 4)

3.6 EEG feature discriminability

Similarly to the Pilot Study, the EEG classification accuracy
during MI training was computed for the Extended Dataset to
distinguish between left- and right-hand MI trials. This analysis
aimed to assess the discriminability of MI-related EEG features
within each condition (MI Control and MI Embodied). EEG data
for each subject were band-pass filtered between 8 and 28 Hz
to target activity within the Alpha and Beta bands, followed by
feature extraction using Common Spatial Patterns (CSP), retaining
six spatial filters. CSP is a commonly used algorithm for standard
MI-BCI feature extraction, as it discriminates movement-related
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FIGURE 2

Schematic representation of the EEG signal processing pipeline. The (top) row illustrates the pre-processing steps applied to the raw EEG signals, and
the (bottom) row outlines the time-frequency analysis used to analyze Alpha ERD

spatial patterns and maximizes the difference between two classes
(Ramoser et al., 2000). Next, a Shrinkage Linear Discriminant
Analysis (LDA) classifier was trained on the extracted CSP features,
and its performance was evaluated using Monte Carlo cross-
validation with 10 iterations and a test set comprising 20% of the
data in each fold. For each subject, the final classification accuracy
was calculated as the mean accuracy in all folds.

3.7 Statistical analysis

To determine the appropriate statistical methods for comparing
conditions (MI Control vs. MI Embodied), the normality and
homoscedasticity of ERD and LI values were assessed using
the Kolmogorov-Smirnov and Levene tests, respectively. These
tests were conducted separately on both the Extended Dataset
and the Pilot Study dataset to investigate if feature distributions
followed normality and had consistent variance across conditions.
Although some features met the criteria for normality and
homoscedasticity, the results were inconsistent within and between
datasets. Additionally, the small sample size in each dataset (only
13 subjects per condition) led to the choice of non-parametric
tests for all comparisons to ensure methodological consistency. As
a result, all comparisons between conditions and feature analyses
were performed using the Mann-Whitney U-test. To evaluate
participants’ ability to induce ERD during the MI task, a Single
Sample Wilcoxon Signed-Rank test was applied. Finally, the linear
models were evaluated using AIC, BIC, and R2, which provide
insights into the models” fit to the data. The fitted models also
generated p-values for each predictor, indicating their statistical
significance in predicting the response variables (ERD and LI
values). For all tests and comparisons, it was used a significance
level of 0.05 (p-value < 0.05).

4 Results

The results are presented in four sections. First, we report
the subjective responses from the embodiment questionnaire to
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confirm the successful induction of the embodiment illusion.
Second, we examine the impact of prior embodiment on EEG
activity, focusing on ERD and its lateralization. Third, we present
the outcomes of the LME modeling to explore relationships
between embodiment strength and EEG metrics. Finally, we report
the performance of the trained classifier in distinguishing EEG
patterns between left- and right-hand MI classes during training.

4.1 Sense of embodiment induction and its
validation

The subjective responses through the questionnaire confirmed
successful induction of the embodiment illusion in the Extended
Dataset, with significantly higher scores observed in the Embodied
condition compared to the Control condition across multiple
embodiment dimensions: appearance (Control: 3.30 £ 1.35,
Embodied: 4.40 £ 1.15; U = 175.00, p = 0.02), response (Control:
3.22 £ 1.54, Embodied: 5.08 &+ 0.95; U = 156.50, p < 0.001),
ownership (Control: 3.23 + 1.67, Embodied: 5.34 &+ 0.82; U =
153.50, p < 0.001), multi-sensory integration (Control: 3.27 4-1.48,
Embodied: 5.50 £ 0.91; U = 149.50, p < 0.001), agency (Control:
3.13 £ 1.55, Embodied: 4.77 £ 1.29; U = 166.00, p = 0.01), and
overall embodiment (Control: 3.25 + 1.44, Embodied: 5.08 + 0.88;
U = 151.00, p < 0.001). However, presence scores remained
high without significant differences between conditions (Control:
4.56 £+ 1.46, Embodied: 5.33 + 1.20; U = 194.50, p = 0.12).
Similarly, SoE scores during the MI training were elevated and
comparable in both MI Control (4.80 &+ 1.61) and MI Embodied
(4.73 £1.67; U = 235.00, p = 0.93) conditions.

Given that the Extended Dataset demonstrated effective
manipulation of the embodiment illusion, consistent with the
Pilot study (Vagaja et al., 2024), it was appropriate to combine
both datasets into the “Combined Dataset" for a consolidated
analysis. This integrated analysis further reinforced the differences
in SoE between conditions, as illustrated in Figure 3. Specifically,
the Embodied condition yielded significantly higher scores for
appearance (Control: 3.67 + 1.22, Embodied: 4.46 + 1.01; U =
634.00, p = 0.01), response (Control: 3.56 + 1.42, Embodied:
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FIGURE 3
Distribution of features extracted from the embodiment questionnaire for the Combined Dataset, specifically appearance, response, ownership,
multi-sensory integration, agency, embodiment, and presence, in a 7-point Likert Scale. Values for the Control condition are represented in blue,
while the Embodied condition is in orange. Features with statistically significant differences between conditions, as determined by the Mann—-Whitney
U-test, are marked with an asterisk (*) (p-value < 0.05). Each box plot shows the median, interquartile range, and outliers (denoted by red boxes).

5.02 £+ 0.84; U = 565.50, p < 0.001), ownership (Control:
3.48 £ 1.45, Embodied: 5.36 +0.70; U = 523.00, p < 0.001), multi-
sensory integration (Control: 3.64 £ 1.45, Embodied: 5.60 & 0.72;
U = 526.00, p < 0.001), agency (Control: 3.57 & 1.62, Embodied:
5.05 + 1.17; U = 591.50, p < 0.001), and overall embodiment
(Control: 3.59 + 1.31, Embodied: 5.11 £ 0.73; U = 531.00, p <
0.001). Only the presence scores did not significantly differ and
remained high in both conditions (Control: 4.64 + 1.26, Embodied:
5.18 £0.97; U = 703.00, p = 0.12).

4.2 Effect of prior embodiment on ERD

In general, subjects in the Extended Dataset exhibited clear
ERD induction with the expected ERD and LI patterns; however,
prior embodiment did not result in significant differences in ERD
within the motor-related C3 and C4 channels during the MI
tasks. A similar scenario was observed in the Combined Dataset,
with no evidence of successful SoE induction before MI training.
Nonetheless, a slight trend toward greater LI variability was noted
in the MI Embodied condition, suggesting more heterogeneous
responses to embodiment priming. While no group-level effect
was found, individual differences in embodiment susceptibility may
have influenced the neural responses, providing a relevant lead for
future research.

Starting by presenting the ability to induce ERD in the
Extended Dataset, seven out of the 13 subjects successfully
generated significant ERD in both C3 and C4 electrodes during all
hand trials and conditions (right- and left-hand trials in both MI
Control and MI Embodied conditions), demonstrating their ability
to induce ERD correctly.
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Subjects 02, 03, and 10 lacked correct ipsilateral ERD. Subject
02 failed to produce significant ipsilateral ERD in the MI Embodied
condition (C3 in left trials and C4 in right trials), and also lacked
significant ERD in the ipsilateral region (C4) during right-hand
trials in the MI Control condition (p-value = 0.34). Subject 03
did not exhibit ipsilateral ERD (C3) during left-hand trials in either
condition, while Subject 10 failed to achieve its significance during
the MI Control condition (p-value = 0.59). Additionally, Subjects
16, 17, and 19 represent more concerning cases, with imperfect
contralateral ERD. Subject 16 showed no contralateral ERD (C3)
during right-hand trials in the MI Control condition, along with
non-significant ERD in the ipsilateral region for left trials (C3)
in MI Control (p-value = 0.31) and for right trials (C4) in MI
Embodied (p-value = 0.07). Subject 17 lacked contralateral ERD
(C4) during left-hand trials in MI Control and ipsilateral ERD
(C4) during right-hand trials in MI Embodied, with additional
non-significant ERD in C3 for left-hand trials in MI Embodied (p-
value = 0.18). Similarly, Subject 19 failed to generate significant
contralateral ERD (C4) for left-hand trials in MI Control (p-value =
0.93) and ipsilateral ERD (C4) for right-hand trials in MI Embodied
(p-value = 0.15), also lacking ERD in C3 for left-hand trials in
MI Control.

Still, subjects overall produced significant ERD, as shown in
Figure 4 and Table 1, which summarize ERD analysis for right-
and left-hand trials. The C3 and C4 ERD distribution in Figure 4A
shows no substantial differences between MI Embodied and
MI Control conditions, except for slightly stronger ERD in MI
Embodied during left-hand trials (—40.00%; Table 1) and broader
ERD distribution in left-hand trials compared to right-hand ones.
Figure 4B illustrates the expected ERD temporal pattern, with
Alpha power suppression beginning shortly after the trigger (0 ms)
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ERD grand averages across M| Control (blue) and MI Embodied (orange) conditions during right- and left-hand Ml trials for the Extended Dataset. "+"
indicates contralateral electrode. (A) Distribution of ERD values for Ml Control and Ml Embodied conditions at C3 and C4 electrodes from 1,000 ms
to 5,000 ms during Ml trials. The horizontal line represents the baseline (0% ERD), and red boxes denote outliers. (B) Time course of ERD during Ml
trials (from O ms to 4,000 ms). Lines represent mean ERD values within the Alpha band across all subjects, with shaded regions indicating the 25th
and 75th percentiles. Vertical dashed lines mark the stimulus onset (0 ms), and the horizontal line indicates baseline ERD during the resting state (0%
ERD). (C) Topographic distribution of mean ERD. The color scale ranges from 0% (red, no ERD) to —50% (blue, indicating strong ERD).

TABLE 1 Mean ERD (%) and LI (%) values, U-statistics, and p-values from
the Mann—-Whitney U-test comparing MI Control and Ml Embodied
conditions in the Extended Dataset.

Mean (%) Comparison
Ml control Ml embodied U-statistics p-value
3L -17.04 -26.04 192.00 0.41
c4L -35.70 -40.00 184.00 0.68
C3R -28.70 -29.34 177.00 0.96
C4R -24.51 -14.25 173.00 0.92
LI 1143 14.53 199.00 0.24

ERD is reported for contralateral electrodes [C3 for right-hand trials (C3 R) and C4 for left-
hand trials (C4 L)] and ipsilateral electrodes [C4 for right-hand trials (C4 R) and C3 for
left-hand trials (C3 L)].

and remaining suppressed throughout the trial. Nevertheless, it
presents rapid fluctuations, continually returning to baseline at a
rapid rate. Scalp maps in Figure 4C confirm ERD induction over
sensorimotor areas, though in MI Embodied during right-hand
trials, the strongest desynchronization shifts toward the parieto-
occipital region rather than directly over the ipsilateral electrode
(C4). Notably, the contralateral electrode exhibited stronger ERD
than the ipsilateral one across both hand trials and conditions.
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This ERD lateralization is further supported by positive LI values
(Figure 5 and Table 1), though lateralization was slightly lower in
MI Embodied (LI = 14.53%) than MI Control (LI = 11.43%).
Moreover, Figure 5 indicates greater LI variability when the prior
embodiment is present (MI Embodied), suggesting more dispersed
lateralization effects. Despite these trends, no significant differences
between conditions were observed for either hand trial.

The ERD analysis of the Combined Dataset (Figure 6 and
Table 2) also confirms correct ERD induction for both hand trials
and conditions, demonstrating that merging the datasets does not
affect ERD induction. Figure 6 illustrates the expected MI task
morphology, with strong ERD occurring shortly after the provided
cue (0 ms) over sensorimotor areas. However, during right-hand
trials, power reduction shifts toward the parieto-occipital region,
limiting overlap with the C4 electrode, similar to patterns observed
in the Extended Dataset (Figure 4). During left-hand trials, the
contralateral electrode (C4) exhibited the strongest ERD, with MI
Control showing slightly weaker ERD than MI Embodied (MI
Control: —38.67%; MI Embodied: —39.01%, Table 2). Conversely,
MI Control showed stronger ERD in right-hand trials, though
the differences were minor (Table2). Furthermore, left-hand
trials demonstrated greater ERD dispersion compared to right-
hand. As expected, contralateral electrodes exhibited stronger
desynchronization than ipsilateral ones across both hand trials
and conditions, confirming ERD lateralization. This is further
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LI value (%) distributions for the MI Control (blue) and MI Embodied
(orange) conditions in the Extended Dataset. The horizontal dashed
line represents no ERD lateralization, and red boxes denote outliers.

supported by positive LI values (Figure7 and Table 2). While
MI Embodied showed a slightly higher LI (12.54%) than MI
Control (11.22%; Table 2), the values remain close. The main
difference between conditions was the broader LI dispersion in MI
Embodied (Figure 7), mirroring trends in the Extended Dataset
(Figure 5). However, no statistically significant differences were
found between conditions, as confirmed by the Mann-Whitney
U-test (Table 2).

4.3 Linear relationship between
embodiment strength with ERD and LI

When analyzing the relationship between embodiment
strength and ERD in the Combined Dataset, both LR and
LME models exhibited near-flat with
approaching zero, indicating a negligible correlation (Table 3).

trendlines, slopes
Still, models showed a weak, non-significant positive correlation
between embodiment and ERD, particularly in right-hand
trials using LME models (Table3; Figure8). This slightly
stronger correlation in the right-hand trials highlights a
potential variability in hand response to MI tasks and
prior SoE.

When comparing LR and LME models, both exhibited similar
correlations between ERD and embodiment, yet LME models
demonstrated a better fit (Table3) and a more pronounced
relationship between variables. This underscores the advantage
of LME models in accounting for individual differences in
embodiment responses.

For LI, neither model found a significant correlation with
embodiment strength (Figure 9 and Table 3). Interestingly, the
models showed opposing trends in LI response to SoE, with LME
indicating a negative correlation (—0.31) and LR suggesting a
positive correlation (0.15), further complicating any supposition.
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4.4 Effect of prior embodiment on EEG
feature discriminability

Similar to the findings for ERD and LI, prior embodiment
induction did not affect the discriminability of EEG features
for BCI classification. Both conditions showed similar low, non-
differing classification accuracy. Figure 10 shows the distribution
of EEG classification accuracies obtained using the shrinkage LDA
classifier for both conditions in the Extended Dataset. While
the MI Embodied condition (60.64 & 16.89%) showed a slightly
higher average accuracy compared to the MI Control condition
(53.13 £ 11.38%), which could suggest a positive influence of
prior embodiment induction, this difference was not statistically
significant (U-statistics = 147.00; p-value = 0.15). However, overall
classification accuracy was very low, probably reflecting the general
difficulty that participants had in producing discriminable ERD
patterns. In particular, the MI Embodied condition presented a
greater distribution of accuracies between subjects, also mirroring
the variability observed in the LI values.

5 Discussion

The SoE illusion was successfully induced in the Embodied
condition and effectively disrupted in the Control condition,
confirming the validity of the experimental manipulation. High
presence scores in both conditions for the Recorded and Combined
Datasets indicated strong immersion in the VE, further supporting
the correct induction of the illusion, as presence and SoE
share common induction factors such as head-tracking, depth
perception, and sensory synchrony (Halbig and Latoschik, 2024;
Pritchard et al., 2016). Since the illusion was well-established, and
merging datasets did not affect its induction, EEG metrics from MI
Embodied and MI Control conditions can be linked to SoE.

However, results showed no significant ERD differences
between conditions, suggesting prior embodiment did not
influence ERD induction during MI training. Although the
Extended Dataset exhibited stronger ERD in the MI Embodied
condition for left-hand trials, this difference was not statistically
significant. A similar trend in the Combined Dataset hints
at a potential subtle effect of prior SoE on MI performance.
Additionally, LI analysis showed slightly stronger lateralization in
the MI Embodied condition in both datasets, though differences
were too small to be conclusive. These findings align with Vagaja
etal. (2024), ruling out confounding effects from a between-subject
design and statistical power limitations. Therefore, the results
indicate that incorporating a prior embodiment induction phase
when design and VR-based MI-BCI training procedure may not
be necessary, as embodiment during MI training alone appears
sufficient to elicit ERD.

Interestingly, greater LI distribution was observed when
prior embodiment was present for both datasets (MI Embodied;
Figures 5, 7), further supported by Vagaja et al. (2024). This
suggests embodiment may introduce individual variability in
response to VR feedback during MI training. Previous research
indicates that embodied VR feedback strengthens Alpha ERD
lateralization, particularly when combined with vibrotactile
feedback (Vourvopoulos et al., 2022; Batista et al., 2024), while
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ERD grand averages across M| Control (blue) and MI Embodied (orange) conditions during right- and left-hand Ml trials for the Combined Dataset.
“+" indicates contralateral electrode. (A) Distribution of ERD values for Ml Control and MI Embodied conditions at C3 and C4 electrodes from 1,000
ms to 5,000 ms during Ml trials. The horizontal line represents the baseline (0% ERD), and red boxes denote outliers. (B) Time course of ERD during Ml
trials (from O ms to 4,000 ms). Lines represent mean ERD values within the Alpha band across all subjects, with shaded regions indicating the 25th
and 75th percentiles. Vertical dashed lines mark the stimulus onset (0 ms), and the horizontal line indicates baseline ERD during the resting state (0%
ERD). (C) Topographic distribution of mean ERD. The color scale ranges from 0% (red, no ERD) to —50% (blue, indicating strong ERD).
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TABLE 2 Mean ERD (%) and LI (%) values, U-statistics, and p-values from
the Mann—-Whitney U-test comparing MI Control and Ml Embodied
conditions in the Combined Dataset.

Mean (%) Comparison
Ml control Ml embodied U-statistics p-value
L -2431 -27.29 714.00 0.65
c4L -38.67 -39.01 689.00 1.00
C3R -33.00 -30.81 661.00 0.62
C4R -24.93 -17.48 645.00 0.43
LI 1122 12.53 748.00 0.28

ERD is reported for contralateral electrodes [C3 for right-hand trials (C3 R) and C4 for left-
hand trials (C4 L)] and ipsilateral electrodes [C4 for right-hand trials (C4 R) and C3 for
left-hand trials (C3 L)].

MI training without feedback does not (Stefano Filho et al,
2020). Continued MI training with embodied VR feedback also
improves ERD lateralization (Meng and He, 2019), with factors
like task structure, feedback type, MI duration, and handedness
also playing a role (Nam et al,, 2011; Stancak and Pfurtscheller,
1996). These factors likely contribute to the greater LI variability
observed in the MI Embodied condition. This variability highlights
the individualized effects of embodied VR feedback, which is
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introduced during the Embodied/Control phases and carried
through to subsequent MI training phases. While embodied VR
feedback enhances MI by creating a more immersive and relatable
experience compared to abstract feedback, its effectiveness varies
among participants. This underscores the importance of tailoring
VR-based BCI training based on participant-specific characteristics
to optimize outcomes. Future VR-BCI systems could incorporate
pre-assessments of susceptibility to body illusions to identify
users most likely to benefit from prior embodiment, enabling
more personalized training protocols. Potential strategies might
include standardized questionnaires (such as MI vividness),
behavioral tasks, or neurophysiological measures [e.g., resting
frontal alpha power (Hsu et al, 2022)]. However, further
research is needed to establish reliable methods for predicting
embodiment responsiveness, and effective techniques for
measuring embodiment neurophysiologically are still lacking.
Linear models further confirmed no significant effect of prior
SoE on ERD induction, showing no correlation between SoE
strength and ERD values for either hand. Similarly, no significant
correlation was found between embodiment strength and LI values,
with near-flat trendlines. However, for right-hand ERD, a small
positive correlation with embodiment strength was observed,
suggesting a potential hand-specific response to SoE. Literature
indicates right-handed individuals show greater lateralization

for their dominant hand (Schomer et al., 2017; Stancdk and
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LI value (%) distributions for the MI control (blue) and Ml embodied
(orange) conditions in the Combined Dataset. The horizontal dashed
line represents no ERD lateralization, and red boxes denote outliers.

Pfurtscheller, 1996; Crotti et al., 2022; Stancak and Pfurtscheller,
1996; Bai et al., 2005). Nonetheless, ERD analysis did not confirm
this, as the Extended Dataset displayed greater lateralization
for left-hand trials in MI Control and minimal differences in
MI Embodied. The strongest ERD appeared at C4 during left-
hand trials in both conditions, suggesting better MI performance
with the non-dominant hand, complicating the interpretation
of hand dominance in MI training. These inconsistencies may
reflect individual variability or limited MI training, as untrained
individuals often exhibit similar activation for both hands during
MI tasks (Keskin et al., 2017). Additionally, hand dominance effects
on ERD strength may vary depending on feedback and stimulation
techniques (Grigorev et al, 2021), highlighting the complex
relationship between hand dominance and ERD induction.

While results suggest individual variability in prior SoE’s effect
on ERD lateralization, they indicate that it does not significantly
impact MI training, with embodied feedback alone being sufficient.
However, poor model fit (high AIC/BIC, low R?) warrants cautious
interpretation. Another key factor is the participants’ limited ability
to induce ERD during MI training in the Extended Dataset likely
impacted results. This is likely due to their lack of prior MI
experience, as research suggests continuous training is needed
to enhance ERD modulation (Mokienko et al., 2013; Jochumsen
et al., 2017). The combination of limited MI training and lower
MI vividness may explain the weaker ERD observed, potentially
masking any effect of prior embodiment. Furthermore, individual
differences in MI vividness influence ERD induction, contributing
to variability across participants (Rimbert and Lotte, 2022).

In addition, all participants in the Extended Dataset reported
feeling embodied in both MI Control and MI Embodied conditions.
Although a single general question may not be the most reliable
SoE assessment, this suggests both conditions successfully induced
SoE. Participants received congruent visuoproprioceptive feedback,
known to be sufficient for SoE induction (Falcone et al., 2022;

Frontiersin Human Neuroscience

10.3389/fnhum.2025.1681538

Carey et al, 2019), and observed the imagined hand moving,
potentially creating a false visuomotor cue that reinforced the
illusion. SoE is believed to develop rapidly due to fast multisensory
integration. Studies indicate the RHI emerges within 19-23 s
(Kalckert and Ehrsson, 2017; Finotti et al., 2023), while virtual
embodiment in first-person perspectives can occur even faster,
within 5 s (Keenaghan et al., 2020). Full-body illusions from
visual-tactile stimuli, such as in this study, take around 25 s to
develop-slower than body-part illusions (Kondo and Sugimoto,
2022). While short exposures can induce SoE, prolonged exposure
strengthens it, particularly in static illusions like MI training
(Perepelkina et al., 2018; Kalckert and Ehrsson, 2017; Finotti
et al., 2023), with continuous sensorimotor feedback essential
for maintaining embodiment (Eck and Pfister, 2024). Thus, SoE
may have emerged within the first seconds of MI training in
both conditions and likely strengthened over time, minimizing
differences between them, which may help explain the lack of
significant effects found.

Another consideration is that ipsilateral ERD during right-
hand trials does not fully overlap with the C4 electrode, as it is more
localized in posterior brain regions (parietal lobe; Figures 5, 7). This
suggests C4 may not entirely capture ERD’s spatial distribution,
raising concerns about relying on a single electrode. This study
used C3 and C4 electrodes for ERD calculation, following MI-
BCI research standards (Yeom and Sim, 2008). Still, optimal ERD
detection sites may not always align with C3/C4, especially given
subject-specific spectral and spatial variations (Stefano Filho et al.,
2020). This is particularly relevant for untrained participants, who
often exhibit broader associative zone activation during MI tasks
(Mokienko et al., 2013). Additional electrodes could provide a
more comprehensive assessment of prior embodiment’s influence
on MI performance.

Lastly, and in line with the low ERD magnitudes observed,
EEG feature classification performance was also poor, remaining
only slightly above chance level in both conditions. While some
participants achieved relatively high accuracies, others showed very
low performance, highlighting substantial inter-subject variability.
This variability was especially pronounced in the MI Embodied
condition, resembling the distribution observed in the LI values
and again suggesting that SoE integration is highly individual, with
participants responding differently to the VR feedback during MI
training. Although the MI Embodied condition showed slightly
higher average accuracy compared to MI Control, potentially
indicating a small benefit from prior embodiment, this difference
was not statistically significant. These results mirror the patterns
observed in both ERD and LI metrics, further supporting the
conclusion that prior embodiment had minimal influence on MI-
related cortical patterns, consistent with findings from the Pilot
study (Vagaja et al., 2024).

In practical terms, the findings indicate that VR-BCI systems
can rely on embodiment induced during MI training itself, without
needing a separate prior embodiment induction phase. When
design VR-based MI-BCI procedures, the focus should rely on
providing congruent multisensory feedback during MI tasks to
optimize ERD induction rather than adding separate embodiment
protocols, potentially saving training time and simplifying
system implementation. However, given the observed inter-subject
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TABLE 3 Linear models (LR and LME) evaluating the relationship between embodiment and ERD/LI.

Outcome (model) Model variables Model evaluation
Variable Estimate SE t-Statistics ~ p-value AIC BIC

ERDjg; (LR) Bo -37.22 7.53 -4.94 0.00* 939.66 944.95 0.01
Embodiment 1.13 1.66 0.68 0.50

ERDy;; (LME) Bo -33.28 7.51 -4.43 0.00* 911.85 922.43 0.59
Embodiment 0.06 1.57 0.04 0.97

ERD, gt (LR) Bo -38.05 8.04 -4.73 0.00* 953.24 958.53 0.02
Embodiment 2.65 1.78 1.49 0.14

ERD g (LME) Bo -40.67 8.46 -4.81 0.00* 942.59 953.16 0.35
Embodiment 3.10 1.82 1.71 0.09

LI (LR) Bo 13.23 7.77 1.70 0.10 438.01 441.92 0.00
Embodiment -0.31 1.72 -0.18 0.86

LI (LME) Bo 11.14 7.60 1.47 0.15 441.20 449.01 0.06
Embodiment 0.15 1.66 0.09 0.93

*Indicates significant differences at p < 0.05.
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FIGURE 8
Relationships between embodiment score and ERD (%) values across both right- and left-hand trials. (A) Presents the fitted LR model (Equation 3),
while (B) illustrates the partial dependence of embodiment score based on the results of the LME model (Equation 4).
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variability, future systems may benefit from assessing users’ MI
vividness or susceptibility to body illusions beforehand, allowing
the training protocol to be tailored for maximum effectiveness.

6 Conclusion

This study investigated the role of virtual embodiment as a
priming mechanism prior to MI-BCI training in VR, with ERD
serving as the primary neurophysiological marker. While SoE
was successfully induced in the Embodied condition, the results
did not reveal significant differences in ERD between conditions,
suggesting that embodiment during MI-VR training is sufficient to
elicit robust ERD, consistent with prior studies, and that additional
embodiment priming beforehand does not substantially influence
MI-related brain activity.

Interestingly, ERD lateralization and EEG classification
performance exhibited greater variability in the Embodied
condition, pointing to individual differences in the way users
integrate embodied feedback. This suggests that while SoE may
not have a uniform effect on MI-induced ERD, it could introduce
nuanced variations in lateralization and brain patterns, which
warrant further investigation. These results align with previous
findings and reinforce the need for future research to explore
personalized approaches in VR-BCI training.

Several limitations should be considered when interpreting
these findings. The relatively small sample size, despite being larger
than previous studies, may have limited the statistical power to
detect subtle effects of prior embodiment. Additionally, the reliance
on C3 and C4 electrodes for ERD measurement may not have fully
captured individual differences in MI-related activation patterns.
Future studies should explore more extensive electrode coverage
and incorporate additional neurophysiological measures to assess
the broader impact of embodiment on MI-BCI performance.

Frontiersin Human Neuroscience

10.3389/fnhum.2025.1681538

In conclusion, while prior virtual embodiment did not
significantly alter MI training outcomes, the observed inter-
individual variability suggests that embodiment effects may be
more complex than previously assumed. These findings highlight
the importance of designing adaptive and personalized VR-BCI
protocols that account for individual differences in embodiment
susceptibility. Future research should explore how factors such
as training duration, sensory congruency, and neurophysiological
predispositions influence the interaction between embodiment and
MI-BCI performance.
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