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Precision neurodiversity marks a shift in neuroscience from pathological models to 
personalized frameworks that view neurological differences as adaptive variations. 
This review synthesizes current knowledge on the Personalized Brain Network 
architecture and its relationship with cognitive variability in both typical and 
neurodiverse populations. The study examines advancements in connectome-
based prediction modeling, normative modeling, dynamic fingerprinting, and 
machine learning methods that characterize individual-specific neural networks. 
Recent findings indicate that the Personalized Brain Network profile reliably predicts 
cognitive, behavioral, and sensory phenomena. Additionally, deep generative models 
demonstrate high fidelity in synthesizing connective cells. Recent studies have 
identified distinct neurobiological subgroups in conditions such as attention-deficit 
hyperactivity disorder (ADHD) and autism spectrum disorder that were previously 
undetectable by conventional diagnostic criteria. However, research has revealed 
significant network-level differences among these subgroups. Researchers have 
identified age-resistant biomarkers in specific brain regions, and genetic mutations 
significantly influence the connectivity patterns of individuals. Clinical applications 
span a range of neurodevelopmental conditions, including autism, ADHD, dyslexia, 
and talent. Network variability predicts executive functioning, social perception, and 
sensory processing abilities. However, successful translation requires overcoming 
challenges related to statistical power, reproducibility, ethical implementation and 
community participation. The convergence of advanced neuroimaging, artificial 
intelligence, and personalized medicine offers unprecedented opportunities for 
tailored interventions, while celebrating neurological diversity as a source of 
human strength.
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1 Introduction

The current landscape of neuroscience has shifted from 
pathological deficit models to variation-based frameworks. This new 
approach views neurological differences as a natural manifestation of 
human brain diversity (Miranda-Ojeda et al., 2025; Ramanan et al., 
2025). This transformation, termed precision neurodiversity, 
represents the convergence of two key concepts: the neurodiversity 
movement’s redefinition of neuro-conditions as adaptive variations 
and precision medicine’s commitment to an individual- and data-
driven understanding of human biology (McGorry et  al., 2025). 
Dimensional ones are increasingly replacing conventional categorical 
diagnostic frameworks. This shift reflects the growing evidence that 
traditional neurological boundaries fail to capture the complex and 
continuous nature of cognitive and neural variations (Leadbitter et al., 
2021; Dwyer, 2022; Mardinoglu et al., 2025). Recent transdiagnostic 
studies have shown that dimensional models are more effective in 
identifying meaningful therapeutic targets across neurodevelopmental 
conditions (Madericova and Talcott, 2025; Alehagen et al., 2025).

The advent of population-scale neuroimaging studies has 
precipitated a paradigm shift in our understanding of 
neurodevelopmental disorders. Using standardized brain charts 
derived from over 123,000 structural MRI scans, researchers have 
identified distinct neurobiological subtypes within populations with 
ADHD. Two conditions have been identified: delayed brain growth 
(DBG-ADHD) and prenatal brain growth (PBG-ADHD). These 
conditions are not identifiable using conventional diagnostic 
criteria; however, they exhibit significant disparities in functional 
organization at the network level (Bu et al., 2024; Pecci-Terroba 
et  al., 2025). These subtypes are indicative of distinct 
neurodevelopmental trajectories, with PBG-ADHD characterized 
by accelerated cortical growth patterns that can be detected using 
normative brain charts derived from large-scale structural 
MRI data.

The extent and conceptualization of neurodiversity within the 
precision medicine framework require careful theoretical clarification, 
especially given the ongoing scholarly debates regarding its boundaries 
(May, 2025; Van Daalen et  al., 2025). We  adopted a dimensional 
neurodiversity framework that distinguishes between core 
neurodevelopmental conditions—marked by early onset, pervasive 
patterns of atypical brain organization from childhood—and acquired 
or episodic psychiatric conditions. This framework is designed to 
encompass a range of neurodevelopmental and learning-related 
conditions, including Autism Spectrum Disorder (ASD), Attention-
Deficit/Hyperactivity Disorder (ADHD), specific learning differences 
(e.g., dyslexia and dyscalculia), and intellectual disabilities. Including 
these conditions aims to provide a comprehensive overview of the 
spectrum of neurodevelopmental and learning-related challenges 
(Hunt and Procyshyn, 2024). While recognizing the valuable 
perspectives of individuals with conditions such as schizophrenia and 
bipolar disorder, we maintain a theoretical distinction due to their 
fundamentally different trajectories. These conditions typically have 
clear onset periods, show fluctuating or progressive courses, and 
involve distinct pathophysiological mechanisms compared to core 
neurodevelopmental variations (Miranda-Ojeda et al., 2025). This 
distinction does not undermine the importance of personalized 
approaches for all neurological conditions; instead, it acknowledges 
that different frameworks may be more suitable for understanding 

developmental versus acquired brain differences within precision 
medicine paradigms.

The conceptual foundations of the Personalized Brain Network 
architecture range from early neural attempts to map individual 
cognitive functions to contemporary connectomics methods that 
characterize whole-brain connectivity patterns at the single-subject level 
(Agnati et al., 2023). High-resolution functional Magnetic Resonance 
Imaging and advanced computational methods have enabled the 
identification of a specific “neural fingerprint” in individuals—a unique 
pattern of brain connectivity that remains stable over time, across tasks, 
and during aging processes (Lee and Lee, 2024; Zhang et al., 2024). 
Recent advances in deep generative modeling have enabled the 
inference of personalized human brain connectivity patterns from 
individual characteristics alone. Liu Y. et al. (2025) demonstrated that 
conditional variational autoencoders can generate human connectomes 
with remarkable fidelity using the UK Biobank dataset (N = 8,086), 
revealing that age, sex, and body phenotypes contribute approximately 
four times more to connectivity architecture than cognitive or lifestyle 
factors (Udayakumar and Subhashini, 2025). This breakthrough 
represents a fundamental shift from traditional group-level analyses to 
truly personalized brain network characterization, enabling precision 
approaches to neurodiversity. Methodological advances in human brain 
generative modeling have witnessed remarkable progress in human-
specific generative models. Recent work by Seiler and Ritter (2025) 
highlights how generative brain networks enable the creation of virtual 
brain twins, integrating structural connectivity information into 
probabilistic frameworks specifically designed for human neurological 
disease research. Furthermore, Wu et  al. (2024) demonstrated that 
generative adversarial networks can refine human brain structural 
connectivity strength while maintaining individual differences.

These advances have direct clinical implications for precision 
neurodiversity approaches. The ability to generate personalized human 
connectomes enables data augmentation for machine learning models, 
anonymous data sharing, and prediction of individual therapeutic 
responses—all critical components for implementing precision 
medicine in neurodevelopmental conditions. The stability of individual-
specific brain signatures across the adult lifespan (ages 18–87) provides 
compelling evidence for core neuroanatomical characteristics that 
persist despite normal aging processes. Leverage score-based feature 
selection methods have identified specific brain regions that constitute 
age-resilient biomarkers of intrinsic brain organization (Taimouri and 
Ravindra, 2025; Zamani et al., 2022; Taimouri and Ravindra, 2025).

This comprehensive review synthesizes the current knowledge on 
Personalized Brain Network architecture and its relationship with 
cognitive variability within the precision neurodiversity framework. Our 
analysis encompasses three primary objectives: first, to critically evaluate 
methodological approaches for characterizing individual-specific neural 
networks; second, to examine how Precision Brain Network (PBN) 
architectures relate to cognitive phenotypes across neurotypical and 
neurodivergent populations; and third, to identify promising research 
directions that leverage precision neuroscience approaches to advance 
individualized interventions and support systems.

The comprehensive framework for implementing precision 
neurodiversity through Personalized Brain Network analysis is 
illustrated in Figure 1, which demonstrates the paradigmatic shift from 
categorical diagnostic approaches to individualized characterization 
of neurological diversity. This conceptual framework encompasses the 
complete workflow from neuroimaging data acquisition through 
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computational analysis to clinical translation, emphasizing how each 
individual’s unique “neural fingerprint” can inform personalized 
interventions for major neurodevelopmental conditions.

This figure illustrates the comprehensive workflow for applying 
precision neurodiversity through Personalized Brain Network 
analysis, highlighting how individual neurological differences can 
be characterized as adaptive variations rather than pathological ones. 
The top panel displays four brain symbols representing different 
individual brain network architectures, each with unique connections 
between color-coded brain regions (frontal: orange, parietal: green, 
temporal: blue, occipital: purple), illustrating the concept of 
neurological diversity, where each person has a unique “neural 
fingerprint.” The middle panel illustrates the methodological workflow 
that progresses through the acquisition of neuroimaging data (fMRI 
and DTI), computational analysis using graph theory, extraction of 
individual network profiles to identify unique network characteristics, 
and phenotype prediction, which enables accurate predictions of 
cognitive, behavioral, and sensory outcomes. The lower panel shows 
clinical applications for major neurodevelopmental diseases, such as 
autism spectrum disorder (ASD), ADHD, intellectual impairment, 
and schizophrenia, which represent a paradigm shift toward 
individualized, data-based approaches that celebrate neurodiversity 
while enabling accurate, personalized interventions based on the 
unique structure of each individual’s brain network.

2 Theoretical foundations

2.1 Network neuroscience foundations

The mathematical framework of graph theory has become essential 
for describing the organization of brain networks, providing quantitative 

tools to describe complex patterns of neural connectivity and their 
relationship with cognitive function (Ni et al., 2025; Tuan et al., 2025). 
The brain network can be characterized as a node (brain region) and 
edge (regional connection). It can be systematically analyzed using 
metrics such as the cluster coefficient, path length, and centrality. 
Contemporary brain network analysis methods increasingly recognize 
that traditional group-level analysis can obscure critical individual 
differences in network organization (Amato et al., 2025; Fekonja et al., 
2025). PBN neural mass models, with their potential to reveal specific 
patterns of network dysfunction associated with cognitive results, offer 
promising prospects for brain network analysis (Ye et al., 2024).

The brain network has topological characteristics that reflect the 
evolutionary optimization of the information processing efficiency. 
The characteristics of a small-world network, characterized by high 
clustering and short path lengths, are consistent across all 
neuroimaging methods and support local and global integration (Yang 
et al., 2025b; Shaheen et al., 2023). These architectures allow efficient 
information transfer while maintaining robustness to local 
disturbances. This field has evolved beyond the static concepts of brain 
connectivity, developing dynamic network frameworks that capture 
the temporal variations of functional relationships (Wen et al., 2025; 
Luijendijk et  al., 2022). Dynamic connectivity approaches have 
demonstrated that brain networks are constantly reorganized across 
multiple timescales, ranging from rapid changes associated with tasks 
to slower developmental and pathological processes (Xin et al., 2022).

2.2 Individual differences in brain network 
organization

Genetic factors contribute significantly to individual differences 
in the structure of brain networks, and recent large-scale genomic 

FIGURE 1

Conceptual framework of precision neurodiversity through personalized brain networks.
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studies have revealed complex inheritance patterns in brain regions 
and their network properties (Carrion-Castillo and Boeckx, 2024). A 
comprehensive analysis of the cerebellar substructures revealed that 
the inheritance rates in different regions ranged from 0.08 to 0.35, 
with most exhibiting moderate inheritance. Genome structural 
equation modeling indicates that brain regions are grouped into 
genetically distinct factors (Shishikura et al., 2025; Tissink et al., 2022). 
Environmental factors interact with genetic predispositions to shape 
individual network pathways throughout development and life (Zhou 
Q. et al., 2025; Xin et al., 2025a). Reading-related cognitive and brain 
features exhibit moderate heritability but are significantly influenced 
by education and language experience (Procopio et al., 2025; Zhao 
et al., 2023). This interaction between genes and the environment 
suggests that precision approaches to neurodiversity must consider 
both genetic predispositions and environmental factors when 
determining the characteristics of individual brain networks (Bao 
et al., 2025).

The development of the brain network follows characteristic paths 
that differ significantly from person to person, with early sensory-
motor differences being the foundational elements of later cognitive 
and behavioral patterns. Contemporary neuroscience research 
indicates that sensory and movement differences often emerge as the 
initial manifestation of neurodiversity, preceding and potentially 
contributing to later differences in social communication and 
cognitive function (Kapp, 2025).

2.3 Cognitive variability: from pathology to 
diversity

Conventional wisdom regarding cognitive differences is primarily 
shaped by deficit-based models that view variations as deviations from 
the established norms. However, contemporary neuroscience 
challenges these frameworks by presenting cognitive differences as 
valid forms of human variation rather than as inherent disorders 
(Wang F. et  al., 2025; Liu W. et  al., 2025). This paradigm shift 
acknowledges that behavioral patterns do not necessarily reflect 
individual intentions and may be misinterpreted when viewed solely 
through neurotypical frameworks (Strock et al., 2025). Increasingly, 
contemporary approaches adopt dimensional models that 
continuously characterize cognitive function instead of categorizing 
typical and atypical functioning (Perl et  al., 2025). These models 
suggest that cognitive abilities exist on a spectrum, with individuals 
displaying unique strengths and challenges in different areas. 
Network-based dimensional models show that cognitive functions 
arise from dynamic interactions among distributed brain systems 
rather than localized processing modules (Perl et al., 2025).

2.4 Precision medicine integration

The integration of precision medicine and neuroscience research 
requires robust strategies for the identification and validation of 
biomarkers. These strategies must capture individual differences in 
brain network organization and their correlations with cognitive 
outcomes (Bajinka et al., 2025). Recent advancements in neuroimaging 
analysis have shown that topological deviation indices can quantify 
individual network reorganization patterns and predict cognitive 

performance with high sensitivity (Ranasinghe and Mapa, 2024; Zhou 
Z. et  al., 2025). Precision neurodiversity approaches facilitate the 
development of interventions tailored to individual brain network 
organization and cognitive function (Lessi et al., 2026). PBN models 
can identify specific pathological and physiological mechanisms 
contributing to network malfunctions, enabling the development of 
targeted therapeutic approaches (Wan et al., 2025; Rahman et al., 
2023). This paradigm shift represents a transition from universally 
applicable interventions to customized medical approaches that 
optimize outcomes by aligning with the unique neuronal 
characteristics of individuals. Implementation of precise medicine 
methodologies in the context of neurodiversity raises significant 
ethical concerns, including consent, privacy, stigma, and potential 
discrimination based on neurobiological profiles (Maspul and Ardhin, 
2025). Participatory research methodologies, which involve 
neurodiverse individuals as collaborators in research conceptualization 
and analysis, are essential for ensuring ethical conduct and community 
relevance (Paul Okugo et al., 2025).

2.5 Theoretical framework for 
neurodiversity scope

Our precision neurodiversity framework operates on three core 
principles that address ongoing debates regarding neurodiversity 
boundaries (May, 2025). First, developmental continuity: the included 
conditions show observable precursors in early development, with 
brain network differences detectable through normative modeling by 
school age (Bethlehem et al., 2022). Second, the stability of neural 
signatures: core network architectures remain identifiable across 
developmental stages, even as compensatory mechanisms may mask 
behavioral presentations (Vedechkina et al., 2025). Third, dimensional 
representation: conditions exist on continuous spectra rather than 
discrete categories, supporting individualized network profiling 
approaches (Posani et al., 2025). This framework explicitly excludes 
conditions with episodic onset patterns (e.g., major depressive 
episodes and acute psychotic episodes) and progressive deterioration 
(e.g., dementia and neurodegenerative diseases) while asserting that 
all neurological conditions deserve respectful, evidence-based care. 
This distinction acknowledges that neurodevelopmental conditions 
represent adaptive variations in brain organization present from early 
life, whereas other psychiatric conditions may involve disruptions in 
previously typical brain function (Cainelli and Bisiacchi, 2022). This 
theoretical position aligns with contemporary neurodiversity 
scholarship, emphasizing the importance of analyzing developmental 
trajectories in precision medicine applications (Hunt and 
Procyshyn, 2024).

3 Methodological approaches

3.1 Neuroimaging techniques for network 
characterization

Functional magnetic resonance imaging (fMRI) underpins PBN 
analysis and has undergone significant methodological advancements 
in recent years (Yen et al., 2023). Advanced methods use non-negative 
matrix factorization to clarify individual differences in cortical 

https://doi.org/10.3389/fnhum.2025.1669431
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Mohammad et al.� 10.3389/fnhum.2025.1669431

Frontiers in Human Neuroscience 05 frontiersin.org

organization across various spatial scales, from coarse resolution (two 
networks) to acceptable resolution (30 networks) (Han et al., 2023; 
Wen et al., 2023). This approach employs group consensus rules to 
maintain cross-individual correspondence and data area rules to 
ensure spatial coherence (Han et al., 2025). Recent developments have 
focused on surface processing pipelines that retain individual cortical 
geometries (Goncalves et  al., 2025). Enhanced preprocessing 
protocols utilize a complex motion correction strategy, including a 
36-parameter differential regression model and a temporal filter 
(0.01–0.08 Hz), to improve signal quality while preserving individual 
differences (Mullin et al., 2025). Deep neural network architectures 
specifically designed to identify individuals from resting-state 
functional connections have shown that PBN fingerprints can 
be  extracted with remarkable precision (Lee and Lee, 2024). The 
landscape of personalized brain network analysis features a range of 
complementary approaches, each providing unique advantages in 
identifying individual differences in brain organization (Kong and Jin, 
2025; Karimi et al., 2025). Table 1 presents a comprehensive overview 
of the current methods, including neuroimaging techniques, 
computational methods, analytical frameworks, and validation 
strategies. This section outlines the main features, limitations, and 
recent advancements in this field.

This methodological diversity reflects the complex nature of 
individual brain network characterization, which requires the 
integration of multiple approaches to capture personalized neural 
signatures fully.

The methodology of structural connectivity mapping through 
diffusion MRI has evolved significantly, moving from traditional 
Diffusion Tensor Imaging (DTI) to more advanced multi-shell and 
multi-tissue modeling techniques. The use of advanced tractography 
algorithms, such as the iFOD2 (second-order integration over fiber 
orientation distributions) method, enables more accurate white matter 
tract reconstruction by accommodating complex fiber geometries and 
crossing configurations (Yeh et al., 2021).

The integration of multiple neuroimaging modalities represents a 
key advancement in PBN analysis. Recent progress has demonstrated 
the combined benefits of merging high spatial resolution fMRI with 
high temporal resolution EEG/MEG to capture both complex 
anatomical network organization and millisecond-scale temporal 
dynamics. Innovative approaches employ simultaneous 
electroencephalogram (EEG)-fMRI acquisition protocols to map 
individual differences in connectivity strength and temporal coupling 
patterns across brain networks (Mantini et  al., 2010; Jacobs 
et al., 2014).

3.2 Computational methods for individual 
network profiling

Graph-theoretical approaches have significantly evolved to 
address the complexities of PBN analysis. Contemporary frameworks 
go beyond simple global metrics to characterize individual differences 
in hierarchical network organization, focusing on multi-scale 
modularity and core-periphery structures (Pines et  al., 2022). 
Advanced centrality measures, such as eigenvector centrality, 
betweenness centrality, and participation coefficient analyses, provide 
detailed characterizations of individual node-level network roles 
(Wang Y. et al., 2025; Ni et al., 2025).

The application of ML techniques to PBN analysis has dramatically 
expanded, with novel architectures designed explicitly for 
neuroimaging data (Qin et  al., 2025). Deep learning approaches, 
particularly GCNs and attention-based models, enable the extraction 
of complex nonlinear relationships within individual connectivity 
patterns that cannot be  captured by traditional linear methods 
(Sounthararajah et  al., 2025; Zhou Y. et  al., 2023). Multi-scale 
functional connectivity approaches using hierarchical graph 
convolutional networks predict individual behavior by integrating 
connectivity information across multiple spatial scales (Liu 
et al., 2024).

Contemporary dimensionality reduction methods for PBNs have 
progressed beyond traditional principal component analysis to more 
sophisticated nonlinear techniques that can capture complex 
individual differences (You et al., 2025; Runfola et al., 2025). Advanced 
manifold learning techniques, including t-SNE, UMAP, and 
autoencoders, demonstrate that individual brain networks occupy 
distinct positions within low-dimensional representational spaces 
(Lang et al., 2024; Poologaindran et al., 2025). Nonlinear methods like 
t-SNE and UMAP specialize in extracting manifold structures from 
PBNs. However, since both techniques are distance-preserving 
embeddings, noise in sparse connectome data can be  amplified, 
leading to artifactual clustering. This can occur if the clustering 
process takes place far from the actual representations of 
neurodiversity. The use of counterfactual techniques within predictive 
frameworks like CPM may further complicate matters by conflating 
descriptive geometry with causal inference. Simulations show that 
individual-level predictions may have a variance inflation of up to 30% 
compared to the actual data, attributed to the omission of temporal 
processes within the model (Drysdale et al., 2017). Using population 
centroids as a reference is crucial in normative modeling methods, as 
it effectively addresses the aforementioned issue. This approach 
enhances their ability to detect subtle variations in neurodivergent 
profiles, although it is less sensitive to rare variants compared to 
other methods.

3.3 Validation and generalizability 
assessment

Given the complexity and potential overfitting of individual 
difference patterns, a robust validation framework is essential for PBN 
analysis. Contemporary approaches focus on embedded cross-
validation strategies that optimize model hyperparameters separately 
and assess generalization performance on independent datasets 
(Parvandeh et al., 2020; Lewis et al., 2023). One-site testing strategies 
are increasingly recognized as vital for evaluating the generality of 
PBN models across different scanners and acquisition protocols 
(Friedman et al., 2008). The longitudinal validation method assesses 
the temporal stability of individual network functions, demonstrating 
that PBN architectures exhibit stable and dynamic components 
throughout development and aging (Wright et  al., 2016). These 
findings have important implications for determining when targeted 
interventions are most effective. Translating individualized brain 
network analysis from research to clinical practice requires a 
systematic pipeline that integrates multimodal neuroimaging data 
with computational network analysis and clinical symptoms (Lewis 
et al., 2023). Figure 2 illustrates this comprehensive methodological 
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TABLE 1  Methodological approaches for personalized brain network analysis.

Category Method/
approach

Technical description Key advantages Primary limitations Sample size 
recommendations

References

Neuroimaging 

Techniques

Functional MRI (fMRI) Measures blood oxygen level-dependent (BOLD) 

signals to map functional connectivity patterns. 

Advanced preprocessing includes 36-parameter 

confound regression, temporal filtering (0.01–

0.08 Hz), and multi-echo denoising for improved 

signal-to-noise ratio.

	•	 High spatial resolution

	•	 Non-invasive whole-

brain coverage

	•	 Established protocols

	•	 Cross-site compatibility

	•	 Low temporal resolution

	•	 Motion artifacts

	•	 Indirect neural measure

	•	 Scanner variability

n ≥ 200 for individual 

differences

n ≥ 500 for multivariate models

Mullin et al. (2025)

Diffusion Tensor 

Imaging (DTI)

Measures white matter microstructure and structural 

connectivity using water diffusion patterns. Advanced 

models include NODDI and free-water elimination 

for improved tissue specificity.

	•	 Direct structural assessment

	•	 Tract-specific analysis

	•	 Developmental sensitivity

	•	 Clinical relevance

	•	 Complex 

acquisition requirements

	•	 Processing intensive

	•	 Motion sensitive

	•	 Limited crossing fiber 

resolution

n ≥ 150 for tract analysis

n ≥ 300 for connectome studies

Parker et al. (2025) and 

Liou et al. (2025)

Multi-echo fMRI Acquires multiple echo times to separate BOLD signal 

from non-neural noise sources. Enables biophysically-

informed denoising and improved signal detection in 

problematic brain regions.

	•	 Superior denoising

	•	 Improved ventral 

brain coverage

	•	 Better reliability

	•	 Reduced dropout artifacts

	•	 Longer acquisition time

	•	 Complex preprocessing

	•	 Limited availability

	•	 Higher computational demands

n ≥ 100 for individual 

differences

n ≥ 250 for network analysis

Constable et al. (2025)

Computational 

Methods

Graph Theory Analysis Quantifies network topology using mathematical 

graph properties including clustering coefficient, path 

length, modularity, and hub identification. Enables 

characterization of network efficiency and 

organization.

	•	 Quantitative network metrics

	•	 Cross-species compatibility

	•	 Clinical interpretability

	•	 Multi-scale analysis

	•	 Threshold dependency

	•	 Resolution limits

	•	 Null model assumptions

	•	 Multiple comparisons

n ≥ 100 for basic metrics

n ≥ 200 for individual 

differences

Yang et al. (2025a) and 

Ogut (2025)

Machine Learning 

Approaches

Applies supervised and unsupervised algorithms 

including support vector machines, random forests, 

and deep neural networks for pattern classification 

and prediction of cognitive phenotypes.

	•	 High prediction accuracy

	•	 Feature selection capability

	•	 Non-linear relationships

	•	 Automated analysis

	•	 Black box interpretability

	•	 Overfitting risk

	•	 Large sample requirements

	•	 Hyperparameter sensitivity

n ≥ 300 for classification

n ≥ 500 for deep learning

Raza et al. (2025) and 

Sharma and Chariar 

(2024)

Connectome-based 

Predictive Modeling

Uses whole-brain functional connectivity patterns to 

predict behavioral and cognitive outcomes through 

feature selection and cross-validated Machine 

Learningframeworks.

	•	 Whole-brain integration

	•	 Cross-validated predictions

	•	 Individual-level precision

	•	 Clinical translation potential

	•	 High dimensionality

	•	 Feature 

interpretation challenges

	•	 Site effects

	•	 Generalizability concerns

n ≥ 200 for basic models

n ≥ 400 for robust predictions

Ben-Zion et al. (2025) 

and Friedrich et al. 

(2024)

Deep Generative Models Employs variational autoencoders and generative 

adversarial networks to synthesize individual-specific 

connectomes and identify latent network 

representations underlying cognitive diversity.

	•	 Latent 

representation learning

	•	 Data augmentation capability

	•	 Unsupervised discovery

	•	 Synthetic data generation

	•	 Training instability

	•	 Computational complexity

	•	 Validation challenges

	•	 Limited interpretability

n ≥ 500 for training

n ≥ 1,000 for robust models

Orlichenko et al. (2025) 

and Zhao (2025)

(Continued)
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TABLE 1  (Continued)

Category Method/
approach

Technical description Key advantages Primary limitations Sample size 
recommendations

References

Analysis 

Frameworks

Individualized 

Parcellation

Optimizes brain parcel boundaries for each 

participant using methods like Group Prior 

Individualized Parcellation (GPIP) and Multi-Session 

Hierarchical Bayesian Modeling (MS-HBM).

	•	 Person-specific boundaries

	•	 Improved 

functional alignment

	•	 Enhanced effect sizes

	•	 Cross-session stability

	•	 Computational intensive

	•	 Multiple session requirements

	•	 Method comparison challenges

	•	 Validation complexity

n ≥ 50 per individual

n ≥ 100 for group studies

DeYoung et al. (2025)

Hyperalignment Identifies corresponding functional units across 

individuals by aligning response patterns rather than 

anatomical landmarks, enabling improved cross-

subject comparisons.

	•	 Functional correspondence

	•	 Large effect sizes

	•	 Cross-individual alignment

	•	 Task-specific optimization

	•	 Task dependency

	•	 Computational demands

	•	 Limited to functional data

	•	 Validation requirements

n ≥ 20 for alignment

n ≥ 100 for generalization

Zhang et al. (2025a) and 

Li C. et al. (2025)

Multimodal Integration Combines structural, functional, and diffusion MRI 

data using joint dimensionality reduction, canonical 

correlation analysis, and multiview learning 

approaches.

	•	 Comprehensive 

brain characterization

	•	 Improved 

prediction accuracy

	•	 Cross-modal validation

	•	 Rich phenotyping

	•	 Data alignment challenges

	•	 Increased complexity

	•	 Missing data issues

	•	 Interpretation difficulties

n ≥ 150 for each modality

n ≥ 300 for integration

Baghdadi et al. (2025) 

and Zhou R. et al. 

(2023)

Validation 

Approaches

Cross-validation Employs k-fold, leave-one-out, and nested cross-

validation strategies to assess model generalizability 

and prevent overfitting in predictive analyses.

	•	 Overfitting prevention

	•	 Generalizability assessment

	•	 Model selection guidance

	•	 Statistical robustness

	•	 Reduced effective sample size

	•	 Computational overhead

	•	 Strategy selection challenges

	•	 Bias-variance tradeoffs

n ≥ 100 for k-fold

n ≥ 200 for nested CV

Jafrasteh et al. (2025) 

and Wang B. et al. 

(2025)

External Validation Tests model performance in completely independent 

datasets to assess true generalizability across sites, 

populations, and acquisition parameters.

	•	 True generalizability test

	•	 Site effect assessment

	•	 Population validity

	•	 Clinical translation readiness

	•	 Requires multiple datasets

	•	 Coordinate challenges

	•	 Population differences

	•	 Technical harmonization needs

Training: n ≥ 200

Validation: n ≥ 100

Xin et al. (2025b) and 

Jahanshad et al. (2024)

Longitudinal Validation Assesses temporal stability of individual network 

features across development and aging, revealing both 

stable and dynamic components of brain organization.

	•	 Temporal stability assessment

	•	 Developmental insights

	•	 Intervention timing guidance

	•	 Biomarker identification

	•	 Long-term data collection

	•	 Participant retention challenges

	•	 Developmental confounds

	•	 Practice effects

n ≥ 100 baseline

n ≥ 2 timepoints minimum

Vidal-Piñeiro et al. 

(2025) and Boudreau 

et al. (2025)

Sample size recommendations: Based on power analyses for 80% power to detect medium effect sizes (r ≥ 0.30) with α = 0.05. Larger samples recommended for smaller expected effects or more complex analyses. CPM: Connectome-based Predictive Modeling; DTI: 
Diffusion Tensor Imaging; EEG: Electroencephalography; FA: Fractional Anisotropy; fMRI: functional Magnetic Resonance Imaging; GCN: Graph Convolutional Network; iFOD2: second-order integration over fiber orientation distributions; MD: Mean Diffusivity; 
MEG: Magnetoencephalography; ML: Machine Learning; MRI: Magnetic Resonance Imaging; t-SNE: t-distributed Stochastic Neighbor Embedding; UMAP: Uniform Manifold Approximation and Projection.
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process, detailing how individual brain connections are generated, 
validated, and transformed into clinically practical insights for 
personalized neuronal assessments and therapeutic interventions.

The workflow integrates multi-modal neuroimaging data 
acquisition (MRI, DTI, fMRI, EEG) with computational network 
analysis to generate personalized brain connectivity profiles. Network 
indices are calculated for patient cohorts, enabling targeted clinical 
translation through individualized neurological assessments and 
therapeutic interventions based on cognitive variability patterns. 
Diffusion Tensor Imaging (DTI): Diffusion Tensor Imaging; EEG: 
Electroencephalography; fMRI: Functional Magnetic 
Resonance Imaging.

4 Empirical evidence: networks and 
cognitive phenotypes

The relationship between Personalized Brain Network 
architectures and cognitive phenotypes across neurodiverse conditions 
reveals domain-specific patterns of connectivity that transcend 
traditional diagnostic boundaries (Chopra et al., 2025; Hilton et al., 
2024). Table  2 synthesizes the current empirical evidence linking 
cognitive domains to their associated network signatures, 
demonstrating how individual differences in brain organization 
contribute to cognitive variability across neurotypical and 
neurodivergent populations.

4.1 Executive function and control 
networks

The frontoparietal network shows significant interindividual 
variability linked to cognitive performance (Marek and Dosenbach, 
2018). Precision functional mapping studies using spatially 

regularized non-negative matrix factorization have identified 17 
individualized functional networks per person, with the total cortical 
representation of frontoparietal networks positively correlated with 
general cognition (Marek and Dosenbach, 2018). Cross-validated 
ridge regressions trained on network topography successfully 
predicted cognition in unseen data, with the prediction accuracy 
increasing along the sensorimotor-association axis of the cortex (Li 
et al., 2022).

Attention regulation and cognitive flexibility are related to 
individualized frontoparietal network configurations. Network 
topography predicts executive functioning performance (r = 0.16–
0.17, p < 0.001), indicating that individual differences in network 
organization contribute to variations in attentional control and 
cognitive adaptability (Marek and Dosenbach, 2018; Cole, 2024). The 
prominence of the frontoparietal and ventral attention networks 
(VAN) in these predictions highlights their coordinating role in 
complex cognitive processes (Cui et al., 2020).

4.2 Learning and memory systems

Episodic memory, which depends on hippocampal-cortical 
interactions, showed significant variations in PBN architectures. 
Individual network topologies predicted learning and memory 
performance (r = 0.27, p < 0.001), and hippocampal-cortical networks 
played a significant role in this prediction (Nordin et  al., 2025). 
Individuals with greater cortical representation of memory-related 
networks may have enhanced episodic memory encoding and retrieval 
capabilities. Memory consolidation and retrieval involve dynamic 
interactions across the hippocampal, cortical, and subcortical regions. 
Individual network models predict differences in memory 
performance, whereas variations in hippocampal-cortical connectivity 
may affect consolidation efficiency and retrieval accuracy. However, 
the fundamental mechanisms of synaptic plasticity and network 

FIGURE 2

Methodological pipeline and clinical translation of personalized brain network analysis.
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TABLE 2  Cognitive domains and associated personalized network signatures in neurodiversity.

Cognitive 
domain

Primary brain networks Neurodiversity 
conditions

Key network signatures Quality References

Executive function Frontoparietal Network (FPN)

Dorsolateral Prefrontal Cortex

Posterior Parietal Cortex

Anterior Cingulate Cortex

ASD

ADHD

Intellectual Disability

Dyslexia

Meta-analytic evidence shows FPN hypoconnectivity predicts executive dysfunction (r = −0.45, 95% 

CI [−0.52, −0.38], p < 0.001***; k = 23 studies, N = 4,847). Individual-differences research 

demonstrates frontoparietal network topology predicts working memory capacity (cross-validated 

r = 0.34, p < 0.001***). Precision network mapping reveals person-specific FPN boundaries improve 

prediction accuracy by 23% over standard atlases (Δr = 0.18).

★★★ Leticevscaia (2025), 

Pashkov and Dakhtin 

(2025), and 

Minnigulova et al. 

(2025)

Social cognition Default Mode Network (DMN)

Medial Prefrontal Cortex

Posterior Cingulate Cortex

Temporoparietal Junction

Superior Temporal Sulcus

ASD

Social Anxiety

Schizophrenia

bipolar disorder

Decreased causal connectivity from dorsal to ventral mPFC correlates with ADOS scores (r = −0.375, 

95% CI [−0.62, −0.11], p = 0.009**; n = 156). Large-scale analysis reveals DMN- Salience Network 

anticorrelation predicts social cognitive performance (multivariate r = 0.41, cross-validated r = 0.37, 

p < 0.001***; N = 2,431). Individualized DMN parcellation improves autism classification accuracy 

(AUC = 0.87 vs. 0.74 standard).

★★★ Wang L. et al. (2024) 

and Guo et al. (2024)

Attention regulation Dorsal Attention Network

Ventral Attention Network

Salience Network

Fronto-Insular Cortex

ADHD

ASD

Anxiety Disorders

Trauma-related Disorders

Increased resting-state connectivity between striatal regions and fronto-insular cortex characterizes 

ADHD (d = 0.52, 95% CI [0.31, 0.73], p < 0.001***; meta-analysis k = 18, N = 3,247). DAN-VAN 

connectivity strength predicts sustained attention performance (r = 0.29, 95% CI [0.21, 0.37], 

p < 0.001***). Salience Network hub connectivity shows age-resilient biomarker properties (test–retest 

r = 0.81 over 24 months).

★★☆ Mizuno et al. (2025), 

Mouseli et al. (2025), 

and Zaher et al. 

(2025)

Memory systems Hippocampal-Cortical Network

Medial Temporal Lobe

Parahippocampal Gyrus

Retrosplenial Cortex

ASD

Learning Disabilities

Early-onset Dementia

Memory Disorders

Individual network topography predicts episodic memory performance (cross-validated r = 0.31, 95% 

CI [0.24, 0.38], p < 0.001***; n = 1,206). Reduced functional connectivity within hippocampal-cortical 

circuits correlates with memory consolidation deficits (r = −0.43, p < 0.001***). Personalized 

hippocampal subfield analysis reveals distinct patterns in autism (effect size d = 0.67 for CA1-CA3 

connectivity differences).

★★☆ Li H. X. et al. (2025), 

Ozcan et al. (2025), 

and Marei (2025)

Language 

processing

Left Hemisphere Language Network

Broca’s Area (BA 44/45)

Wernicke’s Area (BA 22)

Arcuate Fasciculus

Superior Longitudinal Fasciculus

Dyslexia

ASD

Specific Language Impairment

Developmental Language 

Disorder

Disrupted network interactions serve as neural markers of dyslexia with 85% classification accuracy 

(AUC = 0.89, sensitivity = 0.87, specificity = 0.83). Increased within-network connectivity linked to 

poorer reading performance (r = −0.38, 95% CI [−0.47, −0.29], p < 0.001***; N = 847). White matter 

tractography reveals altered arcuate fasciculus organization in familial risk populations (Cohen’s 

d = 0.45 for fractional anisotropy differences).

★★☆ Hassanzadeh-

Behbahani et al. 

(2025) and Nogueira 

et al. (2025)

Sensory processing Sensorimotor Network

Primary Visual Cortex

Primary Auditory Cortex

Somatosensory Cortex

Thalamic Nuclei

ASD

Sensory Processing Disorder

Synesthesia

Hyperacusis

Higher sensory sensitivity correlates with expanded connectivity gradients between visual cortex and 

DMN (r = 0.32, 95% CI [0.18, 0.45], p < 0.001***; n = 524). Synesthetes show altered degree centrality 

in 43 brain regions with large effect sizes (mean d = 0.72). Cross-modal plasticity indices predict 

sensory hypersensitivity in autism (multivariate r = 0.46, cross-validated r = 0.41, p < 0.001***).

★☆☆ Choi et al. (2025) and 

Wang J. et al. (2025)

Cognitive flexibility Cingulo-Opercular Network

Frontoparietal Network

Middle Frontal Gyrus

Anterior Cingulate Cortex

Insular Cortex

ADHD

ASD

obsessive-compulsive disorder

Tourette Syndrome

Network topography predicts cognitive flexibility performance (cross-validated r = 0.28, 95% CI [0.19, 

0.37], p < 0.001***; improved from standard r = 0.17 with individualization). Age-resilient biomarkers 

identified in Middle Frontal Gyrus (MNI: ±32, 8, 52) and Supplementary Motor Area show 89% 

stability over 18 months. Task-switching network efficiency correlates with behavioral rigidity 

measures (r = −0.51, p < 0.001***).

★★☆ Kim et al. (2025) and 

Liu N. et al. (2025)

Effect size interpretations (DeYoung et al., 2025): r = 0.10–0.29: Small effect; r = 0.30–0.49: Medium effect; r = 0.50+: Large effect. All correlations are Pearson product–moment correlations with 95% confidence intervals where available. Statistical significance: 
*p < 0.05, **p < 0.01, ***p < 0.001. Methodological Quality Ratings: ★★★ Gold Standard: Multi-site replication, n > 1,000, cross-validated multivariate models, external validation, ★★☆ High Quality: Single-site large sample (n = 500–1,000), cross-validated, direct 
replication attempted, ★☆☆ Standard: Adequate sample (n = 200–500), appropriate corrections, preliminary findings. ADHD: Attention-Deficit/Hyperactivity Disorder; ADOS: Autism Diagnostic Observation Schedule; ASD: Autism Spectrum Disorder; DAN: Dorsal 
Attention Network; DLPFC: Dorsolateral prefrontal cortex; DMN: Default Mode Network; FPN: frontoparietal network; mPFC: medial Prefrontal Cortex; VAN: Ventral Attention Network.
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synchronization require further exploration (Lamberti et al., 2024; 
Zhu et al., 2021; Citri and Malenka, 2008).

4.3 Social cognition and default mode 
networks

The Default Mode Network (DMN) encompasses areas such as 
the posterior cingulate cortex, the middle prefrontal cortex, and the 
temporal junction, which are central to social cognition, particularly 
in the domains of theory of mind and understanding mental states 
(Cong et  al., 2023; Monk et  al., 2009). Studies using the Liang 
Information Flux method to investigate the causal connectivity of the 
DMN about Autism Spectrum Disorder found that the causal 
connectivity from the temporal pole and hippocampus to the dorsal 
medial prefrontal cortex, ventral medial prefrontal cortex, and Para 
hippocampal cortex was reduced in AD (p < 0.05) (Monk et al., 2009). 
A deficit in social cognitive capacity characterizes ASD, and changes 
in the DMN are consistent with this conclusion. Causal connectivity 
from the temporal pole and hippocampus to the dorsal medial 
prefrontal cortex, ventral medial prefrontal cortex, and 
parahippocampal cortex was reduced in ASD (p < 0.05) (Cong 
et al., 2023).

4.4 Sensory processing and perceptual 
networks

Sensory integration varies significantly between individuals, and 
synesthesia is a valuable model for studying atypical sensory–cognitive 
networks (Ward et al., 2024). A study of a whole-brain biomarker 
revealed significant changes in functional connectivity, with 43 
regions exhibiting differences in centrality degree and gradients 
shifting in the visual and associated cortex (Rouw, 2013). Intracortical 
myelin and functional connectivity are the strongest predictors of 
synesthesia, highlighting the role of the PBN architecture in sensory 
integration (Ward et al., 2024). Synesthetes show higher interregional 
correlations in brain thickness and significant increases in subcortical 
volume in regions such as the cerebellum, amygdala, and hippocampal 
cortex, suggesting enhanced interaction between sensory and 
cognitive regions. These results support the hypothesis of synesthesia 
hyperconnectivity, which suggests that an increase in connectivity in 
the visual and parietal regions facilitates intermodal perception (Ward 
et al., 2024; Eckardt et al., 2024).

4.5 Critical methodological limitations and 
contradictory findings

Recent findings from large-scale studies have revealed 
significant methodological flaws in precision neuroscience 
methodologies. (Rosenblatt et al. (2024) showed that data leakage 
inflates prediction performance in connectome-based machine 
learning models, with feature leakage causing particularly severe 
inflation (Δr = 0.47 for attention problems, raising chance-level 
performance from r = 0.01 to moderate performance at r = 0.48). 
This challenges the reliability of many published CPM studies and 
suggests that reported effect sizes may be  systematically 

overestimated (Morfini et al., 2025; Liang et al., 2024). While CPM 
and normative modeling are both valuable approaches, they address 
fundamentally different questions with distinct explanatory 
frameworks. The CPM methodology focuses on identifying brain-
behavior relationships through predictive accuracy, assuming that 
enhanced predictive capabilities indicate more substantial biological 
relationships. Conversely, normative modeling identifies deviations 
from population norms, assuming that meaningful individual 
differences appear as statistical outliers from typical development 
patterns. Recent studies have uncovered significant contradictions 
in precision neuroscience findings. Fekonja et al. (2025) identified 
nine critical roadblocks in translational network neuroscience. The 
authors noted that “network measures show particular sensitivity to 
variations in data acquisition and processing, complicating 
standardization efforts” and that “the relationship between network 
properties and brain dysfunction remains complex and often 
indirect, making clinical interpretation of network measures 
particularly challenging” (Fekonja et al., 2025).

The field faces a fundamental interpretation crisis where different 
methodological choices can lead to opposite conclusions about the 
same neurobiological questions (Jahanshad et al., 2024; Marek and 
Laumann, 2024). For instance, studies using different parcellation 
schemes, connectivity thresholds, or feature selection methods often 
report contradictory network signatures for identical clinical 
populations (Liu Q. et al., 2025; Mito et al., 2025). In the context of 
precision neurodiversity, these inconsistencies risk pathologizing 
adaptive variations (e.g., hyperconnectivity in gifted individuals) as 
deficits, underscoring the need for standardized, multi-site protocols 
to resolve such discrepancies and ensure equitable interpretations 
across neurodiverse subgroups (Kapp, 2025; Huang et al., 2025).

Recent work by Kobbersmed et al. (2025) challenges the prevailing 
connection-wise approach in normative modeling, demonstrating that 
whole-brain normative models (FUNCOIN) substantially outperform 
localized approaches in detecting pathological patterns in bipolar 
disorder and Parkinson’s disease. This suggests that traditional edge-
by-edge normative modeling may miss systemic network-level 
pathology, fundamentally limiting its explanatory power compared to 
holistic approaches (Kobbersmed et al., 2025).

Recent advancements in population-scale connectome research 
have transformed our understanding of neurotypical and 
neurodivergent distinctions. These advancements reveal that 
traditional binary classifications obscure the continuous nature of 
brain-network variability across individuals. Liu N. et  al. (2025) 
demonstrated using the UK Biobank dataset (N = 8,086) that 
individual connectome patterns exist along continuous dimensions. 
The study found that age, sex, and body phenotypes contribute 
approximately four times more to connectivity architecture than 
cognitive or lifestyle factors, regardless of the diagnostic status (Liu 
N. et  al., 2025). This finding challenges the assumption that 
neurotypical individuals represent a homogenous baseline for 
comparing neurodivergent patterns.

The connectome perspective reveals that neurotypical populations 
exhibit significant individual differences in brain network 
organization, often overlapping with patterns typically considered 
“atypical.” Recent normative brain chart studies indicate that 
approximately 15–20% of neurotypical individuals display 
connectivity patterns classified as outliers by traditional approaches, 
highlighting the inadequacy of binary neurotypical-neurodivergent 
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classifications (Zhang et  al., 2025b; Wang Y. et  al., 2025). These 
findings support the dimensional neurodiversity framework, which 
posits that individual brain networks exist along continuous spectra 
rather than discrete categories.

5 Clinical applications

5.1 Autism spectrum conditions

ASD exhibits considerable variability, necessitating approaches 
that account for its heterogeneity. ML studies have identified four 
robust ASD subtypes based on brain-behavior dimensions, each 
linked to distinct molecular pathways (Nishat et  al., 2024). Using 
resting-state fMRI data, these subtypes reflect unique connectivity 
profiles. This suggests that PBN analysis, with its potential to stratify 
ASD for targeted therapeutic interventions, is a promising avenue for 
future research and treatment (Mahjani et  al., 2020; Uddin et  al., 
2024). This is an optimistic sign for the future of ASD research and 
treatment, offering new possibilities for understanding and addressing 
this complex condition.

Sensory processing sensitivities are a hallmark of ASD, with 
recent studies linking these to PBN architectures. Higher sensory 
sensitivity correlates with greater expansion in functional 
connectivity gradients, particularly between visual and default 
mode networks (r = 0.32, p < 0.05) (Kerren et al., 2025; Lee et al., 
2025). This expansion indicates reduced integration between 
sensory and higher-order cognitive networks, potentially 
underlying sensory overload in ASD (Kolisnyk et al., 2025; Jabbar 
et al., 2025). However, a critical caveat arises when applying these 
models clinically: ‘CPM-derived connectivity gradients’, which are 
connectivity patterns derived from the ‘connectome-based 
predictive modeling’ method, may predict sensory overload with 
high accuracy in cross-sectional data (r ≈ 0.32), yet fail to generalize 
longitudinally due to unaccounted developmental confounds, 
yielding contradictory intervention targets compared to normative 
models that prioritize trajectory deviations (e.g., accelerated vs. 
delayed maturation). This discrepancy highlights the need for 
hybrid frameworks to reconcile predictive power with normative 
context, as evidenced by recent multi-site validations showing 
normative approaches outperforming CPM by 15–20% in ASD 
subtyping stability (Bethlehem et al., 2022).

5.2 Attention-deficit/hyperactivity disorder

These subgroups, delayed brain growth (DBG-ADHD) and 
prenatal brain growth (PBG-ADHD), are invisible to conventional 
diagnostic criteria but show profound differences in network-level 
functional organization (Liu N. et al., 2025; Pan et al., 2025). These 
subtypes reflect distinct neurodevelopmental trajectories, with 
PBG-ADHD characterized by accelerated cortical growth patterns 
detectable via normative brain charts derived from large-scale 
structural MRI data. This demonstrates how precise neurodiversity 
transcends binary classifications to reveal neurobiological 
heterogeneity (Bu et  al., 2025). Individual differences in the 
organization of the attention network contribute to the variability in 
symptoms of ADHD (Mizuno et al., 2025). PBN methods enable the 

identification of specific connectivity patterns associated with different 
presentations of ADHD and facilitate the development of targeted 
interventions based on individual neuronal signatures rather than 
categorical diagnoses (Wall et al., 2025).

5.3 Specific learning differences

Learning differences, including dyslexia and other reading-related 
conditions, show moderate heritability but are substantially influenced 
by educational and linguistic experience. Reading-related cognitive 
and brain traits demonstrate complex gene–environment interactions, 
suggesting that precision approaches must consider both genetic 
predispositions and environmental factors when characterizing 
individual network profiles (Eising et  al., 2022; Ozernov-Palchik 
et al., 2021).

Individual differences in language-related network organization 
predict reading performance and outcomes of interventions. PBN 
characterization enables the identification of specific connectivity 
patterns associated with different learning profiles, facilitating the 
development of educational approaches tailored to individual neural 
architectures (Liu and Yang, 2023; Chang et al., 2024).

5.4 Highly sensitive and gifted populations

Highly sensitive people and individuals with extraordinary 
cognitive abilities represent an important population for 
understanding the entire spectrum of human cognitive variability 
(Chang et  al., 2024). These groups often exhibit unique network 
characteristics that can form the basis of their unique cognitive and 
behavioral profiles. Research on giftedness suggests that extraordinary 
cognitive abilities may be associated with specific patterns of network 
organization, including increased connectivity to areas that support 
working memory, attention, and executive function. However, this is 
a neglected area that requires special research attention (Ma et al., 
2017; Wang et al., 2021).

5.5 Operationalizing clinical pathways in 
precision neurodiversity

To translate PBN architectures into actionable clinical pathways, 
we propose a stratified decision framework that integrates topological 
deviation indices (e.g., z-scores from normative models) with 
behavioral phenotyping, emphasizing thresholds for intervention 
escalation. Normative modeling approaches using age-normed and 
sex-stratified brain charts have been established to capture typical 
regional brain development across the human lifespan, providing 
centile scores for detecting alterations in regional volumes (Garcia-
San-Martin et al., 2025). For executive function deficits linked to FPN 
hypoconnectivity (as per Table 2; r = −0.45), a deviation threshold of 
z > 1.5 (indicating moderate-to-severe network inefficiency) could 
trigger cognitive training or pharmacological augmentation, calibrated 
against age-normed brain charts. Recent evidence demonstrates that 
targeted cognitive training combined with medication treatment can 
lead to greater improvements in executive function domains, 
particularly when combined with atomoxetine (Cohen’s d ≥ 0.52) 
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(Dang et al., 2025). Similarly, DMN-salience anticorrelation imbalances 
(r = 0.41 for social cognition) exceeding z > 2.0 might prioritize social 
skills interventions, given that functional brain connectivity in the 
Frontoparietal Network (FPN) is significantly associated with executive 
functioning abilities in early childhood, with lower thresholds 
(z = 0.5–1.0) suiting monitoring in high-functioning profiles to avoid 
over pathologizing adaptive variability (Kelsey et al., 2025).

The required scope of evidence for such pathways includes multi-
modal validation (e.g., fMRI + behavioral assays) across diverse 
cohorts (n ≥ 300 per subgroup, with 80% power for medium effects), 
longitudinal tracking (≥2 timepoints over 12 months), and external 
replication to mitigate site-specific biases. Heterogeneous, temporally 
consistent patterns of brain development have been demonstrated 
across longitudinal studies, with individual brain abnormality 
patterns (IBAPs) showing remarkable stability over time despite 
substantial spatial heterogeneity between individuals (Thalhammer 
et al., 2025). Key design points encompass: (i) hybrid normative-
predictive modeling for phenotype stratification (e.g., combining 
CPM for short-term outcomes with normative z-scores for 
trajectories)—approaches that have shown promise in precision 
psychiatry applications using connectome predictive modeling (Gao 
et  al., 2025); (ii) ethical safeguards like community co-design to 
ensure neurodiverse input—critical given the growing emphasis on 
neurodiversity-informed digital interventions and AI-driven 
personalized care (Beirat et al., 2025); and (iii) integration of digital 
tools for real-time monitoring, such as AI-driven apps that adapt 
interventions based on dynamic network fingerprints. Digital 
targeted cognitive training programs have demonstrated efficacy in 
neurodevelopmental disorders, with FDA-approved interventions 
showing significant improvements in attention function (Dang et al., 
2025). This framework addresses NDD heterogeneity by prioritizing 
individualized phenotypes over categorical diagnoses, fostering 
precision interventions that enhance adaptive functioning while 
respecting neurodiversity. Figure 3 illustrates this clinical pathway as 
a decision tree, with nodes for initial assessment, threshold-based 
stratification, and iterative evaluation.

5.6 Sleep patterns and sleep instability in 
neurodiversity

Sleep disturbances represent one of the most prevalent and 
impactful comorbidities in neurodevelopmental conditions, with 
distinct patterns emerging across different neurodiverse populations 
that directly relate to individualized brain network architectures.

5.6.1 Sleep architecture and fragmentation 
patterns

Recent findings indicate that individuals diagnosed with ASD 
and ADHD exhibit characteristic changes in sleep architecture that 
align with their unique brain connectivity profiles. Large-scale 
accelerometer-based studies using objective measurements 
(N = 85,670) have shown that the timing of the most active 10-h 
period (M10) is significantly linked to increased odds of both ASD 
(OR = 29.64, 95% CI: 3.69–237.89, p < 0.01) and ADHD (OR = 7.70, 
95% CI: 2.99–19.80, p < 0.001), establishing causal connections 
between circadian changes and these neurodevelopmental conditions 
(Dai et al., 2025). Meta-analytic evidence from actigraphy-measured 

sleep parameters demonstrates that physical activity interventions 
significantly improve sleep efficiency (SMD = 3.90, 95% CI: 1.78–
6.03, p < 0.001), reduce wake after sleep onset (SMD = −1.36, 95% 
CI: −2.66 to −0.07, p < 0.05), and increase sleep duration 
(SMD = 2.39, 95% CI: 0.68–4.09, p < 0.01) in neurodevelopmental 
disorders (Wang T. et al., 2024). These findings highlight the complex 
nature of sleep disturbances, extending beyond simple duration 
metrics to include factors such as sleep fragmentation and 
architectural changes.

5.6.2 Circadian rhythm dysfunction and network 
connectivity

The disruption of circadian rhythm in neurodiversity is a complex 
phenomenon involving interactions between the suprachiasmatic 
nucleus, the default mode network, and peripheral oscillators. 
Research shows that over 65% of individuals with neurodevelopmental 
disorders have significantly reduced nocturnal melatonin levels, 
contributing to delayed sleep onset and early morning awakenings 
(Bouteldja et al., 2024). Dysfunction in the circadian system manifests 
as altered sleep–wake cycles and abnormal melatonin rhythms across 
neurodiverse populations. Bidirectional Mendelian randomization 
analyses indicate that sleep efficiency may have a protective effect 
against ASD (OR = 0.155, 95% CI: 0.025–0.958, p < 0.05), while 
ADHD shows that genetic liability leads to increased nocturnal sleep 
episodes (β = 0.017, 95% CI: 0.001–0.033, p < 0.05). These findings 
suggest that sleep disruption in ADHD is a consequence rather than 
a cause (Bouteldja et al., 2024).

5.6.3 Brain network mechanisms underlying sleep 
disorders

Personalized brain networks and their relationship with sleep are 
influenced by interconnected networks. In ASD, the disrupted 
functional organization of DMN connectivity occurs during sleep, 
leading to reduced deactivation patterns and sleep fragmentation. 
Recent studies have shown that sleep deprivation disrupts the 
connection between task-positive networks and the DMN, 
particularly affecting the medial prefrontal cortex and posterior 
cingulate cortex, which are involved in regulating sleep and social 
cognition (He et al., 2024). Children with ADHD exhibit distinct 
alterations in slow-wave sleep compared to control children. 
Additionally, one study found that the architecture of slow waves was 
altered due to reduced amplitude and different frequency 
distributions. The frontal positioning network pattern, which can 
predict executive functioning performance (r = 0.34; p < 0.001), 
correlated significantly with sleep efficiency indices, suggesting that 
these indices share a neural substrate with executive functioning 
maintenance (Ishii et al., 2024).

5.6.4 Sleep instability patterns across 
neurodevelopmental conditions

Sleep instability in neurodiversity encompasses multiple 
dimensions (Tamir et al., 2023):

1. Temporal Instability: Night-to-night variability in sleep timing 
and duration, particularly pronounced in ADHD populations where 
circadian rhythm disorders contribute to sleep–wake cycle 
irregularities (Martinez-Cayuelas et al., 2024).

2. Architectural Instability: Fragmented sleep with increased wake 
after sleep onset, reduced REM sleep percentage, and altered 
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slow-wave sleep organization, correlating with altered thalamo-
cortical connectivity patterns (Satapathy et al., 2024).

3. Circadian Instability: Misalignment between internal circadian 
clocks and environmental demands, with late chronotype preferences 
causally linked to both ASD and ADHD through genetic pathways 
affecting core clock gene expression (Tamir et al., 2023).

5.6.5 Clinical implications and personalized 
interventions

An analysis of brain networks reveals unique sleep patterns 
among individuals, leading to targeted interventions for better sleep. 
Studies show that neurodevelopmental disorders can benefit from 
mind–body interventions lasting over 12 weeks, conducted at least 
three times a week for at least 60 min. Participants in these 
interventions showed significant improvements in sleep compared to 
those who did not engage (SMD = 3.01, p < 0.001) (Wang T. et al., 
2024). However, the effectiveness of these interventions depends on 
individual network topologies, necessitating precision approaches. 
There is significant potential for individualized treatment strategies 
for sleep and core neurodevelopmental symptoms, derived from the 
interplay between sleep pattern analysis and specific brain network 
architecture. For example, sleep functionality analyses can 
be  integrated with oscillatory network modeling, focusing on the 
common neural processes underlying both symptom generations.

5.7 Methodological challenges

The present application of PBN methods is encumbered by several 
methodological challenges. A salient issue pertains to statistical power, 
as individual-level analysis necessitates larger sample sizes compared 
to group-level analysis (Gell et al., 2024). Additionally, it is imperative 
to take into account signal-to-noise ratios during the detection of 
subtle individual differences in network organization (Wu et al., 2023). 
Another significant challenge pertains to reproducibility, as PBN 
analyses frequently depend on preprocessing choices, scanner 
parameters, and analysis pipelines (Jahanshad et al., 2024; Warrington 
et  al., 2025). To ensure reliable results, it is essential to establish 
methodological accreditation and validate multiple datasets (Ekhtiari 
et al., 2024).

5.8 Technological innovations

New technologies promise to improve the characteristics of 
PBN. Advanced neuroimaging techniques, including high-resolution 
7 T MRI and multimodal imaging methods, offer unprecedented 
insights into the structure of the individual brain (Chu et al., 2025; 
Cabalo et  al., 2025). The real-time neurofeedback system allows 
closed-loop interventions based on individual network states. The 

FIGURE 3

Precision-based network (PBN) clinical pathway decision tree. This decision tree illustrates a threshold-based stratification protocol for personalized 
neurodiversity interventions derived from an initial multimodal assessment. This assessment includes functional Magnetic Resonance Imaging (fMRI), 
behavioral assays, topological deviation indices (z-scores from normative connectome models), executive function evaluations, and social cognition 
testing. The first step involves detecting frontoparietal network hypoconnectivity and identifying moderate-to-severe network inefficiency indicated by 
a z-score greater than 1.5. The relationship between the default mode network (DMN), the salience network, and disease severity is also considered. 
Based on these metrics, patients are selected for different monitoring pathways: those with mild deviations are monitored, those with moderate 
inefficiency receive cognitive training plus medication, high-functioning individuals with borderline anticorrelation are monitored, and standard care is 
provided for severe z-scores greater than 2.0. A 12-month evaluation loop reassesses and adjusts pathways to support the adaptive and personalized 
management of neurodevelopmental variability.
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progress in artificial intelligence and Machine Learning continues to 
improve our ability to extract meaningful patterns from complex 
neuroimaging data. Deep learning approaches, particularly those 
designed for analyzing brain networks, hold significant promise in 
capturing nonlinear relationships within individual connectivity 
patterns (Abdennour et  al., 2025; Van Horn and Ricciardi, 2025; 
Zhao, 2025).

5.9 Ethical and implementation 
considerations

The use of precise neurodiversity methods raises significant 
ethical concerns, including consent, privacy, and the potential for 
discrimination based on neurobiological characteristics (Di Salvo, 
2025; Bianco et al., 2023). Involving neurodiverse individuals in study 
design and interpretation is crucial for ensuring ethical practices and 
community relevance. Implementing these systems presents 
challenges, including the need for specialized expertise, significant 
computational resources, and standardized protocols. To promote the 
broader adoption of PBN approaches, training programs for 
researchers and clinicians, along with user-friendly analysis tools, are 
essential (Aghdam et al., 2025; Fekonja et al., 2025).

5.10 Future research directions

Future research should prioritize the following key areas. Long-
term studies are essential to fully understand the evolution of PBN 
architecture, particularly during its critical developmental period. 
Integrationting of genetic, environmental, and neuroimaging data will 
enhance our understanding of individual differences. Developing 
clinically actionable frameworks to translate complex neuroimaging 
findings into practical interventions remains a priority, including 
decision-support tools to guide intervention selection based on 
specific network characteristics.

5.11 Economic and implementation barriers

5.11.1 Cost analysis and economic considerations
The implementation of precision neurodiversity approaches faces 

significant economic barriers that must be addressed for widespread 
clinical adoption. Current estimates indicate that comprehensive, 
personalized brain network (PBN) analysis requires initial investments 
of $150,000 to $300,000 per clinical site to establish the necessary 
computational infrastructure, including high-performance computing 
clusters for processing complex neuroimaging datasets (Dipietro et al., 
2023; Fekonja et al., 2025). The financial implications of per-patient 
analysis are considerable, with costs ranging from $800 to $1,500. This 
estimate includes the acquisition of neuroimaging data, which can 
total $400 to $600 for multi-modal MRI procedures. Additionally, the 
computational processing time required for analysis can incur 
expenses of $200 to $400. Finally, consulting specialized expertise can 
cost between $200 and $500, as noted in the literature (Jones et al., 
2025; von Hessling et al., 2025). These costs far exceed those associated 
with traditional assessment methods, creating significant barriers for 
healthcare systems with constrained budgets (Stenzinger et al., 2023).

The economic burden extends beyond direct costs to include 
opportunity costs linked to longer assessment timelines. Conventional 
neuropsychological evaluations take 4–6 h, while comprehensive PBN 
approaches can extend assessment periods to 2–3 days, including 
imaging acquisition, processing, and interpretation phases (Dawson 
et al., 2025). This extended timeline affects patient throughput and 
clinic revenue, leading to resistance to adoption in fee-for-service 
healthcare models (Buitelaar et al., 2022).

5.11.2 Healthcare system resource requirements
To effectively implement precision neurodiversity approaches, 

healthcare systems must invest in various resource categories. The 
personnel requirements for such a program include hiring or training 
neuroimaging technicians specializing in research-grade protocols, 
data scientists skilled in managing complex computational pipelines, 
and clinicians trained to interpret network-based results (Novak, 
2021; Leming et al., 2023). Preliminary assessments indicate that each 
clinical site requires 2–3 additional full-time equivalents, translating 
to annual salary expenditures of $200,000 to $400,000, depending on 
regional wage structures (Aderinto et al., 2023).

Infrastructure demands encompass not only computational 
resources but also enhanced data storage and security systems. The 
multi-modal neuroimaging datasets generated through PBN 
approaches require 50–100 GB per patient, necessitating robust data 
management systems with adequate backup and security protocols 
(Kuplicki et al., 2021; Souter et al., 2023). Annual financial obligations 
for storage and maintenance typically range from $50,000 to $100,000 
per clinical site (Gulani et al., 2025).

Integration challenges create additional resource demands. To 
accommodate complex, network-based reports, healthcare systems 
must modify existing electronic health record systems. This 
modification process requires a developmental and testing phase that 
typically lasts six to twelve months (Mohsen et al., 2022). The financial 
implications are significant, with estimated implementation costs 
ranging from $100,000 to $500,000, depending on system complexity 
and customization needs (Rizzo, 2025).

5.11.3 Cost–benefit considerations
Despite substantial upfront investments, preliminary evidence 

suggests that precision neurodiversity approaches may offer favorable 
long-term cost–benefit ratios. Early intervention strategies informed 
by PBN analysis could reduce the need for multiple diagnostic 
evaluations, potentially saving $2,000–5,000 per patient in avoided 
redundant testing. Enhanced treatment matching may improve 
intervention effectiveness, leading to a 15–25% reduction in long-term 
support service expenditures (Stenzinger et  al., 2023; Eichler 
et al., 2022).

The economic value of preventing inappropriate interventions is 
particularly significant. Current estimates indicate that 30–40% of 
neurodiverse individuals receive interventions poorly aligned with 
their cognitive profiles, resulting in suboptimal outcomes and 
continued service use (Goldfarb et al., 2024). Precision approaches 
that improve intervention matching could generate substantial savings 
through reduced need for alternative treatments and improved long-
term functioning (McFayden et  al., 2022). However, return on 
investment timelines extend beyond typical healthcare planning 
horizons. Most economic benefits are realized over 5–10 years, posing 
challenges for healthcare systems focused on short-term financial 
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performance. Consequently, policymakers and healthcare leaders 
must consider these extended timelines when evaluating 
implementation decisions (Zaman, 2025).

5.12 Regulatory and approval challenges

5.12.1 Detailed regulatory pathway analysis
The regulatory environment for precision neurodiversity 

technologies presents complex challenges that span multiple 
jurisdictions and frameworks. In the United States, the FDA’s Software 
as a Medical Device (SaMD) framework requires rigorous validation 
of PBN analysis tools, a process that can take 2–5 years, depending on 
the intended clinical application and risk classification (Zhu et al., 
2022; Kundu and Bardhan, 2025). Most PBN diagnostic tools are likely 
classified as Class II medical devices, necessitating 510(k) premarket 
notification and substantial equivalence demonstrations compared to 
existing cleared devices. However, the novel nature of network-based 
approaches often lacks clear predicate devices, potentially requiring 
more extensive de novo review processes that can delay approval by 
12–18 months (Khunte et  al., 2023). In the European Union, the 
Medical Device Regulation (MDR), implemented in 2021, has 
introduced heightened validation requirements for AI-based medical 
technologies (Khan et al., 2025). PBN analysis tools must demonstrate 
clinical utility through controlled studies involving cohorts of 300–500 
participants across multiple clinical sites. These requirements 
significantly exceed standards for traditional neuropsychological 
assessment validation, creating substantial barriers for technology 
developers (Kondylakis et al., 2025).

The recently proposed EU AI Act adds another regulatory layer, 
potentially categorizing PBN systems as “high-risk” AI applications 
due to their role in healthcare decision-making (Muravieva, 2025). 
This classification would impose additional requirements for risk 
management systems, data quality assurance, and human oversight 
protocols, further extending development and approval timelines (Di 
Salvo, 2025).

5.12.2 Validation requirements
Regulatory bodies require multi-level validation evidence, which 

current precision neurodiversity research has yet to establish fully. 
Clinical validation must demonstrate that PBN-based 
recommendations lead to improved patient outcomes compared with 
standard assessment approaches. This requires longitudinal studies 
spanning 2–5 years with sufficient statistical power to detect clinically 
meaningful differences in intervention effectiveness (Gell et al., 2024; 
Etkin et al., 2024).

Analytical validation requirements focus on the technical 
performance of network analysis algorithms, including sensitivity, 
specificity, and reproducibility across different scanner platforms and 
patient populations (Fereshtehnejad et al., 2025). Current evidence 
suggests significant variability in network measures across different 
acquisition protocols and analysis pipelines, creating substantial 
challenges in meeting regulatory requirements for analytical validity 
(Fekonja et al., 2025).

Clinical utility validation presents the most significant challenge, 
requiring the demonstration that PBN analysis results in clinical 
decisions that improve patient outcomes. This level of evidence 
requires randomized controlled trials comparing PBN-guided 

interventions with current standard-of-care approaches. Such studies 
are resource-intensive and time-consuming, typically requiring 
3–5 years and multi-million-dollar investments (Makowski 
et al., 2024).

5.12.3 Approval timelines
The approval of precision neurodiversity technologies will take 

longer than the development of software for several reasons. The 
18–24 month period includes validation studies, technical 
documentation, and regulatory submissions. The review timeline 
varies by jurisdiction, typically requiring six–12 months for the initial 
review, followed by cycles of questions, answers, and additional data 
submissions (Bennett et al., 2025). Complex technologies, such as 
PBN analysis systems, often require multiple reviews, extending the 
total review time to 18–36 months (Ardic and Dinc, 2025).

Ongoing regulatory obligations, such as post-market surveillance, 
should also be  considered in implementation planning. These 
obligations include safety reports, adverse event reports, and possibly 
further studies to establish clinical utility in real-world settings (Haag 
et al., 2025). Overall, the time from initial development to clinical use 
is usually 5–7 years, which presents significant challenges for 
technology developers and health systems planning implementation. 
Funding strategies for precision neurodiversity technologies must 
consider these extended timelines.

5.13 Clinical adoption barriers

5.13.1 Clinician trust issues
The implementation of precision neurodiversity approaches faces 

significant resistance from clinicians concerned about the reliability 
and interpretability of network-based assessments. Current 
reproducibility challenges in network neuroscience create substantial 
trust barriers, as clinicians observe conflicting results from different 
analysis approaches applied to the same datasets (Jahanshad et al., 
2024; van Dijk et al., 2022). The “interpretation crisis” identified by 
Fekonja et al. (2025), where different methodological choices can lead 
to opposite conclusions about identical neurobiological questions, 
directly undermines clinician confidence in network-based assessment 
approaches (Loosen et al., 2024).

Survey data from practicing clinicians reveals that 67% express 
concerns about the “black box” nature of Machine Learning 
approaches commonly used in PBN analysis (Bajwa et al., 2021; Aziz 
Noor, 2025). Many clinicians report discomfort with making clinical 
decisions based on computational models they cannot fully 
understand or validate independently. This skepticism is reinforced by 
experiences with previous “revolutionary” assessment technologies 
that failed to deliver promised clinical benefits (Bhagwat et al., 2025).

The complexity of network-based reports presents additional 
barriers to clinician acceptance. Traditional neuropsychological 
reports provide clear, interpretable scores with established normative 
references. In contrast, network-based assessments often present 
complex visualizations and statistical metrics that require specialized 
training to interpret effectively (Wolff, 2025). Many clinicians report 
feeling inadequately prepared to explain network-based results to 
patients and families, creating reluctance to adopt these approaches. 
Trust issues are further exacerbated by limited validation in real-world 
clinical populations. Most network neuroscience research has been 
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conducted in carefully controlled research settings with participants 
who may not reflect the complexity and comorbidity patterns seen in 
typical clinical practice (Piotrowski et al., 2025). Clinicians express 
concerns about generalizability of research findings to their patient 
populations, particularly given the high rates of medical comorbidities 
and medication effects in clinical samples.

5.13.2 Workflow integration challenges
The integration of precision neurodiversity approaches into existing 

clinical workflows presents substantial logistical and operational 
challenges. Current clinical assessment protocols are optimized for 
efficiency, typically completing comprehensive evaluations within 4–6 h 
across 1–2 visits. PBN approaches require additional time for 
neuroimaging acquisition, data processing, and result interpretation, 
potentially extending assessment timelines to multiple weeks (Ifeanyi 
Kingsley et al., 2025). The technical infrastructure required for PBN 
analysis creates workflow bottlenecks in many clinical settings. Data 
transfer from MRI scanners to analysis systems, computational 
processing time, and quality control procedures can introduce delays of 
several days to weeks between imaging acquisition and result 
availability. These delays are incompatible with clinical workflows 
designed around same-day or next-day report generation (Rizzo, 2025).

Staff training requirements create additional workflow challenges. 
Implementation of precision neurodiversity approaches requires 
training for multiple staff categories, including MRI technicians who 
must acquire research-quality imaging protocols, data analysts who 
must manage computational pipelines, and clinicians who must 
interpret network-based results (Joshi, 2024). Training programs 
typically require 40–80 h per staff member, creating substantial 
disruption to clinical operations during implementation phases.

The integration of network-based results into existing electronic 
health record systems presents technical and conceptual challenges. 
Most EHR systems are designed to accommodate traditional test 
scores and categorical diagnoses, not complex network visualizations 
and continuous dimensional measures (Blinka et  al., 2023). 
Modifications to EHR systems to accommodate PBN results often 
require 6–12 months of development and testing, creating barriers to 
implementation (Perez-Sanpablo et al., 2025).

5.13.3 Risk management concerns
Clinicians express significant concerns about liability and risk 

management issues associated with precision neurodiversity 
approaches. The novel nature of network-based assessments creates 
uncertainty about professional liability coverage and malpractice 
protection (Dutta, 2025). Many professional organizations have not 
yet developed clear practice guidelines for network-based assessments, 
leaving clinicians uncertain about appropriate standards of care.

The potential for false positive and false negative results creates 
particular concern among clinicians. Network analysis algorithms may 
identify apparent abnormalities that do not correspond to functional 
impairments, potentially leading to unnecessary interventions or 
inappropriate diagnoses. Conversely, network measures may fail to 
detect subtle but clinically significant differences, potentially missing 
important intervention targets (Koksalmis et al., 2025).

Clinicians also express concerns about the potential for network-
based assessments to pathologize normal variation in brain 
connectivity patterns. The precision neurodiversity framework 
explicitly aims to identify individual differences rather than deficits, 

but clinicians worry that quantitative network measures may 
be misinterpreted as indicating pathology when they simply reflect 
normal human variation (Morris et al., 2025).

The complexity of network-based assessments creates challenges 
for obtaining meaningful informed consent from patients and 
families. Many clinicians report difficulty explaining the technical 
aspects of network analysis in terms that patients can understand, 
raising questions about whether truly informed consent can 
be obtained for these procedures (Gillon et al., 2025). We uphold 
scientific rigor through our dimensional approach to neurodiversity 
(May, 2025). Focusing on how conditions develop and the stability of 
neural networks helps us avoid two pitfalls: the expansionist trap, 
which renders neurodiversity meaningless through excessive 
inclusion, and the restrictionism trap, which excludes genuine 
neurodevelopmental diversity due to masking or late diagnosis. This 
framework supports research and interventions that effectively 
address differences in the developing brain while being sensitive to the 
unique needs of individuals with acquired or episodic conditions.

5.14 Connectome-informed precision 
approaches for neurotypical populations

The precision neurodiversity framework designed for clinical 
populations will also benefit neurotypical individuals through targeted 
cognitive enhancement and educational improvement. Studies 
utilizing connectome-based predictive modeling demonstrate that 
variations in the organization of brain networks among neurotypical 
individuals reliably predict information-processing strengths and 
learning preferences (r = 0.31–0.45 across multiple domains) (Mehra, 
2024; Chen et  al., 2024). Integrating connectome science with 
precision medicine creates unique opportunities to understand and 
support the full spectrum of human brain diversity. Applying 
dimensional orientations, which move beyond traditional 
neurotypical-neurodivergent binaries, to individuals with conditions 
such as autism, ADHD, and intellectual disability could lead to more 
tailored interventions that promote human flourishing and growth for 
individuals within the broad range of human variation.

6 Conclusion

Precision neurodiversity represents a transformative approach 
to understanding and supporting human cognitive variability. 
Leveraging advancements in neuroimaging technology, 
computational methods, and insights into the organization of brain 
networks, we can transcend categorical diagnostic frameworks and 
embrace individualized strategies that celebrate neurodiversity while 
providing targeted support when necessary. The empirical evidence 
analyzed in this study demonstrates that Precision Brain Network 
(PBN) architectures consistently predict cognitive, behavioral, and 
sensory phenomena across multiple domains. These findings form 
the foundation for precise interventions tailored to individual 
neuronal signatures, rather than relying solely on classification-
based diagnoses. However, the successful implementation of 
precision neurodiversity necessitates overcoming significant 
challenges related to methodology, ethics, and practical application. 
Future research should prioritize longitudinal studies, population 
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diversity, and the development of clinically applicable frameworks, 
all while upholding strong ethical standards and fostering 
community engagement. The ultimate objective of precision 
neurodiversity is not to normalize differences but to understand and 
support the full spectrum of human cognitive variation. By adopting 
this perspective, we  can cultivate an approach that respects 
individual differences and provides the necessary support and 
opportunities for all individuals to thrive in the workplace. The 
convergence of advanced neuroimaging, artificial intelligence, and 
personalized medicine presents unprecedented opportunities for 
tailored intervention. It recognizes the diversity of neurological 
abilities as a source of human strength and innovation. As our 
understanding of the relationship between PBN architecture and 
cognitive variability evolves, we become increasingly aligned with 
the promise of precision neurodiversity. This concept has the 
potential to enhance the lives of individuals across the neurological 
spectrum. However, our critical evaluation reveals significant 
methodological vulnerabilities that must be  addressed before 
widespread clinical implementation. The field is currently facing a 
reproducibility crisis, partly due to methodological inconsistencies, 
data leakage, and limitations in feature interpretation. The existence 
of multiple neurobiologically distinct models for the same phenotype 
challenges traditional assumptions about the uniqueness of brain-
behavior relationships. Future research must prioritize 
methodological rigor over novelty, establishing robust validation 
frameworks that address the systematic biases identified in recent 
meta-analyses. Developing consensus guidelines for data 
preprocessing, feature selection, and model validation is essential for 
moving beyond the prevailing “tip of the iceberg” interpretations 
that may misrepresent true neurobiological associations.
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