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Introduction: Epilepsy is diagnosed in about 1% of the world’s population 
as a common brain disease. Timely prediction and detection of seizures can 
significantly improve the lives of epilepsy patients.
Methods: The study has garnered considerable attention over recent years, 
particularly in the context of advanced computational methods. However, 
current seizure detection methods still face several limitations, including high 
inter-patient variability, noisy and non-stationary EEG signals, and the limited 
generalization ability of single deep learning (DL) models. This paper presents 
an Ensemble of Deep Transfer Learning (EDTL) models for personalized 
seizure detection. The technique combines ResNet and EfficientNet methods 
along with a customized two-Dimensional Convolutional Neural Network 
(2DCNN) method for patient-specific seizure detection using EEG data. Raw 
data from the recordings of seizure patients is transformed into EEG signals. 
Personalized sliding windows are used to extract and store spectrograms for 
the patients. Patient-specific features are extracted from individual records. 
EEG signals are normalized for consistent scaling. Short Time Fourier Transform 
(STFT) is then applied for continuous window slicing over short time intervals. 
To address the limitations above, the proposed EDTL framework integrates 
general-purpose pre trained models with a domain-specific custom 2DCNN 
to capture complementary features. This design improves robustness against 
noise, enhances adaptability to patient-specific variability, and achieves better 
generalization compared to individual models. The transformed data is then 
passed on to train and optimize the models independently and later combined 
into EDTL.
Results and discussion: A comparative evaluation is performed using standard 
evaluation metrics on two datasets, the CHB-MIT Scalp EEG Database and 
Turkish Epilepsy EEG Dataset. The proposed EDTL models are evaluated against 
the individual models on standard performance metrics, with the EDTL achieving 
the highest performance of 99.23% on the AUC.
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1 Introduction

Epileptic seizures are caused by abnormal electrical activity in the 
brain and can severely affect a person’s health and quality of life. Early 
detection is critical for preventing serious complications. 
Electroencephalogram (EEG) signals are widely used for seizure 
detection due to their ability to capture brain activity in real time. 
However, seizure patterns vary greatly across individuals, making it 
difficult to design a single model that works well for all patients (Amin 
et al., 2020). This inter-patient variability arises from variations in 
brain shape, seizure patterns, and signal characteristics, necessitating 
a customized approach for seizure detection. Epilepsy, a prevalent 
neurological disorder that impacts individuals across all age groups, 
can be fatal if not detected timely and left untreated. A seizure is a 
neurological condition characterized by a complex chemical change 
in brain nerve cells, generating electrical signals (Amin et al., 2020). 
This can lead to mild jerks, severe convulsions, and impaired 
movement, bowel and bladder control, and cognitive functions. It also 
disrupts consciousness and cognitive functions (Sharmila and 
Geethanjali, 2016). Epilepsy affects 70% of adults and 30% of children, 
with 70% etiology unknown. Recurrent seizures are classified as 
partial or generalized, with one type being partial (Sharmila and 
Geethanjali, 2019).

To address the complexity of EEG signals, DL methods have been 
widely explored. RNNs, especially LSTM and GRU networks 
(Shekokar and Dour, 2022; Chauhan and Vig, 2015), are popular for 
modeling sequential EEG data. While GRUs are faster and lighter, 
LSTMs are more accurate with long sequences, making them preferred 
in many studies. CNNs are often combined with LSTM or GRU to 
capture the temporal features of EEG along with the spatial features. 
However, standard encoder-decoder LSTM models may lose 
important information due to compression into a single vector. 
Attention mechanisms have been introduced to solve this issue by 
helping the models to prioritize more significant segments of the EEG 
signals (Guo et al., 2020).

The typical morphology of EEG data is altered during an epileptic 
seizure. Consequently, three phases can be  identified for the state 
categorization of epileptic patients, based on the diverse properties of 
EEG signals. These three phases are normal, preictal, and ictal. Prior 
to the actual initiation of a seizure, numerous electrical abnormalities 
start in the cerebrum of epileptic patients. This is referred to as the 
preictal period. To identify seizures at this time, it is essential to 
document the electrical abnormalities in the patient’s brain during the 
shift from normal to the ictal phase (Kulaseharan et al., 2019; Zazzaro 
et al., 2021; Van Klink et al., 2019; Fountas and Kapsalaki, 2019; Subasi 
et al., 2019; Acharya et al., 2018; Lauretani et al., 2021; Carbó-Carreté 
et al., 2020; Morales Chacón et al., 2021; Takagi et al., 2020). Thus, it 
is imperative to identify epileptic seizures early, in the preictal stage. 
The lives of the patients can possibly be  saved by allowing the 
practitioners to implement preventative measures in a timely manner 
to avert harmful and perhaps fatal incidents. In EEG examinations, 
the brain’s electrical activity is detected by electrodes. A paste like 
medium or cap is used to affix these electrodes to the scalp.

EEG signal patterns change significantly during a seizure, typically 
progressing through preictal, ictal, and postictal phases. Detecting 
seizures in the preictal phase is vital, as it allows preventive action. To 
record the EEG signals, electrodes are placed on the scalp, which 
makes real-time, non-invasive monitoring possible. Traditional 

seizure detection relies on handcrafted features and large labeled 
datasets, which can be  time-consuming and hard to generalize. 
Training DL from scratch for each patient is also not practical. 
Transfer Learning (TL) offers a better approach by adapting pre 
trained models to new tasks using smaller data. This helps build faster, 
more accurate seizure detection models tailored to individual patients.

Traditional seizure detection strategies frequently rely upon vast 
classified records and handmade functions that are hard work-in-
depth and can fail to generalize across patients (Sharmila and 
Geethanjali, 2016). DL has demonstrated considerable promise in 
automating function extraction and improving detection accuracy; 
however, training a DL model from scratch for each patient is 
resource-intensive and impractical. TL, which permits the model of 
pre-trained fashions to new responsibilities or domains with limited 
statistics, offers a feasible option to cope with this mission (Sharmila 
and Geethanjali, 2019; Kulaseharan et  al., 2019). By leveraging 
expertise from a regularly occurring base version trained on a big 
dataset, TL can create efficient and optimized models for individual 
patients, achieving better accuracy and efficiency in seizure detection.

In this paper, we propose an ensemble of pertained DL models 
combined with patient-specific optimization, called EDTL. This 
model adapts general knowledge from existing models to each 
patient’s data, improving detection performance with fewer resources. 
We chose commonly used DL models (ResNet, EfficientNet, and a 
custom CNN) for comparison to show the benefits of transfer learning 
in seizure detection. While these may not reflect the most recent 
SOTA models, they are widely accepted in literature and provide a 
solid baseline. Future work will extend this study by comparing EDTL 
with more advanced, SOTA approaches on larger datasets.

The contributions of this work are:

	 1	 A comprehensive, computationally efficient framework for 
personalized seizure detection.

	 2	 Analysis of pre trained models, together with transfer learning 
and domain-specific optimization.

	 3	 Empirical evaluation of the proposed EDTL approach, 
demonstrating its advantages using standard 
evaluation protocols.

The paper is organized as follows: Section 2 offers a review of the 
existing literature on seizure detection techniques specifically and the 
applications of transfer learning in the healthcare domain generically. 
Proposed materials and methods are delineated in Section 3, 
encompassing aspects such as dataset preparation, model architecture, 
and transfer learning strategies. Section 4 outlines the experimental 
framework and presents the results, emphasizing the performance of 
personalized models in comparison to baseline methods. In Section 
5, the paper is concluded by presenting a summary of the principal 
findings, a discussion of the potential limitations, as well as suggesting 
potential possibilities for future research.

2 Literature review

Most automated seizure detection systems employ ML and DL 
techniques that consist primarily of two processes: feature engineering 
and classification (Boonyakitanont et al., 2020; Anusha et al., 2012; 
Adeli et al., 2007). The non-stationary characteristics of EEG signals 
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necessitate considerable effort and specialized knowledge in the 
feature extraction process to analyze and assess the signals (Farooq 
et al., 2023; Siddiqui et al., 2020). An important concept to consider is 
the automatic learning and extraction of features directly from raw 
data, independent of human expertise. Manasvi Bhat et al. (2019) 
conducted an analysis utilizing actual data sourced from the Epilepsy 
Ecosystem. Various signal processing techniques and mathematical 
operations are utilized for extracting features from the data following 
preprocessing. Models are developed utilizing diverse combinations 
of these characteristics alongside supervised learning methods such 
as XG Boost and Extra Trees Classifier, applicable to both generalized 
and patient-specific contexts. These models are designed to endure 
noise and maintain robustness. It is observed that the generalized 
model utilizing XG Boost, trained with enduring features, attains a 
higher level of accuracy.

Almustafa (2020) identify a correlation between seizures and 
abnormal brain activity associated with epilepsy, characterized by a 
range of symptoms. Furthermore, dataset prediction employing 
feature selection based on attribute variance was performed. The 
dataset on epileptic seizures was classified using various methods. 
Further analysis examined various factors, including the divisions of 
the training and testing sets in the random forest, as well as the 
learning rate, regularization parameter, and loss function of the 
stochastic gradient descent (SGD). The findings indicate that 
enhancing classification accuracy is attainable through the fine-tuning 
of specific classifier parameters. Researchers have vastly utilized 
Machine learning (ML) algorithms for the identification of seizures in 
newborns. Purnima and Kattepura (2023) have explored ML 
algorithms for detecting neonatal seizures. The utilization of ML to 
tackle this challenge is promising, as early seizure prediction may 
enable implanted neuro stimulators to intervene and avert seizures. 
The study employs machine learning and DL methodologies to 
forecast epileptic episodes. ML-based architecture is presented by the 
study that exhibits optimal performance on prediction, like earlier 
models, while requiring minimal configuration. The study evaluates 
various methods for seizure prediction using EEG and various ML 
models, including advanced techniques. The proposed classifier is 
trained on a publicly available dataset of NICU seizures recorded at 
Helsinki University Hospital and evaluated utilizing standard 
evaluation methods.

Amin et al. (2020) introduced an innovative approach utilizing 
ML techniques for the automatic identification and diagnosis of 
epileptic episodes in EEG recordings. The author identifies and 
categorizes characteristics through wavelet analysis and arithmetic 
coding. The text examines the challenges and opportunities associated 
with predicting epileptic seizures through the application of ML 
techniques. This article offers insights into the identification of gaps 
and challenges in accurate seizure detection. Furthermore, it proposes 
potential avenues for future research in this domain. The research 
methodology included a thorough literature review, focusing on the 
selection process of pertinent papers and the use of abstract-based key 
wording to determine the most relevant keywords. The study presents 
a classification that encapsulates the advanced solutions for the issue 
(Walther et al., 2023). This study introduces a new architecture that 
employs deep recurrent neural networks (DRNN) for the automated 
identification of patient-specific seizures using scalp EEG data. 
Furthermore, the objective is to map seizure EEG signals to facilitate 
efficient processing using the DRNN. This mapping allows the DRNN 

architecture to concurrently learn the spatial as well as the temporal 
characteristics of raw seizure EEG signals. DRNN architecture is 
evaluated using long-term scalp EEG data from five subjects, 
amounting to approximately 34 h, sourced from a publicly available 
dataset. The proposed network effectively identifies all seizure 
occurrences, exhibiting an average detection delay of 7.0 s. Statsenko 
et al. (2023) examine the potential benefits and challenges associated 
with utilizing this data to improve seizure detection, ultimately aiming 
to enhance the quality of life for patients. Additionally, the author 
examines the application of ML in analyzing and extracting features 
from EEG signals, presenting methods to attain high 
classification accuracy.

Omar et al. (2024) presented a distinctive classification method 
for EEG time series utilizing RNNs that incorporates LSTM networks. 
Their proposed deep network effectively extracts and visualizes 
distinct temporal patterns from sequential EEG data. Features are 
derived automatically from unprocessed raw EEG data, eliminating 
the necessity for preliminary processing and reducing the manual 
effort involved in feature construction. Asif et al. (2020) present a DL 
approach utilizing a dense CNN to train robust features across various 
temporal and spatial EEG data spectrum resolutions. This enables 
precise classification of seizure types among patients. In Xu et  al. 
(2020), have analyzed EEG data for the automatic identification of 
epileptic seizures, proposing the 1D CNN-LSTM model. The analysis 
is performed by initially preprocessing and normalizing the raw EEG 
signal data. The normalized EEG sequence data is utilized to construct 
a 1D CNN, which efficiently extracts information. Lebal et al. (2023) 
introduced a collection of DL tools, Epilepsy-Net, designed for the 
processing of EEG signals, with the objective of distinguishing 
between epileptic and non-epileptic seizures. The Epilepsy-Net 
framework integrates various components, including 1D-CNNs, 
RNNs, and attention mechanisms. Specific models instantiate each 
algorithm: the convolutional block attention module for attention 
mechanisms, gated recurrent units for RNNs, and ResNet and 
Inception for CNNs. However, the author validated Epilepsy-Net 
through the analysis of multiple extensive public EEG signal datasets. 
The experimental results demonstrate that the attention-based DL 
technique is highly effective in accurately detecting epilepsy from EEG 
signals. Riyazulla Rahman (2023) has discussed in detail the 
application of advanced computational methods for the automation 
of the detection of epileptic seizures, specifically focusing on DL 
techniques. The performance of various DL architectures, including 
SeizNet, 2D-CNN, and 1D-CNN, was highlighted. Geethanjali (2015) 
have utilized binary classification to propose a method that divides the 
EEG signal activity into seizure and non-seizure classes. The method 
has been shown to efficiently differentiate between the two classes. The 
k-NN classifier is used to execute multiple classification tasks. Mirjalili 
et al. (2014) propose several features that improve the efficacy of the 
seizure prediction model. Significant evaluations are observed in 
learning methodologies involving RNNs, CNNs, and SVM. They have 
implemented a multitude of kernel functions for improving the 
predictive performance of the classification models. Another study 
Moldovan (2022) employed an RNN model for the recognition of 
epileptic seizures via binary classification. An RNN model was 
employed for the classification of monitored data, utilizing LSTM for 
the first layer and the Horse Optimization Algorithm (HOA) for the 
dropout layer. Manocha et al. (2022) employed a one-dimensional 
CNN for classifying EEG time series data included a one-dimensional 
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CNN module combined with a ResNet module to determine the 
presence of epilepsy, resulting in an AUC of 98%. Nanthini et  al. 
(2022) utilized an LSTM model to train, detect, and predict epileptic 
seizures, including state changes and chaotic EEG seizures. This 
research aimed at developing a small, low-cost wearable device.

Deep transfer learning has been vastly studied for disease 
prediction (Shaikh et al., 2025; Khaliki and Başarslan, 2024) generally 
and seizure prediction specifically (Lopes et  al., 2024; Wei and 
Mooney, 2023). Similarly, an ensemble of deep machine learning 
models has also been successfully applied for the prediction of 
different diseases (Shaikh et al., 2025; Mou et al., 2024; Reshan et al., 
2023; Saleh Al Reshan et al., 2024). He et al. (2024) have proposed 
SeizureLSTM, where the raw EEG signals are decomposed into 
different frequency bands by utilizing Tunable Q Wavelet Transform. 
These are subsequently used for extracting the informative signal 
features, using 1DCNN and spectral features. The work relates to 
seizure detection using an optimized LSTM-based deep model with 
attention. Yuan et al. (2024) presented a hybrid model for seizure 
prediction combining DenseNet architecture for fine-grained spatial 
feature extraction and Vision Transformer (ViT) architecture for 
global context modeling, with an attention fusion layer to adaptively 
combine their outputs. They leverage the efficiency of DenseNet for 
capturing hierarchical features, while self-attention mechanisms of 
ViT are utilized for global feature representation. The methodology 
involves preprocessing raw EEG signals using STFT to create time-
frequency matrices, which are then processed through the hybrid 
network for seizure prediction. The researchers evaluated their model 
using the CHB-MIT dataset, employing leave-one-out cross-validation 
for performance assessment. The approach is related to the proposed 
work since it uses EEG with DenseNet and attention mechanism, both 
often leveraged in seizure-related neural decoding. Apart from the 
work specifically related to seizure detection, the field can also benefit 
from the methods applied in relevant disciplines. The Reseek-
Arrhythmia model Yang et al. (2024) uses DL techniques for automatic 
heart arrhythmia detection and classification. The model leverages 
ResNet architectures and transfer learning approaches, making it 
relevant for similar signal processing challenges in medical 

diagnostics. The model focuses on arrhythmia detection using DL 
architectures (ResNet), which is highly relevant as arrhythmia and 
seizure detection share signal processing and classification challenges. 
Transfer learning approaches are often employed in arrhythmia 
detection, making this a directly relevant comparison (Yang 
et al., 2025).

According to our knowledge, many existing methods for seizure 
detection use machine learning or DL with manually selected features. 
While models like CNNs and LSTMs perform well, they often require 
a lot of expert knowledge and do not work equally well for all patients. 
After reviewing the literature review, it can be observed that some 
recent studies use transfer learning and attention-based models, but 
most still lack proper personalization and are not efficient enough for 
real-time use.

The proposed research offers a simple and efficient approach that 
combines pre trained models, transfer learning, and tuning for specific 
patients. It helps improve accuracy and speed while adapting to each 
person’s data. This makes the system more flexible and useful in real-
world healthcare settings. Unlike earlier models, the proposed 
framework learns directly from the data with less manual effort. It also 
supports faster deployment across different users, making it suitable 
for clinical use.

3 Materials and methods

The proposed methodology uses an ensemble of optimized DL 
algorithms using transfer learning for personalized seizure detection. 
The publicly available CHB-MIT database is employed to train and 
optimize the models separately and subsequently combined to form 
an ensemble of the models. The dataset is explained in detail in the 
experiments section. Figure 1 exhibits the step-by-step process of the 
methods and materials used in the work. Raw EEG signals are 
preprocessed, normalized, and segmented. The STFT is applied to 
generate overlapping spectrogram windows. The spectrograms are 
then used for feature extraction and fed into pre-trained models 
(ResNet-18, EfficientNet-B0, and a 2DCNN). The models are 

FIGURE 1

Framework of the proposed methodology.
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optimized individually, combined into an ensemble, and finally 
evaluated using standard performance metrics.

3.1 Preprocessing and segmentation

Preprocessing is performed to extract the EEG signals from the 
recordings of seizure patients. Personalized sliding windows are used 
to extract and store spectrograms for the patients. Patient-specific 
features are extracted from individual records. EEG signals are 
normalized for consistent scaling.

3.2 EEG signal normalization

EEG signals were normalized for consistent scaling across patients 
and recording sessions. Normalization ensured that variations in 
amplitude due to electrode placement or recording conditions did not 
bias the model training process.

3.3 STFT method

STFT is then applied for continuous window slicing over short time 
intervals. STFT is used for avoiding the loss of information in the form 
of spectral leakage by generating overlapping spectrogram windows. In 
STFT, a signal is broken into overlapping segments, the Fourier 
Transform is applied to each segment, and the results are combined. For 
a given discrete signal   s n , the STFT is defined in Equation 1 as:

	
( ) π

−
−

=
= −      ∑

1
2 /

0
,

N
j kn N

n
X t k x n w n tR e

	
(1)

where ( ),X t k  is the result obtained at time index t and 
frequency index k,   x n  is the input signal,   w n  is the windowing 
function for the current sample index n, R is the step size overlap 
between the segments, and N is the length of the segment. A 
spectrogram is then computed as the squared magnitude of the 
STFT ( ) ( )=

2
, ,S t k X t k . We have chosen a window size of 8 s with 

a step size of 4.

3.4 Spectrogram generation

To further reduce the noise, spectrograms are generated from the 
EEG signals. This step improves the performance of the individual as 
well as the ensemble of the models. Figure  2 shows the sample 
spectrograms extracted.

3.5 Hann window function

The Hann Windowing function (Pielawski and Wählby, 2020) 
  w n  used be defined in Equation 2 as

	

π  = − ≤ ≤ −      −  

1 21 cos ,0 1
2 1

nw n n N
N 	

(2)

The windowed signal   wx n  is then obtained using the product of 
the original input signal   x n  and the Han window   w n , i.e., 

=          .wx n x n w n . The Hann Window function minimizes the 
spectral leakage by smoothly tapering the signal to zero at the edges, 
minimizing the effect of sharp discontinuities. The spectrograms and 
the labeled windows are then passed to the models.

FIGURE 2

Spectrograms.
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In addition, EEG windows with seizure and non-seizure activity 
are highlighted across multiple channels in Figure  3. Red traces 
represent seizure activity, characterized by abnormal and synchronized 
electrical discharges, while blue traces represent non-seizure (normal) 
activity. This visualization provides a comparative overview of the 
temporal and spatial differences in brain signal patterns between 
seizure and non-seizure states.

3.6 Proposed 2-phase model

A 2-Phase training model is proposed for personalized seizure 
detection. The steps involved can be seen in Figure 4. Raw EEG signals 
are passed to the model as input and converted in window segments. 
Each segment is then converted into a spectrogram using STFT. Single 
channel 2D images represented frequency vs. time are generated as 
output to be passed to CNN-based deep transfer learning models as 
input. Ensemble of deep transfer learning models is then applied 
following a 2-Phase training approach for personalized seizure 
detection. Phase 1 is the base training phase, where the models are 
trained on all the patients except the target patient. The goal is to learn 
the general transferable seizure patterns. Phase 2 is the fine-tuning or 
personalization phase, where the base models are fine-tuned on part 
of patient’s data. The target patient’s data is split into training and 
validation data where the base models are fine-tuned on the training 
data of the target patient. This fine-tuning allows the models to adapt 
to the patient-specific EEG patterns. The learning rate in the 

fine-tuning phase is kept lower than the base training phase to avoid 
the pre trained weights from being destroyed. After the fine-tuning 
phase, each patient has three models. Ensemble of the models is then 
applied final predictions.

3.6.1 Phase-1: pre-trained model optimization for 
transfer learning

Each model was trained using appropriate optimization strategies 
to address challenges such as overfitting and vanishing gradients. 
Regularization techniques, dropout layers, early stopping, and 
learning rate scheduling were applied. Transfer learning was employed 
for ResNet-18 and EfficientNet-B0, allowing faster convergence with 
limited data, while the custom 2D-CNN was optimized through 
architecture tuning tailored to seizure spectrograms.

Two pre trained models and a customized 2DCNN model were 
trained on the processed data. The ResNet model (Yang et al., 2025), 
has been widely utilized in medical image processing applications 
(Haq et al., 2023). ResNet is a CNN-based architecture that utilizes 
residual connections to effectively train very deep networks by 
alleviating the network degradation and vanishing gradient problems 
encountered in traditional neural networks. Residual blocks are 
formed by using the skip connections, where some layers are skipped 
while activating the connections of layers to further layers in the 
network. Stacking of the residual blocks then constitutes the ResNet. 
ResNet prefers to learn fitting to residual mapping rather than 
underlying mapping. The ResNet18 variant of the ResNet network has 
been utilized in this study as one of the pre trained models in the 

FIGURE 3

EEG windows showing seizure (red) and non-seizure (blue) activity across different channels.
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EDTL models for seizure detection. Due to its relatively lightweight 
architecture, consisting only of 18 layers, compared to the deeper 
variants like ResNet-50 and ResNet-101, the number of trainable 
parameters is significantly reduced. The RenNet18 network has been 
widely utilized in various fields. Despite its reduced architecture, 
ResNet18 maintains powerful feature extraction capabilities balanced 
with computational efficiency. Regularization is used to skip the layers 
that degrade the performance of the network. The deep network 
model is degenerated into a shallow network by applying a constant 
mapping function Equation 3, thus avoiding the gradient explosion 
problem. The residual module, denoted by H(x) in the residual 
network, given the input x, is computed as:

	 ( ) ( )= +H x F x x 	 (3)

where F(x) is the output of the nonlinear transformation function 
applied to the input x through a sequence of two convolutional layers. 
That is, ( ) ( )( )( )( )( )= 2 2 1 1 1F x BN Conv ReLU BN Conv x .

The gradient of ( )H x  is computed using the formula in 
Equation 4:

	 ( ) ( )′ ′= +1H x F x 	 (4)

The above formula shows that, no matter how small the gradient 
F′(x) becomes, the total gradient value, represented by H'(x), will 
always be equivalent to a minimum of 1, due to the addition of 1 to 
the gradient value of ( )F x . This is a crucial property of the ResNet 
model since this prevents the gradient from going too small during its 
propagation through the layers, thus effectively solving the gradient 

vanishing problem. The problem is caused by the increasing depth of 
the network in deep neural networks without residual connections. 
The second pre trained model used was EfficientNet (Uddin et al., 
2024). EfficientNet is also a CNN-based architecture designed for 
performance and efficiency. The model utilizes compound scaling 
methods to scale the dimensions of width, depth, and resolution 
uniformly by using a compound coefficient. The lightweight 
EfficientNet-B0 variant is used in this work. We  also utilized a 
customized two-dimensional convolutional neural model (2DCNN). 
The model consists of multiple layers designed to optimize feature 
extraction. The models were trained and optimized separately, 
utilizing the transfer learning capabilities of the pre trained models.

3.6.2 Phase-2: ensemble of deep transfer learning
The three optimized models were stacked together to form an 

ensemble of a deep transfer learning method. The models are 
stacked to improve the overall prediction accuracy by aggregating 
the predictions from the three pre trained models. Each of the pre 
trained models learns to focus on different features or 
representations of input data. The combined output of the EDTL 
models thus significantly improves the predicted performance. 
Logistic regression is used as a meta-model to combine the 
predictions of the pre trained models to make the final decision. 
The proposed method combines the strengths of general-purpose 
pre trained models with the domain-specific custom 2DCNN 
model. The method combines the unique strengths of the 
individual models to leverage their complementary feature 
extraction capabilities. The ResNet model utilizes residual 
connections to learn deep hierarchical features, which can 
be particularly useful in domains with complex feature extraction 
requirements, such as spectrogram-based seizure signals, where it 

FIGURE 4

EDTL for personalized seizure detection.
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is important to capture long-range dependencies. EfficientNet 
enhances the efficiency of the EDTL by balancing computational 
efficiency and performance by scaling depth, width, and 
resolution. The custom 2DCNN is tailored to the domain specific 
features of seizure spectrograms and time-frequency 
representations. It utilizes domain specific architecture 
optimization by applying specialized convolution filters for 
capturing seizure patterns.

Raw EEG signals are transformed into spectrograms and are 
separately fed into each model, where each model independently 
extracts its own feature representation. The features extracted from the 
spectrograms are concatenated and passed to the next layer. Final 
predictions are then performed using the meta-model. The detailed 
structure of the proposed efficient model highlights the key 
components contributing to its improved performance, which can 
be seen in Figure 5.

To address potential training challenges such as vanishing 
gradient and overfitting, multiple strategies were employed. Residual 
connections in ResNet-18 and batch normalization in EfficientNet-B0 
stabilized gradient flow, while ReLU activations in the 2DCNN further 
mitigated gradient vanishing. To reduce overfitting, dropout and L2 
weight regularization were applied in addition to data augmentation. 
Early stopping and learning rate scheduling were also utilized to avoid 
over-training and improve model generalization.

4 Results

4.1 Description of the dataset

Two real world datasets were used to evaluate the performance of 
the proposed model. The details of the datasets are explained below.

4.1.1 CHB-MIT scalp EEG database
CHB-MIT Scalp EEG database made publicly available by Shoeb 

(2010) was used to evaluate the performance of the proposed 
EDTL. The database contains EEG recordings of pediatric patients 
with intractable seizures. The recordings consist of 23 cases recorded 
from 22 subjects. Five of the subjects were males with ages between 3 
and 22, while 17 subjects were females, with ages between 1.5 and 19. 
Recordings for one subject were repeated after a gap of 1.5 years. The 
recordings were conducted post anti-seizure medication withdrawal 
during their monitoring for possible surgical intervention and 
assessment of their seizure characteristics, at the Children’s Hospital 
Boston. There are a total number of 664 .edf files in the dataset, with 
each case containing 9–42 .edf files for each subject. One hundred 
twenty-nine of the files are records of seizures. The dataset  also 
contains the subject information. One hundred ninety-eight of the 
records include seizures and are annotated accordingly. The protected 
health information and dates in the original files have been 
anonymized with surrogate details without disturbing the time 
relationships between the individual files.

4.1.2 Turkish epilepsy EEG dataset
The Turkish Epilepsy EEG Dataset was released by Tasci et al. 

(2023) and is publicly available. The dataset consists of 71 healthy 
control signals and 50 seizure signals with a sampling frequency 
of 500 Hz.

4.2 Hyper parameters tuning

ResNet-18 architecture was used with transfer learning enabled, 
allowing the model to benefit from general image features, even when 
applied to spectrogram-based data. The input channels are modified to 
adapt the ResNet-18 for 1-channel data while retaining the architecture’s 
spatial feature extraction capacity. The classification head is also 
modified for binary classification. It reduces the dimensionality of the 
output features from ResNet’s last convolutional block. Fully connected 
256-dimensional hidden layer is used to add representational capacity, 
allowing the network to learn higher level abstractions from the features 
extracted by the convolutional backbone. This transformation acts as a 
feature bottleneck, helping the model to prioritize the most informative 
components, such as seizures in EEG signals, while suppressing the less 
relevant information. To enable the model to separate data classes in 
high-dimensional feature spaces by learning non-linear, complex 
decision boundaries, Rectified Linear Unit (ReLU), a non-linear 
activation function, is applied. The model randomly drops 25% of the 
neurons during training. This acts as a regularize, mitigating the risk of 
overfitting—especially important when training on medical datasets 
like EEG data. Sigmoid activation function converts the single output 
logit into a probability in the range [0, 1], allowing the output to 
be interpreted as the likelihood of a seizure event. Similar modifications 
also applied for EfficientNet to adapt the model for processing single-
channel EEG spectrogram and suiting to binary classification. The 
custom 2DCNN model is composed of six sequential convolutional 
layers, to extract hierarchical features from the input data, followed by 
an adaptive pooling layer, to adjust the special dimensions to a fixed 
size. Finally, fully connected layers are added to produce final 
predictions. The details of hyper parameters can be found in Table 1.

4.3 Optimization of the models

Each of the pre trained model and the customized 2DCNN were 
optimized independently before being stacked for transfer learning. 
The models were trained on the dataset over 200 epochs with early 
stopping enabled with a patience value of 20. Figure  6 shows the 
optimization of the 2DCNN model on the given dataset. The loss error, 
precision, recall, accuracy, F1 measure and AUC have been reported 
for the training and validation set. The figure shows that the model 
stabilizes over the iterations and achieves early convergence and shows 
tendencies to over fit afterwards. Initially, the loss on both the training 
data and validation data decreases while the accuracy shows consistent 
improvement, where the training accuracy reaches over 96% and the 
validation accuracy crossing 88%. Then the model tends to over fit with 
validation error not improving over the epoch, while the accuracy of 
the model stabilizes. Early stopping is used to avoid overfitting of the 
model. Precision performance of the model on training data shows 
steady improvement, reaching up to 93%, while the validation precision 
shows variation with the best value reaching up to 90%. Recall metrics 
of the model shows consistency with training recall reaching up to 90% 
and the validation recall achieving a maximum value of 78%. The 
F1-measure of the model remains consistent for both the training and 
validation sets, with the training F1 score crossing 91% and validation 
F1 score reaching up to 78%. The AUC performance measure shows 
consistency over all the epochs. The AUC score for the training set of 
the model reaches up to 98% and for the validation set the score 
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FIGURE 5

Architecture of the proposed EDTL model.
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achieves a maximum value of 94%. Model with best validation loss is 
saved to be further used as part of the ensemble learning.

Figure 7 shows the optimization of the pre trained ResNet model 
on the given dataset. The loss error, precision, recall, accuracy, F1 
measure and AUC have been reported for the training and validation 
set. As shown in the Figure, like the customized 2DCNN model, the 
ResNet model stabilizes over the iterations and achieves early 
convergence. However, the model shows tendencies to over fit 

afterwards, with widening difference between the training and 
validation loss. Initially, both the training and validation loss decrease 
while the accuracy shows consistent improvement, with the training 
accuracy reaching over 98% and the validation accuracy crossing 90%. 
Then the model tends to over fit with validation error not improving, 
or getting worse, over the subsequent epochs, while the accuracy of the 
model stabilizes. Early stopping is used to avoid overfitting of the model. 
Precision of the model on training data shows steady improvement, 

TABLE 1  Hyper parameters for custom 2DCNN, ResNet-18, and EfficientNet-B0.

Component 2DCNN ResNet-18 EfficientNet-B0

Input channels 1 (EEG spectrogram) 1 (modified from RGB) 1 (modified from RGB)

Pre trained weights No Yes (ImageNet) Yes (ImageNet)

Initial conv layer
Conv2d [1, 64, kernel_size = (2.4), 

padding = (1.2)]

Conv2d (1, 64, kernel_size = 7, stride = 2, 

padding = 3)

Conv2d (1, 32, kernel_size = 3, 

stride = 2, padding = 1)

Intermediate convs
5 more conv layers with increasing channels 

(up to 256)
ResNet-18’s default residual blocks

EfficientNet-B0’s compound scaling 

blocks

Pooling MaxPool2d, AdaptiveAvgPool2d MaxPooling, GlobalAvgPool
Mobile Inverted Bottleneck + 

GlobalAvgPool

Fully connected layers 256 → 128 → 64 → 1 + Sigmoid 512 → 256 → 1 + Sigmoid 1,280 → 1 + Sigmoid (via classifier)

Dropout Two Dropouts (p = 0.25) One Dropout (p = 0.25) One Dropout (p = 0.2)

Activation ReLU + Sigmoid ReLU + Sigmoid Swish (internally) + Sigmoid

Final activation Sigmoid() (for BCELoss) Sigmoid() (for BCELoss) Sigmoid() (for BCELoss)

Architecture type Fully custom convolutional architecture Residual network with skip connections Compound-scaled efficient architecture

FIGURE 6

Optimization of the 2DCNN model.
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reaching up to 98%, while the validation precision shows comparatively 
low variation with the best value reaching up to 90%. Recall metrics of 
the model shows continued improvement on the training data, reaching 
up to 98% and the validation recall achieving a maximum value of 84%. 
The F1-measure of the model remains consistent for both the training 
and validation sets, with the training F1 score crossing 98% and 
validation F1 score reaching up to 84%. The AUC performance measure 
shows consistency over all the epochs. The AUC score for the training 
set of the model reaches up to 100% and for the validation set the score 
stabilizes at a maximum value of 96%. Model with best validation loss 
is saved to be further used as part of the ensemble learning.

Figure 8 shows the optimization of the pre trained EfficientNet 
model on the given dataset. The loss error, precision, recall, accuracy, 
F1 measure and AUC have been reported for the training and 
validation set. The figure suggests that, unlike the customized 2DCNN 
and ResNet models, the EfficientNet model converges over more 
iterations and shows comparatively stable performance. The model 
shows less tendencies to over fit, with comparatively lower gaps 
between the training and validation loss. Moreover, the validation loss 
is stable over epochs as compared to other models, where the 
performance on the validation set decreases after certain iteration, 
indicating overfitting. Initially, both the training and validation loss 
decrease while the accuracy shows consistent improvement, with the 
training accuracy reaching up to 98% and the validation accuracy 
crossing 92%. Then the model generalizes better to the validation set 
across the validation metrics, with validation error showing 
improvement, and stabilizing over the subsequent epochs, while the 

accuracy of the model stabilizes. Again, early stopping is employed to 
avoid overfitting of the model. Precision performance of the model on 
training data shows steady improvement, reaching up to 98%, while 
the validation precision shows comparatively low variation with the 
best value reaching up to 90%. Recall metrics of the model shows 
continued improvement on the training data, reaching up to 98% and.

The EDTL model is an ensemble of 2DCNN, ResNet-18, and 
EfficientNet-B0, where features from each base model are extracted and 
concatenated for final classification. Unlike individual neural networks, 
the ensemble does not update weights during training; it only combines 
the predictions of the pre-trained base models. Therefore, epoch-wise 
training or validation loss/accuracy curves are not available for 
EDTL. Its performance is reported using final evaluation metrics 
(Accuracy, Precision, Recall, F1-score, AUC) on the test set. However, 
ensemble evaluation curves can be simulated epoch by averaging the 
evaluation metrics across the individual models, shown in Figure 9. 
Since each model might converge at the different number of epochs, 
the model with maximum number of epochs is identified and the 
missing epochs for the other models are padded with the last value to 
run the ensemble curves for as long as the longest trained model.

4.4 Performance evaluation on the test 
data

The proposed EDTL mechanism is evaluated and compared 
against the optimized DL models. 15% of the dataset is used as a test 

FIGURE 7

Optimization of the ResNet model.
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FIGURE 8

Optimization of the EfficientNet model.

FIGURE 9

Ensemble (average) training and validation.
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set to evaluate the performance of the model on unseen data. The 
optimized models are comparatively evaluated on the test data, and 
the proposed EDTL method shows considerable improvement over 
the individual pre trained DL models. The confusion matrices of the 
models can be seen in Figure 10a, depicts the confusion matrix of 
2DCNN model on the test data. The model correctly classifies 17,821 
samples into non-seizure and 5,407 samples into seizure classes. The 
model incorrectly classifies 862 samples into non-seizure and 1,575 
samples into seizure classes. Figure 10b depicts the confusion matrix 
for the ResNet method. The model accurately classifies 18,072 samples 
into non-seizure and 6,346 samples into seizure classes. The model 
inaccurately classifies 611 samples into non-seizure class and 636 
samples into seizure class, showing an improved performance. 
Figure 10c depicts the confusion matrix for the EfficientNet method. 
The model accurately classifies 17,954 samples into non-seizure class 
and 6,264 samples into seizure class and inaccurately classifies 729 
samples into non-seizure and 718 samples into seizure class. The 
confusion matrix of the EDTL for the test data is depicted in 
Figure 10d. The model significantly outperforms the deep transfer and 

custom models. It correctly classifies 18,332 samples into non-seizure 
and 6,503 samples into seizure classes. We can observe the inaccuracy 
of the model with the classification of 416 seizure samples into 
non-seizure class and 414 non-seizure samples into seizure class.

Table  2 compares the performance of EDTL on the most 
frequently used evaluation metrics in the literature with the standard 
deep transfer and customized CNN models. The model shows 
significant performance improvement over most of the metrics. The 
best scores have been highlighted.

The EDTL model achieves a score of 96.65% for accuracy, score of 
94.07% for precision, a recall score of 93.57%, a score of 93.82% for 
F1, and an AUC score of 99.23%. The performance of the EDTL 
compared to the other models suggests considerable improvement 
without increasing the complexity of the model. Figure 11 presents a 
comparative analysis of the AUC values obtained from the evaluated 
models. In Figure 11, Model 1 displays the ResNet18 method, Model 
2 shows the EfficientNet-B0, and Model 3 shows the 2DCNN model. 
The proposed EDTL framework is shown by the Ensemble 
mechanism. The proposed framework significantly outperforms the 

FIGURE 10

Confusion matrices for the models on test data; (a) for 2DCNN; (b) for ResNet18; (c) for EfficientNet-B0; (d) for EDTL.
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other models on the AUC score, achieving a score of 99.23%. The 
ResNet method performs second best with an AUC score of 98.97%, 
followed by the EfficientNet method with a score of 98.52%. Although 
the customized 2DCNN shows good performance with an AUC score 
of 96.71%, the deep transfer learning-based models significantly 
outperform the model, with the proposed EDTL performing better 
overall than the other models, as shown in Figure 12.

To further analyze the efficiency of the proposed methodology, 
the computational requirements of individual models and the 
ensemble were measured in terms of training time per epoch and 
inference time per sample, as illustrated in Figure  13. The figure 
compares training time per epoch (in seconds) and inference time per 
sample (in milliseconds) for Custom 2DCNN, ResNet-18, 
EfficientNet-B0, and the proposed ensemble (EDTL). The ensemble 
requires more computation but delivers superior performance and 
robustness across datasets.

Table 3 shows how our model compares with other studies that 
used the same CHB-MIT EEG dataset. The comparison has been 
performed with results reported in the original works or the relevant 
literature. Some models, such as LSTM with handcrafted features, gave 
high accuracy (98.43%), while others, like 3D CNN and Vision 
Transformers, had lower results, with accuracy around 80–85%. The 
EDTL model performed very well, with 96.65% accuracy, 94.07% 
sensitivity, and a high AUC of 99.23%. This shows our model is strong, 
balanced, and works better than many existing methodologies.

Compared to previous studies, the proposed ensemble models 
showed clear improvements in performance. Earlier works, such as 
those by Taherinavid et al. (2024), Wang et al. (2021), He et al. (2016), 
and Godoy et  al. (2022), and Shoeb (2010) achieved moderate 
accuracy and sensitivity, while methods relying on handcrafted 
features, such as Cao et al. (2025) and Pielawski and Wählby (2020), 
performed strongly but were limited by feature engineering 
requirements. The slightly lower performance of our proposed 
methodology on the CHB-MIT Scalp EEG dataset compared to Cao 
et al. (2025), Pielawski and Wählby, (2020) (96.65% vs. 98.43%) may 
be due to differences in preprocessing and feature engineering. Cao 
et al. relied on handcrafted features with an LSTM model, whereas our 
method uses an ensemble-based approach without 
handcrafted features.

However, when applied to the Turkish Epilepsy EEG dataset, our 
methodology achieved competitive or even higher results (e.g., 98.07% 
accuracy with stacking ensemble and 99.77% specificity), which 
highlights the robustness and generalizability of the proposed 
approach across different datasets. In contrast, the proposed EDTL 
and stacking ensemble models demonstrated consistently high 
accuracy, sensitivity, specificity, and AUC across both the CHB-MIT 

and Turkish Epilepsy EEG datasets. This highlights their robustness 
and reliability, indicating that ensemble-based approaches are more 
effective for epilepsy detection compared to single DL models used in 
earlier studies.

5 Discussion

Approximately 1% of the global population is affected by epilepsy, 
representing millions of individuals worldwide who could benefit 
from improved seizure detection and prediction technologies. The 
development of advanced computational methods for detecting 
seizures has garnered significant attention over the past several years, 
motivated by their potential to significantly improve the quality of life 
for individuals affected by epilepsy through more accurate, timely, and 
automated intervention strategies. A comprehensive, computationally 
efficient framework for personalized seizure detection is presented in 
this work, performing rigorous analysis of pre trained models, 
augmenting the pre trained models and domain-specific optimization. 
Empirical evaluation of the proposed approach is performed, 
demonstrating its advantages in terms efficiency and flexibility, 
without compromising the performance. EDTL is efficient because it 
uses pre trained networks, reducing training time and computational 
costs. It is also flexible, as it performs well on raw EEG data from 
different patients without needing complex feature extraction. The 
proposed EDTL framework represents a sophisticated approach to 
personalized seizure detection that addresses the intrinsically variable 
nature of seizure patterns across individual patients. The methodology 
combines the strengths of established deep learning architectures—
ResNet and EfficientNet—with a customized 2DCNN specifically 
designed for this application.

The preprocessing pipeline demonstrates careful consideration of 
the unique characteristics of EEG data. Raw recordings from seizure 
patients undergo transformation into standardized EEG signals, 
followed by the application of personalized sliding windows to extract 
spectrograms tailored to individual patients. This patient-specific 
approach is crucial given the significant inter-patient variability in 
brain structure, seizure patterns, and signal characteristics. The 
normalization of EEG signals ensures consistent scaling across different 
recordings, while the STFT enables continuous analysis of signals over 
short time intervals, capturing the dynamic nature of seizure activity.

The training strategy employed demonstrates a methodical approach 
to model optimization. Each component of the ensemble—the pre trained 
models and the customized 2DCNN—were optimized independently by 
over 200 epochs with early stopping mechanisms to prevent overfitting. 
The patience value of 20 epochs provided sufficient opportunity for model 
convergence while maintaining computational efficiency. The customized 
2DCNN model exhibited typical DL training characteristics, with both 
training and validation losses decreasing initially while accuracy improved 
consistently. Training accuracy reached over 96% with validation accuracy 
exceeding 88%. However, the model showed tendencies toward overfitting 
as training progressed, with validation metrics stabilizing while training 
metrics continued to improve. The precision reached 93% on training 
data and 90% on validation data, while recall achieved 90 and 78%, 
respectively. The F1-measure maintained consistency across both sets, 
with training F1 crossing 91% and validation F1 reaching 78%. The AUC 
performance demonstrated strong discriminative ability, achieving 98% 
on training data and 94% on validation data. The ResNet model 

TABLE 2  Comparison of the models’ performance.

Model Accuracy Precision Recall F1 
Score

AUC

ResNet 95.73% 90.64% 94% 92.29% 98.97%

EfficientNet 94.61% 89.31% 91.11% 90.20% 98.52%

2DCNN 91.54% 87.40% 80.54% 83.83% 96.71%

EDTL 

(Ensemble) 96.65% 94.07% 93.57% 93.82% 99.23%

Bold values mean high performance of the EDTL (Ensemble) model.
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demonstrated superior performance characteristics compared to the 
custom 2DCNN, achieving over 98% training accuracy and 90% 
validation accuracy. This pertained model showed excellent precision and 
recall metrics, with training values reaching 98% for both measures and 
validation precision and recall achieving 90 and 84%, respectively. The 
F1-scores reflected this strong performance, with training F1 exceeding 

98% and validation F1 reaching 84%. Notably, the AUC performance was 
exceptional, achieving 100% on training data and 96% on validation data, 
indicating excellent discriminative capability. EfficientNet displayed the 
most stable training characteristics among the three models, converging 
over more iterations but showing less tendency to over fit. The model 
achieved an accuracy of 98% on training data and 92% on validation data, 

FIGURE 11

Performance on ROC curve of the EDTL compared with other DL models.

FIGURE 12

Comparison of the EDTL performance with DL models.
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representing the highest validation performance among the individual 
models. The precision and recall metrics were consistent with ResNet, 
reaching 98% on training data and 90 and 84% on validation data, 
respectively. The F1-scores mirrored these results, with training F1 

crossing 98% and validation F1 reaching 84%. The AUC performance was 
strong at 99% for training and 97% for validation data. The confusion 
matrix analysis reveals the practical performance of each model in 
differentiating the seizure from non-seizure states. The custom 2DCNN 

FIGURE 13

Computational requirements of the proposed models.

TABLE 3  Comparison of proposed method with SOTA on the CHB-MIT EEG dataset.

Study Model Data Accuracy Sensitivity Specificity AUC

Hu et al. (2020) and 

Taherinavid et al. 

(2024)

Bi LSTM Raw EEG — 93.61% 91.85%

Cao et al. (2025) and 

Pielawski and 

Wählby (2020)

LSTM Handcrafted features 98.43% 97.84% 99.21% —

Wang et al. (2021) 

and He et al. (2016)

3D CNN Raw EEG 80.5% 85.8% 75.1% —

Deng et al. (2023) 

and Xu et al. (2023)

HViT-DUL Raw EEG — 87.9 —

Ozcan and Erturk 

(2019) and Tan and 

Le (2019)

3D CNN Raw EEG — 85.71 — 0.096

Godoy et al. (2022) 

and Shoeb (2010)

Temporal multi-

channel vision 

transformer

Raw EEG 82.0 80.0

Proposed

EDTL (Ensemble) CHB-MIT Scalp 

EEG

96.65% 94.07% 93.57% 99.23%

EDTL (Stacking 

Ensemble)

Turkish Epilepsy 

EEG

98.07% 97.69% 97.97% 99.77%

EDTL (Ensemble) Turkish Epilepsy 

EEG

92.66% 83.98% 91.08% 99.72%
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correctly classified the majority of samples in both classes but showed 
higher misclassification rates compared to the pre trained models. ResNet 
demonstrated superior classification performance with higher true 
positives and true negatives across both training and validation datasets. 
EfficientNet showed balanced performance with good accuracy in both 
seizure and non-seizure classification.

The ensemble approach leveraged the complementary strengths 
of these individual models, achieving the highest overall performance 
of 99.23% on the AUC ROC curve. This superior performance 
demonstrates the value of combining different architectural 
approaches and optimization strategies in a unified framework.

The personalized nature of the proposed framework addresses a 
critical challenge in seizure detection—the significant variability in 
seizure manifestations across different patients. By incorporating 
patient-specific features and personalized sliding windows, the system 
can adapt to individual characteristics while maintaining high 
accuracy. The achievement of 99.23% AUC performance suggests that 
the system could provide clinically relevant seizure detection with 
minimal rates for both false positives and false negatives. The 
computational efficiency of the framework is enhanced using transfer 
learning, which reduces training time and computational requirements 
compared to training large models from scratch. The ensemble 
approach, while requiring multiple models, achieves superior 
performance that justifies the additional computational overhead.

5.1 Limitations and future directions

The study demonstrates the potential of ensemble deep transfer 
learning for personalized seizure detection. Despite the promising 
performance of the model, several considerations warrant further 
investigation. The generalizability of the approach across different 
EEG recording systems and patient populations requires validation. 
Additionally, the real-life implementation of the ensemble system in 
clinical settings would need to address computational constraints and 
response time requirements.

We used the CHB-MIT Scalp EEG dataset for evaluating the 
model. The dataset is large and complex with long-term recordings 
of EEG from multiple patients, making it suitable for evaluating 
personalized seizure detection. The framework’s reliance on high-
quality EEG data and the need for patient-specific optimization may 
present challenges in resource-limited clinical environments. Due to 
the depth and complexity of this dataset, we focused our analysis on 
it. However, in the future, we intend to evaluate the generalization 
capability of the EDTL model by exploring additional datasets and 
compare it with results from other studies. Future work could 
explore methods to reduce the computational requirements while 
maintaining the high performance achieved by the current 
ensemble approach.

6 Conclusion

Epilepsy is diagnosed in millions of people (about 1% percent of the 
world’s population) as a common brain disease. The study and prediction, 
and detection of seizures can significantly improve the lives of epilepsy 
patients. The study has attracted vast attention over recent years, 
specifically involving advanced computation methods. This paper 

presents EDTL models for personalized seizure detection. The method 
combines ResNet and EfficientNet methods along with a customized 
2DCNN method for patient specific seizure detection using EEG data. 
Raw data from the recordings of seizure patients is transformed into EEG 
signals. Personalized sliding windows are used to extract and store 
spectrograms for the patients. Patient specific features are extracted from 
individual records. EEG signals are normalized for consistent scaling. 
STFT is then applied for continuous window slicing over short time 
intervals. The transformed data is then passed on to train and optimize 
the models independently and later combined into EDTL. A comparative 
evaluation is performed using standard evaluation metrics. The 
performance of the individual method is compared with the proposed 
EDTL, with the EDTL having the highest performance of 99.23% on the 
AUC ROC curve. The ensemble of pre trained models along with the 
customized CNN based models with domain specific optimization 
ensures that optimum results are obtained without compromising the 
efficiency of computation.
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