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Deep learning for inner speech
recognition: a pilot comparative
study of EEGNet and a
spectro-temporal Transformer on
bimodal EEG-fMRI data
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University, Jeddah, Saudi Arabia, ?Center of Excellence in Intelligent Engineering Systems (CEIES),
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Background: Inner speech—the covert articulation of words in one’s mind—is
a fundamental phenomenon in human cognition with growing interest across
BCI. This pilot study evaluates and compares deep learning models for inner-
speech classification using non-invasive EEG derived from a bimodal EEG-fMRI
dataset (4 participants, 8 words). The study assesses a compact CNN (EEGNet)
and a spectro-temporal Transformer using leave-one-subject-out validation,
reporting accuracy. Macro-F,, precision, and recall.

Objective: This study aims to evaluate and compare deep learning models
for inner speech classification using non-invasive electroencephalography
(EEG) data, derived from a bimodal EEG-fMRI dataset. The goal is to assess
the performance and generalizability of two architectures: the compact
convolutional EEGNet and a novel spectro-temporal Transformer.

Methods: Data were obtained from four healthy participants who performed
structured inner speech tasks involving eight target words. EEG signals were
preprocessed and segmented into epochs for each imagined word. EEGNet and
Transformer models were trained using a leave-one-subject-out (LOSO) cross-
validation strategy. Performance metrics included accuracy, macro-averaged
F, score, precision, and recall. An ablation study examined the contribution of
Transformer components, including wavelet decomposition and self-attention
mechanisms.

Results: The spectro-temporal Transformer achieved the highest classification
accuracy (82.4%) and macro-F; score (0.70), outperforming both the standard and
improved EEGNet models. Discriminative power was also substantially improved by
using wavelet-based time-frequency features and attention mechanisms. Results
showed that confusion patterns of social word categories outperformed those of
number concepts, corresponding to different mental processing strategies.
Conclusion: Deep learning models, in particular attention-based Transformers,
demonstrate great promise in decoding internal speech from EEG. These
findings lay the groundwork for non-invasive, real-time BCls for communication
rehabilitation in severely disabled patients. Future work will take into account
vocabulary expansion, wider participant variety, and real-time validation in
clinical settings.

KEYWORDS

inner speech, EEG, deep learning, Transformer, EEGNET, brain—computer interface
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1 Introduction

Inner speech, the covert (silent) utterance of words that are not
spoken aloud, is a foundational aspect of human cognition, involving
goal-directed activities, self-regulation, memory retrieval, and even
the processing of emotions. Direct decoding of internal speech from
brain activity has transformative promise for assistive technologies
like those for people who are speech-impaired or have locked-in
syndrome. However, inner speech is an elusive target, as it is inherently
private and non-overt, and decoding its subtle neural activity patterns
involves advanced neural imaging and machine learning technologies
(Alderson-Day and Fernyhough, 2015). Deep learning models have
been increasingly applied for EEG-based classification tasks due to
their ability to automatically extract hierarchical features from raw
signals (Nguyen et al., 2017; Wu et al., 2016).

EEG and fMRI are the two most common neuroimaging approaches
for decoding inner speech. EEG has superior temporal resolution and
portability and is thus suitable for online applications. fMRI has better
spatial resolution and is sensitive to activations in different brain networks
(Foteini, 2025). However, aided by their mutual strengths, existing
methods mostly address only one of these two modalities (EEG or fMRI)
at a time. They also fail to take the potential benefits of exploiting both
their temporal and spatial information into account. The present work
makes use of an openly accessible dataset of bimodal EEG-fMRI to
investigate this integrative potential further in the context of inner speech
decoding, employing state-of-the-art deep learning approaches. Some
research has made an effort to decode imagined speech based on EEG
with a non-deep learning classical approach like SVM (support vector
machine) and LDA (linear discriminant analysis). Despite the success of
these methods in providing initial insights into the problem, existing
approaches typically depend on hand-engineered features and suffer from
the handicap of a lack of generality. Recent developments have brought
deep learning techniques, such as convolutional neural networks (CNNs)
and EEGNet (Lawhern et al., 2018). Which automatically learn from the
raw signals. More recently, attention-based architectures, such as
Transformers, have shown promise in modeling long-range temporal
dependencies in EEG and speech tasks (Feng et al., 2021; Li et al., 2025).
However, few studies have systematically compared these architectures on
inner speech data, particularly in cross-subject settings that simulate real-
world deployment.

Moreover, the majority of previous research has been constrained
to alimited number of imagined words (typically binary classification),
which does not reflect the diversity and complexity of natural language
(Herff et al., 2015). Additionally, many studies report inflated accuracy
due to within-subject validation, which overlooks the considerable
inter-individual variability in EEG and fMRI responses (Lotte et al.,
2018). The field lacks a standardized benchmark using a multimodal,
multiclass, and cross-subject validation framework. Related multi-
scale CNNs and Transformers. Multi-scale and multi-receptive-field
CNNs have been applied to imagined speech, using parallel
convolutional branches to capture short- and long-range temporal
patterns (e.g., multireceptive-field CNN for
classification) (Park and Lee, 2023).

These designs report gains from fusing features across scales after

vowels/words

signal decomposition (Lopez-Bernal et al, 2022). In parallel,
Transformer-based EEG models (e.g., BENDR and subsequent works)
leverage self-attention to model long-range dependencies and have
been explored across EEG tasks (Kostas et al., 2021; Lee and Lee, 2021;
Jiang et al., 2025). The approach differs by explicit wavelet-domain
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tokenization plus self-attention. Thus show (via ablations) contributes
materially to cross-subject inner-speech decoding. The study compares
architectural motifs (receptive-field strategy, parameter budgets) of
these multi-scale CNNs to EEGNet and to Transformer.

The current literature on inner speech decoding reveals several
gaps. First, there is a lack of multimodal approaches that jointly
consider EEG and fMRI for enhanced decoding fidelity. Second,
underuse of advanced deep learning models, such as spectro-temporal
Transformers, which may outperform CNNs in modeling complex
Third,
participants to assess generalization, a critical requirement for BCIs

cognitive phenomena. insufficient evaluation across
intended for practical use. Finally, limited vocabulary classification,
with most studies confined to binary or small-scale word sets.

Beyond inner speech decoding, BCIs have also been developed for
motor imagery, visual attention, and affective state monitoring. A
recent review emphasizes that non-invasive BCIs are rapidly
progressing toward real-world communication and rehabilitation
applications, with deep learning approaches and cross-participant
generalization emerging as recurring challenges (Edelman et al.,
2025). Inner speech decoding represents a particularly ambitious
frontier within this broader trajectory, as it seeks to directly access
covert language representations without overt behavioral output. In
this context, challenges such as multimodal integration, expansion of
vocabulary beyond binary classification, and ensuring generalization
across diverse users remain critical. The present study directly
contributes to these themes by benchmarking deep learning
architectures on a public multimodal dataset and testing cross-subject
generalizability in a multiclass inner speech paradigm.

To address these gaps, the present work investigates the efficacy of
deep learning models for inner speech classification using
non-invasive EEG data derived from a bimodal EEG-fMRI dataset.
Although this study focuses on EEG for real-time applicability, it
leverages a dataset designed for multimodal integration, thereby
providing a foundation for future multimodal decoding. Specifically,
we compare the performance of a lightweight CNN (EEGNet) and a
spectro-temporal Transformer in decoding eight imagined words
across semantic categories. We further evaluate model generalizability
using a leave-one-subject-out (LOSO) cross-validation scheme and
conduct ablation analyses to quantify the contributions of wavelet-
based frequency decomposition and self-attention mechanisms to
Transformer performance. This work contributes a comprehensive
benchmark using publicly available, multiclass, and multimodal inner
speech data, providing a valuable reference for future BCI and neural
decoding research.

2 Methods
2.1 Ethical considerations

This study used publicly available data from a previously approved
experiment conducted by researchers at the University of Alberta. The
dataset, titled “Inner speech EEG-fMRI dataset for covert speech
decoding,” is hosted on the OpenNeuro platform under accession
number ds003626 (Rezazadeh Sereshkeh et al., 2021). It was collected
under institutional ethical oversight, and all participants provided
informed consent in accordance with the Declaration of Helsinki. As
the present study involved only secondary analysis of de-identified
data, no additional ethical approval was required by the authors.
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2.2 Participants and inner speech paradigm

The dataset includes EEG and fMRI data of five healthy right-
handed adults. One participant (sub-04) was excluded from the
present analysis because of excessive noise and poor EEG signal
quality. Specifically, more than 70% of epochs were rejected due
to persistent high-amplitude artifacts (> £300 pV), electrode
detachment, and flatline channels, leaving insufficient usable
data for model training. The full dataset (all five participants)
publicly available on the OpenNeuro platform (accession number
ds003626) for reproducibility (Rezazadeh Sereshkeh et al., 2021).
The reported results are therefore based on four participants
(sub-02, sub-03, sub-05, sub-06), while sub-04 is excluded to
ensure reliability of the analyses. A supplementary sensitivity
check including sub-04 confirmed that its inclusion reduced
overall performance metrics without altering the relative ranking
of models.

The experimental task employed eight target words divided into
two semantic categories: social words (child, daughter, father, wife)
and numerical words (four, three, ten, six). Each word was presented
in 40 trials, resulting in 320 trials per participant for both EEG and
fMRI sessions. Although both modalities were recorded, the current
analysis focused solely on EEG data to evaluate lightweight,
non-invasive decoding models suitable for real-time brain-computer
interface (BCI) applications.

The demographic characteristics of the participants are
summarized in Table 1. The sample had a mean age of 27.8 years
(SD = 3.0), included 2 males and 2 females, and all participants were
right-handed.

2.3 EEG acquisition and preprocessing

EEG data were recorded using a 73-channel BioSemi Active Two
system with high temporal resolution and stored in BioSemi Data
Format (.bdf). Each stimulus onset was logged in the “Status” channel,
enabling precise event-based segmentation. The MNE-Python library
was used for preprocessing due to its robust and standardized EEG
analysis framework that supports both clinical and research-grade
data (Goodhill, 2018; Bahhah and Attar, 2024).

Preprocessing began by loading raw BDF files and applying a
bandpass filter between 0.1 Hz and 50 Hz using a finite impulse response
(FIR) filter. This step removed slow drifts and high-frequency noise while

TABLE 1 Complexity comparison of the evaluated models.

10.3389/fnhum.2025.1668935

preserving cognitive-relevant frequencies. Event markers were extracted
to identify stimulus onset, and EEG data were then epoched:

- For EEGNet-based models, epochs spanned from —0.2 to +0.5 s
(359 time points).

- For the Transformer model, the epoch length was extended to
513 time points to provide a broader temporal context.

Artifact rejection was performed using amplitude-based and
flatline criteria. Epochs exceeding 300 pV or with flat segments below
1 pV were excluded. No baseline correction was applied [baseline
(None, 0)]. Preprocessed EEG data were organized into 3D arrays with
shape [epochs x channels x time points]. The number of retained
epochs varied slightly by participant and model pipeline, with 3,227
clean epochs used in EEGNet and 3,104 in the Transformer pipeline.

2.4 Deep learning architectures

Three neural network models were implemented in TensorFlow/
Keras to classify imagined words from EEG signals.

The first was the standard EEGNet, a compact convolutional neural
network optimized for EEG data. It uses depth-wise separable
convolutions to reduce the number of trainable parameters and increase
interpretability (Gramfort, 2013). It has been widely adopted in
EEG-based BCI applications due to its balance of accuracy, computational
efficiency, and adaptability across paradigms. The architecture included
8 temporal filters (F, = 8), 16 depth-wise separable filters (F, = 16), a
depth multiplier of 2, and a kernel size of 64, with dropout (0.5) applied
after pooling layers to mitigate overfitting (Lawhern et al., 2018).

The second was a modified EEGNet that was thereby increased in
representational capacity. Filter sizes were x2 (F, = 16, F, = 32),and a
learning rate of 0.0005 was used to ensure training stability. These
changes were intended to more closely match the fine-grained space
and time dynamics of inner speech. The third model was a spectro-
temporal Transformer. Inspired by advances in natural language
processing and EEG modeling, this architecture applied wavelet-based
time-frequency decomposition followed by self-attention mechanisms
to capture long-range dependencies across frequency bands and time
(Feng et al., 2021; Craik et al., 2019). Wavelet transforms (Morlet)
were used to extract frequency-domain features, and spatial pooling
reduced the EEG channel dimension from 73 to 37. The resulting data,
with 5 frequency bands and 129 time points, were reshaped into 645

Model Input size  Parameters MACs Notes
(approx.) (approx.)
EEGNet (baseline) 73 x 359 ~35K ~6.5M Compact depthwise-separable CNN with F; = 8, F, = 16; temporal kernel 64
EEGNet (enhanced) 73 x 359 ~120K ~20 M Larger capacity version (F; = 16, F, = 32); otherwise identical settings
73 x 513 (after Includes 5-band Morlet wavelet bank, 4 encoder blocks, 8 heads,
Spectro-temporal Transformer ~12M ~300 M
wavelets) hidden size 128
Transformer ablation (no wavelets) 73 x 513 ~09M ~250 M Same as above, but without wavelet preprocessing
Transformer ablation (BiGRU 73 x513 ~0.7M ~80 M Replaces self-attention with bidirectional GRU layers
instead of attention)

The table reports approximate parameter counts and multiply-accumulate operations (MACs) for the baseline EEGNet. Enhanced EEGNet, and the proposed spectro-temporal Transformer,

including ablation variants. Values illustrate the trade-off between model accuracy and computational efficiency.
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tokens with 37-dimensional features. These were fed into 4 encoder
blocks with multi-head self-attention (8 heads, 128 hidden units).
Followed by positional encoding, global average pooling, and a
softmax classification layer. This model was selected for its potential
to learn high-level abstractions across time and frequency dimensions
without the locality constraints of CNNG.

2.4.1 Alternative architectures and training details

2.4.1.1 EEGNet (baseline)

The baseline model was EEGNet, a depth-wise separable CNN. It
used F, = 8 temporal filters with a depth multiplier of 2, followed by
F, = 16 pointwise convolution filters. The temporal kernel length was
64 samples, and dropout (0.5) was applied after the pooling layer.
Training used the Adam optimizer with a learning rate of 1 x 107, a
batch size of 32, and a maximum of 50 epochs with early stopping
(patience = 5). To handle class imbalance, balanced class weights were
applied. The input to the model was an EEG segment of size 73
channels x 359 time points (—0.2 to 0.5 s).

2.4.1.2 EEGNet (enhanced)

An enhanced version of EEGNet was also tested, with higher
capacity: F; = 16 temporal filters and F, = 32 pointwise filters. The
optimizer was Adam with a lower learning rate of 5 x 10™*. All other
settings were identical to the baseline. The rationale was to evaluate
whether a larger model could better capture fine spectro-
temporal features.

2.4.1.3 Spectro-temporal Transformer

The proposed Transformer-based model first applied a Morlet
wavelet bank across five frequency bands. After spatial pooling
(reducing 73 EEG channels to 37), the output was converted into
tokens (645 tokens x 37 features). These were passed through four
Transformer encoder blocks (each with 8 attention heads and hidden
size 128) with positional encoding. The sequence representation was
then aggregated by global average pooling and classified using a
softmax layer. Two ablation variants were implemented: (i) removing
the wavelet step, and (ii) replacing attention with a BiGRU module. The
model was trained with Adam (batch size = 32), early stopping, and
leave-one-subject-out (LOSO) validation. The input dimension was 73
channels x 513 time points. A detailed comparison of parameter counts
and multiply-accumulate operations (MACs) is provided in Table 1.

2.5 Training and validation strategy

To evaluate generalizability across individuals, models were trained
using a leave-one-subject-out (LOSO) cross-validation approach. Each
fold involved training on three participants and testing on the fourth,
iterating across all four participants. This method provides a realistic
estimate of performance in cross-subject BCI settings, where models
must generalize to unseen individuals. Fold splits were implemented
using Group K-Fold from scikit-learn (Lotte et al., 2018).

Before training, EEG epochs were concatenated and reshaped into
the required tensor formats. Class labels (10 total) were integer-
encoded and then converted to one-hot vectors. To handle class
imbalance, the study calculated balanced class weights with scikit-
learn and applied them during training.
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In all the models, the Adam optimizer was adopted. The base
EEGNet was trained with a learning rate of 0.001, and the enhanced
EEGNet used 0.0005. For each model, the study trained with a batch
size of 32, a maximum of 50 epochs, and early stopping (patience = 5
epochs) on validation loss a 10% validation set was drawn fold-wise
from the training data.

2.6 Evaluation metrics

Model performance was assessed using multiple classification
metrics. Overall accuracy was used as the primary measure,
representing the proportion of correctly predicted trials. To account for
imbalanced class distributions, macro-averaged precision, recall, and
F,-scores were also computed. These metrics are reported for each class
and averaged between classes to maintain an unbiased evaluation
across 10 classes. Furthermore, confusion matrices were used to
present misclassifications and to determine which word categories were
most challenging. Final reported metrics are the mean across all LOSO
test folds and thus indicate cross-subject generalisability.

3 Results

See Figures 1-8 and Table 2.

4 Discussion

This work provides proof-of-concept evidence that EEG, in
combination with deep learning models, is feasible and effective in
transcribing inner speech when using non-invasive techniques, and
specifically maintaining them in the context of spectro-temporal
Transformer architectures. The findings are clinically relevant for
developing BCIs to restore communication in patients with severe
motor or speech impairments, as occurs in amyotrophic lateral
sclerosis (ALS), stroke, or locked-in syndrome.

Figure 1 suggests that the spectro-temporal Transformer provides a
substantial advantage over the conventional and improved EEGNet
approaches in terms of global accuracy and macro-F,. Furthermore, this
improvement can be attributed that this improvement is due to the
following reasons. First, the model is capable of learning long-term
temporal and frequency dependencies with a self-attention mechanism
and wavelet-based preprocessing, as shown in Figure 2.
Neurophysiologically, inner speech activates a neural network,
encompassing the inferior frontal gyrus (Broca’s area), supplementary
motor area (SMA), and premotor cortex, and temporal areas (Li et al.,
2025; Price, 2012). These areas demonstrate phase-locked and induced
EEG activity at specific frequency bands, particularly the alpha (8-13 Hz)
and beta (13-30 Hz) waves known to relate to verbal rehearsal, motor
planning, and lexical retrieval (Alderson-Day and Fernyhough, 2015).

By applying wavelet decomposition before classification, the
Transformer model preserved and highlighted such oscillatory
components, enabling better discrimination between covert word
classes. The relevance of capturing frequency-specific patterns is
further underscored by the results of the ablation study (Figure 3).
Then, removing wavelet features or replacing attention with BiGRU
led to substantial performance drops (Table 2). This supports the
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FIGURE 1
Accuracy and macro-F; score across models. LOSO-based performance metrics comparing standard EEGNet, improved EEGNet, and Transformer. The
Transformer achieved the highest accuracy and macro-F;, highlighting superior generalizability and class balance.

hypothesis that inner speech involves fine-grained spectral dynamics
that must be preserved for accurate decoding.

The preprocessing pipeline (Figure 4) was critical in ensuring data
quality. Epochs were carefully segmented based on event markers,
filtered to exclude irrelevant noise, and subjected to artifact rejection.
The difference in retained epochs across models (Figure 5) suggests that
longer Transformer input windows are more susceptible to artifacts. Yet
still retained sufficient data for robust learning. This reflects the
physiological trade-off in EEG: high temporal resolution comes at the
cost of susceptibility to muscle artifacts, eye blinks, and environmental
interference. Nonetheless, rigorous preprocessing enabled the
preservation of cognitively relevant patterns needed for model training.

The confusion matrix (Figure 6) revealed that classification errors
were more common among numerical words compared to social words.
This is consistent with findings in neurocognitive linguistics, which show
that numerical cognition and verbal labeling involve overlapping but
more diffusely distributed networks (Bastiaansen et al., 2005). Social
words such as “father” and “wife” likely elicited more emotionally salient
and semantically rich representations, engaging temporolimbic regions
and providing stronger EEG signatures. This is corroborated by the
per-class precision and recall analysis (Figure 7). While social words
achieved near-perfect scores, numerals showed lower recall.

These findings suggest that emotional or socially relevant content
may enhance neural entrainment. Potentially through increased
theta-band synchrony in the medial prefrontal cortex or
temporoparietal junction areas linked to theory of mind and
autobiographical memory (Dehaene et al., 1999). Table 3 summarizes
key differences between previous research on inner speech decoding
and the present study. By focusing on the modality used, vocabulary
size, model architecture, validation methodology, and contributions.
The present study distinguishes itself by using a public EEG-fMRI
dataset, a larger vocabulary, spectro-temporal Transformer
architecture, and cross-subject validation to assess generalizability
(Schurz et al., 2014).

Frontiers in Human Neuroscience

The Transformer model was the best-performing model, but it was
also the most computationally intensive (refer to Figure 8). This leads to
a fundamental question in the practice of large-scale applications: the
trade-off between accuracy and efficiency (Morin and Michaud, 2007;
Akbari et al., 2019). For example, if the application of the model is in a
clinical setting where online decoding is critical (e.g., a communication
prosthesis for ALS patients). The real-time conditions and hardware
specifications should be considered (Alderson-Day and Fernyhough,
2015; Angrick et al., 2019). In the future, it would be interesting to
investigate lightweight Transformer architectures or hardware accelerators
(e.g., FPGA/edge Al devices) to enable deployment without accuracy
compromise (Birbaumer et al., 2008; Tucudean et al., 2024).

The decoding of inner speech bears promise for neurorehabilitation
and assistive communication (Chefer et al., 2021; Han et al., 2015).
Such patients may have normal or near-normal cognitive function but
impaired communication or movement. Decoding of inner speech
could allow some of these locked-in patients to express thoughts,
orders, or feelings without overt motion. Furthermore, in contrast to
invasive methodologies (e.g., implanted electrodes such as micro-
electrocorticography (ECoG) or intracortical arrays). EEG provides a
safe and non-invasive method, which increases accessibility and
minimizes the clinical risks (Herff et al., 2015; He and Wu, 2019).

Recent integrative EEG-based studies have demonstrated the
potential of combined biosignal analysis to reveal coherent neural
biomarkers across perceptual and cognitive domains (Attar, 2023).
Moreover, this technology can aid in pathophysiological consideration
and treatment of neuropsychiatric disorders. Deviant inner speech is
linked to some psychological disorders such as schizophrenia
(hallucinations), depression (ruminative thought), and autism (the loss
of self-talk) (Chen et al., 2024; Makin et al., 2020). Online decoding of
covert speech might provide new diagnostic markers or therapeutic
biofeedback systems customized to an individual’s ways of thinking.

This study proves that deep learning models can decode inner
speech from EEG easily. But it is important to note the limitations

frontiersin.org
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Spectro-temporal Transformer architecture. End-to-end architecture
of the Transformer model, showing preprocessing steps (wavelet
transform, spatial pooling, frequency pooling), token reshaping, and
multi-head attention blocks. Model outputs 10-class predictions for
inner speech classification.
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Ablation study on Transformer model components. Evaluation of
Transformer variants with key components removed. Replacing
wavelet features or self-attention with BiGRU significantly reduced
performance, highlighting the importance of frequency
decomposition and attention mechanisms.

of these insights and how they inform future efforts. First, the
number of subjects was small (n = 4), and thus it is difficult to
generalize the results. The study employed a leave-one-
subject-out (LOSO) cross-validation approach to obtain estimates
of performance across individuals. The small sample size is not
likely to encompass the full range of variability in neural patterns
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EEG preprocessing pipeline for inner speech classification. A
schematic overview of the EEG preprocessing workflow, including
BDF loading, filtering, event extraction, epoching, artifact rejection,
and tensor reshaping for CNN and Transformer models. Final data
shapes are shown for both pipelines.

that may be present as a function of age, language history, or
cognitive characteristics (Martin et al., 2014).

Second, the experimental stimulus set was restricted to just 8
target words that were further distributed to social and numerical
categories. Although this controlled setting simplifies the
classification task and provides clear evaluation procedures. It does
not capture the variety of natural inner speech, which includes
phrases, questions, or ad hoc monologue (Ein Shoka et al., 2023). In
the future, research will likely progress toward decoding open-
vocabulary or continuous inner speech in order to better provide for
real communication requirements (Perrone-Bertolotti et al., 2014).

Third, although both EEG and fMRI recordings are offered in the
dataset. This study concentrated only on EEG data to emphasize that
our approach is meant to be used for online and portable purposes. As
a result, the work did not exploit the spatial location of brain activity
available from fMRI. The integration of EEG and fMRI or the use of
EEG source localization would improve model accuracy and give
information about the regions of the brain that contribute most to the
decoding of inner speech (Samek et al., 2017; Schirrmeister et al., 2017).

Another significant limitation concerns the use of fixed-length
EEG epochs. The chosen durations may not align precisely with the
onset and offset of internally imagined words, potentially omitting
relevant neural activity or including irrelevant noise. Developing
dynamic or attention-based windowing strategies that adapt to the
temporal structure of imagined speech could improve decoding fidelity
(Oikonomou and Kompatsiaris, 2020).

Model interpretability is also a concern. While Transformers
surpass CNNs in terms of classification performance, they act as
black-box models. It remains a challenge to interpret how particular
neural characteristics contribute to predictions—crucial for both
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FIGURE 5
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clinical trust and scientific insight. Explainable AI approaches, as
attention visualization or saliency mapping, could potentially bridge
this gap (Zhu et al., 2024; Zhang et al., 2023; Tay et al., 2022).

The models have not been verified under online or closed-loop
conditions. Although the present findings support the feasibility of
decoding inner speech in offline analysis, practical applications will
require models with high reliability and low-latency prediction with
respect to ongoing EEG analysis. The practical implementation will

Frontiers in Human Neuroscience

require system integration, including feedback loops, real-time signal
acquisition, as well as user interface design (Varoquaux, 2018; Walz
etal., 2013).

In the future, a number of fruitful directions appear. First, to test
generalizable BCI systems, it will bring a more realistic testbed where
the diversity of participants and vocabulary is augmented. Second,
joint analysis with other modalities, such as fMRI or eye-tracking,
might enable better decoding performance and understanding of
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Per-class precision and recall for Transformer model. Evaluation of precision and recall for each inner speech class using the Transformer. Social words
achieved near-perfect metrics, while numerical words show lower recall, reflecting classification difficulty.
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Model complexity vs. accuracy. Comparison of parameter counts (log scale) versus classification accuracy. The Transformer, though more complex,
achieves a substantial performance gain, justifying the computational cost.

TABLE 2 Performance impact of Transformer component ablations.

Variant Architecture change Accuracy (%) A vs. Full Macro-F,
Full Transformer 10 Morlet bands + MHAttention 82.4 — 0.70
Wavelets Raw timeseries only; no frequency info 69.0 —13.4 pp 0.55
MHAttn — BiGRU Replace each encoder with BIGRU 61.0 —21.4pp 0.48

Comparison of LOSO accuracy and macro-F, score for Transformer variants. Removing wavelet input or attention mechanisms significantly degrades performance. All changes were
statistically significant (p < 0.01).

Frontiers in Human Neuroscience 08 frontiersin.org


https://doi.org/10.3389/fnhum.2025.1668935
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

Milyani and Attar

10.3389/fnhum.2025.1668935

TABLE 3 Comparison of previous inner speech decoding studies and the present study.

Modality

Vocabulary size

Model type

Validation
strategy

Main contributions

Goodhill (2018) EEG 2-3 words

SVM, LDA

Early exploration of EEG-based
Within-subject
imagined speech decoding

Herff et al. (2015) ECoG (invasive) Full sentences

Linear classifiers

Decoding overt and covert speech
Within-subject
using invasive recordings

Lawhern et al. (2018) EEG (general BCI) N/A

EEGNet (CNN)

Introduced a lightweight CNN for EEG
Cross-validation
signal classification

Feng et al. (2021) EEG 3-4 imagined words

CNN, Transformer

Used attention-based models for
Within-subject
imagined speech classification

Rezazadeh Sereshkeh

Transformer (temporal

Introduced the Transformer in EEG

EEG (emotion) Emotion categories Within-subject
etal. (2021) features) emotion recognition
First benchmark of spectro-temporal
EEG (from EEG- EEGNet, Improved Leave-one-subject- Transformer on public EEG inner
Present Study (2025) 8 imagined words
fMRI) EEGNet, Transformer out (LOSO) speech data; cross-subject

generalization; word-level decoding

context across modalities (Attar, 2024; Walz et al., 2013). Third, future
studies might employ personalization strategies, including transfer
learning or adaptive fine-tuning, that could allow accounting for
individual variability without retraining exhaustively (Whitford,
2019). Furthermore, if decoding models can be implemented on edge
devices with optimized hardware and lightweight architectures, real-
time applications in clinical or home environments might be feasible
(Wolpaw and Wolpaw, 2012). Longitudinal studies with actual users,
e.g., patients with locked-in syndrome, will be required to explore
usability, effectiveness, and ethical questions.

5 Conclusion

This work presents the first demonstration of inner speech using
non-invasive EEG signals and recent deep learning models. The study
compares a compact convolutional model (EEGNet) with a spectro-
temporal Transformer and demonstrates that attention-based
models, which capture time-frequency attributes of data outperform
standard CNNs in multiclass inner speech classification paradigms.
In the case of the Transformer architecture, preprocessing in the
wavelet domain and applying multi-head self-attention resulted in
higher accuracy and subject-independence.

Psychophysical evidence points to discrete neural signatures,
especially in alpha and beta bands, for imagined words, and socially
significant words also elicited stronger and more discriminative EEG
activity. This observation supports the relevance of cognitive and
affective aspects in the generation of inner speech and also the value
of the spectral-temporal modeling.

The results have significant implications for the design of assistive
devices for individuals with speech or motor impairments. The advantages
of using EEG for brain-computer interfaces are that it can provide real-
time, portable, and non-invasive solutions. While certain limitations
persist (e.g., small dataset, limited vocabulary, offline measures), this work
paves the way for future efforts toward scalable, interpretable, and
clinically useful inner speech decoding systems. This article presents novel
neural decoding work and opens opportunities for future research in
utilizing deep learning techniques and EEGs in successful inner speech
recognition. It also provides directions for future studies, including
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methodology refinement, real-time integration, and user-centered BCI
design in the context of health and neurorehabilitative applications.
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