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Using vision transformers for
electrographic seizure
classification to aid physician
review of intracranial
electroencephalography
recordings

Muhammad Furqgan Afzal'*, Sharanya A. Desai', Wade Barry?,
Thomas K. Tcheng?', Jonathan Kuo?, Shawna W. Benard?,
Christopher B. Traner®, David Greene!, Cairn G. Seale! and
Martha J. Morrell*

*NeuroPace, Inc., Mountain View, CA, United States, 2Department of Neurology, University of Southern
California, Los Angeles, CA, United States, *Cleveland Clinic Neurological Institute, Cleveland, OH,
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We introduce a vision transformer (ViT)-based approach for automated
electrographic seizure classification using time-frequency spectrogram
representations of intracranial EEG (iEEG) recordings collected from patients
implanted with the NeuroPace® RNS® System. The ViT model was trained and
evaluated using 5-fold cross-validation on a large-scale dataset of 136,878
iEEG recordings from 113 patients with drug-resistant focal epilepsy, achieving
an average test accuracy of 96.8%. Clinical validation was performed on
an independent expert-labeled dataset of 3,010 iEEG recordings from 241
patients, where the model achieved 95.8% accuracy and 94.8% F1 score on
recordings with unanimous expert agreement, outperforming both ResNet-50
and standard 2D CNN baselines. To evaluate generalizability, the model was
tested on a separate out-of-distribution dataset of 136 recordings from 44
patients with idiopathic generalized epilepsy (IGE), achieving over 75% accuracy
and F1 scores across all expert comparisons. Explainability analysis revealed
focused attention on characteristic electrographic seizure patterns within iEEG
time-frequency spectrograms during high-confidence seizure predictions, while
more diffuse attention was observed in non-seizure classifications, providing
insight into the underlying decision process. By enabling reliable electrographic
seizure classification, this approach may assist physicians in the manual review
of large volumes of iEEG recordings.

KEYWORDS

vision transformer (ViT), deep learning, electrographic seizure classification, intracranial
EEG, explainability, epilepsy

1 Introduction

Accurate seizure tracking is important for effective epilepsy management, as it
supports monitoring of treatment response, detection of changes in seizure frequency, and
informed clinical decision-making. However, the most commonly used method of seizure
monitoring- patient or caregiver-reported seizure diaries- is often unreliable. Studies have
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shown that many seizures are frequently missed or inaccurately
recorded (Blum et al., 1996; Kerling et al., 2006; Inoue and
Mihara, 1998). As a result, clinical decisions based solely on seizure
diaries may be inaccurate and could lead to suboptimal treatment
strategies. These limitations highlight the need for objective tools to
track changes in seizure frequency.

The NeuroPace® RNS® System is an FDA-approved
implantable device that delivers neurostimulation and records
iEEG data from patients with drug-resistant focal epilepsy
(Skarpaas et al., 2019). By capturing long-term activity directly
from the brain, the RNS® System provides a rich source of
objective information that can be invaluable in identifying
seizure patterns and evaluating treatment responses (Desai
et al.,, 2019). Despite the clinical potential of this iEEG data, its
manual analysis remains a significant bottleneck. Reviewing and
annotating electrographic seizure events across thousands of
hours of recordings is highly labor-intensive, requiring expert
epileptologists. This process is not only time-consuming and
costly, but also prone to inter-rater variability and fatigue-related
inconsistencies. As the volume of iEEG data continues to grow,
there is a pressing need for automated methods to support accurate
and scalable electrographic seizure classification (Ulate-Campos
etal., 2016).

Traditionally, electrographic seizure classification approaches
have relied on hand-engineered features extracted from EEG
or iEEG signals using signal processing techniques such as
the Fourier transform. The Fourier transform decomposes the
signal into its constituent frequency components, enabling the
identification of spectral patterns that may be indicative of
seizure activity. These spectral features, such as power in specific
frequency bands (for example, delta, theta, alpha, beta, gamma),
are often used to characterize neural activity over time (Wang
and Mengoni, 2022; Bandarabadi et al., 2014; Kharbouch et al,
2011; Netoff et al., 2009). Once extracted, these features are
typically fed into conventional machine learning classifiers such
as support vector machines, decision trees, k-nearest neighbors,
or random forests. This pipeline of manual feature extraction
followed by classification has shown reasonable performance in
controlled settings (Netoff et al., 2009; Chan et al., 2008; He
et al, 2022; Zhang and Parhi, 2015; Abbasi and Goldenholz,
2019). However, it is highly dependent on domain expertise and
often requires extensive tuning of feature sets to perform well
across different patients and seizure types. In addition, these
hand-crafted approaches may fail to capture complex, non-linear
relationships in the iEEG data and can struggle to generalize in
real-world clinical scenarios, particularly when faced with inter-
patient variability or noisy data (Kim et al., 2020; Xu et al,
2020).

Deep learning addresses many of the limitations inherent
to traditional hand-crafted feature-based approaches. Unlike
conventional methods that depend on expert-designed features
and signal transformations, deep learning models learn hierarchical
and task-specific representations directly from raw or minimally
processed data. This ability to automatically discover relevant
patterns enables models to capture complex temporal and spectral
dependencies that may be difficult to encode manually. Deep
learning approaches have shown promising results in seizure
classification (Natu et al., 2022; Nafea and Ismail, 2022).
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Convolutional neural networks (CNNs) have emerged as a
widely used deep learning approach for seizure classification.
CNNs use convolutional layers to capture spatial and temporal
relationships in the
applied to both time-series and time-frequency (image-based)

signals and have been successfully
representations, showing effectiveness in detecting subtle patterns
in brain activity associated with seizures (Rashed-Al-Mahfuz
et al, 2021; Barry et al, 2021; Jia et al, 2022; Desai et al,
2023).

More recently, transformer models have gained traction
for electrographic seizure classification due to their ability to
model long-range dependencies in EEG data. While CNNs
are effective at capturing local patterns through convolutional
kernels, they inherently struggle with capturing global context
and long-term temporal relationships, which are often critical
in identifying seizure dynamics that unfold over extended time
windows. Transformer models address this limitation through
self-attention mechanisms, which enable them to dynamically
weigh and relate information across all time points in the
input sequence. This capability enables better modeling of the
complex and distributed patterns in neural data associated with
seizures. As a result, transformer-based approaches have shown
strong potential in EEG-based seizure classification tasks (Vaswani
et al, 2017; Zhu et al.,, 2024; Hussein et al., 2022; Lih et al.,
2023).

In this study, we present a vision transformer (ViT)-based
approach for electrographic seizure classification using time-
frequency spectrogram representations of intracranial EEG (iEEG)
recordings, aiming to distinguish between recordings that contain
seizure activity and those that do not. Recent studies have
applied vision transformers to seizure detection and prediction,
but these efforts remain limited in scope. For example, ViT
models have been proposed for cross-subject seizure detection
in scalp EEG (Feng et al., 2026). Hybrid convolutional neural
network (CNN)-ViT fusion models have been proposed to
combine local and global feature representations for seizure
detection (Li et al., 2025), while others have introduced channel-
selection mechanisms to identify the most informative scalp EEG
electrodes for seizure prediction (Qi et al., 2024). Additional
work has explored multi-channel ViT for spatio-temporal spectral
feature learning to capture global spatial and long-range temporal
dependencies for seizure detection (Hussein et al., 2022; Shi and
Liu, 2024). While these methods report promising performance,
they are evaluated almost exclusively on small, curated scalp EEG
datasets such as CHB-MIT (22 pediatric patients, 198 seizure
events only) or Kaggle (2-3 patients), which severely limits
both the diversity of seizure events and the heterogeneity of
clinical presentations. Moreover, these studies do not evaluate
generalization to different independent patient populations or
epilepsy syndromes, and in particular none have demonstrated
robustness to out-of-distribution cohorts. In contrast, our work
leverages a large intracranial EEG dataset collected from patients
with drug-resistant focal epilepsy implanted with the NeuroPace®
RNS® System that contains over 80,000 seizure events in the
first training fold alone (Table I). Specifically, we train our
ViT model on data from 113 patients comprising 136,878
iEEG recordings. We perform clinical validation on a separate
expert-labeled dataset of 3010 iEEG recordings obtained from
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241 patients. This dataset spans diverse electrode locations,
including mesial temporal (MTL), neocortical (NEO), and thalamic
(THAL) leads, as well as multiple recording types such as long
episodes, scheduled recordings, and magnet-triggered events. We
benchmark performance against widely used image-based CNN
architectures and also time-series-based architectures: ResNet-50,
standard 2D CNN, time-series transformer and 1D CNN. We
also evaluate the generalizability of our model on a separate
iEEG dataset from patients with idiopathic generalized epilepsy
(IGE), recorded using the NeuroPace® RNS® System. To better
understand how the model reaches its predictions and to identify
potential areas for improvement, we conduct explainability and
error analyses. The explainability analysis aims to uncover which
features of the input spectrograms the model relies on when
classifying seizure and non-seizure events, providing insight
into its decision-making process. Complementing this, the error
analysis focuses on false positive and false negative predictions
to highlight specific failure modes and guide future refinements
in model design, data labeling, or training strategies. To our
knowledge, this is the first ViT-based study to show such
large-scale, clinically heterogeneous intracranial EEG evaluation
with out-of-distribution generalization. Finally, while our present
analysis focuses on single-channel classification to establish a clear
benchmark, future work will extend these methods to multi-
channel modeling to capture cross-channel interactions and further
enhance performance. Ultimately, this work presents a ViT model
for electrographic seizure classification, with the goal of assisting
clinicians in reviewing large volumes of iEEG recordings from
patients efficiently.

2 Materials and methods
2.1 NeuroPace® RNS® System

The NeuroPace® RNS® System is an FDA-approved medical
device for the treatment of patients with drug-resistant focal
epilepsy involving one or two seizure foci. Detailed descriptions of
the RNS® System have been previously published (Bergey et al.,
2015; Morrell, 2011; Skarpaas et al., 2019). The device operates as
a closed-loop neurostimulation system, continuously monitoring
intracranial brain activity and delivering electrical stimulation
in response to detected abnormal patterns. Figure la illustrates
the RNS® System, while Figure 1b presents an example iEEG
recording acquired from the device. Both the raw time-series signal
and its corresponding time-frequency spectrogram representation
are shown.

For the present study, we randomly selected data from
274 patients from the clinical trials of the RNS® System
for model training and evaluation. Feasibility, Pivotal and
Long-Term Treatment (LTT) studies are registered on
clinicaltrials.gov under identifiers NCT00079781, NCT00264810,
and NCT00572195, respectively. Additionally, data from
an independent cohort of 80 patients who were not
enrolled in the clinical trials was also included for model
evaluation. In total, data from 354 patients were analyzed in
this study.
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5 Random Folds validation)
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(Test)
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(Train) (Tune)
FIGURE 2
The NeuroPace RNS System VISUaUZ‘atIO.I’W of the datasgt used for quet developmerjt and
evaluation in the focal epilepsy population. The dataset includes
iEEG recordings from 354 patients, with 113 patients used for
training, tuning, and testing via 5-fold cross-validation, and 241
a patients reserved for final clinical validation.
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FIGURE 1

The NeuroPace® RNS® System and an example iEEG recording. (a)
The NeuroPace® RNS® System includes an implanted
neurostimulator connected to two leads, each containing four
electrodes used for both sensing and stimulation. Leads are typically
placed at the seizure onset zones. (b) Example 4-channel iEEG
recording from an implanted device in a patient. The top panel
shows raw time-series signals, and the bottom panel displays the
corresponding time-frequency spectrograms for each channel.

2.2 iEEG recording types

The RNS® System captures several types of iEEG recordings,
including long episode, scheduled, magnet and saturation
recordings. Long episode recordings are initiated by the onboard
detection algorithms in the device in response to prolonged
abnormal brain activity. Scheduled recordings are typically
collected twice daily and serve as baseline data for each patient.
Magnet recordings are manually triggered by patients upon
experiencing a clinical seizure. Saturation recordings are obtained
when the device amplifiers become saturated.
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In our dataset, long episode recordings constituted a large
portion of the iEEG data and were found to contain both
electrographic seizure activity and non-seizure activity across many
patients. Therefore, we selected long episode recordings exclusively
for model training. Each long episode iEEG recording consisted
of 4 channels of time series signals sampled at 250 Hz. Although
models were exclusively trained on long episode data, they were
also evaluated on other categories of iEEG recordings, including
scheduled, magnet, and saturation recordings.

2.3 Data splits

Of the 354 patients included, the recordings that formed part of
the training set were obtained from 113 randomly selected patients
with intracranial leads implanted in the mesiotemporal lobe or
neocortex. 136,878 long episode iEEG recordings (approximately
547512 iEEG channels) from these 113 randomly selected patients
were divided into five cross-validation folds, with each fold
consisting of 72 patients for training, 18 for tuning, and 23
for testing. These 136,878 recordings were labeled by a trained
NeuroPace® employee. 3010 iEEG recordings (12040 iEEG
channels) from 241 patients were used for clinical validation,
with data labeled by three board-certified epileptologists. Among
these, 161 patients had recordings from either mesiotemporal
or neocortical leads, similar to the training set, and included
long episode, scheduled, magnet, and saturation categories. The
remaining 80 patients were implanted in the thalamus, and only
their long episode recordings were used for clinical validation. The
dataset splits are illustrated in Figure 2. Table 1 reports the total
number of iEEG channels labeled as seizures and non-seizures, as
well as the total number of iEEG recordings in the training, tuning,
and test sets within the 5 folds of the 113-patient dataset. Table 2
summarizes the total number of recordings in the clinical validation
dataset from 241 patients, along with the distribution of seizure and
non-seizure recordings across the different iEEG categories (long
episode, magnet, scheduled, and saturation).
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TABLE 2 Total number of seizure and non-seizure iEEG recordings across
the four categories (long episodes, magnet, saturation and scheduled) in
the clinical validation dataset.

iEEG Sz. NSz. Total number of
category recordings
Long episodes 871 1,112 2,410

Magnet 30 146 200
Saturation 103 66 200
Scheduled 1 195 200

Sz. (seizure) and NSz. (non-seizure) counts reflect recordings with unanimous agreement
among all expert reviewers, while the total number includes all recordings regardless of
agreement level.

2.4 iEEG labeling process

The task of electrographic seizure classification involves
distinguishing seizure activity from non-seizure baseline activity
in iEEG recordings. To train and evaluate our AI models, we thus
required supervised human-labeled iEEG data annotated as either
seizure or non-seizure. A trained NeuroPace® employee labeled
the 113-patient dataset using a previously described clustering-
based workflow (Barry et al., 2021). Briefly, we transformed the
time-series activity from each iEEG channel into a time-frequency
spectrogram image, and passed those images through a pretrained
GoogLeNet Inception-V3 model to extract channel-level features.
We created iEEG recording-level features after concatenating the
features from the 4 channels for each iEEG recording. We then
reduced the dimensionality of these recording-level features using
PCA followed by t-SNE. A Bayesian Gaussian Mixture Model was
then applied to cluster these recordings on a per-patient basis. The
labeler manually assigned seizure and non-seizure labels to each
cluster centroid and propagated these labels to all recordings within
the corresponding clusters. To ensure labeling quality, the labeler
visually reviewed all recordings in each cluster using a thumbnail-
based interface and corrected any labels that did not align with
the overall cluster characteristics. This approach yielded channel-
level seizure and non-seizure labels for all iEEG recordings in the
113-patient dataset.

2.5 Model architecture

We used a vision transformer (ViT) architecture for the task of
electrographic seizure classification. Specifically, we used the ViT-
B/16 variant, which consists of 12 transformer layers, each with 12
self-attention heads, a hidden size of 768, and an MLP dimension
of 3,072. A dropout rate of 0.1 was applied. The input data were
split into 16x 16 pixel patches. For our final model, all 86 million
parameters in the ViT were fully trainable, and we call this model
ViT (86M). To accommodate computational constraints in some
experiments, we used a smaller variant of the model, referred to as
ViT (49M), which contained 49 million trainable parameters. All
references to the “ViT model” in this paper refer specifically to the
ViT (86M) variant.

For the binary electrographic seizure classification task, we
used the binary cross-entropy loss. We monitored validation
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accuracy during training with early stopping after 10 epochs of no
improvement. Hyperparameters such as learning rate, optimizer,
and dropout were selected through manual tuning based on
preliminary experiments. The final model was trained with a
learning rate of le-7, batch size of 32, and the Adam optimizer.
The model produces a probability score ranging from 0 to 1, with
higher values indicating a greater likelihood of seizure activity in
the iEEG channel.

2.6 Data preprocessing

Each iEEG recording included four channels of time-series
activity, many of which contained neurostimulation artifacts. Since
we had access to the precise onsets and durations of stimulation
within each recording, we first removed the stimulation artifacts
from all channels. We then converted the artifact-free signals
into time-frequency spectrograms using the short-time Fourier
transform implemented via the scipy.signal.spectrogram function.
Signals were sampled at 250 Hz, with a window size of 128 samples,
80% overlap, and an FFT length of 512 points. We visualized the
resulting spectrograms using a jet colormap and saved them as
PNG images, which served as the input to the ViT model for
electrographic seizure classification. Each image input was of size
224 x 224 x 3. Figure 3 shows examples of iEEG channels labeled
as seizure and non-seizure activity. Similarly, Figure 4 shows a
time-frequency spectrogram of an iEEG channel before and after
stimulation artifact removal.

2.7 Experiments

We conducted a series of experiments to evaluate the
performance and generalizability of the ViT models on the task of
electrographic seizure classification. First, we assessed performance
within each cross-validation fold using 23-patient held-out test
sets. In addition, we evaluated the model on the clinical
validation dataset comprising 241 patients whose recordings were
independently labeled by expert reviewers. To investigate the effect
of stimulation artifact on model performance, we compared results
using inputs with and without stimulation artifact removal. We
also examined the impact of input format by comparing model
performance on grayscale vs. color time-frequency spectrograms,
specifically to assess the impact of using three RGB channels
vs. a single-channel input. Figure 5 shows an example of an
iEEG channel represented as both color and grayscale time-
frequency spectrograms. Due to computational constraints, we
used the ViT (49M) model for experiments assessing the impact of
color information and stimulation artifact on model performance.
Finally, we evaluated the model on a small, expert-labeled iEEG
dataset from the IGE population (thalamic recordings) to assess
seizure classification performance within this cohort. This iEEG
dataset consisted of 136 recordings collected from 44 patients.

We additionally compared the ViT models against two
commonly used image-based architectures: ResNet-50 and a 2D
convolutional neural network (2D CNN). For the ResNet-50
model, we fine-tuned all layers of an ImageNet pretrained base
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FIGURE 3
(A) Example iEEG channel spectrogram labeled as “seizure” by a human expert. (B) Example iEEG channel trace labeled as “non-seizure”.
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FIGURE 4
(A) Example iEEG channel spectrogram containing stimulation-related artifacts. (B) Spectrogram of the same iEEG channel after artifact removal.
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FIGURE 5
(A) Example color iEEG channel spectrogram visualized using the jet colormap. (B) Spectrogram of the same channel displayed in grayscale.

model and extended it with a global average pooling layer followed  rate of le-7 and a batch size of 32. Validation accuracy was
by a softmax classification layer to form the final architecture. The = monitored for early stopping and model checkpointing. ResNet-
model was trained using the Nadam optimizer with a learning 50 had approximately 23 million trainable parameters. The 2D
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CNN model consisted of three Conv2D layers with increasing
filter sizes (32, 64, and 128), each using a 3x3 kernel with ReLU
activation, followed by 2x2 max pooling. The extracted feature
maps were flattened and passed through a dense layer with 256
units and ReLU activation, followed by a softmax output layer. This
model was trained using the Adam optimizer with a learning rate
of le-5 and a batch size of 32. It had approximately 22 million
trainable parameters. We also included two time-series models for
comparison, including a time-series transformer and a 1D CNN
(Table 3). The time-series transformer used an initial ConvlD +
pooling stack followed by 6 transformer encoder blocks (4 heads,
head size 256) with residual connections and dropout, ending in
global average pooling and a two-layer MLP classifier. The 1D CNN
used a deep ConvlD architecture with 8 convolution + pooling
layers of increasing filter sizes, followed by global average pooling
and a dense classifier.

2.8 Performance metrics

To evaluate the performance of all models, we used accuracy,
which measures the overall proportion of correct predictions, and
the F1 score, which balances precision and recall and is particularly
useful in the presence of class imbalance.

3 Results

3.1 Model performance on test sets

We evaluated the performance of all models on the task of
electrographic seizure classification. The models were evaluated
on 23-patient test sets across 5 cross-validation folds, as shown in
Figure 2. The models were evaluated on individual iEEG channel
inputs from all recordings in the 23-patient dataset, with the
task of determining whether each channel belonged to the seizure
or non-seizure class. Unless otherwise specified, models in this
analysis were evaluated after stimulation artifacts were removed
from iEEG recordings as a preprocessing step. Table 3 shows
binary classification accuracies for each of the five folds, and
the final column presents the mean + standard deviation (SD)
of test accuracy across folds. The ViT (86M) model achieved
the highest average test accuracy of 96.8%, making it the best-
performing model in this comparison (color spectrogram inputs),
outperforming other image-based and time-series-based models.

We evaluated the impact of using color vs. grayscale
spectrogram inputs for our electrographic seizure classification
models. Across models, performance was generally higher
with color spectrogram images compared to their grayscale
counterparts, as shown in Figure 6. For example, the ViT (49M)
model achieved a mean test accuracy of 96.0% with color inputs,
compared to 95.1% with grayscale inputs (this difference was
not statistically significant). In contrast, ResNet-50 showed a
statistically significant improvement with color inputs, achieving
95.6% accuracy vs. 94.7% with grayscale (Wilcoxon rank-sum
test, Bonferroni-corrected p < 0.02). Overall, the use of color
spectrograms provided a small but consistent performance
advantage across models.
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Generally, all slightly better when

stimulation artifacts were removed from the iEEG data (not

models performed

statistically significant, Wilcoxon rank-sum test). For example,
ViT (49M) improved from a mean test accuracy of 95.5% to 96.0%
when stimulation artifacts were removed (color inputs). The results
are shown in Figure 7.

3.2 Model performance on clinical
validation dataset

For the expert-labeled clinical validation dataset, we evaluated
model performance at the iEEG recording level. The true label for a
recording was considered seizure if any of its channels were labeled
as a seizure by the expert, and non-seizure if all channels were
labeled as non-seizure. Similarly, the predicted label for a recording
was considered seizure if any of its channels were classified as
seizure by the model, and non-seizure if all channels were predicted
as non-seizure. For the ViT model, we identified an optimal
operating threshold of 0.8 based on the tuning sets across the 5
cross-validation folds. This threshold yielded a high F1 score of
95.1% and a low false positive rate of only 0.8%. Consequently, we
adopted 0.8 as the operating threshold for subsequent evaluation.
Under this criterion, if any channel within a recording had a
predicted probability greater than or equal to 0.8, the model
classified the recording as a seizure. Conversely, if all channels had
probabilities below 0.8, the recording was classified as non-seizure.

We evaluated the performance of all models against the three
expert labelers in classifying recordings from the 241-patient
clinical validation dataset. The results of this comparison are
presented in Table 4. The table reports binary seizure classification
accuracy and F1 scores for the best-performing models from
the 23-patient test sets. Model comparisons against each expert
labeler are shown in separate columns (exp. denotes expert). On
this dataset, we observed notable performance differences across
models, reflected in both accuracy and F1 scores. Among all
models, ViT (86M) consistently outperformed others, achieving
accuracy scores of 90.2%, 91.3%, and 87.5% when compared to
expert 1, expert 2, and expert 3, respectively.

Of the 3010 iEEG recordings labeled by clinical experts for
final model evaluation, 2524 recordings showed full agreement
among all three experts, with unanimous labels as either seizure or
non-seizure. For subsequent analysis, we assessed the performance
of the top-performing ViT, ResNet-50, and 2D CNN models,
which were identified from the 23-patient test set, on this subset
of unanimously labeled recordings. Accuracy and F1 scores for
these recordings are presented in Figure 8. As shown in the
figure, ViT (86M) showed the highest performance, achieving
a seizure classification accuracy of 95.8% and an F1 score of
94.8%, outperforming both ResNet-50 and 2D CNN models. We
performed formal statistical comparisons of the three models (ViT
(86M), ResNet-50 and 2D CNN) on these 2524 iEEG recordings
in the clinical validation dataset. Specifically, we first applied
Cochran’s Q test across all three models, which revealed a highly
significant global difference (Q = 147.72, p = 8.36 x 10733). To
identify pairwise differences, we then conducted McNemar’s tests
with Holm correction for multiple comparisons. These analyses
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TABLE 3 Performance of the electrographic seizure classification models on the 23-patient test sets in each cross-validation fold.

Model type Image input Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean + SD
ResNet-50 Color 96.2 95.4 95.3 95.8 95.5 95.6 £ 0.4
ResNet-50 Grayscale 95.4 94.0 94.5 94.6 95.2 94.7 £ 0.5
ViT (49M) Color 96.6 96.1 94.9 96.7 95.7 96.0 + 0.6
ViT (49M) Grayscale 96.5 93.6 94.7 95.3 95.2 95.1+£0.9
ViT (86M) Color 96.9 96.5 96.0 97.2 97.1 96.8 £ 0.5
2D CNN Color 94.7 93.8 93.9 95.6 94.2 944+ 0.6
2D CNN Grayscale 94.9 94.2 94.2 94.5 92.6 94.1+£0.8
Time-series Transformer n/a 93.4 87.3 91.0 95.9 90.8 91.7+£3.0
1D CNN n/a 92.1 84.5 93.6 90.1 83.0 88.7£4.2
The performance of the best-performing model is shown in bold.
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FIGURE 6 Model
Performance comparison of electrographic seizure classification
models using color vs. grayscale spectrogram inputs across FIGURE 7
ResNet-50, ViT (49M), and 2D CNN architectures. Error bars indicate Performance comparison of electrographic seizure classification
the mean + standard deviation of test accuracy across five models before vs. after stimulation artifact removal across
cross-validation folds. ResNet-50, ViT (49M), and 2D CNN architectures. Error bars indicate
the mean =+ standard deviation of test accuracy across five
cross-validation folds.

showed that ViT (86M) significantly outperformed both ResNet-
50 (x% = 36.33, p < 1.7 x 107%) and 2D CNN (x? = 122.24, p <
6.2 x 107%%).

The patients in the clinical validation dataset had leads
implanted in several locations, including the mesial temporal lobe
(MTL), thalamus (THAL), neocortex (NEO), and cases with leads
in both the mesial temporal lobe and neocortex (MTL-NEO).
To further evaluate the performance of ViT (86M), we analyzed
the 2524 recordings with full expert agreement and calculated
accuracy and F1 scores stratified by lead location. These results are
summarized in Table 5. The table shows that the model performs
robustly across all lead locations, achieving greater than 90%
accuracy in each lead location category.

Further, since the iEEG recordings included four distinct
categories (long episodes, scheduled, magnet, and saturation
recordings) with varying characteristics, we evaluated the
performance of the ViT (86M) model separately across these
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categories. Notably, the model was trained exclusively on long
episode recordings. The results, shown as confusion matrices in
Figure 9, reflect performance on the subset of recordings where all
three experts provided unanimous labels in the clinical validation
dataset (241 patients). Across all categories, the model showed
strong performance, with high counts of true positives and true
negatives. Three out of the four categories exhibited no false
negatives, and false positive rates remained low throughout,
suggesting good generalizability of the model across diverse iEEG
event types.

Most of the iEEG recordings in our dataset were approximately
90 seconds in duration sampled at 250 Hz, with some recordings
extending to 180 seconds and others less than 60 seconds. A
distribution of durations for the 2,524 recordings in the clinical
validation dataset where all experts agreed on labels is shown
in Figure 10. To evaluate whether recording duration influenced
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TABLE 4 Performance of the electrographic seizure classification models on the clinical validation dataset.

Accuracy F1 score
vs. Exp. 2 vs. Exp. 3 vs. Exp. 2 vs. Exp. 3
ResNet-50 86.9 87.5 85.8 84.3 84.7 84.7
ViT (86M) 90.2 91.3 87.5 87.5 88.6 85.8
2D CNN 83.0 83.5 83.1 80.7 80.9 82.6

The performance of the best-performing model is shown in bold.
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Model performance on iEEG recordings from the clinical validation Predicted Label Predicted Label
dataset with unanimous expert agreement on seizure and
non-seizure labels. FIGURE9
Confusion matrices showing the performance of the ViT model
across four categories of iEEG recordings: long episodes, saturation,
TABLE 5 Accuracy and F1 scores of the ViT (86M) model by lead location, xig?;t; ?g”ddsecr:w:tcigl:coih/ll:ibzilrzfdiséndmates seizure class,
on a subset of the clinical validation dataset from 241 patients where all ’

experts agreed on seizure vs. non-seizure labels.

Lead Location Accuracy F1 Score
MTL 97.4 97.3 1400
MTL-NEO 95.5 94.3 1200
NEO 92.4 90.1
1000
THAL 98.1 96.8 2
c 800
3
O 600
model performance, we analyzed ViT (86M) accuracy on the 400
subset of the clinical validation dataset with full expert agreement,
stratified by recording duration (<50s, >50-<100s, and >100s). As 200
shown in Table 6, accuracies were comparable across these three 0.
categories, indicating that recording duration did not affect model 0 50 100 150 200 250
performance. Lengths of iEEG recordings (seconds)
FIGURE 10
Distribution of iEEG recording durations in the subset of the clinical
3 3 Generalization tO an Idlopathlc validation dataset with full expert agreement on labels.

generalized epilepsy (IGE) dataset

We also evaluated the performance of the ViT (86M) model  patients with IGE who were implanted in the thalamus with the
on a separate iEEG dataset consisting of 136 recordings from 44 ~ NeuroPace® RNS® System. The electrographic characteristics in
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TABLE 6 ViT (86M) model accuracy on iEEG recordings stratified by
recording duration in the clinical validation dataset with full expert
agreement.

iEEG recording Number of Accuracy
duration recordings
<50s 194 93.2
>50-<100s 2,117 96.1
>100s 213 95.7
100
I Accuracy
HEE F1 Score
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g 80
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&
S 70
%]
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ot < ot
NES NES NEg
VIiT (86M)
FIGURE 11
Performance of the ViT model on an out-of-distribution dataset
consisting of iIEEG recordings from patients with IGE implanted in
the thalamus with the NeuroPace® RNS® system.

the IGE population may differ from those in the focal epilepsy
population (Seneviratne et al., 2011), on which the model was
originally trained. Therefore, this evaluation aimed to assess the
ability of the model to generalize to recordings from the IGE
population. The same 3 epileptologists independently labeled each
iEEG recording as a seizure if any channel exhibited generalized
tonic-clonic (GTC) seizure activity, a primary seizure type in IGE.
Recordings were labeled as non-seizure if no channels showed
evidence of GTC activity. The model predictions were compared
against expert labels, and the results are shown in Figure 11. The
model achieved accuracy and F1 scores exceeding 70% across
all three comparisons, with the highest performance observed
against Expert 3, yielding both accuracy and F1 score values
of 82%.

3.4 Explainability

We performed an explainability analysis to investigate which
regions of the input spectrograms influenced seizure and non-
seizure classifications by the ViT model. To do this, we applied
an attention rollout technique (Abnar and Zuidema, 2020), which
aggregates attention weights across all transformer layers to identify
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the input regions that most contributed to the final classification.
Attention maps were computed for iEEG spectrogram channels
in the test set of a representative fold from the 5-fold cross-
validation. From these, we randomly selected 3 predictions where
the model indicated high confidence in the seizure class, and
3 where high confidence was assigned to the non-seizure class.
The resulting attention maps are shown in Figure 12. In these
maps, brighter regions indicate areas that contributed more
strongly to model decisions, reflecting where attention was most
concentrated during classification. In the 3 example predictions
where the model assigned high probability to the seizure class,
the corresponding attention maps show concentrated focus on
high-frequency bands in the iEEG channel spectrograms. These
regions are consistent with electrographic seizure activity typically
associated with focal seizures. In contrast, the 3 non-seizure
examples exhibit more diffuse attention patterns spread across
the entire spectrograms, with no dominant focus on any specific
region. This scattered attention reflects the absence of characteristic
seizure features, resulting in a low predicted probability for
seizure class.

3.5 Error analysis

We conducted an error analysis across all 5 cross-validation
folds to evaluate ViT model performance on the 113-patient
dataset. Specifically, we quantified the percentage of false positives
and false negatives in the test sets of each fold using an
operating threshold of 0.8 for the predicted seizure probabilities.
On average, the ViT model yielded 0.9% =+ 0.2% false positives
and 87% =+ 2.9% false negatives across the 5 folds. False
negatives were defined as seizure-labeled iEEG channels in the
test set that were misclassified by the model as non-seizure, and
false positives were non-seizure labeled channels misclassified
as seizures.

A detailed breakdown of false positive and false negative
percentages per fold is presented in Table 7. To further examine
model errors, we selected one representative fold and applied the
clustering methodology described in subsection 2.4 to cluster the
iEEG channels corresponding to false positive and false negative
predictions separately. Manual inspection of the resulting clusters
revealed that several false positive clusters contained ambiguous
signals that may have been justifiably predicted as seizures by the
ViT model, and vice versa for false negative clusters. Representative
cluster centroids for false positives and false negatives groups are
shown in Figure 13, Figure 14, respectively. For false positives, in
Figure 13, panels A and B show cluster centroids that were correctly
labeled as non-seizure by human labeler, as they lack sustained or
evolving ictal activity, yet were incorrectly classified as seizures by
the model. Conversely, panels C and D depict clusters that likely
reflect true seizure activity, suggesting that the model predictions
may have been correct and the original human labels could be
reconsidered. Similarly, in the false negative clusters shown in
Figure 14, panels A and B display examples that show some seizure
characteristics and were appropriately labeled as seizures by human
labeler, but missed by the model. Panels C and D, however, contain
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FIGURE 12

Explainability analysis showing attention maps for three high-confidence seizure and non-seizure examples. For each class, each row displays an
iIEEG spectrogram (left) alongside its corresponding attention map (right), highlighting the regions the model focused on during classification. The
number inside the left panel indicates the seizure probability predicted by the model.
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TABLE 7 Percentage of false positive and false negative iEEG channels in
the test sets of the 5 cross-validation folds.

Fold number False positive % False negative %

1 0.8 6.8
2 0.8 10.2
3 0.7 13.7
4 1.3 5.5
5 0.7 7.2

non-ictal patterns that the model correctly identified as non-
seizures, indicating that these instances may not represent actual
false negatives.

4 Discussion and conclusion

In this study, we applied a ViT model for the task of
electrographic seizure classification using a large-scale iEEG dataset
collected from patients implanted with the NeuroPace® RNS®
System. The model was trained and evaluated using 5-fold cross-
validation on data from 113 patients (136,878 iEEG recordings).
ViT achieved an average test accuracy of 96.8% across the five
folds. We further validated the model on a clinical validation
dataset consisting of 3010 iEEG recordings from 241 patients. This
dataset was annotated by 3 board-certified epileptologists. On the
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subset of recordings where all experts unanimously agreed on the
seizure or non-seizure labels, the ViT model achieved an accuracy
of 95.8% and an F1 score of 94.8% (Figure 8). This was followed
by the ResNet-50 model with accuracy and F1 scores of 92.7%
and 91.4%, respectively.

Notably, the ViT model
conventional image-based deep learning methods, including a 2D

consistently  outperformed
CNN and a ResNet-50 architecture. The superior performance
of ViT compared to CNNs may be attributed to its ability to
model long-range dependencies and global contextual information
within the spectrogram inputs. Unlike CNNs, which rely on
localized receptive fields and hierarchical feature extraction, the
self-attention mechanism in ViT allows the model to attend
to patterns across the entire input image simultaneously. This
global perspective may be particularly advantageous in identifying
electrographic seizure related features that manifest across broader
temporal or frequency regions in the spectrograms.

In our work, we used time-frequency images as inputs to
the vision transformer model. This choice allowed us to leverage
pretraining on ImageNet, where the model has already learned
useful representations of visual patterns such as edges, textures,
and shapes. By starting from a pretrained state, we leveraged
both the prior knowledge encoded during large-scale pretraining
and the new knowledge acquired from supervised training on
the seizure classification dataset. This approach yielded high
classification accuracy, supporting the effectiveness of using image-
based representations. A practical advantage of the image-based
approach is the ability to tap into the rich ecosystem of pretrained
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FIGURE 13

Cluster centroids from iEEG channels identified as false positives by the model in the test set of a representative fold from the 5-fold cross-validation.
(A, B) Show cluster centroids that were correctly labeled as non-seizure by the human labeler, as they lack sustained or evolving ictal activity, but
were incorrectly classified as seizures by the model. In contrast, (C, D) display clusters that likely reflect true seizure activity, suggesting the model
predictions may have been accurate and the original human labels could be reevaluated.
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models, toolkits, and optimization strategies developed in the
computer vision community, which would not directly apply to
one-dimensional raw spectral inputs. Moreover, we note that
some prior studies in EEG seizure prediction have successfully
adopted time-frequency image representations, further validating
the suitability of this approach (Hussein et al., 2022; Barry et al.,
2021).

The 136,878 recordings in the 113-patient training dataset were
labeled by a NeuroPace employee who was not a board-certified
epileptologist but was trained and supervised by three senior
NeuroPace colleagues, including one board-certified epileptologist.
To manage the large volume of data, labeling was aided by a
clustering method described in subsection 2.4. In this process,
the labeler manually assigned seizure vs. non-seizure labels
to each cluster centroid, which were then propagated to all
recordings in that cluster. To ensure quality, the labeler visually
reviewed all recordings within each cluster using a thumbnail-
based interface and corrected any mislabels that did not align
with the cluster characteristics. The labeler also consulted with
the board-certified epileptologist whenever uncertain about specific
cases. This strategy enabled efficient generation of channel-level
seizure and non-seizure labels for the 113-patient dataset. Because
labeling such a large dataset is extremely time-consuming, board-
certified epileptologists could not feasibly label all recordings
directly. For the final clinical validation, therefore, we used a
separate dataset of 3010 recordings from 241 patients, which
was fully labeled by three board-certified epileptologists without
clustering assistance.

Frontiersin Human Neuroscience

We formed class-balanced iEEG training datasets across the 5
cross-validation folds ensuring that both seizure and non-seizure
classes were equally represented. This made sure that the model
could properly learn the discriminative characteristics of both
classes rather than being biased toward the more prevalent class.
In contrast, our tuning, test, and clinical validation datasets were
not class-balanced, reflecting the natural distribution of seizure
and non-seizure events as captured by the device in real-world
settings. Table 2 shows the natural distribution of seizure/non-
seizure examples by iEEG recording category in the clinical
validation dataset. To account for this class imbalance, we reported
F1 scores alongside accuracy in the evaluation of our models.
The F1 metric, which balances precision and recall, provides a
more informative assessment of model performance when class
distributions are skewed.

The number of patients included in the training and clinical
validation datasets was determined by practical limitations in
human labeling capacity rather than a specific design choice.
For the training set, 136,878 recordings from 113 randomly
selected patients were labeled by a NeuroPace employee under
the supervision of three employees, including a board-certified
epileptologist, with a clustering tool used to accelerate the process
(Barry etal., 2021). In contrast, the clinical validation set comprised
3010 recordings from 241 patients that were labeled independently
by three board-certified epileptologists. This effort required several
months and was conducted without any clustering support, making
it especially time-consuming but also highly valuable as a source of
expert-annotated ground truth.
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FIGURE 14

Cluster centroids from iIEEG channels identified as false negatives by the model in the test set of a representative fold from the 5-fold
cross-validation. (A, B) Display cluster centroids exhibiting some seizure-like characteristics that were correctly labeled as seizures by the human
labeler but were missed by the model. In contrast, (C, D) contain non-ictal patterns that the model correctly classified as non-seizures, suggesting
these instances may not represent actual false negatives and that the original labels may need reconsideration.
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Our dataset included various categories of iEEG recordings,
namely long episodes, magnet swipes, scheduled recordings, and
saturation events, as defined in subsection 2.2. For the cross-
validation phase, we used long episodes exclusively from 113
patients. This decision was based on both the prevalence and
content of long episodes: they represent approximately 50% of
the full NeuroPace® iEEG dataset and typically contain a mixture
of both electrographic seizure activity and non-seizure baseline
activity. As such, they provided a rich source of diverse examples
for model training. During final clinical validation, we also assessed
model performance across the different iEEG recording categories,
as shown in Figure 9. The model showed strong performance
across all categories, with low rates of both false positives and
false negatives. These results suggest that although the model
was trained exclusively on long episode recordings, it was able
to generalize effectively to other types of recordings, including
magnet, scheduled, and saturation events. This generalization may
be attributed to the diversity within long episodes, which likely
captured a wide range of electrographic patterns present across
different recording types.

Although the model was primarily trained and evaluated on
iEEG recordings from patients with focal epilepsy (mesiotemporal,
neocortical or thalamic leads), we also tested its performance
on a separate dataset consisting of 136 recordings from 44
patients with IGE (thalamic leads). In this dataset, expert
reviewers labeled each recording based on the presence or
absence of GTC seizure activity. The ViT model generalized
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to this epilepsy population, achieving accuracy and F1 scores
exceeding 75% across all expert comparisons (Figure 11). These
results suggest that the model is capable of extending beyond its
training distribution and performing effectively in other epilepsy
subtypes. One possible explanation is that GTC seizures may
share certain time and frequency domain features with focal
electrographic seizures, which the model was able to learn during
training.

We found that using color time-frequency spectrogram inputs
consistently improved model performance across all architectures
(Figure 6). For both the ViT and ResNet models, ImageNet-
pretrained weights were used to initialize the networks prior to
training on our iEEG spectrogram dataset. It is possible that the
color-specific representations learned during ImageNet pretraining
contributed to better feature extraction when applied to color
spectrograms. This transfer of color-relevant features may have
enhanced the ability of the models to differentiate seizure from
non-seizure activity in the iEEG datasets.

ViT showed slightly improved performance when stimulation
artifacts were removed from the iEEG recordings, although the
difference was not statistically significant (Figure 7). This modest
improvement suggests that the ViT was relatively robust to
the presence of artifacts and noise. Despite the added signal
contamination, the model was still able to effectively learn the
distinction between seizure and non-seizure activity, indicating
resilience in real-world clinical scenarios where artifacts are
often unavoidable.
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For the 23-patient test datasets, we evaluated model
performance at the iEEG channel level within each of the 5
cross-validation folds, assessing the classification of individual
channels as seizure or non-seizure. In contrast, for the final
clinical validation datasets, we conducted evaluation at the iEEG
record level. Specifically, a recording was labeled as a seizure if
any channel within it was marked as a seizure by the model or
expert, and as a non-seizure only if all channels were labeled
as non-seizure. This shift in methodology reflects real-world
clinical priorities, where clinicians are primarily interested in
identifying whether a seizure occurred in a recording regardless
of the specific channel when reviewing large volumes of data over
time. Given the scale of the datasets and the clinical relevance
of recording-level trends, evaluating model performance at the
record level provides a more meaningful measure of its utility
in practice.

The explainability analysis (subsection 3.4) provides insight
into how the ViT model processes iEEG spectrogram inputs when
classifying seizure and non-seizure events. In high-confidence
seizure predictions, attention was focused on localized high-
frequency components of the spectrograms, which correspond well
to electrographic features typically observed in focal seizures. This
suggests that the model has learned to associate certain time-
frequency patterns with seizure activity. In contrast, attention
during non-seizure classifications was more diffusely distributed
across the spectrograms, consistent with the absence of well-
defined seizure signatures. This dichotomy between focused and
scattered attention patterns adds interpretability to the model
and offers a qualitative explanation for its outputs. While
these findings are encouraging, several opportunities exist for
improvements to this analysis. These maps could be reviewed
by expert epileptologists to assess whether the model attends to
meaningful electrographic features, enabling human-in-the-loop
validation. Similarly, attention maps across incorrect predictions
(false positives and false negatives) could be studied to identify
systematic biases or failure modes in the model, potentially guiding
targeted improvements in data labeling, model architecture, or
training. In the example predictions shown in Figure 12, the high
frequency bands contributed prominently to the classification of
electrographic seizures by the model. Our focal dataset includes a
wide range of electrographic seizure onset patterns, such as low-
voltage fast activity, hypersynchronous onset, delta/theta onset, and
semi-rhythmic spiking. The model may focus on different regions
in the images depending on the onset pattern. A comprehensive
characterization of onset patterns across the full dataset would
require a dedicated labeling effort that is currently outside the scope
of this work. Nonetheless, this is an important and interesting
direction. In future work, we aim to develop a model that can
classify between distinct seizure onset types using supervised labels
of onset patterns, where similar explainability analyses could be
performed to systematically examine how the model differentiates
among distinct onset types.

The error analysis presented in subsection 3.5 revealed that
while many false positive and false negative cluster centroids
suggested opportunities for improved model performance through
additional labeled data, there were also instances where the ViT
model predictions appeared more accurate than the original human
labels. This discrepancy may, in part, be attributed to the clustering
methodology (described in subsection 2.4) used to assist the manual
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labeling process. While clustering facilitated scalable labeling, it
may have also introduced inconsistencies or label noise in some
cases. These findings highlight the importance of label quality in
training and evaluating our AI models. Addressing these potential
labeling errors by refining the clustering-assisted labeling workflow
could enhance the reliability of the training data and improve
model accuracy. Nonetheless, it is important to note that the overall
percentage of false positives and false negatives across all folds was
low, as summarized in Table 7, underscoring the robustness of the
ViT model even in the presence of minor labeling inconsistencies.
False positive percentages across all folds were consistently lower
than false negative percentages, which is a favorable outcome.
In real-world clinical settings, the accurate detection of true
electrographic seizures is more important, as these events directly
inform treatment decisions and therapeutic interventions.

Our model processes the full time-frequency spectrogram of
each iEEG recording and identifies abnormal/ictal activity patterns
that enable classification as seizure or non-seizure. While the
spectrogram encodes both temporal and spectral information,
our analysis in this study did not focus on isolating specific
time points (e.g., immediately preceding seizure onset) that
drive the classification. Instead, the model integrates abnormal
activity patterns across the entire recording to reach its decision.
The broader question of whether there are consistent signal
patterns that are predictive of upcoming seizures but not
necessarily ictal lies in the realm of seizure forecasting and is
an important area for future work. Moreover, once we have
supervised labeled data specifying which recordings correspond
to distinct seizure onset types, it would be valuable to investigate
whether different categories of non-ictal patterns preferentially
precede different seizure onset types. We plan to explore this in
future studies.

Hyperparameters such as learning rate, optimizer, and
dropout rate were selected through manual tuning informed
by initial experiments. Given the large size of the training
dataset and the computational demands of training deep neural
networks, more comprehensive hyperparameter optimization
techniques such as grid search or Bayesian optimization
were not feasible in the current study. However, future work
could explore these methods to potentially further enhance
model performance.

The ViT model was designed to process one iEEG channel
at a time, making an independent determination about whether
the input channel contained seizure activity. However, in clinical
practice, epileptologists often consider information from multiple
channels simultaneously when labeling a channel or determining
whether an entire recording reflects seizure activity. In future
work, a promising direction would be to extend the current ViT
framework to incorporate multi-channel context, allowing the
model to leverage inter-channel relationships and better mimic
expert behavior.

In future work, it would be valuable to expand the dataset with
more labeled recordings from the focal epilepsy population and
improve generalizability to other epilepsy populations such as IGE
and Lennox-Gastaut syndrome (LGS). These conditions exhibit
distinct electrographic characteristics: IGE is typically associated
with rhythmic activity < 13 Hz and generalized spike-and-wave
discharges, while LGS is often characterized by low-voltage fast
activity (Bullinger et al., 2025). Obtaining expert-labeled data from
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these populations and fine-tuning the model accordingly may
enhance its ability to accurately classify electrographic seizures
across diverse epilepsy types.

Currently, the ViT model is designed for binary classification,
distinguishing between seizure and non-seizure activity.
However, expanding its capabilities to support multiclass
such as

classification of different seizure onset patterns

low-voltage fast activity, spike-and-wave discharges, and
rhythmic delta activity, would be a valuable advancement.
This could provide clinicians with more granular insights into
the types of seizure onsets occurring in patients over time,
aiding in both clinical decision-making and the generation
of new scientific questions regarding seizure evolution and

treatment response.
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