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Introduction: Epilepsy is diagnosed in about 1% of the world's population
as a common brain disease. Timely prediction and detection of seizures can
significantly improve the lives of epilepsy patients.

Methods: The study has garnered considerable attention over recent years,
particularly in the context of advanced computational methods. However,
current seizure detection methods still face several limitations, including high
inter-patient variability, noisy and non-stationary EEG signals, and the limited
generalization ability of single deep learning (DL) models. This paper presents
an Ensemble of Deep Transfer Learning (EDTL) models for personalized
seizure detection. The technique combines ResNet and EfficientNet methods
along with a customized two-Dimensional Convolutional Neural Network
(2DCNN) method for patient-specific seizure detection using EEG data. Raw
data from the recordings of seizure patients is transformed into EEG signals.
Personalized sliding windows are used to extract and store spectrograms for
the patients. Patient-specific features are extracted from individual records.
EEG signals are normalized for consistent scaling. Short Time Fourier Transform
(STFT) is then applied for continuous window slicing over short time intervals.
To address the limitations above, the proposed EDTL framework integrates
general-purpose pre trained models with a domain-specific custom 2DCNN
to capture complementary features. This design improves robustness against
noise, enhances adaptability to patient-specific variability, and achieves better
generalization compared to individual models. The transformed data is then
passed on to train and optimize the models independently and later combined
into EDTL.

Results and discussion: A comparative evaluation is performed using standard
evaluation metrics on two datasets, the CHB-MIT Scalp EEG Database and
Turkish Epilepsy EEG Dataset. The proposed EDTL models are evaluated against
the individual models on standard performance metrics, with the EDTL achieving
the highest performance of 99.23% on the AUC.
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personalized seizure detection, transfer learning, EEG signal analysis, deep learning,
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1 Introduction

Epileptic seizures are caused by abnormal electrical activity in the
brain and can severely affect a person’s health and quality of life. Early
detection is critical for preventing serious complications.
Electroencephalogram (EEG) signals are widely used for seizure
detection due to their ability to capture brain activity in real time.
However, seizure patterns vary greatly across individuals, making it
difficult to design a single model that works well for all patients (Amin
et al., 2020). This inter-patient variability arises from variations in
brain shape, seizure patterns, and signal characteristics, necessitating
a customized approach for seizure detection. Epilepsy, a prevalent
neurological disorder that impacts individuals across all age groups,
can be fatal if not detected timely and left untreated. A seizure is a
neurological condition characterized by a complex chemical change
in brain nerve cells, generating electrical signals (Amin et al., 2020).
This can lead to mild jerks, severe convulsions, and impaired
movement, bowel and bladder control, and cognitive functions. It also
disrupts consciousness and cognitive functions (Sharmila and
Geethanjali, 2016). Epilepsy affects 70% of adults and 30% of children,
with 70% etiology unknown. Recurrent seizures are classified as
partial or generalized, with one type being partial (Sharmila and
Geethanjali, 2019).

To address the complexity of EEG signals, DL methods have been
widely explored. RNNs, especially LSTM and GRU networks
(Shekokar and Dour, 2022; Chauhan and Vig, 2015), are popular for
modeling sequential EEG data. While GRUs are faster and lighter,
LSTMs are more accurate with long sequences, making them preferred
in many studies. CNNs are often combined with LSTM or GRU to
capture the temporal features of EEG along with the spatial features.
However, standard encoder-decoder LSTM models may lose
important information due to compression into a single vector.
Attention mechanisms have been introduced to solve this issue by
helping the models to prioritize more significant segments of the EEG
signals (Guo et al., 2020).

The typical morphology of EEG data is altered during an epileptic
seizure. Consequently, three phases can be identified for the state
categorization of epileptic patients, based on the diverse properties of
EEG signals. These three phases are normal, preictal, and ictal. Prior
to the actual initiation of a seizure, numerous electrical abnormalities
start in the cerebrum of epileptic patients. This is referred to as the
preictal period. To identify seizures at this time, it is essential to
document the electrical abnormalities in the patient’s brain during the
shift from normal to the ictal phase (Kulaseharan et al., 2019; Zazzaro
etal., 2021; Van Klink et al., 2019; Fountas and Kapsalaki, 2019; Subasi
etal, 2019; Acharya et al,, 2018; Lauretani et al., 2021; Carb6-Carreté
et al., 2020; Morales Chacon et al., 2021; Takagi et al., 2020). Thus, it
is imperative to identify epileptic seizures early, in the preictal stage.
The lives of the patients can possibly be saved by allowing the
practitioners to implement preventative measures in a timely manner
to avert harmful and perhaps fatal incidents. In EEG examinations,
the brain’s electrical activity is detected by electrodes. A paste like
medium or cap is used to affix these electrodes to the scalp.

EEG signal patterns change significantly during a seizure, typically
progressing through preictal, ictal, and postictal phases. Detecting
seizures in the preictal phase is vital, as it allows preventive action. To
record the EEG signals, electrodes are placed on the scalp, which
makes real-time, non-invasive monitoring possible. Traditional
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seizure detection relies on handcrafted features and large labeled
datasets, which can be time-consuming and hard to generalize.
Training DL from scratch for each patient is also not practical.
Transfer Learning (TL) offers a better approach by adapting pre
trained models to new tasks using smaller data. This helps build faster,
more accurate seizure detection models tailored to individual patients.

Traditional seizure detection strategies frequently rely upon vast
classified records and handmade functions that are hard work-in-
depth and can fail to generalize across patients (Sharmila and
Geethanjali, 2016). DL has demonstrated considerable promise in
automating function extraction and improving detection accuracy;
however, training a DL model from scratch for each patient is
resource-intensive and impractical. TL, which permits the model of
pre-trained fashions to new responsibilities or domains with limited
statistics, offers a feasible option to cope with this mission (Sharmila
and Geethanjali, 2019; Kulaseharan et al., 2019). By leveraging
expertise from a regularly occurring base version trained on a big
dataset, TL can create efficient and optimized models for individual
patients, achieving better accuracy and efficiency in seizure detection.

In this paper, we propose an ensemble of pertained DL models
combined with patient-specific optimization, called EDTL. This
model adapts general knowledge from existing models to each
patient’s data, improving detection performance with fewer resources.
We chose commonly used DL models (ResNet, EfficientNet, and a
custom CNN) for comparison to show the benefits of transfer learning
in seizure detection. While these may not reflect the most recent
SOTA models, they are widely accepted in literature and provide a
solid baseline. Future work will extend this study by comparing EDTL
with more advanced, SOTA approaches on larger datasets.

The contributions of this work are:

1 A comprehensive, computationally efficient framework for
personalized seizure detection.

2 Analysis of pre trained models, together with transfer learning
and domain-specific optimization.

3 Empirical evaluation of the proposed EDTL approach,
demonstrating its standard

advantages  using

evaluation protocols.

The paper is organized as follows: Section 2 offers a review of the
existing literature on seizure detection techniques specifically and the
applications of transfer learning in the healthcare domain generically.
Proposed materials and methods are delineated in Section 3,
encompassing aspects such as dataset preparation, model architecture,
and transfer learning strategies. Section 4 outlines the experimental
framework and presents the results, emphasizing the performance of
personalized models in comparison to baseline methods. In Section
5, the paper is concluded by presenting a summary of the principal
findings, a discussion of the potential limitations, as well as suggesting
potential possibilities for future research.

2 Literature review

Most automated seizure detection systems employ ML and DL
techniques that consist primarily of two processes: feature engineering
and classification (Boonyakitanont et al., 2020; Anusha et al., 2012;
Adeli et al., 2007). The non-stationary characteristics of EEG signals
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necessitate considerable effort and specialized knowledge in the
feature extraction process to analyze and assess the signals (Farooq
etal., 2023; Siddiqui et al., 2020). An important concept to consider is
the automatic learning and extraction of features directly from raw
data, independent of human expertise. Manasvi Bhat et al. (2019)
conducted an analysis utilizing actual data sourced from the Epilepsy
Ecosystem. Various signal processing techniques and mathematical
operations are utilized for extracting features from the data following
preprocessing. Models are developed utilizing diverse combinations
of these characteristics alongside supervised learning methods such
as XG Boost and Extra Trees Classifier, applicable to both generalized
and patient-specific contexts. These models are designed to endure
noise and maintain robustness. It is observed that the generalized
model utilizing XG Boost, trained with enduring features, attains a
higher level of accuracy.

Almustafa (2020) identify a correlation between seizures and
abnormal brain activity associated with epilepsy, characterized by a
range of symptoms. Furthermore, dataset prediction employing
feature selection based on attribute variance was performed. The
dataset on epileptic seizures was classified using various methods.
Further analysis examined various factors, including the divisions of
the training and testing sets in the random forest, as well as the
learning rate, regularization parameter, and loss function of the
stochastic gradient descent (SGD). The findings indicate that
enhancing classification accuracy is attainable through the fine-tuning
of specific classifier parameters. Researchers have vastly utilized
Machine learning (ML) algorithms for the identification of seizures in
newborns. Purnima and Kattepura (2023) have explored ML
algorithms for detecting neonatal seizures. The utilization of ML to
tackle this challenge is promising, as early seizure prediction may
enable implanted neuro stimulators to intervene and avert seizures.
The study employs machine learning and DL methodologies to
forecast epileptic episodes. ML-based architecture is presented by the
study that exhibits optimal performance on prediction, like earlier
models, while requiring minimal configuration. The study evaluates
various methods for seizure prediction using EEG and various ML
models, including advanced techniques. The proposed classifier is
trained on a publicly available dataset of NICU seizures recorded at
Helsinki University Hospital and evaluated utilizing standard
evaluation methods.

Amin et al. (2020) introduced an innovative approach utilizing
ML techniques for the automatic identification and diagnosis of
epileptic episodes in EEG recordings. The author identifies and
categorizes characteristics through wavelet analysis and arithmetic
coding. The text examines the challenges and opportunities associated
with predicting epileptic seizures through the application of ML
techniques. This article offers insights into the identification of gaps
and challenges in accurate seizure detection. Furthermore, it proposes
potential avenues for future research in this domain. The research
methodology included a thorough literature review, focusing on the
selection process of pertinent papers and the use of abstract-based key
wording to determine the most relevant keywords. The study presents
a classification that encapsulates the advanced solutions for the issue
(Walther et al., 2023). This study introduces a new architecture that
employs deep recurrent neural networks (DRNN) for the automated
identification of patient-specific seizures using scalp EEG data.
Furthermore, the objective is to map seizure EEG signals to facilitate
efficient processing using the DRNN. This mapping allows the DRNN
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architecture to concurrently learn the spatial as well as the temporal
characteristics of raw seizure EEG signals. DRNN architecture is
evaluated using long-term scalp EEG data from five subjects,
amounting to approximately 34 h, sourced from a publicly available
dataset. The proposed network effectively identifies all seizure
occurrences, exhibiting an average detection delay of 7.0 s. Statsenko
et al. (2023) examine the potential benefits and challenges associated
with utilizing this data to improve seizure detection, ultimately aiming
to enhance the quality of life for patients. Additionally, the author
examines the application of ML in analyzing and extracting features
from EEG
classification accuracy.

signals, presenting methods to attain high

Omar et al. (2024) presented a distinctive classification method
for EEG time series utilizing RNNs that incorporates LSTM networks.
Their proposed deep network effectively extracts and visualizes
distinct temporal patterns from sequential EEG data. Features are
derived automatically from unprocessed raw EEG data, eliminating
the necessity for preliminary processing and reducing the manual
effort involved in feature construction. Asif et al. (2020) present a DL
approach utilizing a dense CNN to train robust features across various
temporal and spatial EEG data spectrum resolutions. This enables
precise classification of seizure types among patients. In Xu et al.
(2020), have analyzed EEG data for the automatic identification of
epileptic seizures, proposing the 1D CNN-LSTM model. The analysis
is performed by initially preprocessing and normalizing the raw EEG
signal data. The normalized EEG sequence data is utilized to construct
a 1D CNN, which efliciently extracts information. Lebal et al. (2023)
introduced a collection of DL tools, Epilepsy-Net, designed for the
processing of EEG signals, with the objective of distinguishing
between epileptic and non-epileptic seizures. The Epilepsy-Net
framework integrates various components, including 1D-CNNG,
RNNs, and attention mechanisms. Specific models instantiate each
algorithm: the convolutional block attention module for attention
mechanisms, gated recurrent units for RNNs, and ResNet and
Inception for CNNs. However, the author validated Epilepsy-Net
through the analysis of multiple extensive public EEG signal datasets.
The experimental results demonstrate that the attention-based DL
technique is highly effective in accurately detecting epilepsy from EEG
signals. Riyazulla Rahman (2023) has discussed in detail the
application of advanced computational methods for the automation
of the detection of epileptic seizures, specifically focusing on DL
techniques. The performance of various DL architectures, including
SeizNet, 2D-CNN, and 1D-CNN, was highlighted. Geethanjali (2015)
have utilized binary classification to propose a method that divides the
EEG signal activity into seizure and non-seizure classes. The method
has been shown to efficiently differentiate between the two classes. The
k-NN classifier is used to execute multiple classification tasks. Mirjalili
et al. (2014) propose several features that improve the efficacy of the
seizure prediction model. Significant evaluations are observed in
learning methodologies involving RNNs, CNNs, and SVM. They have
implemented a multitude of kernel functions for improving the
predictive performance of the classification models. Another study
Moldovan (2022) employed an RNN model for the recognition of
epileptic seizures via binary classification. An RNN model was
employed for the classification of monitored data, utilizing LSTM for
the first layer and the Horse Optimization Algorithm (HOA) for the
dropout layer. Manocha et al. (2022) employed a one-dimensional
CNN for classifying EEG time series data included a one-dimensional
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CNN module combined with a ResNet module to determine the
presence of epilepsy, resulting in an AUC of 98%. Nanthini et al.
(2022) utilized an LSTM model to train, detect, and predict epileptic
seizures, including state changes and chaotic EEG seizures. This
research aimed at developing a small, low-cost wearable device.
Deep transfer learning has been vastly studied for disease
prediction (Shaikh et al., 2025; Khaliki and Basarslan, 2024) generally
and seizure prediction specifically (Lopes et al., 2024; Wei and
Mooney, 2023). Similarly, an ensemble of deep machine learning
models has also been successfully applied for the prediction of
different diseases (Shaikh et al., 2025; Mou et al., 2024; Reshan et al.,
2023; Saleh Al Reshan et al., 2024). He et al. (2024) have proposed
SeizureLSTM, where the raw EEG signals are decomposed into
different frequency bands by utilizing Tunable Q Wavelet Transform.
These are subsequently used for extracting the informative signal
features, using IDCNN and spectral features. The work relates to
seizure detection using an optimized LSTM-based deep model with
attention. Yuan et al. (2024) presented a hybrid model for seizure
prediction combining DenseNet architecture for fine-grained spatial
feature extraction and Vision Transformer (ViT) architecture for
global context modeling, with an attention fusion layer to adaptively
combine their outputs. They leverage the efficiency of DenseNet for
capturing hierarchical features, while self-attention mechanisms of
ViT are utilized for global feature representation. The methodology
involves preprocessing raw EEG signals using STFT to create time-
frequency matrices, which are then processed through the hybrid
network for seizure prediction. The researchers evaluated their model
using the CHB-MIT dataset, employing leave-one-out cross-validation
for performance assessment. The approach is related to the proposed
work since it uses EEG with DenseNet and attention mechanism, both
often leveraged in seizure-related neural decoding. Apart from the
work specifically related to seizure detection, the field can also benefit
from the methods applied in relevant disciplines. The Reseek-
Arrhythmia model Yang et al. (2024) uses DL techniques for automatic
heart arrhythmia detection and classification. The model leverages
ResNet architectures and transfer learning approaches, making it
relevant for similar signal processing challenges in medical

10.3389/fnhum.2025.1669919

diagnostics. The model focuses on arrhythmia detection using DL
architectures (ResNet), which is highly relevant as arrhythmia and
seizure detection share signal processing and classification challenges.
Transfer learning approaches are often employed in arrhythmia
detection, making this a directly relevant comparison (Yang
etal., 2025).

According to our knowledge, many existing methods for seizure
detection use machine learning or DL with manually selected features.
While models like CNNs and LSTMs perform well, they often require
alot of expert knowledge and do not work equally well for all patients.
After reviewing the literature review, it can be observed that some
recent studies use transfer learning and attention-based models, but
most still lack proper personalization and are not efficient enough for
real-time use.

The proposed research offers a simple and efficient approach that
combines pre trained models, transfer learning, and tuning for specific
patients. It helps improve accuracy and speed while adapting to each
person’s data. This makes the system more flexible and useful in real-
world healthcare settings. Unlike earlier models, the proposed
framework learns directly from the data with less manual effort. It also
supports faster deployment across different users, making it suitable
for clinical use.

3 Materials and methods

The proposed methodology uses an ensemble of optimized DL
algorithms using transfer learning for personalized seizure detection.
The publicly available CHB-MIT database is employed to train and
optimize the models separately and subsequently combined to form
an ensemble of the models. The dataset is explained in detail in the
experiments section. Figure 1 exhibits the step-by-step process of the
methods and materials used in the work. Raw EEG signals are
preprocessed, normalized, and segmented. The STFT is applied to
generate overlapping spectrogram windows. The spectrograms are
then used for feature extraction and fed into pre-trained models
(ResNet-18, EfficientNet-BO, and a 2DCNN). The models are

Preprocessing

Segmentation of
EEG signals

EEG Signal
Normalization

Short-Time
Fourier
Transformation

Spectrograms
Generation

Hann Window
Function

Optimization of
ResNet,2DCNN
EfficientNet

FIGURE 1
Framework of the proposed methodology.
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optimized individually, combined into an ensemble, and finally
evaluated using standard performance metrics.

3.1 Preprocessing and segmentation

Preprocessing is performed to extract the EEG signals from the
recordings of seizure patients. Personalized sliding windows are used
to extract and store spectrograms for the patients. Patient-specific
features are extracted from individual records. EEG signals are
normalized for consistent scaling.

3.2 EEG signal normalization

EEG signals were normalized for consistent scaling across patients
and recording sessions. Normalization ensured that variations in
amplitude due to electrode placement or recording conditions did not
bias the model training process.

3.3 STFT method

STFT is then applied for continuous window slicing over short time
intervals. STFT is used for avoiding the loss of information in the form
of spectral leakage by generating overlapping spectrogram windows. In
STFT, a signal is broken into overlapping segments, the Fourier
Transform is applied to each segment, and the results are combined. For
a given discrete signal s[n], the STFT is defined in Equation 1 as:

X(tk)= %x[l’l]w[n—tR]e_ j2rkn/N

(1)

10.3389/fnhum.2025.1669919

where X (t,k) is the result obtained at time index t and
frequency index k, x[n] is the input signal, w[n] is the windowing
function for the current sample index #, R is the step size overlap
between the segments, and N is the length of the segment. A
spectrogram is then computed as the squared magnitude of the
STFT S(t.k)=|X (1.k)f
a step size of 4.

. We have chosen a window size of 8 s with

3.4 Spectrogram generation

To further reduce the noise, spectrograms are generated from the
EEG signals. This step improves the performance of the individual as
well as the ensemble of the models. Figure 2 shows the sample
spectrograms extracted.

3.5 Hann window function

The Hann Windowing function (Pielawski and Wihlby, 2020)
w[n] used be defined in Equation 2 as

27zn

w[n]z%[l—cos[N ID,OSnSN—I

The windowed signal x,,, [n] is then obtained using the product of
the original input signal x[n] and the Han window w[n], ie.,
Xy [n]= x[n].w[n]. The Hann Window function minimizes the
spectral leakage by smoothly tapering the signal to zero at the edges,

)

minimizing the effect of sharp discontinuities. The spectrograms and
the labeled windows are then passed to the models.
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FIGURE 2
Spectrograms.
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In addition, EEG windows with seizure and non-seizure activity
are highlighted across multiple channels in Figure 3. Red traces
represent seizure activity, characterized by abnormal and synchronized
electrical discharges, while blue traces represent non-seizure (normal)
activity. This visualization provides a comparative overview of the
temporal and spatial differences in brain signal patterns between
seizure and non-seizure states.

3.6 Proposed 2-phase model

A 2-Phase training model is proposed for personalized seizure
detection. The steps involved can be seen in Figure 4. Raw EEG signals
are passed to the model as input and converted in window segments.
Each segment is then converted into a spectrogram using STFT. Single
channel 2D images represented frequency vs. time are generated as
output to be passed to CNN-based deep transfer learning models as
input. Ensemble of deep transfer learning models is then applied
following a 2-Phase training approach for personalized seizure
detection. Phase 1 is the base training phase, where the models are
trained on all the patients except the target patient. The goal is to learn
the general transferable seizure patterns. Phase 2 is the fine-tuning or
personalization phase, where the base models are fine-tuned on part
of patient’s data. The target patients data is split into training and
validation data where the base models are fine-tuned on the training
data of the target patient. This fine-tuning allows the models to adapt
to the patient-specific EEG patterns. The learning rate in the

10.3389/fnhum.2025.1669919

fine-tuning phase is kept lower than the base training phase to avoid
the pre trained weights from being destroyed. After the fine-tuning
phase, each patient has three models. Ensemble of the models is then
applied final predictions.

3.6.1 Phase-1: pre-trained model optimization for
transfer learning

Each model was trained using appropriate optimization strategies
to address challenges such as overfitting and vanishing gradients.
Regularization techniques, dropout layers, early stopping, and
learning rate scheduling were applied. Transfer learning was employed
for ResNet-18 and EfficientNet-B0, allowing faster convergence with
limited data, while the custom 2D-CNN was optimized through
architecture tuning tailored to seizure spectrograms.

Two pre trained models and a customized 2DCNN model were
trained on the processed data. The ResNet model (Yang et al., 2025),
has been widely utilized in medical image processing applications
(Hagq et al,, 2023). ResNet is a CNN-based architecture that utilizes
residual connections to effectively train very deep networks by
alleviating the network degradation and vanishing gradient problems
encountered in traditional neural networks. Residual blocks are
formed by using the skip connections, where some layers are skipped
while activating the connections of layers to further layers in the
network. Stacking of the residual blocks then constitutes the ResNet.
ResNet prefers to learn fitting to residual mapping rather than
underlying mapping. The ResNet18 variant of the ResNet network has
been utilized in this study as one of the pre trained models in the

FP1-F7 F7-T7 T7-P7

EEG Windows with Seizure Highlight

P7-01 FP2-F8 F8T8
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FIGURE 3

EEG windows showing seizure (red) and non-seizure (blue) activity across different channels.
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EDTL models for seizure detection. Due to its relatively lightweight
architecture, consisting only of 18 layers, compared to the deeper
variants like ResNet-50 and ResNet-101, the number of trainable
parameters is significantly reduced. The RenNet18 network has been
widely utilized in various fields. Despite its reduced architecture,
ResNet18 maintains powerful feature extraction capabilities balanced
with computational efficiency. Regularization is used to skip the layers
that degrade the performance of the network. The deep network
model is degenerated into a shallow network by applying a constant
mapping function Equation 3, thus avoiding the gradient explosion
problem. The residual module, denoted by H(x) in the residual
network, given the input x, is computed as:

H(x):F(x)+x (3)

where F(x) is the output of the nonlinear transformation function
applied to the input x through a sequence of two convolutional layers.
That is, F(x) =BN, (Conv2 (ReL U; (BN1 (Conv1 (x)))))

The gradient of H (x)
Equation 4:

is computed using the formula in

H’(x):F'(x)+1 (4)

The above formula shows that, no matter how small the gradient
F’(x) becomes, the total gradient value, represented by H'(x), will
always be equivalent to a minimum of 1, due to the addition of 1 to
the gradient value of F (x) This is a crucial property of the ResNet
model since this prevents the gradient from going too small during its
propagation through the layers, thus effectively solving the gradient
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vanishing problem. The problem is caused by the increasing depth of
the network in deep neural networks without residual connections.
The second pre trained model used was EfficientNet (Uddin et al.,
2024). EfficientNet is also a CNN-based architecture designed for
performance and efficiency. The model utilizes compound scaling
methods to scale the dimensions of width, depth, and resolution
uniformly by using a compound coefficient. The lightweight
EfficientNet-B0 variant is used in this work. We also utilized a
customized two-dimensional convolutional neural model (2DCNN).
The model consists of multiple layers designed to optimize feature
extraction. The models were trained and optimized separately,
utilizing the transfer learning capabilities of the pre trained models.

3.6.2 Phase-2: ensemble of deep transfer learning

The three optimized models were stacked together to form an
ensemble of a deep transfer learning method. The models are
stacked to improve the overall prediction accuracy by aggregating
the predictions from the three pre trained models. Each of the pre
trained models learns to focus on different features or
representations of input data. The combined output of the EDTL
models thus significantly improves the predicted performance.
Logistic regression is used as a meta-model to combine the
predictions of the pre trained models to make the final decision.
The proposed method combines the strengths of general-purpose
pre trained models with the domain-specific custom 2DCNN
model. The method combines the unique strengths of the
individual models to leverage their complementary feature
extraction capabilities. The ResNet model utilizes residual
connections to learn deep hierarchical features, which can
be particularly useful in domains with complex feature extraction
requirements, such as spectrogram-based seizure signals, where it
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is important to capture long-range dependencies. EfficientNet
enhances the efficiency of the EDTL by balancing computational
efficiency and performance by scaling depth, width, and
resolution. The custom 2DCNN is tailored to the domain specific
features of seizure and

spectrograms time-frequency

representations. It utilizes domain specific architecture
optimization by applying specialized convolution filters for
capturing seizure patterns.

Raw EEG signals are transformed into spectrograms and are
separately fed into each model, where each model independently
extracts its own feature representation. The features extracted from the
spectrograms are concatenated and passed to the next layer. Final
predictions are then performed using the meta-model. The detailed
structure of the proposed efficient model highlights the key
components contributing to its improved performance, which can
be seen in Figure 5.

To address potential training challenges such as vanishing
gradient and overfitting, multiple strategies were employed. Residual
connections in ResNet-18 and batch normalization in EfficientNet-B0
stabilized gradient flow, while ReLU activations in the 2DCNN further
mitigated gradient vanishing. To reduce overfitting, dropout and L2
weight regularization were applied in addition to data augmentation.
Early stopping and learning rate scheduling were also utilized to avoid

over-training and improve model generalization.

4 Results
4.1 Description of the dataset

Two real world datasets were used to evaluate the performance of
the proposed model. The details of the datasets are explained below.

4.1.1 CHB-MIT scalp EEG database

CHB-MIT Scalp EEG database made publicly available by Shoeb
(2010) was used to evaluate the performance of the proposed
EDTL. The database contains EEG recordings of pediatric patients
with intractable seizures. The recordings consist of 23 cases recorded
from 22 subjects. Five of the subjects were males with ages between 3
and 22, while 17 subjects were females, with ages between 1.5 and 19.
Recordings for one subject were repeated after a gap of 1.5 years. The
recordings were conducted post anti-seizure medication withdrawal
during their monitoring for possible surgical intervention and
assessment of their seizure characteristics, at the Children’s Hospital
Boston. There are a total number of 664 .edf files in the dataset, with
each case containing 9-42 .edf files for each subject. One hundred
twenty-nine of the files are records of seizures. The dataset also
contains the subject information. One hundred ninety-eight of the
records include seizures and are annotated accordingly. The protected
health information and dates in the original files have been
anonymized with surrogate details without disturbing the time
relationships between the individual files.

4.1.2 Turkish epilepsy EEG dataset

The Turkish Epilepsy EEG Dataset was released by Tasci et al.
(2023) and is publicly available. The dataset consists of 71 healthy
control signals and 50 seizure signals with a sampling frequency
of 500 Hz.
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4.2 Hyper parameters tuning

ResNet-18 architecture was used with transfer learning enabled,
allowing the model to benefit from general image features, even when
applied to spectrogram-based data. The input channels are modified to
adapt the ResNet-18 for 1-channel data while retaining the architecture’s
spatial feature extraction capacity. The classification head is also
modified for binary classification. It reduces the dimensionality of the
output features from ResNet’s last convolutional block. Fully connected
256-dimensional hidden layer is used to add representational capacity,
allowing the network to learn higher level abstractions from the features
extracted by the convolutional backbone. This transformation acts as a
feature bottleneck, helping the model to prioritize the most informative
components, such as seizures in EEG signals, while suppressing the less
relevant information. To enable the model to separate data classes in
high-dimensional feature spaces by learning non-linear, complex
decision boundaries, Rectified Linear Unit (ReLU), a non-linear
activation function, is applied. The model randomly drops 25% of the
neurons during training. This acts as a regularize, mitigating the risk of
overfitting—especially important when training on medical datasets
like EEG data. Sigmoid activation function converts the single output
logit into a probability in the range [0, 1], allowing the output to
be interpreted as the likelihood of a seizure event. Similar modifications
also applied for EfficientNet to adapt the model for processing single-
channel EEG spectrogram and suiting to binary classification. The
custom 2DCNN model is composed of six sequential convolutional
layers, to extract hierarchical features from the input data, followed by
an adaptive pooling layer, to adjust the special dimensions to a fixed
size. Finally, fully connected layers are added to produce final
predictions. The details of hyper parameters can be found in Table 1.

4.3 Optimization of the models

Each of the pre trained model and the customized 2DCNN were
optimized independently before being stacked for transfer learning.
The models were trained on the dataset over 200 epochs with early
stopping enabled with a patience value of 20. Figure 6 shows the
optimization of the 2DCNN model on the given dataset. The loss error,
precision, recall, accuracy, F1 measure and AUC have been reported
for the training and validation set. The figure shows that the model
stabilizes over the iterations and achieves early convergence and shows
tendencies to over fit afterwards. Initially, the loss on both the training
data and validation data decreases while the accuracy shows consistent
improvement, where the training accuracy reaches over 96% and the
validation accuracy crossing 88%. Then the model tends to over fit with
validation error not improving over the epoch, while the accuracy of
the model stabilizes. Early stopping is used to avoid overfitting of the
model. Precision performance of the model on training data shows
steady improvement, reaching up to 93%, while the validation precision
shows variation with the best value reaching up to 90%. Recall metrics
of the model shows consistency with training recall reaching up to 90%
and the validation recall achieving a maximum value of 78%. The
F1-measure of the model remains consistent for both the training and
validation sets, with the training F1 score crossing 91% and validation
F1 score reaching up to 78%. The AUC performance measure shows
consistency over all the epochs. The AUC score for the training set of
the model reaches up to 98% and for the validation set the score
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TABLE 1 Hyper parameters for custom 2DCNN, ResNet-18, and EfficientNet-BO.

Component 2DCNN ResNet-18 EfficientNet-BO
Input channels 1 (EEG spectrogram) 1 (modified from RGB) 1 (modified from RGB)
Pre trained weights No Yes (ImageNet) Yes (ImageNet)
Conv2d [1, 64, kernel_size = (2.4), Conv2d (1, 64, kernel_size = 7, stride =2, | Conv2d (1, 32, kernel_size = 3,
Initial conv layer
padding = (1.2)] padding = 3) stride = 2, padding = 1)
5 more conv layers with increasing channels EfficientNet-B0’s compound scaling
Intermediate convs ResNet-18’s default residual blocks
(up to 256) blocks
Mobile Inverted Bottleneck +
Pooling MaxPool2d, AdaptiveAvgPool2d MaxPooling, GlobalAvgPool
GlobalAvgPool
Fully connected layers 256 — 128 — 64 — 1 + Sigmoid 512 — 256 — 1 + Sigmoid 1,280 — 1 + Sigmoid (via classifier)
Dropout Two Dropouts (p = 0.25) One Dropout (p = 0.25) One Dropout (p = 0.2)
Activation ReLU + Sigmoid ReLU + Sigmoid Swish (internally) + Sigmoid
Final activation Sigmoid() (for BCELoss) Sigmoid() (for BCELoss) Sigmoid() (for BCELoss)
Architecture type Fully custom convolutional architecture Residual network with skip connections Compound-scaled efficient architecture
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FIGURE 6
Optimization of the 2DCNN model.

achieves a maximum value of 94%. Model with best validation loss is
saved to be further used as part of the ensemble learning.

Figure 7 shows the optimization of the pre trained ResNet model
on the given dataset. The loss error, precision, recall, accuracy, F1
measure and AUC have been reported for the training and validation
set. As shown in the Figure, like the customized 2DCNN model, the
ResNet model stabilizes over the iterations and achieves early
convergence. However, the model shows tendencies to over fit
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afterwards, with widening difference between the training and
validation loss. Initially, both the training and validation loss decrease
while the accuracy shows consistent improvement, with the training
accuracy reaching over 98% and the validation accuracy crossing 90%.
Then the model tends to over fit with validation error not improving,
or getting worse, over the subsequent epochs, while the accuracy of the
model stabilizes. Early stopping is used to avoid overfitting of the model.
Precision of the model on training data shows steady improvement,
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reaching up to 98%, while the validation precision shows comparatively
low variation with the best value reaching up to 90%. Recall metrics of
the model shows continued improvement on the training data, reaching
up to 98% and the validation recall achieving a maximum value of 84%.
The F1-measure of the model remains consistent for both the training
and validation sets, with the training F1 score crossing 98% and
validation F1 score reaching up to 84%. The AUC performance measure
shows consistency over all the epochs. The AUC score for the training
set of the model reaches up to 100% and for the validation set the score
stabilizes at a maximum value of 96%. Model with best validation loss
is saved to be further used as part of the ensemble learning.

Figure 8 shows the optimization of the pre trained EfficientNet
model on the given dataset. The loss error, precision, recall, accuracy,
F1 measure and AUC have been reported for the training and
validation set. The figure suggests that, unlike the customized 2DCNN
and ResNet models, the EfficientNet model converges over more
iterations and shows comparatively stable performance. The model
shows less tendencies to over fit, with comparatively lower gaps
between the training and validation loss. Moreover, the validation loss
is stable over epochs as compared to other models, where the
performance on the validation set decreases after certain iteration,
indicating overfitting. Initially, both the training and validation loss
decrease while the accuracy shows consistent improvement, with the
training accuracy reaching up to 98% and the validation accuracy
crossing 92%. Then the model generalizes better to the validation set
across the validation metrics, with validation error showing
improvement, and stabilizing over the subsequent epochs, while the
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accuracy of the model stabilizes. Again, early stopping is employed to
avoid overfitting of the model. Precision performance of the model on
training data shows steady improvement, reaching up to 98%, while
the validation precision shows comparatively low variation with the
best value reaching up to 90%. Recall metrics of the model shows
continued improvement on the training data, reaching up to 98% and.

The EDTL model is an ensemble of 2DCNN, ResNet-18, and
EfficientNet-B0, where features from each base model are extracted and
concatenated for final classification. Unlike individual neural networks,
the ensemble does not update weights during training; it only combines
the predictions of the pre-trained base models. Therefore, epoch-wise
training or validation loss/accuracy curves are not available for
EDTL. Its performance is reported using final evaluation metrics
(Accuracy, Precision, Recall, F1-score, AUC) on the test set. However,
ensemble evaluation curves can be simulated epoch by averaging the
evaluation metrics across the individual models, shown in Figure 9.
Since each model might converge at the different number of epochs,
the model with maximum number of epochs is identified and the
missing epochs for the other models are padded with the last value to
run the ensemble curves for as long as the longest trained model.

4.4 Performance evaluation on the test
data

The proposed EDTL mechanism is evaluated and compared
against the optimized DL models. 15% of the dataset is used as a test
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set to evaluate the performance of the model on unseen data. The
optimized models are comparatively evaluated on the test data, and
the proposed EDTL method shows considerable improvement over
the individual pre trained DL models. The confusion matrices of the
models can be seen in Figure 10a, depicts the confusion matrix of
2DCNN model on the test data. The model correctly classifies 17,821
samples into non-seizure and 5,407 samples into seizure classes. The
model incorrectly classifies 862 samples into non-seizure and 1,575
samples into seizure classes. Figure 10b depicts the confusion matrix
for the ResNet method. The model accurately classifies 18,072 samples
into non-seizure and 6,346 samples into seizure classes. The model
inaccurately classifies 611 samples into non-seizure class and 636
samples into seizure class, showing an improved performance.
Figure 10c depicts the confusion matrix for the EfficientNet method.
The model accurately classifies 17,954 samples into non-seizure class
and 6,264 samples into seizure class and inaccurately classifies 729
samples into non-seizure and 718 samples into seizure class. The
confusion matrix of the EDTL for the test data is depicted in
Figure 10d. The model significantly outperforms the deep transfer and

10.3389/fnhum.2025.1669919

custom models. It correctly classifies 18,332 samples into non-seizure
and 6,503 samples into seizure classes. We can observe the inaccuracy
of the model with the classification of 416 seizure samples into
non-seizure class and 414 non-seizure samples into seizure class.

Table 2 compares the performance of EDTL on the most
frequently used evaluation metrics in the literature with the standard
deep transfer and customized CNN models. The model shows
significant performance improvement over most of the metrics. The
best scores have been highlighted.

The EDTL model achieves a score of 96.65% for accuracy, score of
94.07% for precision, a recall score of 93.57%, a score of 93.82% for
F1, and an AUC score of 99.23%. The performance of the EDTL
compared to the other models suggests considerable improvement
without increasing the complexity of the model. Figure 11 presents a
comparative analysis of the AUC values obtained from the evaluated
models. In Figure 11, Model 1 displays the ResNet18 method, Model
2 shows the EfficientNet-B0, and Model 3 shows the 2DCNN model.
The proposed EDTL framework is shown by the Ensemble
mechanism. The proposed framework significantly outperforms the
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TABLE 2 Comparison of the models’ performance.

Model Accuracy Precision Recall

ResNet 95.73% 90.64% 94% 9229% | 98.97%
EfficientNet 94.61% 89.31% 91.11% | 90.20% | 98.52%
2DCNN 91.54% 87.40% 80.54% | 83.83% | 96.71%
EDTL

(Ensemble) 96.65% 94.07% 9357% = 93.82% = 99.23%

Bold values mean high performance of the EDTL (Ensemble) model.

other models on the AUC score, achieving a score of 99.23%. The
ResNet method performs second best with an AUC score of 98.97%,
followed by the EfficientNet method with a score of 98.52%. Although
the customized 2DCNN shows good performance with an AUC score
of 96.71%, the deep transfer learning-based models significantly
outperform the model, with the proposed EDTL performing better
overall than the other models, as shown in Figure 12.

To further analyze the efficiency of the proposed methodology,
the computational requirements of individual models and the
ensemble were measured in terms of training time per epoch and
inference time per sample, as illustrated in Figure 13. The figure
compares training time per epoch (in seconds) and inference time per
sample (in milliseconds) for Custom 2DCNN, ResNet-18,
EfficientNet-B0, and the proposed ensemble (EDTL). The ensemble
requires more computation but delivers superior performance and
robustness across datasets.

Table 3 shows how our model compares with other studies that
used the same CHB-MIT EEG dataset. The comparison has been
performed with results reported in the original works or the relevant
literature. Some models, such as LSTM with handcrafted features, gave
high accuracy (98.43%), while others, like 3D CNN and Vision
Transformers, had lower results, with accuracy around 80-85%. The
EDTL model performed very well, with 96.65% accuracy, 94.07%
sensitivity, and a high AUC of 99.23%. This shows our model is strong,
balanced, and works better than many existing methodologies.

Compared to previous studies, the proposed ensemble models
showed clear improvements in performance. Earlier works, such as
those by Taherinavid et al. (2024), Wang et al. (2021), He et al. (2016),
and Godoy et al. (2022), and Shoeb (2010) achieved moderate
accuracy and sensitivity, while methods relying on handcrafted
features, such as Cao et al. (2025) and Pielawski and Wahlby (2020),
performed strongly but were limited by feature engineering
requirements. The slightly lower performance of our proposed
methodology on the CHB-MIT Scalp EEG dataset compared to Cao
et al. (2025), Pielawski and Wahlby, (2020) (96.65% vs. 98.43%) may
be due to differences in preprocessing and feature engineering. Cao
et al. relied on handcrafted features with an LSTM model, whereas our
method
handcrafted features.

uses an  ensemble-based  approach  without

However, when applied to the Turkish Epilepsy EEG dataset, our
methodology achieved competitive or even higher results (e.g., 98.07%
accuracy with stacking ensemble and 99.77% specificity), which
highlights the robustness and generalizability of the proposed
approach across different datasets. In contrast, the proposed EDTL
and stacking ensemble models demonstrated consistently high

accuracy, sensitivity, specificity, and AUC across both the CHB-MIT
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and Turkish Epilepsy EEG datasets. This highlights their robustness
and reliability, indicating that ensemble-based approaches are more
effective for epilepsy detection compared to single DL models used in
earlier studies.

5 Discussion

Approximately 1% of the global population is affected by epilepsy,
representing millions of individuals worldwide who could benefit
from improved seizure detection and prediction technologies. The
development of advanced computational methods for detecting
seizures has garnered significant attention over the past several years,
motivated by their potential to significantly improve the quality of life
for individuals affected by epilepsy through more accurate, timely, and
automated intervention strategies. A comprehensive, computationally
efficient framework for personalized seizure detection is presented in
this work, performing rigorous analysis of pre trained models,
augmenting the pre trained models and domain-specific optimization.
Empirical evaluation of the proposed approach is performed,
demonstrating its advantages in terms efficiency and flexibility,
without compromising the performance. EDTL is efficient because it
uses pre trained networks, reducing training time and computational
costs. It is also flexible, as it performs well on raw EEG data from
different patients without needing complex feature extraction. The
proposed EDTL framework represents a sophisticated approach to
personalized seizure detection that addresses the intrinsically variable
nature of seizure patterns across individual patients. The methodology
combines the strengths of established deep learning architectures—
ResNet and EfficientNet—with a customized 2DCNN specifically
designed for this application.

The preprocessing pipeline demonstrates careful consideration of
the unique characteristics of EEG data. Raw recordings from seizure
patients undergo transformation into standardized EEG signals,
followed by the application of personalized sliding windows to extract
spectrograms tailored to individual patients. This patient-specific
approach is crucial given the significant inter-patient variability in
brain structure, seizure patterns, and signal characteristics. The
normalization of EEG signals ensures consistent scaling across different
recordings, while the STFT enables continuous analysis of signals over
short time intervals, capturing the dynamic nature of seizure activity.

The training strategy employed demonstrates a methodical approach
to model optimization. Each component of the ensemble—the pre trained
models and the customized 2DCNN—were optimized independently by
over 200 epochs with early stopping mechanisms to prevent overfitting.
The patience value of 20 epochs provided sufficient opportunity for model
convergence while maintaining computational efficiency. The customized
2DCNN model exhibited typical DL training characteristics, with both
training and validation losses decreasing initially while accuracy improved
consistently. Training accuracy reached over 96% with validation accuracy
exceeding 88%. However, the model showed tendencies toward overfitting
as training progressed, with validation metrics stabilizing while training
metrics continued to improve. The precision reached 93% on training
data and 90% on validation data, while recall achieved 90 and 78%,
respectively. The F1-measure maintained consistency across both sets,
with training F1 crossing 91% and validation F1 reaching 78%. The AUC
performance demonstrated strong discriminative ability, achieving 98%
on training data and 94% on validation data. The ResNet model
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demonstrated superior performance characteristics compared to the
custom 2DCNN, achieving over 98% training accuracy and 90%
validation accuracy. This pertained model showed excellent precision and
recall metrics, with training values reaching 98% for both measures and
validation precision and recall achieving 90 and 84%, respectively. The
F1-scores reflected this strong performance, with training F1 exceeding

Frontiers in Human Neuroscience

98% and validation F1 reaching 84%. Notably, the AUC performance was
exceptional, achieving 100% on training data and 96% on validation data,
indicating excellent discriminative capability. EfficientNet displayed the
most stable training characteristics among the three models, converging
over more iterations but showing less tendency to over fit. The model
achieved an accuracy of 98% on training data and 92% on validation data,
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TABLE 3 Comparison of proposed method with SOTA on the CHB-MIT EEG dataset.

Accuracy Sensitivity Specificity

Hu et al. (2020) and Bi LSTM Raw EEG — 93.61% 91.85%
Taherinavid et al.
(2024)
Caoetal. (2025) and | LSTM Handcrafted features 98.43% 97.84% 99.21% —
Pielawski and
Wiihlby (2020)
Wang et al. (2021) 3D CNN Raw EEG 80.5% 85.8% 75.1% e
and He et al. (2016)
Deng et al. (2023) HViT-DUL Raw EEG — 87.9 —
and Xu et al. (2023)
Ozcan and Erturk 3D CNN Raw EEG — 85.71 — 0.096
(2019) and Tan and
Le (2019)
Godoy et al. (2022) Temporal multi- Raw EEG 82.0 80.0
and Shoeb (2010) channel vision

transformer

EDTL (Ensemble) CHB-MIT Scalp 96.65% 94.07% 93.57% 99.23%

EEG

EDTL (Stacking Turkish Epilepsy 98.07% 97.69% 97.97% 99.77%
Proposed

Ensemble) EEG

EDTL (Ensemble) Turkish Epilepsy 92.66% 83.98% 91.08% 99.72%

EEG

representing the highest validation performance among the individual
models. The precision and recall metrics were consistent with ResNet,
reaching 98% on training data and 90 and 84% on validation data,
respectively. The Fl-scores mirrored these results, with training F1
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crossing 98% and validation F1 reaching 84%. The AUC performance was
strong at 99% for training and 97% for validation data. The confusion
matrix analysis reveals the practical performance of each model in
differentiating the seizure from non-seizure states. The custom 2DCNN
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correctly classified the majority of samples in both classes but showed
higher misclassification rates compared to the pre trained models. ResNet
demonstrated superior classification performance with higher true
positives and true negatives across both training and validation datasets.
EfficientNet showed balanced performance with good accuracy in both
seizure and non-seizure classification.

The ensemble approach leveraged the complementary strengths
of these individual models, achieving the highest overall performance
of 99.23% on the AUC ROC curve. This superior performance
demonstrates the value of combining different architectural
approaches and optimization strategies in a unified framework.

The personalized nature of the proposed framework addresses a
critical challenge in seizure detection—the significant variability in
seizure manifestations across different patients. By incorporating
patient-specific features and personalized sliding windows, the system
can adapt to individual characteristics while maintaining high
accuracy. The achievement of 99.23% AUC performance suggests that
the system could provide clinically relevant seizure detection with
minimal rates for both false positives and false negatives. The
computational efficiency of the framework is enhanced using transfer
learning, which reduces training time and computational requirements
compared to training large models from scratch. The ensemble
approach, while requiring multiple models, achieves superior
performance that justifies the additional computational overhead.

5.1 Limitations and future directions

The study demonstrates the potential of ensemble deep transfer
learning for personalized seizure detection. Despite the promising
performance of the model, several considerations warrant further
investigation. The generalizability of the approach across different
EEG recording systems and patient populations requires validation.
Additionally, the real-life implementation of the ensemble system in
clinical settings would need to address computational constraints and
response time requirements.

We used the CHB-MIT Scalp EEG dataset for evaluating the
model. The dataset is large and complex with long-term recordings
of EEG from multiple patients, making it suitable for evaluating
personalized seizure detection. The framework’s reliance on high-
quality EEG data and the need for patient-specific optimization may
present challenges in resource-limited clinical environments. Due to
the depth and complexity of this dataset, we focused our analysis on
it. However, in the future, we intend to evaluate the generalization
capability of the EDTL model by exploring additional datasets and
compare it with results from other studies. Future work could
explore methods to reduce the computational requirements while
maintaining the high performance achieved by the current
ensemble approach.

6 Conclusion

Epilepsy is diagnosed in millions of people (about 1% percent of the
worlds population) as a common brain disease. The study and prediction,
and detection of seizures can significantly improve the lives of epilepsy
patients. The study has attracted vast attention over recent years,
specifically involving advanced computation methods. This paper
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presents EDTL models for personalized seizure detection. The method
combines ResNet and EfficientNet methods along with a customized
2DCNN method for patient specific seizure detection using EEG data.
Raw data from the recordings of seizure patients is transformed into EEG
signals. Personalized sliding windows are used to extract and store
spectrograms for the patients. Patient specific features are extracted from
individual records. EEG signals are normalized for consistent scaling.
STFT is then applied for continuous window slicing over short time
intervals. The transformed data is then passed on to train and optimize
the models independently and later combined into EDTL. A comparative
evaluation is performed using standard evaluation metrics. The
performance of the individual method is compared with the proposed
EDTL, with the EDTL having the highest performance of 99.23% on the
AUC ROC curve. The ensemble of pre trained models along with the
customized CNN based models with domain specific optimization
ensures that optimum results are obtained without compromising the
efficiency of computation.
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