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Precision neurodiversity marks a shift in neuroscience from pathological models to
personalized frameworks that view neurological differences as adaptive variations.
This review synthesizes current knowledge on the Personalized Brain Network
architecture and its relationship with cognitive variability in both typical and
neurodiverse populations. The study examines advancements in connectome-
based prediction modeling, normative modeling, dynamic fingerprinting, and
machine learning methods that characterize individual-specific neural networks.
Recent findings indicate that the Personalized Brain Network profile reliably predicts
cognitive, behavioral, and sensory phenomena. Additionally, deep generative models
demonstrate high fidelity in synthesizing connective cells. Recent studies have
identified distinct neurobiological subgroups in conditions such as attention-deficit
hyperactivity disorder (ADHD) and autism spectrum disorder that were previously
undetectable by conventional diagnostic criteria. However, research has revealed
significant network-level differences among these subgroups. Researchers have
identified age-resistant biomarkers in specific brain regions, and genetic mutations
significantly influence the connectivity patterns of individuals. Clinical applications
span a range of neurodevelopmental conditions, including autism, ADHD, dyslexia,
and talent. Network variability predicts executive functioning, social perception, and
sensory processing abilities. However, successful translation requires overcoming
challenges related to statistical power, reproducibility, ethical implementation and
community participation. The convergence of advanced neuroimaging, artificial
intelligence, and personalized medicine offers unprecedented opportunities for
tailored interventions, while celebrating neurological diversity as a source of
human strength.
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1 Introduction

The current landscape of neuroscience has shifted from
pathological deficit models to variation-based frameworks. This new
approach views neurological differences as a natural manifestation of
human brain diversity (Miranda-Ojeda et al., 2025; Ramanan et al.,
2025). This transformation, termed precision neurodiversity,
represents the convergence of two key concepts: the neurodiversity
movement’s redefinition of neuro-conditions as adaptive variations
and precision medicine’s commitment to an individual- and data-
driven understanding of human biology (McGorry et al., 2025).
Dimensional ones are increasingly replacing conventional categorical
diagnostic frameworks. This shift reflects the growing evidence that
traditional neurological boundaries fail to capture the complex and
continuous nature of cognitive and neural variations (Leadbitter et al.,
2021; Dwyer, 2022; Mardinoglu et al., 2025). Recent transdiagnostic
studies have shown that dimensional models are more effective in
identifying meaningful therapeutic targets across neurodevelopmental
conditions (Madericova and Talcott, 2025; Alehagen et al., 2025).

The advent of population-scale neuroimaging studies has
shift
neurodevelopmental disorders. Using standardized brain charts

precipitated a paradigm in our understanding of
derived from over 123,000 structural MRI scans, researchers have
identified distinct neurobiological subtypes within populations with
ADHD. Two conditions have been identified: delayed brain growth
(DBG-ADHD) and prenatal brain growth (PBG-ADHD). These
conditions are not identifiable using conventional diagnostic
criteria; however, they exhibit significant disparities in functional
organization at the network level (Bu et al., 2024; Pecci-Terroba
2025).
neurodevelopmental trajectories, with PBG-ADHD characterized

et al, These subtypes are indicative of distinct
by accelerated cortical growth patterns that can be detected using
normative brain charts derived from large-scale structural
MRI data.

The extent and conceptualization of neurodiversity within the
precision medicine framework require careful theoretical clarification,
especially given the ongoing scholarly debates regarding its boundaries
(May, 2025; Van Daalen et al., 2025). We adopted a dimensional
neurodiversity framework that distinguishes between core
neurodevelopmental conditions—marked by early onset, pervasive
patterns of atypical brain organization from childhood—and acquired
or episodic psychiatric conditions. This framework is designed to
encompass a range of neurodevelopmental and learning-related
conditions, including Autism Spectrum Disorder (ASD), Attention-
Deficit/Hyperactivity Disorder (ADHD), specific learning differences
(e.g., dyslexia and dyscalculia), and intellectual disabilities. Including
these conditions aims to provide a comprehensive overview of the
spectrum of neurodevelopmental and learning-related challenges
(Hunt and Procyshyn, 2024). While recognizing the valuable
perspectives of individuals with conditions such as schizophrenia and
bipolar disorder, we maintain a theoretical distinction due to their
fundamentally different trajectories. These conditions typically have
clear onset periods, show fluctuating or progressive courses, and
involve distinct pathophysiological mechanisms compared to core
neurodevelopmental variations (Miranda-Ojeda et al., 2025). This
distinction does not undermine the importance of personalized
approaches for all neurological conditions; instead, it acknowledges
that different frameworks may be more suitable for understanding
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developmental versus acquired brain differences within precision
medicine paradigms.

The conceptual foundations of the Personalized Brain Network
architecture range from early neural attempts to map individual
cognitive functions to contemporary connectomics methods that
characterize whole-brain connectivity patterns at the single-subject level
(Agnati et al., 2023). High-resolution functional Magnetic Resonance
Imaging and advanced computational methods have enabled the
identification of a specific “neural fingerprint” in individuals—a unique
pattern of brain connectivity that remains stable over time, across tasks,
and during aging processes (Lee and Lee, 2024; Zhang et al., 2024).
Recent advances in deep generative modeling have enabled the
inference of personalized human brain connectivity patterns from
individual characteristics alone. Liu Y. et al. (2025) demonstrated that
conditional variational autoencoders can generate human connectomes
with remarkable fidelity using the UK Biobank dataset (N = 8,086),
revealing that age, sex, and body phenotypes contribute approximately
four times more to connectivity architecture than cognitive or lifestyle
factors (Udayakumar and Subhashini, 2025). This breakthrough
represents a fundamental shift from traditional group-level analyses to
truly personalized brain network characterization, enabling precision
approaches to neurodiversity. Methodological advances in human brain
generative modeling have witnessed remarkable progress in human-
specific generative models. Recent work by Seiler and Ritter (2025)
highlights how generative brain networks enable the creation of virtual
brain twins, integrating structural connectivity information into
probabilistic frameworks specifically designed for human neurological
disease research. Furthermore, Wu et al. (2024) demonstrated that
generative adversarial networks can refine human brain structural
connectivity strength while maintaining individual differences.

These advances have direct clinical implications for precision
neurodiversity approaches. The ability to generate personalized human
connectomes enables data augmentation for machine learning models,
anonymous data sharing, and prediction of individual therapeutic
responses—all critical components for implementing precision
medicine in neurodevelopmental conditions. The stability of individual-
specific brain signatures across the adult lifespan (ages 18-87) provides
compelling evidence for core neuroanatomical characteristics that
persist despite normal aging processes. Leverage score-based feature
selection methods have identified specific brain regions that constitute
age-resilient biomarkers of intrinsic brain organization (Taimouri and
Ravindra, 2025; Zamani et al., 2022; Taimouri and Ravindra, 2025).

This comprehensive review synthesizes the current knowledge on
Personalized Brain Network architecture and its relationship with
cognitive variability within the precision neurodiversity framework. Our
analysis encompasses three primary objectives: first, to critically evaluate
methodological approaches for characterizing individual-specific neural
networks; second, to examine how Precision Brain Network (PBN)
architectures relate to cognitive phenotypes across neurotypical and
neurodivergent populations; and third, to identify promising research
directions that leverage precision neuroscience approaches to advance
individualized interventions and support systems.

The comprehensive framework for implementing precision
neurodiversity through Personalized Brain Network analysis is
illustrated in Figure 1, which demonstrates the paradigmatic shift from
categorical diagnostic approaches to individualized characterization
of neurological diversity. This conceptual framework encompasses the
complete workflow from neuroimaging data acquisition through
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Conceptual framework of precision neurodiversity through personalized brain networks.

computational analysis to clinical translation, emphasizing how each
individual’s unique “neural fingerprint” can inform personalized
interventions for major neurodevelopmental conditions.

This figure illustrates the comprehensive workflow for applying
precision neurodiversity through Personalized Brain Network
analysis, highlighting how individual neurological differences can
be characterized as adaptive variations rather than pathological ones.
The top panel displays four brain symbols representing different
individual brain network architectures, each with unique connections
between color-coded brain regions (frontal: orange, parietal: green,
temporal: blue, occipital: purple), illustrating the concept of
neurological diversity, where each person has a unique “neural
fingerprint” The middle panel illustrates the methodological workflow
that progresses through the acquisition of neuroimaging data (fMRI
and DTI), computational analysis using graph theory, extraction of
individual network profiles to identify unique network characteristics,
and phenotype prediction, which enables accurate predictions of
cognitive, behavioral, and sensory outcomes. The lower panel shows
clinical applications for major neurodevelopmental diseases, such as
autism spectrum disorder (ASD), ADHD, intellectual impairment,
and schizophrenia, which represent a paradigm shift toward
individualized, data-based approaches that celebrate neurodiversity
while enabling accurate, personalized interventions based on the
unique structure of each individual’s brain network.

2 Theoretical foundations
2.1 Network neuroscience foundations

The mathematical framework of graph theory has become essential
for describing the organization of brain networks, providing quantitative
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tools to describe complex patterns of neural connectivity and their
relationship with cognitive function (Ni et al., 2025; Tuan et al., 2025).
The brain network can be characterized as a node (brain region) and
edge (regional connection). It can be systematically analyzed using
metrics such as the cluster coeflicient, path length, and centrality.
Contemporary brain network analysis methods increasingly recognize
that traditional group-level analysis can obscure critical individual
differences in network organization (Amato et al., 2025; Fekonja et al.,
2025). PBN neural mass models, with their potential to reveal specific
patterns of network dysfunction associated with cognitive results, offer
promising prospects for brain network analysis (Ye et al., 2024).

The brain network has topological characteristics that reflect the
evolutionary optimization of the information processing efficiency.
The characteristics of a small-world network, characterized by high
clustering and short path lengths, are consistent across all
neuroimaging methods and support local and global integration (Yang
et al., 2025b; Shaheen et al., 2023). These architectures allow efficient
information transfer while maintaining robustness to local
disturbances. This field has evolved beyond the static concepts of brain
connectivity, developing dynamic network frameworks that capture
the temporal variations of functional relationships (Wen et al., 2025;
Luijendijk et al., 2022). Dynamic connectivity approaches have
demonstrated that brain networks are constantly reorganized across
multiple timescales, ranging from rapid changes associated with tasks
to slower developmental and pathological processes (Xin et al., 2022).

2.2 Individual differences in brain network
organization

Genetic factors contribute significantly to individual differences
in the structure of brain networks, and recent large-scale genomic
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studies have revealed complex inheritance patterns in brain regions
and their network properties (Carrion-Castillo and Boeckx, 2024). A
comprehensive analysis of the cerebellar substructures revealed that
the inheritance rates in different regions ranged from 0.08 to 0.35,
with most exhibiting moderate inheritance. Genome structural
equation modeling indicates that brain regions are grouped into
genetically distinct factors (Shishikura et al., 2025; Tissink et al., 2022).
Environmental factors interact with genetic predispositions to shape
individual network pathways throughout development and life (Zhou
Q. etal,, 2025; Xin et al.,, 2025a). Reading-related cognitive and brain
features exhibit moderate heritability but are significantly influenced
by education and language experience (Procopio et al., 2025; Zhao
et al., 2023). This interaction between genes and the environment
suggests that precision approaches to neurodiversity must consider
both genetic predispositions and environmental factors when
determining the characteristics of individual brain networks (Bao
etal., 2025).

The development of the brain network follows characteristic paths
that differ significantly from person to person, with early sensory-
motor differences being the foundational elements of later cognitive
and behavioral patterns. Contemporary neuroscience research
indicates that sensory and movement differences often emerge as the
initial manifestation of neurodiversity, preceding and potentially
contributing to later differences in social communication and
cognitive function (Kapp, 2025).

2.3 Cognitive variability: from pathology to
diversity

Conventional wisdom regarding cognitive differences is primarily
shaped by deficit-based models that view variations as deviations from
the established norms. However, contemporary neuroscience
challenges these frameworks by presenting cognitive differences as
valid forms of human variation rather than as inherent disorders
(Wang E et al,, 2025; Liu W. et al, 2025). This paradigm shift
acknowledges that behavioral patterns do not necessarily reflect
individual intentions and may be misinterpreted when viewed solely
through neurotypical frameworks (Strock et al., 2025). Increasingly,
that
continuously characterize cognitive function instead of categorizing

contemporary approaches adopt dimensional models
typical and atypical functioning (Perl et al., 2025). These models
suggest that cognitive abilities exist on a spectrum, with individuals
displaying unique strengths and challenges in different areas.
Network-based dimensional models show that cognitive functions
arise from dynamic interactions among distributed brain systems

rather than localized processing modules (Per] et al., 2025).

2.4 Precision medicine integration

The integration of precision medicine and neuroscience research
requires robust strategies for the identification and validation of
biomarkers. These strategies must capture individual differences in
brain network organization and their correlations with cognitive
outcomes (Bajinka et al., 2025). Recent advancements in neuroimaging
analysis have shown that topological deviation indices can quantify
individual network reorganization patterns and predict cognitive
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performance with high sensitivity (Ranasinghe and Mapa, 2024; Zhou
Z. et al., 2025). Precision neurodiversity approaches facilitate the
development of interventions tailored to individual brain network
organization and cognitive function (Lessi et al., 2026). PBN models
can identify specific pathological and physiological mechanisms
contributing to network malfunctions, enabling the development of
targeted therapeutic approaches (Wan et al., 2025; Rahman et al,,
2023). This paradigm shift represents a transition from universally
applicable interventions to customized medical approaches that
optimize outcomes by aligning with the unique neuronal
characteristics of individuals. Implementation of precise medicine
methodologies in the context of neurodiversity raises significant
ethical concerns, including consent, privacy, stigma, and potential
discrimination based on neurobiological profiles (Maspul and Ardhin,
2025). Participatory research methodologies, which involve
neurodiverse individuals as collaborators in research conceptualization
and analysis, are essential for ensuring ethical conduct and community
relevance (Paul Okugo et al., 2025).

2.5 Theoretical framework for
neurodiversity scope

Our precision neurodiversity framework operates on three core
principles that address ongoing debates regarding neurodiversity
boundaries (May, 2025). First, developmental continuity: the included
conditions show observable precursors in early development, with
brain network differences detectable through normative modeling by
school age (Bethlehem et al., 2022). Second, the stability of neural
signatures: core network architectures remain identifiable across
developmental stages, even as compensatory mechanisms may mask
behavioral presentations (Vedechkina et al., 2025). Third, dimensional
representation: conditions exist on continuous spectra rather than
discrete categories, supporting individualized network profiling
approaches (Posani et al., 2025). This framework explicitly excludes
conditions with episodic onset patterns (e.g., major depressive
episodes and acute psychotic episodes) and progressive deterioration
(e.g., dementia and neurodegenerative diseases) while asserting that
all neurological conditions deserve respectful, evidence-based care.
This distinction acknowledges that neurodevelopmental conditions
represent adaptive variations in brain organization present from early
life, whereas other psychiatric conditions may involve disruptions in
previously typical brain function (Cainelli and Bisiacchi, 2022). This
theoretical position aligns with contemporary neurodiversity
scholarship, emphasizing the importance of analyzing developmental
trajectories in precision medicine applications (Hunt and
Procyshyn, 2024).

3 Methodological approaches

3.1 Neuroimaging techniques for network
characterization

Functional magnetic resonance imaging (fMRI) underpins PBN
analysis and has undergone significant methodological advancements
in recent years (Yen et al., 2023). Advanced methods use non-negative
matrix factorization to clarify individual differences in cortical
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organization across various spatial scales, from coarse resolution (two
networks) to acceptable resolution (30 networks) (Han et al., 2023;
Wen et al., 2023). This approach employs group consensus rules to
maintain cross-individual correspondence and data area rules to
ensure spatial coherence (Han et al., 2025). Recent developments have
focused on surface processing pipelines that retain individual cortical
geometries (Goncalves et al, 2025). Enhanced preprocessing
protocols utilize a complex motion correction strategy, including a
36-parameter differential regression model and a temporal filter
(0.01-0.08 Hz), to improve signal quality while preserving individual
differences (Mullin et al., 2025). Deep neural network architectures
specifically designed to identify individuals from resting-state
functional connections have shown that PBN fingerprints can
be extracted with remarkable precision (Lee and Lee, 2024). The
landscape of personalized brain network analysis features a range of
complementary approaches, each providing unique advantages in
identifying individual differences in brain organization (Kong and Jin,
2025; Karimi et al., 2025). Table 1 presents a comprehensive overview
of the current methods, including neuroimaging techniques,
computational methods, analytical frameworks, and validation
strategies. This section outlines the main features, limitations, and
recent advancements in this field.

This methodological diversity reflects the complex nature of
individual brain network characterization, which requires the
integration of multiple approaches to capture personalized neural
signatures fully.

The methodology of structural connectivity mapping through
diffusion MRI has evolved significantly, moving from traditional
Diffusion Tensor Imaging (DTI) to more advanced multi-shell and
multi-tissue modeling techniques. The use of advanced tractography
algorithms, such as the iFOD2 (second-order integration over fiber
orientation distributions) method, enables more accurate white matter
tract reconstruction by accommodating complex fiber geometries and
crossing configurations (Yeh et al.,, 2021).

The integration of multiple neuroimaging modalities represents a
key advancement in PBN analysis. Recent progress has demonstrated
the combined benefits of merging high spatial resolution fMRI with
high temporal resolution EEG/MEG to capture both complex
anatomical network organization and millisecond-scale temporal
dynamics.  Innovative  approaches employ simultaneous
electroencephalogram (EEG)-fMRI acquisition protocols to map
individual differences in connectivity strength and temporal coupling
patterns across brain networks (Mantini et al, 2010; Jacobs
etal., 2014).

3.2 Computational methods for individual
network profiling

Graph-theoretical approaches have significantly evolved to
address the complexities of PBN analysis. Contemporary frameworks
go beyond simple global metrics to characterize individual differences
in hierarchical network organization, focusing on multi-scale
modularity and core-periphery structures (Pines et al., 2022).
Advanced centrality measures, such as eigenvector centrality,
betweenness centrality, and participation coefficient analyses, provide
detailed characterizations of individual node-level network roles
(Wang Y. et al., 2025; Ni et al., 2025).
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The application of ML techniques to PBN analysis has dramatically
expanded, with novel architectures designed explicitly for
neuroimaging data (Qin et al., 2025). Deep learning approaches,
particularly GCNs and attention-based models, enable the extraction
of complex nonlinear relationships within individual connectivity
patterns that cannot be captured by traditional linear methods
(Sounthararajah et al., 2025; Zhou Y. et al, 2023). Multi-scale
functional connectivity approaches using hierarchical graph
convolutional networks predict individual behavior by integrating
connectivity information across multiple spatial scales (Liu
etal., 2024).

Contemporary dimensionality reduction methods for PBNs have
progressed beyond traditional principal component analysis to more
sophisticated nonlinear techniques that can capture complex
individual differences (You et al., 2025; Runfola et al., 2025). Advanced
manifold learning techniques, including t-SNE, UMAP, and
autoencoders, demonstrate that individual brain networks occupy
distinct positions within low-dimensional representational spaces
(Lang et al., 2024; Poologaindran et al., 2025). Nonlinear methods like
t-SNE and UMAP specialize in extracting manifold structures from
PBNs. However, since both techniques are distance-preserving
embeddings, noise in sparse connectome data can be amplified,
leading to artifactual clustering. This can occur if the clustering
process takes place far from the actual representations of
neurodiversity. The use of counterfactual techniques within predictive
frameworks like CPM may further complicate matters by conflating
descriptive geometry with causal inference. Simulations show that
individual-level predictions may have a variance inflation of up to 30%
compared to the actual data, attributed to the omission of temporal
processes within the model (Drysdale et al., 2017). Using population
centroids as a reference is crucial in normative modeling methods, as
it effectively addresses the aforementioned issue. This approach
enhances their ability to detect subtle variations in neurodivergent
profiles, although it is less sensitive to rare variants compared to
other methods.

3.3 Validation and generalizability
assessment

Given the complexity and potential overfitting of individual
difference patterns, a robust validation framework is essential for PBN
analysis. Contemporary approaches focus on embedded cross-
validation strategies that optimize model hyperparameters separately
and assess generalization performance on independent datasets
(Parvandeh et al., 2020; Lewis et al., 2023). One-site testing strategies
are increasingly recognized as vital for evaluating the generality of
PBN models across different scanners and acquisition protocols
(Friedman et al., 2008). The longitudinal validation method assesses
the temporal stability of individual network functions, demonstrating
that PBN architectures exhibit stable and dynamic components
throughout development and aging (Wright et al., 2016). These
findings have important implications for determining when targeted
interventions are most effective. Translating individualized brain
network analysis from research to clinical practice requires a
systematic pipeline that integrates multimodal neuroimaging data
with computational network analysis and clinical symptoms (Lewis
et al,, 2023). Figure 2 illustrates this comprehensive methodological
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TABLE 1 Methodological approaches for personalized brain network analysis.

Category

Method/
approach

Technical description

Key advantages

Primary limitations

Sample size
recommendations

References

length, modularity, and hub identification. Enables
characterization of network efficiency and

organization.

Clinical interpretability

Multi-scale analysis

Null model assumptions

Multiple comparisons

differences

Neuroimaging Functional MRI (fMRI) Measures blood oxygen level-dependent (BOLD) « High spatial resolution Low temporal resolution n > 200 for individual Mullin et al. (2025)
Techniques signals to map functional connectivity patterns. « Non-invasive whole- Motion artifacts differences
Advanced preprocessing includes 36-parameter brain coverage Indirect neural measure n > 500 for multivariate models
confound regression, temporal filtering (0.01- « Established protocols Scanner variability
0.08 Hz), and multi-echo denoising for improved « Cross-site compatibility
signal-to-noise ratio.
Diffusion Tensor Measures white matter microstructure and structural « Direct structural assessment Complex n > 150 for tract analysis Parker et al. (2025) and
Imaging (DTI) connectivity using water diffusion patterns. Advanced | « Tract-specific analysis acquisition requirements n > 300 for connectome studies | Liou et al. (2025)
models include NODDI and free-water elimination » Developmental sensitivity Processing intensive
for improved tissue specificity. o Clinical relevance Motion sensitive
Limited crossing fiber
resolution
Multi-echo fMRI Acquires multiple echo times to separate BOLD signal | « Superior denoising Longer acquisition time n > 100 for individual Constable et al. (2025)
from non-neural noise sources. Enables biophysically- | « Improved ventral Complex preprocessing differences
informed denoising and improved signal detection in brain coverage Limited availability n > 250 for network analysis
problematic brain regions. « Better reliability Higher computational demands
o Reduced dropout artifacts
Computational Graph Theory Analysis Quantifies network topology using mathematical « Quantitative network metrics Threshold dependency n > 100 for basic metrics Yang et al. (2025a) and
Methods graph properties including clustering coefficient, path | « Cross-species compatibility Resolution limits n > 200 for individual Ogut (2025)

Machine Learning

Approaches

Applies supervised and unsupervised algorithms
including support vector machines, random forests,
and deep neural networks for pattern classification

and prediction of cognitive phenotypes.

High prediction accuracy
Feature selection capability
Non-linear relationships

Automated analysis

Black box interpretability
Overfitting risk
Large sample requirements

Hyperparameter sensitivity

n > 300 for classification

n > 500 for deep learning

Raza et al. (2025) and
Sharma and Chariar

(2024)

Connectome-based

Predictive Modeling

Uses whole-brain functional connectivity patterns to
predict behavioral and cognitive outcomes through
feature selection and cross-validated Machine

Learningframeworks.

Whole-brain integration
Cross-validated predictions
Individual-level precision

Clinical translation potential

High dimensionality
Feature

interpretation challenges
Site effects

Generalizability concerns

n > 200 for basic models

n > 400 for robust predictions

Ben-Zion et al. (2025)
and Friedrich et al.

(2024)

Deep Generative Models

Employs variational autoencoders and generative
adversarial networks to synthesize individual-specific
connectomes and identify latent network

representations underlying cognitive diversity.

Latent

representation learning

Data augmentation capability
Unsupervised discovery

Synthetic data generation

Training instability
Computational complexity
Validation challenges

Limited interpretability

n > 500 for training

n > 1,000 for robust models

Orlichenko et al. (2025)
and Zhao (2025)

(Continued)
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TABLE 1 (Continued)

Category

Method/
approach

Technical description

Key advantages

Primary limitations

Sample size
recommendations

References

Analysis Individualized Optimizes brain parcel boundaries for each « Person-specific boundaries « Computational intensive n > 50 per individual DeYoung et al. (2025)
Frameworks Parcellation participant using methods like Group Prior « Improved « Multiple session requirements n > 100 for group studies
Individualized Parcellation (GPIP) and Multi-Session functional alignment o Method comparison challenges
Hierarchical Bayesian Modeling (MS-HBM). « Enhanced effect sizes « Validation complexity
« Cross-session stability
Hyperalignment Identifies corresponding functional units across « Functional correspondence o Task dependency n > 20 for alignment Zhang et al. (2025a) and
individuals by aligning response patterns rather than o Large effect sizes « Computational demands n > 100 for generalization Li C. etal. (2025)
anatomical landmarks, enabling improved cross- « Cross-individual alignment « Limited to functional data
subject comparisons. o Task-specific optimization « Validation requirements
Multimodal Integration Combines structural, functional, and diffusion MRI « Comprehensive « Data alignment challenges n > 150 for each modality Baghdadi et al. (2025)
data using joint dimensionality reduction, canonical brain characterization o Increased complexity n > 300 for integration and Zhou R. et al.
correlation analysis, and multiview learning o Improved « Missing data issues (2023)
approaches. prediction accuracy « Interpretation difficulties
« Cross-modal validation
« Rich phenotyping
Validation Cross-validation Employs k-fold, leave-one-out, and nested cross- « Overfitting prevention » Reduced effective sample size n > 100 for k-fold Jafrasteh et al. (2025)
Approaches validation strategies to assess model generalizability « Generalizability assessment « Computational overhead n > 200 for nested CV and Wang B. et al.
and prevent overfitting in predictive analyses. o Model selection guidance o Strategy selection challenges (2025)
« Statistical robustness « Bias-variance tradeoffs
External Validation Tests model performance in completely independent o True generalizability test « Requires multiple datasets Training: n > 200 Xin et al. (2025b) and
datasets to assess true generalizability across sites, « Site effect assessment « Coordinate challenges Validation: n > 100 Jahanshad et al. (2024)
populations, and acquisition parameters. « Population validity « Population differences
o Clinical translation readiness | o Technical harmonization needs
Longitudinal Validation Assesses temporal stability of individual network « Temporal stability assessment =« Long-term data collection n > 100 baseline Vidal-Pifieiro et al.
features across development and aging, revealing both | « Developmental insights « Participant retention challenges | » > 2 timepoints minimum (2025) and Boudreau
stable and dynamic components of brain organization. | e Intervention timing guidance | « Developmental confounds et al. (2025)
« Biomarker identification o Practice effects

Sample size recommendations: Based on power analyses for 80% power to detect medium effect sizes (r > 0.30) with o = 0.05. Larger samples recommended for smaller expected effects or more complex analyses. CPM: Connectome-based Predictive Modeling; DTI:

Diffusion Tensor Imaging; EEG: Electroencephalography; FA: Fractional Anisotropy; fMRI: functional Magnetic Resonance Imaging; GCN: Graph Convolutional Network; iFOD2: second-order integration over fiber orientation distributions; MD: Mean Diffusivity;
MEG: Magnetoencephalography; ML: Machine Learning; MRI: Magnetic Resonance Imaging; t-SNE: t-distributed Stochastic Neighbor Embedding; UMAP: Uniform Manifold Approximation and Projection.
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process, detailing how individual brain connections are generated,
validated, and transformed into clinically practical insights for
personalized neuronal assessments and therapeutic interventions.
The workflow integrates multi-modal neuroimaging data
acquisition (MRI, DTI, fMRI, EEG) with computational network
analysis to generate personalized brain connectivity profiles. Network
indices are calculated for patient cohorts, enabling targeted clinical
translation through individualized neurological assessments and
therapeutic interventions based on cognitive variability patterns.
Diffusion Tensor Imaging (DTI): Diffusion Tensor Imaging; EEG:
fMRI: Functional

Electroencephalography; Magnetic

Resonance Imaging.

4 Empirical evidence: networks and
cognitive phenotypes

The relationship between Personalized Brain Network
architectures and cognitive phenotypes across neurodiverse conditions
reveals domain-specific patterns of connectivity that transcend
traditional diagnostic boundaries (Chopra et al., 2025; Hilton et al.,
2024). Table 2 synthesizes the current empirical evidence linking
cognitive domains to their associated network signatures,
demonstrating how individual differences in brain organization
contribute to cognitive variability across neurotypical and
neurodivergent populations.

4.1 Executive function and control
networks

The frontoparietal network shows significant interindividual
variability linked to cognitive performance (Marek and Dosenbach,
2018). Precision functional mapping studies using spatially

10.3389/fnhum.2025.1669431

regularized non-negative matrix factorization have identified 17
individualized functional networks per person, with the total cortical
representation of frontoparietal networks positively correlated with
general cognition (Marek and Dosenbach, 2018). Cross-validated
ridge regressions trained on network topography successfully
predicted cognition in unseen data, with the prediction accuracy
increasing along the sensorimotor-association axis of the cortex (Li
etal., 2022).

Attention regulation and cognitive flexibility are related to
individualized frontoparietal network configurations. Network
topography predicts executive functioning performance (r = 0.16-
0.17, p < 0.001), indicating that individual differences in network
organization contribute to variations in attentional control and
cognitive adaptability (Marek and Dosenbach, 2018; Cole, 2024). The
prominence of the frontoparietal and ventral attention networks
(VAN) in these predictions highlights their coordinating role in
complex cognitive processes (Cui et al., 2020).

4.2 Learning and memory systems

Episodic memory, which depends on hippocampal-cortical
interactions, showed significant variations in PBN architectures.
Individual network topologies predicted learning and memory
performance (r = 0.27, p < 0.001), and hippocampal-cortical networks
played a significant role in this prediction (Nordin et al., 2025).
Individuals with greater cortical representation of memory-related
networks may have enhanced episodic memory encoding and retrieval
capabilities. Memory consolidation and retrieval involve dynamic
interactions across the hippocampal, cortical, and subcortical regions.
Individual network models predict differences in memory
performance, whereas variations in hippocampal-cortical connectivity
may affect consolidation efficiency and retrieval accuracy. However,
the fundamental mechanisms of synaptic plasticity and network
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TABLE 2 Cognitive domains and associated personalized network signatures in neurodiversity.

Cognitive

Primary brain networks

Neurodiversity

Key network signatures

Quality

References

domain conditions
Executive function Frontoparietal Network (FPN) ASD Meta-analytic evidence shows FPN hypoconnectivity predicts executive dysfunction (r = —0.45, 95% b 8.8 ¢ Leticevscaia (2025),
Dorsolateral Prefrontal Cortex ADHD CI [-0.52, —0.38], p < 0.001**%; k = 23 studies, N = 4,847). Individual-differences research Pashkov and Dakhtin
Posterior Parietal Cortex Intellectual Disability demonstrates frontoparietal network topology predicts working memory capacity (cross-validated (2025), and
Anterior Cingulate Cortex Dyslexia r=0.34, p < 0.001#**). Precision network mapping reveals person-specific FPN boundaries improve Minnigulova et al.
prediction accuracy by 23% over standard atlases (Ar = 0.18). (2025)
Social cognition Default Mode Network (DMN) ASD Decreased causal connectivity from dorsal to ventral mPFC correlates with ADOS scores (r = —0.375, b 8 8¢ Wang L. et al. (2024)
Medial Prefrontal Cortex Social Anxiety 95% CI [—0.62, —0.11], p = 0.009%*; n = 156). Large-scale analysis reveals DMN- Salience Network and Guo et al. (2024)
Posterior Cingulate Cortex Schizophrenia anticorrelation predicts social cognitive performance (multivariate r = 0.41, cross-validated r = 0.37,
Temporoparietal Junction bipolar disorder P <0.001%#%; N = 2,431). Individualized DMN parcellation improves autism classification accuracy
Superior Temporal Sulcus (AUC = 0.87 vs. 0.74 standard).
Attention regulation | Dorsal Attention Network ADHD Increased resting-state connectivity between striatal regions and fronto-insular cortex characterizes %k Mizuno et al. (2025),
Ventral Attention Network ASD ADHD (d = 0.52, 95% CI [0.31, 0.73], p < 0.001***; meta-analysis k = 18, N = 3,247). DAN-VAN Mouseli et al. (2025),
Salience Network Anxiety Disorders connectivity strength predicts sustained attention performance (r = 0.29, 95% CI [0.21, 0.37], and Zaher et al.
Fronto-Insular Cortex Trauma-related Disorders P <0.001%#%*), Salience Network hub connectivity shows age-resilient biomarker properties (test-retest (2025)
r = 0.81 over 24 months).
Memory systems Hippocampal-Cortical Network ASD Individual network topography predicts episodic memory performance (cross-validated r = 0.31, 95% * % Li H. X. et al. (2025),
Medial Temporal Lobe Learning Disabilities CI [0.24, 0.38], p < 0.001***; n = 1,206). Reduced functional connectivity within hippocampal-cortical Ozcan et al. (2025),
Parahippocampal Gyrus Early-onset Dementia circuits correlates with memory consolidation deficits (r = —0.43, p < 0.001***). Personalized and Marei (2025)
Retrosplenial Cortex Memory Disorders hippocampal subfield analysis reveals distinct patterns in autism (effect size d = 0.67 for CA1-CA3
connectivity differences).
Language Left Hemisphere Language Network Dyslexia Disrupted network interactions serve as neural markers of dyslexia with 85% classification accuracy * % Hassanzadeh-
processing Broca’s Area (BA 44/45) ASD (AUC = 0.89, sensitivity = 0.87, specificity = 0.83). Increased within-network connectivity linked to Behbahani et al.
Wernickes Area (BA 22) Specific Language Impairment poorer reading performance (r = —0.38, 95% CI [-0.47, —0.29], p < 0.001***; N = 847). White matter (2025) and Nogueira
Arcuate Fasciculus Developmental Language tractography reveals altered arcuate fasciculus organization in familial risk populations (Cohen’s etal. (2025)
Superior Longitudinal Fasciculus Disorder d = 0.45 for fractional anisotropy differences).
Sensory processing Sensorimotor Network ASD Higher sensory sensitivity correlates with expanded connectivity gradients between visual cortex and * Yok Choi et al. (2025) and
Primary Visual Cortex Sensory Processing Disorder DMN (r = 0.32, 95% CI [0.18, 0.45], p < 0.001*#%; n = 524). Synesthetes show altered degree centrality Wang J. et al. (2025)
Primary Auditory Cortex Synesthesia in 43 brain regions with large effect sizes (mean d = 0.72). Cross-modal plasticity indices predict
Somatosensory Cortex Hyperacusis sensory hypersensitivity in autism (multivariate r = 0.46, cross-validated r = 0.41, p < 0.0017%%%).
Thalamic Nuclei
Cognitive flexibility | Cingulo-Opercular Network ADHD Network topography predicts cognitive flexibility performance (cross-validated r = 0.28, 95% CI [0.19, | &% Kim et al. (2025) and
Frontoparietal Network ASD 0.37], p < 0.001#**; improved from standard r = 0.17 with individualization). Age-resilient biomarkers Liu N. et al. (2025)

Middle Frontal Gyrus
Anterior Cingulate Cortex

Insular Cortex

obsessive-compulsive disorder

Tourette Syndrome

identified in Middle Frontal Gyrus (MNI: +32, 8, 52) and Supplementary Motor Area show 89%
stability over 18 months. Task-switching network efficiency correlates with behavioral rigidity

measures (r = —0.51, p < 0.001%%%),

Effect size interpretations (DeYoung et al., 2025): r = 0.10-0.29: Small effect; r = 0.30-0.49: Medium effect; r = 0.50+: Large effect. All correlations are Pearson product-moment correlations with 95% confidence intervals where available. Statistical significance:

#p < 0.05, #*p < 0.01, **¥p < 0.001. Methodological Quality Ratings: % % % Gold Standard: Multi-site replication, n > 1,000, cross-validated multivariate models, external validation, % % ¥ High Quality: Single-site large sample (# = 500-1,000), cross-validated, direct
replication attempted, % ¢ ¢ Standard: Adequate sample (n = 200-500), appropriate corrections, preliminary findings. ADHD: Attention-Deficit/Hyperactivity Disorder; ADOS: Autism Diagnostic Observation Schedule; ASD: Autism Spectrum Disorder; DAN: Dorsal
Attention Network; DLPFC: Dorsolateral prefrontal cortex; DMN: Default Mode Network; FPN: frontoparietal network; mPFC: medial Prefrontal Cortex; VAN: Ventral Attention Network.
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synchronization require further exploration (Lamberti et al., 2024;
Zhu et al., 2021; Citri and Malenka, 2008).

4.3 Social cognition and default mode
networks

The Default Mode Network (DMN) encompasses areas such as
the posterior cingulate cortex, the middle prefrontal cortex, and the
temporal junction, which are central to social cognition, particularly
in the domains of theory of mind and understanding mental states
(Cong et al., 2023; Monk et al., 2009). Studies using the Liang
Information Flux method to investigate the causal connectivity of the
DMN about Autism Spectrum Disorder found that the causal
connectivity from the temporal pole and hippocampus to the dorsal
medial prefrontal cortex, ventral medial prefrontal cortex, and Para
hippocampal cortex was reduced in AD (p < 0.05) (Monk et al., 2009).
A deficit in social cognitive capacity characterizes ASD, and changes
in the DMN are consistent with this conclusion. Causal connectivity
from the temporal pole and hippocampus to the dorsal medial
prefrontal cortex, ventral medial prefrontal cortex, and
parahippocampal cortex was reduced in ASD (p <0.05) (Cong

etal., 2023).

4.4 Sensory processing and perceptual
networks

Sensory integration varies significantly between individuals, and
synesthesia is a valuable model for studying atypical sensory-cognitive
networks (Ward et al., 2024). A study of a whole-brain biomarker
revealed significant changes in functional connectivity, with 43
regions exhibiting differences in centrality degree and gradients
shifting in the visual and associated cortex (Rouw, 2013). Intracortical
myelin and functional connectivity are the strongest predictors of
synesthesia, highlighting the role of the PBN architecture in sensory
integration (Ward et al., 2024). Synesthetes show higher interregional
correlations in brain thickness and significant increases in subcortical
volume in regions such as the cerebellum, amygdala, and hippocampal
cortex, suggesting enhanced interaction between sensory and
cognitive regions. These results support the hypothesis of synesthesia
hyperconnectivity, which suggests that an increase in connectivity in
the visual and parietal regions facilitates intermodal perception (Ward
et al., 2024; Eckardt et al., 2024).

4.5 Critical methodological limitations and
contradictory findings

Recent findings from large-scale studies have revealed
significant methodological flaws in precision neuroscience
methodologies. (Rosenblatt et al. (2024) showed that data leakage
inflates prediction performance in connectome-based machine
learning models, with feature leakage causing particularly severe
inflation (Ar = 0.47 for attention problems, raising chance-level
performance from r = 0.01 to moderate performance at r = 0.48).
This challenges the reliability of many published CPM studies and
suggests that reported effect sizes may be systematically
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overestimated (Morfini et al., 2025; Liang et al., 2024). While CPM
and normative modeling are both valuable approaches, they address
fundamentally different questions with distinct explanatory
frameworks. The CPM methodology focuses on identifying brain-
behavior relationships through predictive accuracy, assuming that
enhanced predictive capabilities indicate more substantial biological
relationships. Conversely, normative modeling identifies deviations
from population norms, assuming that meaningful individual
differences appear as statistical outliers from typical development
patterns. Recent studies have uncovered significant contradictions
in precision neuroscience findings. Fekonja et al. (2025) identified
nine critical roadblocks in translational network neuroscience. The
authors noted that “network measures show particular sensitivity to
variations in data acquisition and processing, complicating
standardization efforts” and that “the relationship between network
properties and brain dysfunction remains complex and often
indirect, making clinical interpretation of network measures
particularly challenging” (Fekonja et al., 2025).

The field faces a fundamental interpretation crisis where different
methodological choices can lead to opposite conclusions about the
same neurobiological questions (Jahanshad et al., 2024; Marek and
Laumann, 2024). For instance, studies using different parcellation
schemes, connectivity thresholds, or feature selection methods often
report contradictory network signatures for identical clinical
populations (Liu Q. et al., 2025; Mito et al., 2025). In the context of
precision neurodiversity, these inconsistencies risk pathologizing
adaptive variations (e.g., hyperconnectivity in gifted individuals) as
deficits, underscoring the need for standardized, multi-site protocols
to resolve such discrepancies and ensure equitable interpretations
across neurodiverse subgroups (Kapp, 2025; Huang et al., 2025).

Recent work by Kobbersmed et al. (2025) challenges the prevailing
connection-wise approach in normative modeling, demonstrating that
whole-brain normative models (FUNCOIN) substantially outperform
localized approaches in detecting pathological patterns in bipolar
disorder and Parkinson’s disease. This suggests that traditional edge-
by-edge normative modeling may miss systemic network-level
pathology, fundamentally limiting its explanatory power compared to
holistic approaches (Kobbersmed et al., 2025).

Recent advancements in population-scale connectome research
have transformed our understanding of neurotypical and
neurodivergent distinctions. These advancements reveal that
traditional binary classifications obscure the continuous nature of
brain-network variability across individuals. Liu N. et al. (2025)
demonstrated using the UK Biobank dataset (N =8,086) that
individual connectome patterns exist along continuous dimensions.
The study found that age, sex, and body phenotypes contribute
approximately four times more to connectivity architecture than
cognitive or lifestyle factors, regardless of the diagnostic status (Liu
N. et al, 2025). This finding challenges the assumption that
neurotypical individuals represent a homogenous baseline for
comparing neurodivergent patterns.

The connectome perspective reveals that neurotypical populations
exhibit significant individual differences in brain network
organization, often overlapping with patterns typically considered
“atypical” Recent normative brain chart studies indicate that
approximately 15-20% of neurotypical individuals display
connectivity patterns classified as outliers by traditional approaches,
highlighting the inadequacy of binary neurotypical-neurodivergent
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classifications (Zhang et al., 2025b; Wang Y. et al., 2025). These
findings support the dimensional neurodiversity framework, which
posits that individual brain networks exist along continuous spectra
rather than discrete categories.

5 Clinical applications
5.1 Autism spectrum conditions

ASD exhibits considerable variability, necessitating approaches
that account for its heterogeneity. ML studies have identified four
robust ASD subtypes based on brain-behavior dimensions, each
linked to distinct molecular pathways (Nishat et al., 2024). Using
resting-state fMRI data, these subtypes reflect unique connectivity
profiles. This suggests that PBN analysis, with its potential to stratify
ASD for targeted therapeutic interventions, is a promising avenue for
future research and treatment (Mahjani et al., 2020; Uddin et al,,
2024). This is an optimistic sign for the future of ASD research and
treatment, offering new possibilities for understanding and addressing
this complex condition.

Sensory processing sensitivities are a hallmark of ASD, with
recent studies linking these to PBN architectures. Higher sensory
sensitivity correlates with greater expansion in functional
connectivity gradients, particularly between visual and default
mode networks (r = 0.32, p < 0.05) (Kerren et al., 2025; Lee et al.,
2025). This expansion indicates reduced integration between
sensory and higher-order cognitive networks, potentially
underlying sensory overload in ASD (Kolisnyk et al., 2025; Jabbar
et al., 2025). However, a critical caveat arises when applying these
models clinically: ‘CPM-derived connectivity gradients, which are
connectivity patterns derived from the ‘connectome-based
predictive modeling’ method, may predict sensory overload with
high accuracy in cross-sectional data (r ~ 0.32), yet fail to generalize
longitudinally due to unaccounted developmental confounds,
yielding contradictory intervention targets compared to normative
models that prioritize trajectory deviations (e.g., accelerated vs.
delayed maturation). This discrepancy highlights the need for
hybrid frameworks to reconcile predictive power with normative
context, as evidenced by recent multi-site validations showing
normative approaches outperforming CPM by 15-20% in ASD
subtyping stability (Bethlehem et al., 2022).

5.2 Attention-deficit/hyperactivity disorder

These subgroups, delayed brain growth (DBG-ADHD) and
prenatal brain growth (PBG-ADHD), are invisible to conventional
diagnostic criteria but show profound differences in network-level
functional organization (Liu N. et al., 2025; Pan et al., 2025). These
subtypes reflect distinct neurodevelopmental trajectories, with
PBG-ADHD characterized by accelerated cortical growth patterns
detectable via normative brain charts derived from large-scale
structural MRI data. This demonstrates how precise neurodiversity
transcends binary classifications to reveal neurobiological
heterogeneity (Bu et al, 2025). Individual differences in the
organization of the attention network contribute to the variability in

symptoms of ADHD (Mizuno et al., 2025). PBN methods enable the
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identification of specific connectivity patterns associated with different
presentations of ADHD and facilitate the development of targeted
interventions based on individual neuronal signatures rather than
categorical diagnoses (Wall et al., 2025).

5.3 Specific learning differences

Learning differences, including dyslexia and other reading-related
conditions, show moderate heritability but are substantially influenced
by educational and linguistic experience. Reading-related cognitive
and brain traits demonstrate complex gene—environment interactions,
suggesting that precision approaches must consider both genetic
predispositions and environmental factors when characterizing
individual network profiles (Eising et al., 2022; Ozernov-Palchik
etal., 2021).

Individual differences in language-related network organization
predict reading performance and outcomes of interventions. PBN
characterization enables the identification of specific connectivity
patterns associated with different learning profiles, facilitating the
development of educational approaches tailored to individual neural
architectures (Liu and Yang, 2023; Chang et al., 2024).

5.4 Highly sensitive and gifted populations

Highly sensitive people and individuals with extraordinary

cognitive abilities represent an important population for
understanding the entire spectrum of human cognitive variability
(Chang et al., 2024). These groups often exhibit unique network
characteristics that can form the basis of their unique cognitive and
behavioral profiles. Research on giftedness suggests that extraordinary
cognitive abilities may be associated with specific patterns of network
organization, including increased connectivity to areas that support
working memory, attention, and executive function. However, this is
a neglected area that requires special research attention (Ma et al.,

2017; Wang et al., 2021).

5.5 Operationalizing clinical pathways in
precision neurodiversity

To translate PBN architectures into actionable clinical pathways,
we propose a stratified decision framework that integrates topological
deviation indices (e.g., z-scores from normative models) with
behavioral phenotyping, emphasizing thresholds for intervention
escalation. Normative modeling approaches using age-normed and
sex-stratified brain charts have been established to capture typical
regional brain development across the human lifespan, providing
centile scores for detecting alterations in regional volumes (Garcia-
San-Martin et al., 2025). For executive function deficits linked to FPN
hypoconnectivity (as per Table 2; r = —0.45), a deviation threshold of
z> 1.5 (indicating moderate-to-severe network inefficiency) could
trigger cognitive training or pharmacological augmentation, calibrated
against age-normed brain charts. Recent evidence demonstrates that
targeted cognitive training combined with medication treatment can
lead to greater improvements in executive function domains,
particularly when combined with atomoxetine (Cohen’s d > 0.52)
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(Dang et al., 2025). Similarly, DMN-salience anticorrelation imbalances
(r = 0.41 for social cognition) exceeding z > 2.0 might prioritize social
skills interventions, given that functional brain connectivity in the
Frontoparietal Network (FPN) is significantly associated with executive
functioning abilities in early childhood, with lower thresholds
(z = 0.5-1.0) suiting monitoring in high-functioning profiles to avoid
over pathologizing adaptive variability (Kelsey et al., 2025).

The required scope of evidence for such pathways includes multi-
modal validation (e.g., fMRI + behavioral assays) across diverse
cohorts (n > 300 per subgroup, with 80% power for medium effects),
longitudinal tracking (>2 timepoints over 12 months), and external
replication to mitigate site-specific biases. Heterogeneous, temporally
consistent patterns of brain development have been demonstrated
across longitudinal studies, with individual brain abnormality
patterns (IBAPs) showing remarkable stability over time despite
substantial spatial heterogeneity between individuals (Thalhammer
et al., 2025). Key design points encompass: (i) hybrid normative-
predictive modeling for phenotype stratification (e.g., combining
CPM for short-term outcomes with normative z-scores for
trajectories)—approaches that have shown promise in precision
psychiatry applications using connectome predictive modeling (Gao
et al., 2025); (ii) ethical safeguards like community co-design to
ensure neurodiverse input—critical given the growing emphasis on
neurodiversity-informed digital interventions and Al-driven
personalized care (Beirat et al., 2025); and (iii) integration of digital
tools for real-time monitoring, such as Al-driven apps that adapt
interventions based on dynamic network fingerprints. Digital
targeted cognitive training programs have demonstrated efficacy in
neurodevelopmental disorders, with FDA-approved interventions
showing significant improvements in attention function (Dang et al.,
2025). This framework addresses NDD heterogeneity by prioritizing
individualized phenotypes over categorical diagnoses, fostering
precision interventions that enhance adaptive functioning while
respecting neurodiversity. Figure 3 illustrates this clinical pathway as
a decision tree, with nodes for initial assessment, threshold-based
stratification, and iterative evaluation.

5.6 Sleep patterns and sleep instability in
neurodiversity

Sleep disturbances represent one of the most prevalent and
impactful comorbidities in neurodevelopmental conditions, with
distinct patterns emerging across different neurodiverse populations
that directly relate to individualized brain network architectures.

5.6.1 Sleep architecture and fragmentation
patterns

Recent findings indicate that individuals diagnosed with ASD
and ADHD exhibit characteristic changes in sleep architecture that
align with their unique brain connectivity profiles. Large-scale
accelerometer-based studies using objective measurements
(N = 85,670) have shown that the timing of the most active 10-h
period (M10) is significantly linked to increased odds of both ASD
(OR =29.64, 95% CI: 3.69-237.89, p < 0.01) and ADHD (OR = 7.70,
95% CI: 2.99-19.80, p < 0.001), establishing causal connections
between circadian changes and these neurodevelopmental conditions
(Dai et al., 2025). Meta-analytic evidence from actigraphy-measured
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sleep parameters demonstrates that physical activity interventions
significantly improve sleep efficiency (SMD = 3.90, 95% CI: 1.78-
6.03, p < 0.001), reduce wake after sleep onset (SMD = —1.36, 95%
CL: —-2.66 to —0.07, p<0.05), and increase sleep duration
(SMD = 2.39, 95% CI: 0.68-4.09, p < 0.01) in neurodevelopmental
disorders (Wang T. et al., 2024). These findings highlight the complex
nature of sleep disturbances, extending beyond simple duration
metrics to include factors such as sleep fragmentation and
architectural changes.

5.6.2 Circadian rhythm dysfunction and network
connectivity

The disruption of circadian rhythm in neurodiversity is a complex
phenomenon involving interactions between the suprachiasmatic
nucleus, the default mode network, and peripheral oscillators.
Research shows that over 65% of individuals with neurodevelopmental
disorders have significantly reduced nocturnal melatonin levels,
contributing to delayed sleep onset and early morning awakenings
(Bouteldja et al., 2024). Dysfunction in the circadian system manifests
as altered sleep-wake cycles and abnormal melatonin rhythms across
neurodiverse populations. Bidirectional Mendelian randomization
analyses indicate that sleep efficiency may have a protective effect
against ASD (OR =0.155, 95% CI: 0.025-0.958, p < 0.05), while
ADHD shows that genetic liability leads to increased nocturnal sleep
episodes (f = 0.017, 95% CI: 0.001-0.033, p < 0.05). These findings
suggest that sleep disruption in ADHD is a consequence rather than
a cause (Bouteldja et al., 2024).

5.6.3 Brain network mechanisms underlying sleep
disorders

Personalized brain networks and their relationship with sleep are
influenced by interconnected networks. In ASD, the disrupted
functional organization of DMN connectivity occurs during sleep,
leading to reduced deactivation patterns and sleep fragmentation.
Recent studies have shown that sleep deprivation disrupts the
connection between task-positive networks and the DMN,
particularly affecting the medial prefrontal cortex and posterior
cingulate cortex, which are involved in regulating sleep and social
cognition (He et al., 2024). Children with ADHD exhibit distinct
alterations in slow-wave sleep compared to control children.
Additionally, one study found that the architecture of slow waves was
altered due to reduced amplitude and different frequency
distributions. The frontal positioning network pattern, which can
predict executive functioning performance (r = 0.34; p < 0.001),
correlated significantly with sleep efficiency indices, suggesting that
these indices share a neural substrate with executive functioning
maintenance (Ishii et al., 2024).

5.6.4 Sleep instability patterns across
neurodevelopmental conditions

Sleep instability in neurodiversity encompasses multiple
dimensions (Tamir et al., 2023):

1. Temporal Instability: Night-to-night variability in sleep timing
and duration, particularly pronounced in ADHD populations where
circadian rhythm disorders contribute to sleep-wake cycle
irregularities (Martinez-Cayuelas et al., 2024).

2. Architectural Instability: Fragmented sleep with increased wake
after sleep onset, reduced REM sleep percentage, and altered

frontiersin.org


https://doi.org/10.3389/fnhum.2025.1669431
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

Mohammad et al.

10.3389/fnhum.2025.1669431

Initial Assessment
« Multi-modal brain imaging
(TMR) + behavioral assays)
« Topological deviation indices
(2-scores from normative models)
» Executive function assessment
« Social cognition evaluation

network inefficlency

Monitoring
pathway

Cognitive
Training +
Pharmacologial
Augmentation

\ P
1 3
FPN Hypoconnectivity Threshold-Based Stratification DMN-Salience
Detected Anticorrelation
e
Moderate-to-severe 0.5-1.0

Standard

care
pathway

Monitoring| | High-functioning
pathway monitoring

]

Iterative evaluation }

FIGURE 3

management of neurodevelopmental variability.

12-month loop

Precision-based network (PBN) clinical pathway decision tree. This decision tree illustrates a threshold-based stratification protocol for personalized
neurodiversity interventions derived from an initial multimodal assessment. This assessment includes functional Magnetic Resonance Imaging (fMRI),
behavioral assays, topological deviation indices (z-scores from normative connectome models), executive function evaluations, and social cognition
testing. The first step involves detecting frontoparietal network hypoconnectivity and identifying moderate-to-severe network inefficiency indicated by
a z-score greater than 1.5. The relationship between the default mode network (DMN), the salience network, and disease severity is also considered.
Based on these metrics, patients are selected for different monitoring pathways: those with mild deviations are monitored, those with moderate
inefficiency receive cognitive training plus medication, high-functioning individuals with borderline anticorrelation are monitored, and standard care is
provided for severe z-scores greater than 2.0. A 12-month evaluation loop reassesses and adjusts pathways to support the adaptive and personalized

slow-wave sleep organization, correlating with altered thalamo-
cortical connectivity patterns (Satapathy et al., 2024).

3. Circadian Instability: Misalignment between internal circadian
clocks and environmental demands, with late chronotype preferences
causally linked to both ASD and ADHD through genetic pathways
affecting core clock gene expression (Tamir et al., 2023).

5.6.5 Clinical implications and personalized
interventions

An analysis of brain networks reveals unique sleep patterns
among individuals, leading to targeted interventions for better sleep.
Studies show that neurodevelopmental disorders can benefit from
mind-body interventions lasting over 12 weeks, conducted at least
three times a week for at least 60 min. Participants in these
interventions showed significant improvements in sleep compared to
those who did not engage (SMD = 3.01, p < 0.001) (Wang T. et al,,
2024). However, the effectiveness of these interventions depends on
individual network topologies, necessitating precision approaches.
There is significant potential for individualized treatment strategies
for sleep and core neurodevelopmental symptoms, derived from the
interplay between sleep pattern analysis and specific brain network
architecture. For example, sleep functionality analyses can
be integrated with oscillatory network modeling, focusing on the
common neural processes underlying both symptom generations.
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5.7 Methodological challenges

The present application of PBN methods is encumbered by several
methodological challenges. A salient issue pertains to statistical power,
as individual-level analysis necessitates larger sample sizes compared
to group-level analysis (Gell et al., 2024). Additionally, it is imperative
to take into account signal-to-noise ratios during the detection of
subtle individual differences in network organization (Wu et al., 2023).
Another significant challenge pertains to reproducibility, as PBN
analyses frequently depend on preprocessing choices, scanner
parameters, and analysis pipelines (Jahanshad et al., 2024; Warrington
et al., 2025). To ensure reliable results, it is essential to establish
methodological accreditation and validate multiple datasets (Ekhtiari
etal., 2024).

5.8 Technological innovations

New technologies promise to improve the characteristics of
PBN. Advanced neuroimaging techniques, including high-resolution
7 T MRI and multimodal imaging methods, offer unprecedented
insights into the structure of the individual brain (Chu et al., 2025;
Cabalo et al., 2025). The real-time neurofeedback system allows
closed-loop interventions based on individual network states. The
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progress in artificial intelligence and Machine Learning continues to
improve our ability to extract meaningful patterns from complex
neuroimaging data. Deep learning approaches, particularly those
designed for analyzing brain networks, hold significant promise in
capturing nonlinear relationships within individual connectivity
patterns (Abdennour et al., 2025; Van Horn and Ricciardi, 2025;
Zhao, 2025).

5.9 Ethical and implementation
considerations

The use of precise neurodiversity methods raises significant
ethical concerns, including consent, privacy, and the potential for
discrimination based on neurobiological characteristics (Di Salvo,
2025; Bianco et al., 2023). Involving neurodiverse individuals in study
design and interpretation is crucial for ensuring ethical practices and
community relevance. Implementing these systems presents
challenges, including the need for specialized expertise, significant
computational resources, and standardized protocols. To promote the
broader adoption of PBN approaches, training programs for
researchers and clinicians, along with user-friendly analysis tools, are
essential (Aghdam et al., 2025; Fekonja et al., 2025).

5.10 Future research directions

Future research should prioritize the following key areas. Long-
term studies are essential to fully understand the evolution of PBN
architecture, particularly during its critical developmental period.
Integrationting of genetic, environmental, and neuroimaging data will
enhance our understanding of individual differences. Developing
clinically actionable frameworks to translate complex neuroimaging
findings into practical interventions remains a priority, including
decision-support tools to guide intervention selection based on
specific network characteristics.

5.11 Economic and implementation barriers

5.11.1 Cost analysis and economic considerations
The implementation of precision neurodiversity approaches faces
significant economic barriers that must be addressed for widespread
clinical adoption. Current estimates indicate that comprehensive,
personalized brain network (PBN) analysis requires initial investments
of $150,000 to $300,000 per clinical site to establish the necessary
computational infrastructure, including high-performance computing
clusters for processing complex neuroimaging datasets (Dipietro et al.,
2023; Fekonja et al., 2025). The financial implications of per-patient
analysis are considerable, with costs ranging from $800 to $1,500. This
estimate includes the acquisition of neuroimaging data, which can
total $400 to $600 for multi-modal MRI procedures. Additionally, the
computational processing time required for analysis can incur
expenses of $200 to $400. Finally, consulting specialized expertise can
cost between $200 and $500, as noted in the literature (Jones et al.,
2025; von Hessling et al., 2025). These costs far exceed those associated
with traditional assessment methods, creating significant barriers for
healthcare systems with constrained budgets (Stenzinger et al., 2023).
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The economic burden extends beyond direct costs to include
opportunity costs linked to longer assessment timelines. Conventional
neuropsychological evaluations take 4-6 h, while comprehensive PBN
approaches can extend assessment periods to 2-3 days, including
imaging acquisition, processing, and interpretation phases (Dawson
et al,, 2025). This extended timeline affects patient throughput and
clinic revenue, leading to resistance to adoption in fee-for-service
healthcare models (Buitelaar et al., 2022).

5.11.2 Healthcare system resource requirements

To effectively implement precision neurodiversity approaches,
healthcare systems must invest in various resource categories. The
personnel requirements for such a program include hiring or training
neuroimaging technicians specializing in research-grade protocols,
data scientists skilled in managing complex computational pipelines,
and clinicians trained to interpret network-based results (Novak,
2021; Leming et al., 2023). Preliminary assessments indicate that each
clinical site requires 2-3 additional full-time equivalents, translating
to annual salary expenditures of $200,000 to $400,000, depending on
regional wage structures (Aderinto et al., 2023).

Infrastructure demands encompass not only computational
resources but also enhanced data storage and security systems. The
multi-modal neuroimaging datasets generated through PBN
approaches require 50-100 GB per patient, necessitating robust data
management systems with adequate backup and security protocols
(Kuplicki et al., 2021; Souter et al., 2023). Annual financial obligations
for storage and maintenance typically range from $50,000 to $100,000
per clinical site (Gulani et al., 2025).

Integration challenges create additional resource demands. To
accommodate complex, network-based reports, healthcare systems
must modify existing electronic health record systems. This
modification process requires a developmental and testing phase that
typically lasts six to twelve months (Mohsen et al., 2022). The financial
implications are significant, with estimated implementation costs
ranging from $100,000 to $500,000, depending on system complexity
and customization needs (Rizzo, 2025).

5.11.3 Cost—benefit considerations

Despite substantial upfront investments, preliminary evidence
suggests that precision neurodiversity approaches may offer favorable
long-term cost-benefit ratios. Early intervention strategies informed
by PBN analysis could reduce the need for multiple diagnostic
evaluations, potentially saving $2,000-5,000 per patient in avoided
redundant testing. Enhanced treatment matching may improve
intervention effectiveness, leading to a 15-25% reduction in long-term
support service expenditures (Stenzinger et al, 2023; Eichler
etal., 2022).

The economic value of preventing inappropriate interventions is
particularly significant. Current estimates indicate that 30-40% of
neurodiverse individuals receive interventions poorly aligned with
their cognitive profiles, resulting in suboptimal outcomes and
continued service use (Goldfarb et al., 2024). Precision approaches
that improve intervention matching could generate substantial savings
through reduced need for alternative treatments and improved long-
term functioning (McFayden et al, 2022). However, return on
investment timelines extend beyond typical healthcare planning
horizons. Most economic benefits are realized over 5-10 years, posing
challenges for healthcare systems focused on short-term financial
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performance. Consequently, policymakers and healthcare leaders
must consider these extended timelines when evaluating

implementation decisions (Zaman, 2025).

5.12 Regulatory and approval challenges

5.12.1 Detailed regulatory pathway analysis

The regulatory environment for precision neurodiversity
technologies presents complex challenges that span multiple
jurisdictions and frameworks. In the United States, the FDA’s Software
as a Medical Device (SaMD) framework requires rigorous validation
of PBN analysis tools, a process that can take 2-5 years, depending on
the intended clinical application and risk classification (Zhu et al.,
2022; Kundu and Bardhan, 2025). Most PBN diagnostic tools are likely
classified as Class II medical devices, necessitating 510(k) premarket
notification and substantial equivalence demonstrations compared to
existing cleared devices. However, the novel nature of network-based
approaches often lacks clear predicate devices, potentially requiring
more extensive de novo review processes that can delay approval by
12-18 months (Khunte et al., 2023). In the European Union, the
Medical Device Regulation (MDR), implemented in 2021, has
introduced heightened validation requirements for AI-based medical
technologies (Khan et al., 2025). PBN analysis tools must demonstrate
clinical utility through controlled studies involving cohorts of 300-500
participants across multiple clinical sites. These requirements
significantly exceed standards for traditional neuropsychological
assessment validation, creating substantial barriers for technology
developers (Kondylakis et al., 2025).

The recently proposed EU Al Act adds another regulatory layer,
potentially categorizing PBN systems as “high-risk” AI applications
due to their role in healthcare decision-making (Muravieva, 2025).
This classification would impose additional requirements for risk
management systems, data quality assurance, and human oversight
protocols, further extending development and approval timelines (Di
Salvo, 2025).

5.12.2 Validation requirements

Regulatory bodies require multi-level validation evidence, which
current precision neurodiversity research has yet to establish fully.
that PBN-based
recommendations lead to improved patient outcomes compared with

Clinical ~ validation must demonstrate
standard assessment approaches. This requires longitudinal studies
spanning 2-5 years with sufficient statistical power to detect clinically
meaningful differences in intervention effectiveness (Gell et al., 2024;
Etkin et al., 2024).

Analytical validation requirements focus on the technical
performance of network analysis algorithms, including sensitivity,
specificity, and reproducibility across different scanner platforms and
patient populations (Fereshtehnejad et al., 2025). Current evidence
suggests significant variability in network measures across different
acquisition protocols and analysis pipelines, creating substantial
challenges in meeting regulatory requirements for analytical validity
(Fekonja et al., 2025).

Clinical utility validation presents the most significant challenge,
requiring the demonstration that PBN analysis results in clinical
decisions that improve patient outcomes. This level of evidence
requires randomized controlled trials comparing PBN-guided
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interventions with current standard-of-care approaches. Such studies
are resource-intensive and time-consuming, typically requiring
investments (Makowski

3-5years and multi-million-dollar

etal., 2024).

5.12.3 Approval timelines

The approval of precision neurodiversity technologies will take
longer than the development of software for several reasons. The
18-24 month period
documentation, and regulatory submissions. The review timeline

includes validation studies, technical
varies by jurisdiction, typically requiring six-12 months for the initial
review, followed by cycles of questions, answers, and additional data
submissions (Bennett et al., 2025). Complex technologies, such as
PBN analysis systems, often require multiple reviews, extending the
total review time to 18-36 months (Ardic and Dinc, 2025).

Ongoing regulatory obligations, such as post-market surveillance,
should also be considered in implementation planning. These
obligations include safety reports, adverse event reports, and possibly
further studies to establish clinical utility in real-world settings (Haag
etal, 2025). Overall, the time from initial development to clinical use
is usually 5-7years, which presents significant challenges for
technology developers and health systems planning implementation.
Funding strategies for precision neurodiversity technologies must
consider these extended timelines.

5.13 Clinical adoption barriers

5.13.1 Clinician trust issues

The implementation of precision neurodiversity approaches faces
significant resistance from clinicians concerned about the reliability
and interpretability of network-based assessments. Current
reproducibility challenges in network neuroscience create substantial
trust barriers, as clinicians observe conflicting results from different
analysis approaches applied to the same datasets (Jahanshad et al.,
2024; van Dijk et al., 2022). The “interpretation crisis” identified by
Fekonja et al. (2025), where different methodological choices can lead
to opposite conclusions about identical neurobiological questions,
directly undermines clinician confidence in network-based assessment
approaches (Loosen et al., 2024).

Survey data from practicing clinicians reveals that 67% express
concerns about the “black box” nature of Machine Learning
approaches commonly used in PBN analysis (Bajwa et al., 2021; Aziz
Noor, 2025). Many clinicians report discomfort with making clinical
decisions based on computational models they cannot fully
understand or validate independently. This skepticism is reinforced by
experiences with previous “revolutionary” assessment technologies
that failed to deliver promised clinical benefits (Bhagwat et al., 2025).

The complexity of network-based reports presents additional
barriers to clinician acceptance. Traditional neuropsychological
reports provide clear, interpretable scores with established normative
references. In contrast, network-based assessments often present
complex visualizations and statistical metrics that require specialized
training to interpret effectively (Wolff, 2025). Many clinicians report
feeling inadequately prepared to explain network-based results to
patients and families, creating reluctance to adopt these approaches.
Trust issues are further exacerbated by limited validation in real-world
clinical populations. Most network neuroscience research has been
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conducted in carefully controlled research settings with participants
who may not reflect the complexity and comorbidity patterns seen in
typical clinical practice (Piotrowski et al., 2025). Clinicians express
concerns about generalizability of research findings to their patient
populations, particularly given the high rates of medical comorbidities
and medication effects in clinical samples.

5.13.2 Workflow integration challenges

The integration of precision neurodiversity approaches into existing
clinical workflows presents substantial logistical and operational
challenges. Current clinical assessment protocols are optimized for
efficiency, typically completing comprehensive evaluations within 4-6 h
across 1-2 visits. PBN approaches require additional time for
neuroimaging acquisition, data processing, and result interpretation,
potentially extending assessment timelines to multiple weeks (Ifeanyi
Kingsley et al., 2025). The technical infrastructure required for PBN
analysis creates workflow bottlenecks in many clinical settings. Data
transfer from MRI scanners to analysis systems, computational
processing time, and quality control procedures can introduce delays of
several days to weeks between imaging acquisition and result
availability. These delays are incompatible with clinical workflows
designed around same-day or next-day report generation (Rizzo, 2025).

Staff training requirements create additional workflow challenges.
Implementation of precision neurodiversity approaches requires
training for multiple staff categories, including MRI technicians who
must acquire research-quality imaging protocols, data analysts who
must manage computational pipelines, and clinicians who must
interpret network-based results (Joshi, 2024). Training programs
typically require 40-80 h per staff member, creating substantial
disruption to clinical operations during implementation phases.

The integration of network-based results into existing electronic
health record systems presents technical and conceptual challenges.
Most EHR systems are designed to accommodate traditional test
scores and categorical diagnoses, not complex network visualizations
and continuous dimensional measures (Blinka et al, 2023).
Modifications to EHR systems to accommodate PBN results often
require 6-12 months of development and testing, creating barriers to
implementation (Perez-Sanpablo et al., 2025).

5.13.3 Risk management concerns

Clinicians express significant concerns about liability and risk
management issues associated with precision neurodiversity
approaches. The novel nature of network-based assessments creates
uncertainty about professional liability coverage and malpractice
protection (Dutta, 2025). Many professional organizations have not
yet developed clear practice guidelines for network-based assessments,
leaving clinicians uncertain about appropriate standards of care.

The potential for false positive and false negative results creates
particular concern among clinicians. Network analysis algorithms may
identify apparent abnormalities that do not correspond to functional
impairments, potentially leading to unnecessary interventions or
inappropriate diagnoses. Conversely, network measures may fail to
detect subtle but clinically significant differences, potentially missing
important intervention targets (Koksalmis et al., 2025).

Clinicians also express concerns about the potential for network-
based assessments to pathologize normal variation in brain
connectivity patterns. The precision neurodiversity framework
explicitly aims to identify individual differences rather than deficits,
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but clinicians worry that quantitative network measures may
be misinterpreted as indicating pathology when they simply reflect
normal human variation (Morris et al., 2025).

The complexity of network-based assessments creates challenges
for obtaining meaningful informed consent from patients and
families. Many clinicians report difficulty explaining the technical
aspects of network analysis in terms that patients can understand,
raising questions about whether truly informed consent can
be obtained for these procedures (Gillon et al., 2025). We uphold
scientific rigor through our dimensional approach to neurodiversity
(May, 2025). Focusing on how conditions develop and the stability of
neural networks helps us avoid two pitfalls: the expansionist trap,
which renders neurodiversity meaningless through excessive
inclusion, and the restrictionism trap, which excludes genuine
neurodevelopmental diversity due to masking or late diagnosis. This
framework supports research and interventions that effectively
address differences in the developing brain while being sensitive to the
unique needs of individuals with acquired or episodic conditions.

5.14 Connectome-informed precision
approaches for neurotypical populations

The precision neurodiversity framework designed for clinical
populations will also benefit neurotypical individuals through targeted
cognitive enhancement and educational improvement. Studies
utilizing connectome-based predictive modeling demonstrate that
variations in the organization of brain networks among neurotypical
individuals reliably predict information-processing strengths and
learning preferences (r = 0.31-0.45 across multiple domains) (Mehra,
2024; Chen et al, 2024). Integrating connectome science with
precision medicine creates unique opportunities to understand and
support the full spectrum of human brain diversity. Applying
dimensional orientations, which move beyond traditional
neurotypical-neurodivergent binaries, to individuals with conditions
such as autism, ADHD, and intellectual disability could lead to more
tailored interventions that promote human flourishing and growth for

individuals within the broad range of human variation.

6 Conclusion

Precision neurodiversity represents a transformative approach
to understanding and supporting human cognitive variability.
Leveraging advancements in neuroimaging technology,
computational methods, and insights into the organization of brain
networks, we can transcend categorical diagnostic frameworks and
embrace individualized strategies that celebrate neurodiversity while
providing targeted support when necessary. The empirical evidence
analyzed in this study demonstrates that Precision Brain Network
(PBN) architectures consistently predict cognitive, behavioral, and
sensory phenomena across multiple domains. These findings form
the foundation for precise interventions tailored to individual
neuronal signatures, rather than relying solely on classification-
based diagnoses. However, the successful implementation of
precision neurodiversity necessitates overcoming significant
challenges related to methodology, ethics, and practical application.

Future research should prioritize longitudinal studies, population
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diversity, and the development of clinically applicable frameworks,
all while upholding strong ethical standards and fostering
community engagement. The ultimate objective of precision
neurodiversity is not to normalize differences but to understand and
support the full spectrum of human cognitive variation. By adopting
this perspective, we can cultivate an approach that respects
individual differences and provides the necessary support and
opportunities for all individuals to thrive in the workplace. The
convergence of advanced neuroimaging, artificial intelligence, and
personalized medicine presents unprecedented opportunities for
tailored intervention. It recognizes the diversity of neurological
abilities as a source of human strength and innovation. As our
understanding of the relationship between PBN architecture and
cognitive variability evolves, we become increasingly aligned with
the promise of precision neurodiversity. This concept has the
potential to enhance the lives of individuals across the neurological
spectrum. However, our critical evaluation reveals significant
methodological vulnerabilities that must be addressed before
widespread clinical implementation. The field is currently facing a
reproducibility crisis, partly due to methodological inconsistencies,
data leakage, and limitations in feature interpretation. The existence
of multiple neurobiologically distinct models for the same phenotype
challenges traditional assumptions about the uniqueness of brain-
behavior relationships. Future research must prioritize
methodological rigor over novelty, establishing robust validation
frameworks that address the systematic biases identified in recent
data

preprocessing, feature selection, and model validation is essential for

meta-analyses. Developing consensus guidelines for

moving beyond the prevailing “tip of the iceberg” interpretations
that may misrepresent true neurobiological associations.
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