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Phantom limb pain (PLP) after amputation is a multifaceted condition. Targeted 
muscle reinnervation (TMR) surgery coapts amputated nerves to motor nerves of 
regional muscles, closing the neuromuscular loop, enabling improved myoelectric 
prosthesis control and reducing PLP. Long-term effects of TMR and residual limb 
use have been observed; however, the short-term neural changes and their timeline 
are not understood. The purpose of this study was to examine the cortical changes 
shortly after TMR without a prosthesis, specifically the functional connectivity 
and hemispheric dominance during a motor task involving the affected limb. The 
case participant is a male 52 years old, with a left traumatic transradial amputation 
sustained 4 years earlier, scheduled for TMR surgery. Data was collected before 
and 2 months after TMR. Brain activity was recorded using functional near-infrared 
spectroscopy (fNIRS) while the participant performed a gross manual dexterity task 
(box and block test) using their phantom hand. Pain levels were assessed using 
a 10-point visual analog scale (VAS). Following TMR, the participant reported a 
VAS score of 0 and increased use of the amputated limb in daily activities. fNIRS 
analysis during the affected limb task showed a reduction in interhemispheric 
functional connectivity, prominently in the primary sensory cortex, where the 
average z-value decreased from 0.29 to 0.12 after TMR. In contrast, connectivity 
between the premotor and supplementary motor areas increased slightly, from 
0.08 to 0.12. Overall, intrahemispheric correlations decreased, with opposite 
patterns observed across hemispheres. The largest changes occurred ipsilaterally: 
connectivity between the primary motor and sensory areas increased from 0.23 to 
0.27, while contralaterally it decreased from 0.22 to 0.16. Conversely, connectivity 
between the primary motor and premotor areas increased contralaterally but 
decreased ipsilaterally. Hemispheric dominance calculated through the Laterality 
index (LI) shifted from bilateral (LI = 0.079) to ipsilateral (LI = 0.59), primarily driven 
by reduced activation in the contralateral primary motor cortex. These findings 
suggest that TMR alone can elicit measurable cortical changes in the early post-
surgical period, alongside improvements in pain and functional limb use. They 
also support fNIRS as a non-invasive method for monitoring neural adaptation 
after TMR and enhance understanding of PLP mechanisms and recovery timelines.
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1 Introduction

In the United  States, 31,450 upper limb amputations occur 
annually, resulting in permanent functional limitation (Dillingham 
et al., 2002, 1998; Owings and Kozak, 1998). People with amputation 
commonly (87%) experience phantom limb pain (PLP) (Stankevicius 
et  al., 2021). PLP is a localized pain with enigmatic origins and 
variable manifestations, tending to be more intense and constant in 
upper limb amputation, affecting all aspects of life, including mental 
health, life quality, and employment (Cole et al., 2009; Hill, 1999; Jang 
et al., 2011; Nikolajsen and Jensen, 2001; Padovani et al., 2015).

Targeted muscle reinnervation (TMR), a promising surgical 
intervention for PLP, was originally developed to improve myoelectric 
prosthesis control. TMR reroutes residual limb nerves to alternative 
muscles, preventing painful neuroma formation and closing the 
sensorimotor feedback loop. Surface electromyography (EMG) detects 
neuromuscular signals for myoelectric prosthesis control (Dumanian 
et al., 2019; Kuiken et al., 2009). Beyond functional benefits, TMR 
reduces PLP (Serino et al., 2017), and has been associated with altered 
functional connectivity and hemispheric dominance.

Functional connectivity, defined as the covariation of separate 
brain regions, provides a framework to study cortical pattern changes 
(Friston, 1994). Interhemispheric functional connectivity supports 
coordination of movement and sensory integration across 
hemispheres and is disrupted in stroke and amputation (Takeuchi 
et  al., 2012). After amputation, interhemispheric sensorimotor 
connectivity is generally reduced compared to healthy controls 
(Bramati et al., 2019; Hahamy et al., 2015; Makin et al., 2013a; Zhang 
et  al., 2018). Early evidence suggests TMR further modifies these 
patterns: one study reported reduced interhemispheric connectivity 
after TMR combined with therapy (Borrell et al., 2023b), another 
observed increased intrahemispheric connectivity between motor and 
sensory cortices, resembling healthy controls (Serino et al., 2017).

Hemispheric dominance offers an additional perspective. 
Functional magnetic resonance imaging (fMRI) studies use the 
Laterality Index (LI) to quantify asymmetry in cortical activation, a 
descriptive measure assessing overall hemispheric dominance 
(Galaburda et al., 1990; Güntürkün et al., 2020; Hutsler and Galuske, 
2003; Nirkko et  al., 2001; Seghier, 2008). In unimanual tasks, the 
sensorimotor cortex predominantly controls the contralateral body 
side, but amputation disrupts this balance. Reduced inhibition in the 
affected hemisphere leads to diffuse ipsilateral activation (Chen et al., 
2013; Philip and Frey, 2014), a pattern observed in children with 
congenital limb deficiencies (Zuniga et al., 2021). Following TMR, 
cortical activity shifts back toward contralateral dominance. One 
study reported contralateral focused activation, resembling controls 
(Yao et al., 2015), while another combining TMR with individualized 
phantom limb therapy observed balanced activation changes, with 
increased activity in the primary contralateral motor areas (Borrell 
et al., 2023b). Following hand transplantation, cortical activity may 
shift back toward contralateral dominance in higher motor planning 
areas (Piza-Katzer et al., 2007).

Despite these advances, short-term cortical responses to TMR 
remain poorly defined. Early changes in hemispheric dominance and 
connectivity, occurring before long-term prosthesis-driven plasticity, 
are not well characterized (Yao et al., 2015). We address that gap by 
analyzing connectivity and dominance patterns in the early 
postoperative period. We hypothesize that TMR induces short-term 

cortical changes associated with pain reduction, enabling increased 
limb use before long-term prosthesis use-dependent plasticity and 
neuromuscular loop closure. Specifically, we hypothesize changes in 
interhemispheric functional connectivity after TMR, increases in 
intrahemispheric connectivity between the primary motor (M1) and 
primary sensory (S1) cortices in the contralateral hemisphere during 
task performance. Additionally, pre-TMR dominance will be biased 
away from the contralateral side, shifting post-TMR toward increased 
contralateral activation, with higher motor planning regions showing 
stronger activity first.

2 Materials and methods

2.1 Patient recruitment

The participant was referred by the performing surgeon. Inclusion 
criteria included the ability to follow task instructions, move the 
phantom limb, and complete both pre- and post-surgical data 
collection. Due to limited contraindications against fNIRS and the 
rarity of local TMR cases, there were no further contraindications 
beyond major upper limb motion limitation. The participant was a 
52-year-old right-handed man, self-reported ambidextrous, a retired 
painter, with hypertension and diabetes, 6′2″ tall, and weighed 275 lbs. 
On July 4, 2020, he sustained a traumatic left transradial amputation, 
followed by recurrent neuroma formation and chronic pain requiring 
multiple excision surgeries. In March 2024, he underwent TMR to 
treat neuromas and enable myoelectric prosthesis use. The procedure 
involved excising median and ulnar nerve neuromas and transferring 
the nerves to the motor branches of multiple muscles at the elbow 
level. The median nerve was transferred to the motor branches of the 
pronator quadratus and the flexor digitorum superficialis muscles, and 
the ulnar nerve to the flexor carpi ulnaris muscle.

2.2 Experimental setup

Data was collected across two visits and supplemented with the 
surgeon’s notes (Figure 1A). The first visit occurred in February 2024, 
followed by the TMR procedure 21 days later in March. The second 
visit was in May 2024, 61 days after TMR; no prosthesis was used 
during that time. Each visit lasted 2 h; cortical activity was recorded 
while the participant performed a motor task. The protocol began and 
concluded with a 3-min rest, with tasks with the non-affected and 
then affected limb in between. Tasks involved 30 s of rest and 1 min of 
activity, repeated three times; analysis hereafter will be focused on the 
affected limb only. Post-TMR, Oxycodone was prescribed for 3–5 days 
for pain. The participant provided written informed consent, and the 
study was approved by the University of Nebraska Institutional 
Review Board.

2.3 Experimental protocol

2.3.1 Gross manual dexterity task motor imagery
The box and block test (Figure 1B), a measure of gross manual 

dexterity (Mathiowetz et  al., 1985), was used as the motor task 
performed during cortical activity recording, which involves moving 
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as many 1-inch blocks as possible from one side of the box to the 
other, across a divider, in 1 min. For the phantom limb despite lacking 
a physical hand, he  attempted to perform each step to move the 
blocks, picking up the block, transferring it across the divider, and 
releasing it, without a prosthesis (Raffin et al., 2016; Scaliti et al., 2020). 
The unaffected limb was tested first for task familiarization.

2.3.2 Pain level
Pain and medication use were documented via interviews on data 

collection days and medical records. Pain was self-reported on a 
10-point visual analog scale (1 = no pain, 10 = very painful) (Price 
et al., 1983).

2.3.3 Functional Near-Infrared Spectroscopy 
(fNIRS)

Functional Near-Infrared Spectroscopy (fNIRS) is a non-invasive 
method for measuring cortical activity a few centimeters below the 
surface (Pinti et al., 2020), through emitting near-infrared light at two 
wavelengths and detecting reflected signals to measure hemodynamic 
responses via changes in oxygenated (HbO2) and deoxygenated 
(HbR) hemoglobin (Scholkmann et al., 2014). In contrast to the gold 
standard fMRI, fNIRS is portable, movement-tolerant, and safe, 
making it suitable for active tasks and clinical populations 
contraindicated to fMRI (Scholkmann et  al., 2014). Recent work 

demonstrated its utility for monitoring cortical activity, functional 
connectivity, and hemispheric activation in this group (Bai et al., 2020; 
Borrell et al., 2024, 2023a, 2023b; Karumattu Manattu et al., 2023; Li 
et al., 2023; Shen et al., 2025).

fNIRS data were collected using the NIRSport 2 system (NIRx 
Medical Technologies, LLC, Berlin, Germany), sampled at 8 Hz with 
wavelengths of 760 and 850 nm. The cap included 15 detectors, 16 
sources, and 8 short-separation channels to filter superficial noise 
(Zhang et al., 2021). It was positioned over the sensorimotor cortex 
according to the international 10–20 system, covering the C3 and C4 
landmarks to target upper limb motor activity (Nishiyori et al., 2016; 
The International Federation of Clinical Neurophysiology, n.d.).

2.4 Analysis

Analysis focused on the affected limb task. Trials with motion 
artifacts were discarded and repeated. Short separation channels were 
used to filter superficial physiological noise. This single-case study 
employed descriptive analysis to characterize observed patterns.

2.4.1 Pain
Pain was recorded on the visual analog scale, requiring no 

further analysis.

FIGURE 1

Timeline of surgeries and data collection (A). Box and blocks test, the task during which the fNIRS data was collected (B). Fisher-transformed 
correlation matrices showing functional connectivity strength in both hemispheres during the movement task. Intrahemispheric connections are 
displayed for the left and right hemispheres, and interhemispheric connections are indicated across the red dashed line for before TMR (C) and after 
(D).
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2.4.2 Task-based connectivity
For functional connectivity, the raw fNIRS data were processed 

with the NIRS Brain AnalyzIR toolbox (Santosa et al., 2018). The data 
were down-sampled to 4 Hz, optical density was computed, and the 
modified Beer–Lambert Law was applied to obtain Oxygenated 
hemoglobin (HbO) concentrations. Pearson correlation coefficients 
(r) were calculated using the toolbox’s ‘connectivity’ module, which 
uses an autoregressive robust correlation function to reduce 
confounding effects (Huppert, 2016; Santosa et  al., 2017). Each 
correlation coefficient (r-value) represents the relationship between 
the hemodynamic signals of two channels and serves as a surrogate 
for functional connectivity. To normalize variance, connectivity values 
were transformed into Z-scores using Fisher’s transformation 
(Fisher, 1915).

2.4.3 Hemispheric dominance
Hemispheric dominance was computed using the laterality index 

(LI) formula (Equation 1). This formula incorporated all the 
oxygenated hemoglobin values from regions of interest, including the 
primary motor (M1) and primary sensory (S1) cortices independently, 
while the premotor cortex (PMC) and supplementary motor area 
(SMA) were combined for each hemisphere (Borrell et al., 2023a; 
Seghier, 2008). HbOL and HbOR represent the average oxygenated 
hemoglobin response over the three one-minute activity tasks, in the 
left and right hemispheres, respectively. The LI ranges from −1 to +1, 
where negative values indicate right hemispheric dominance, positive 
values indicate left hemispheric dominance, and LI values between 
−0.2 and +0.2 reflect bilateral dominance.

	
( ) ( ) ( )

( ) ( )
−

=
+

 L R

L R

ABS HbO ABS HbO
Laterality Index LI

ABS HbO ABS HbO 	
(1)

3 Results

3.1 Pain level

At the pre-TMR interview, the participant reported a pain level of 
4 out of 10. Postoperatively, the reported pain level was zero, indicating 
complete relief.

3.2 Movement task functional connectivity

The Fisher transformed matrices (Figures 1C,D) illustrate fNIRS 
channels correlation strength, reflecting interhemispheric (red dashed 
box) and intrahemispheric connectivity for each hemisphere before 
(Figure 1C) and shortly after TMR (Figure 1D). Connectivity was 
analyzed across the primary motor cortex (M1), premotor/
supplementary motor area (PMC/SMA), and primary sensory 
cortex (S1).

Interhemispheric functional connectivity changed following TMR 
(Figure 2). The first row illustrates the interhemispheric connectivity 
strength and the absolute corresponding Pearson correlation 
coefficients for motor-related channels, M1, PMC/SMA, and S1. 
Before the intervention (Figure 2A), most interhemispheric channel 
pairs showed weak correlations (r < 0.3), with moderate correlations 

(r = 0.4–0.55) in a few S1 channels. Following TMR (Figure 2B), the 
number of channels between the S1 regions decreased (Baseline = 5, 
Follow-up = 1), while those between the PMC/SMA increased 
(Baseline = 0, Follow-up = 4). The second row shows the same 
interhemispheric channels averaged per region, and overall 
hemispheric average. Pre-TMR (Figure 2C), the largest average value 
was between S1areas (z = 0.29), while smaller in M1 (z = 0.12) and 
PMC/SMA (z = 0.08). After TMR (Figure 2D), there was a decrease 
in both S1 (z = 0.12) and M1 (z = 0.07), with a slight increase between 
PMC/SMA (z = 0.12).

Intrahemispheric functional connectivity also changed following 
TMR (Figure  3). The first row illustrates the intrahemispheric 
connectivity strength and corresponding absolute Pearson correlation 
coefficients within motor-related cortical channels, M1, PMC/SMA, 
and S1 within each hemisphere. Before TMR (Figure 3A), moderately 
strong correlations (r = 0.4–0.55) were observed in several channels 
within M1 and S1 in both hemispheres, with the sensory area showing 
the highest correlation (r = 0.6) on the ipsilateral (left) side. After 
TMR (Figure 3B), correlations decreased across all sensory channels, 
with the highest correlation dropping to r = 0.49 in both hemispheres. 
In the left PMC/SMA, the number of correlated channels increased 
from zero to two after TMR, though correlations remained weak. 
(r < 0.3). In the right PMC/SMA, three premotor channels were 
initially correlated; after TMR, two weakened, while one channel 
(CH11–CH14) strengthened from r = 0.256 to 0.365. The second row 
shows average z values for intrahemispheric channels between regions. 
Prior to TMR (Figure  3C), the left hemisphere (ipsilateral side) 
showed the highest z value between the PMC/SMA-M1 (z = 0.27), 
while the z value between the primary sensory and premotor areas 
was 0.23. On the right hemisphere, the pattern was reversed: the 
highest z value was between the S1-M1 (z = 0.22), and between PMC/
SMA-M1 was 0.15, giving an overall average of z = 0.12, considerably 
lower than the left hemisphere (Z = 0.20). After TMR (Figure 3D), this 
pattern shifted. On the left hemisphere, the z value between PMC/
SMA-M1 decreased to 0.20, while the z value between M1-S1 
increased to 0.27. On the right hemisphere, the values remained lower 
and showed the reversed pattern.

3.3 Hemispheric dominance

The overall Laterality Index (LI) (Figure 4) before TMR was 0.079, 
indicating bilateral hemispheric dominance slightly biased 
ipsilaterally. After TMR, LI increased to 0.59, indicating ipsilateral 
dominance. Descriptive, region-specific analysis, not illustrated here, 
suggested that the shift was primarily driven by reduced activation in 
the contralateral M1 cortex, while other regions remained 
relatively stable.

4 Discussion

4.1 Pain

The etiology of PLP remains enigmatic. Traditionally, centrally, it 
was attributed to somatosensory cortex maladaptive reorganization, 
with early studies suggesting that increased use of the affected limb could 
reverse maladaptive plasticity and reduce pain (Flor et al., 1995; Lotze 
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et al., 1999; Nikolajsen and Jensen, 2001). However, recent investigations 
critically challenge this view (Makin et al., 2013b; Makin and Bensmaia, 
2017; Tucciarelli et al., 2024), concluding that cortical changes do not 
fulfil the criteria for “true reorganization,” which demands the emergence 
of novel input, novel computation, and distinct connectional fingerprint 
producing a new functional role. Cortical limb representation remains 
remarkably stable after sensory loss, and apparent remapping is better 
explained by the potentiation of pre-existing neural architecture. Given 
this and the short-term nature of our investigation, interpretations are 
limited to functional changes, as major structural reorganization, if 
present, is unlikely within this timeframe. In our participant, the pain 
was resolved, likely due to neuroma excisions.

4.2 Task based connectivity

4.2.1 Interhemispheric functional connectivity
Consistent with previous research in traumatic upper limb loss, 

interhemispheric connectivity was weak (Hahamy et al., 2015; Makin 

et al., 2013b). We hypothesized that connectivity would increase after 
TMR, following pain reduction and subsequent increased affected 
limb use without a prosthesis, since in people with limb loss, frequent 
engagement in bimanual tasks strengthens interhemispheric 
connectivity and pain modulates connectivity patterns (Hahamy et al., 
2015; Makin et al., 2013a). Contrary to this, overall interhemispheric 
connectivity decreased. Reductions were most pronounced in M1 and 
S1, while areas involved in motor planning (PMC/SMA) (Roland 
et al., 1980) showed a slight increase.

The corpus callosum inhibits the contralateral hemisphere during 
unilateral tasks, silencing unused areas. Amputation disrupts this 
balance, reducing interhemispheric connectivity, especially among 
individuals reporting higher pain (Sparling et  al., 2024). 
Microstructural alterations, including reduced white matter integrity 
as indicated by lower fractional anisotropy values in fibers connecting 
PMC/SMA, are associated with decreased interhemispheric 
communication in people with limb loss (Bramati et al., 2019; Li et al., 
2017) while others show no significant differences compared to 
controls (Tucciarelli et al., 2024). After 2 months, the small, localized 

FIGURE 2

Interhemispheric connectivity strength and Pearson correlation coefficients in motor-related areas pre- and post-TMR intervention. The first row 
shows connectivity strength and correlation coefficients for M1, PMC/SMA, and S1 regions before (A) and after (B) the TMR surgery. The second row 
displays average z values per region and overall hemisphere connectivity before (C) and after (D) the TMR surgery.
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FIGURE 3

Intrahemispheric connectivity strength and Pearson correlation coefficients in motor-related cortical areas. The first row shows connectivity strength 
and correlation coefficients for M1, PMC/SMA, and S1 regions within each hemisphere pre-TMR (A) and post-TMR Intervention (B). The second row 
displays average z values per region before (C) and after (D) the TMR surgery.

FIGURE 4

Overall laterality Index within motor-related regions pre- and post-TMR. Post-TMR, activation increased in the primary sensory areas bilaterally, with 
decreased activation in the contralateral primary motor and premotor regions.

https://doi.org/10.3389/fnhum.2025.1665931
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Mootaz AboElnour et al.� 10.3389/fnhum.2025.1665931

Frontiers in Human Neuroscience 07 frontiersin.org

increase in PMC/SMA connectivity may reflect early functional 
adaptation and possible corpus callosum involvement, although this 
cannot be determined without structural data. Still, these regions are 
critical for motor planning and complex motor tasks, and controlling 
a missing hand without sensory feedback may heavily load these 
networks, potentially driving the observed connectivity increase (Li 
et al., 2024; Roland et al., 1980). This is particularly relevant as the 
participant reported increased limb use and no pain following surgery.

During motor imagery tasks, interhemispheric connectivity in the 
S1 cortex decreased to zero, consistent with a hand transplantation 
case study (Piza-Katzer et  al., 2007). This may reflect pain relief 
following neuroma excision and, marginally, transient postoperative 
medication. In M1, connectivity also decreased, likely reflecting 
absent functional motor output as newly coapted motor nerves had 
not yet reinnervated target muscles. Reduced connectivity between 
M1 and S1 may indicate functional decoupling of the missing limb’s 
representation from corresponding contralateral areas (Borrell et al., 
2023b; Makin et  al., 2015). Together with localized PMC/SMA 
increases, this suggests early-stage functional adaptation after TMR.

4.2.2 Intrahemispheric functional connectivity
No consistent global pattern emerged across intrahemispheric 

connectivity analyses, with major changes occurring in the ipsilateral 
(left) rather than the contralateral (right) hemisphere. Before TMR, 
contralateral hemisphere connectivity was lower than ipsilateral, and 
both hemispheres showed further reductions after TMR. Across 
hemispheres, PMC/SMA–M1 connectivity was inversely related to 
M1–S1 connectivity. Regionally, ipsilateral PMC/SMA–M1 
connectivity decreased post-TMR, while M1–S1 connectivity 
increased; contralateral connectivity remained low, with slight 
increases in PMC/SMA–M1 and decreases in M1–S1.

In people with lower-limb amputation and phantom sensation but 
no pain, increased intra-hemispheric connectivity occurs in the 
deafferented hemisphere during residual and intact limb stimulation, 
including primary and secondary sensory cortices (S1–S2) and 
primary motor and premotor areas (Bramati et  al., 2019). In our 
upper-limb TMR patient, only slight increases in contralateral M1–
PMC/SMA connectivity were observed post-TMR, with no clear S1–
S2 changes. This likely reflects methodological and physiological 
factors, as no sensory stimulation was used, somatosensory regions 
were analyzed globally, and measurements occurred early post-TMR, 
before stabilization. These findings suggest early TMR plasticity 
emerges in motor circuits, with somatosensory changes appearing 
later or requiring task-based activation. If replicated, these findings 
may serve as a neuromarker, guiding early targeted upper motor 
rehabilitation post-TMR.

4.3 Interhemispheric dominance

Before TMR, hemispheric dominance was bilateral, consistent 
with reports that amputation disrupts interhemispheric 
connectivity and causes functional decoupling (Borrell et  al., 
2023b; Makin et al., 2015, 2013b). After TMR, dominance shifted 
ipsilateral, driven by reduced contralateral M1 activation rather 
than increased ipsilateral activity. This contrasts with contralateral 
dominance, typically reported in long-term studies involving 
repetitive motor practice, reinforcing sensorimotor networks 

(Serino et al., 2017; Yao et al., 2015). The shift likely reflects passive 
contralateral suppression due to recently severed efferent 
pathways, leaving contralateral M1 temporarily disconnected. 
Comparable reductions in excitability occur in stroke patients 
(Traversa et al., 1997), and in healthy individuals after short-term 
immobilization (Ngomo et al., 2012). We interpret this ipsilateral 
dominance as transient; over time, axonal regrowth and 
reinnervation should shift towards contralateral dominance. 
However, axonal regrowth occurs at approximately 1 mm/day 
(Gordon, 2020) with reliable EMG activity detected at 6 months 
(Al-Ajam et al., 2022).

5 Conclusion

Our short-term post-TMR investigation provides insights into 
neural plasticity, highlighting changes in both interhemispheric and 
intrahemispheric connectivity within the sensorimotor cortex and 
premotor regions. An increase in interhemispheric premotor 
connectivity appears to be  one of the earliest observable signs of 
cortical adaptation during task-based connectivity assessments. 
Notably, hemispheric dominance shifts toward the ipsilateral side 
early in the process, likely due to reduced activation in the primary 
motor area of the contralateral hemisphere, before newly connected 
muscles begin to produce EMG signals. This case study demonstrates 
the potential of functional neuroimaging to assess cortical connectivity 
changes following TMR, offering a valuable tool for understanding 
and optimizing motor rehabilitation strategies.

6 Limitations

This single-case study has several limitations. Without controls, it 
is unclear whether changes reflect normalization or TMR-specific 
adaptations. The participant’s ambidexterity and profession as a 
painter limit the generalizability of observations to typical TMR 
patients. Effects of pain reduction, loop closure, and use-dependent 
plasticity could not be  isolated. Additional confounders may have 
influenced the results, including psychological and mental health 
factors that affect cortical plasticity.

Methodologically, fNIRS spatial resolution limits analysis to 
cortical surface activity, and the single motor task may not represent 
broader changes. Without a longer follow-up, neural activity cannot 
be linked to functional improvements.

Finally, field gaps complicate interpretation. Limited literature 
document clear patterns of cortical change following upper limb 
amputation with clear timelines, inconsistent methodologies, and 
outcome measures. This hinders the prediction of specific neural 
adaptation patterns.

Together, these limitations highlight the need for controlled 
longitudinal studies with larger samples, standardized protocols, and 
multiple outcome measures.
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