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Flavor, a multimodal perception based on taste, smell, and tactile cues, plays a
significant role in consumer preferences and purchase intentions toward coffee.
In this exploratory study, we assessed the potential of electroencephalography
(EEG) and machine learning (ML) techniques to predict coffee sensory attributes.
We extracted spectral and temporal features from a professional panel while
tasting coffee samples and basic water solutions. We trained multiple Least-
Squares Boosted Trees (LSBoost) and optimized their hyperparameters through
a 100-step Bayesian approach based on a Leave-One-Subject-Out (LOSO)
scheme. The models achieved, overall, high predictive accuracy (MAE <
0.75 on a 0 — 10 scale) and medium-to-large robustness (Cohen’s d > 0.6) with
respect to mean and lasso benchmark regressors. Feature importance analysis
revealed that spectral powers and Hjorth's parameters within parietal, central,
and frontal regions were the most predictive. Our findings endorse the use of
EEG-based ML models as an alternative to traditional flavor evaluation methods,
such as Descriptive Sensory Analysis (DSA).

KEYWORDS

coffee flavor prediction, electroencephalography (EEG), machine learning (ML),
ensemble learning, boosted-tree regression, Descriptive Sensory Analysis (DSA)

1 Introduction

Coffee stands as the major component of the global hot drink market, with a worldwide
production exceeding 176 million bags and consumption reaching 7 billion kilograms (Kim
Y. etal,, 2025). Among over 60 coffee plant species, only 10 are extensively cultivated, with
Coffea arabica (arabica), Coffea canephora (robusta), and Coffea liberica being the most
prevalent (Feria-Morales, 2002). Arabica and robusta make up 99% of global production
(Jayakumar et al., 2017) and commercial coffee typically results from blending their beans
in varying proportions (Seninde and Chambers, 2020).

Consumer preference and purchasing intentions for coffee are mainly driven by
subjective factors, such as taste, aroma, and body (Li et al., 2019). These elements belong
to the broader concept of flavor, a multimodal experience in which gustatory, olfactory,
trigeminal, and somatosensory inputs are individually processed before being integrated
(Small, 2012). Gustatory signals ascend via the nucleus of the solitary tract (NST) and
ventroposteromedial nucleus (VPM) to the primary taste cortex in the rostral insula and
adjoining frontal operculum, where the identity and intensity of basic tastes, as well as oral
texture and temperature, are encoded. Retronasal olfactory inputs, initially processed in the
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piriform cortex, converge with gustatory signals in the orbitofrontal
cortex (OFC), which also integrates oral somatosensory and
trigeminal inputs such as viscosity, temperature, irritation, and
astringency (Rolls, 2005). Within the OFC, convergent inputs
give rise to multimodal flavor representations, in which sensory
modalities are integrated and assigned hedonic value. At the same
time, projections to the amygdala and anterior cingulate cortex
(ACC) further embed these representations within affective and
motivational systems (Small, 2012).

Flavor assessment often relies on Descriptive Sensory
Analysis (DSA), wherein expert panels assign numerical scores
to standardized sensory attributes (Yang and Lee, 2019). Various
coffee attributes have been suggested (Spencer et al, 2016).
However, only bitter, sour, sweet, and astringent (i.e., mouth-
drying sensation) have established reference solutions (Batali et al.,
2022).

Based on DSA

psychological

self-reports, can be confounded by

physiological ~ and biases.  Physiological

phenomena include sensory adaptation and multimodal

enhancement/suppression. Psychological phenomena include
expectation, stimulus/proximity/logical errors, habituation, halo
effect, presentation order, mutual suggestion, and central/extreme
rating tendency (Stone et al., 2021; Civille et al., 2024). To mitigate
these risks, international standards (e.g., ISO 13299, ISO 11132,
and ISO 8586) and the scientific literature recommend extraneous
cues blinding, randomized or Williams-balanced presentations,
adequate rests/rinses alternation, and ongoing panel performance
monitoring (Sipos et al., 2021). Additionally, direct techniques
based on bioelectrical measures have recently been advocated
(Torrico et al., 2023; Rodrigues et al., 2024).

Previous  studies  have  explored the use of
electroencephalography (EEG) for flavor assessment. Global
field power and scalp topographies (Crouzet et al., 2015), as well
as phase in the delta band (Wallroth et al., 2018) and spectral
powers in alpha and theta bands (Yang et al., 2023) have emerged
as candidate neurometrics. Similar results, involving alpha, beta,
and theta powers, have been observed in coffee tasting tasks
(Hsu and Chen, 2021; Tonacci et al., 2024). However, their
correlational—rather than causal—nature poses a risk of reverse
inference problems (Poldrack, 2006). Pattern-decoding methods
based on Machine Learning (ML) models have been suggested to
mitigate this issue (Nathan and Del Pinal, 2017). Furthermore,
being free of rigid theoretical assumptions, ML methods could also
be helpful in revealing latent structures in the data, providing new
theoretical insights and hypotheses (Verzelli et al., 2024).

Research on flavor prediction with ML and EEG data is
still limited (see the following Section 2 for details). Most of
the studies employed basic water solutions as eliciting stimuli,
and the few examining coffee focused on other target variables
than taste. Moreover, nearly all existing models were classifiers
to discriminate among basic tastes (e.g., sour, sweet, bitter, salty,
umami, and neutral) instead of predicting the intensity level of
sensory attributes. Therefore, such models are ill-suited to replace
or even complement traditional DSA.

To address these limitations, we performed an exploratory
study recording the EEG data from expert coffee tasters while

they tasted both reference solutions and coffee samples. We
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trained multiple tree-based ensemble regressors to predict the
intensity level of bitter, sweet, acid and astringent, achieving
high performances and robustness against benchmark models.
We interpreted the fitted models, identifying as most informative,
spectral and temporal features within parietal, central and
frontal regions.

2 Related work

As previously mentioned, most of the past studies on
taste prediction using EEG data and ML methods trained
classifiers to discriminate among basic water solutions. De
et al. (2023) fed temporal (maximum/minimum values, mean,
kurtosis and skewness) and spectral [Power Spectral Densities
(PSDs) in theta, delta, alpha and beta bands] features into a
Long Short-Term Memory Recurrent Neural Network (LSTM-
RNN) to discriminate sour, sweet, bitter, salty, umami, and
neutral solutions from 46 subjects. They obtained an accuracy
of 97.16%. Xia et al. (2024) employed a Convolutional Neural
Network (CNN) with spatiotemporally augmented raw EEG data
to identify sour, sweet, bitter, and salty solutions from 20 subjects.
They reached 99.5% of accuracy. Li et al. (2025) trained a
Support Vector Machine (SVM) with spectral features (wavelet
decompositions in « and 6 bands) to classify sour, sweet, bitter,
salty, and umami solutions from 22 subjects. They reported a
maximum accuracy of 76.13%. Vo et al. (2023) trained a feed-
forward Neural Network (NN) using spectral features (powers
in delta, theta, alpha, beta, and gamma bands) to discriminate
between salty and sour solutions from 15 people. The accuracy
was 84.36%.

Only one study moved from discrimination to intensity level
prediction. Zhao et al. (2022) contrasted linear, tree, and ensemble
regressors, trained with temporal and information-related features
(energy, absolute mean value, and wavelet entropy), to predict the
intensity level of sour, sweet, bitter, salty, and umami from 10
subjects. The best model, Extreme Gradient Boosting (XGBoost),
achieved a goodness-of-fit (measured through the R? coefficient),
ranging from —0.22 to 0.18.

Two studies focused on other-than-basic water solutions.
Gonzalez-Espana et al. (2023) aimed to discriminate wine vs. water
and wine vs. wine tasting tasks of 10 participants through an SVM
with temporal and spatial features (global field powers and channel
averages). They reported accuracies greater than the chance level
of 70% for both predictions. Naser and Aydemir (2024) trained a k-
Nearest Neighbors (kNN) and a Random Forest (RF) with temporal
and spectral features (mean value of the Hilbert-transformed EEG
signal and level-2 wavelet coefficients) to discriminate four food
substances (oils of Orange, Mint, Thyme, and Clove) from 10
subjects. The highest accuracy, obtained with the kNN, was 87.5%.

Coffee was selected as an eliciting stimulus in two studies.
However, as previously mentioned, the target belonged to other
aspects than taste. Maram et al. (2023) trained a CNN with raw
EEG data to classify the preference of 3 coffee brands from 12
participants, obtaining an accuracy of 83.43%. Xu et al. (2021)
compared several Bayesian Regression (BR) models, trained with
spectral features (powers in theta, alpha, beta, and gamma bands),
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to predict the emotional responses to tasting tasks from 32 subjects.
The best model achieved a goodness-of-fit [measured through the
Watanabe-Akaike Information Criterion (WAIC)] of 963.55.

3 Materials and methods

3.1 Study population

A total of 15 subjects (9 females) in the age range 24-59 years
(M = 40.13, SD = 13.80) took part in the experiment. They were
recruited as professional coffee tasters with proficiency in DSA and
grouped as trained (T, less than 3 years of experience) or experts
(E, more than 3 years of experience). Despite the sample size being
below the average when compared to the surveyed past studies (i.e.
19.67 £ 12.31, range: 10 — 46), it was still in line with DSA studies
that typically consist of 5-15 experts (Gacula and Rutenbeck, 2006).

The participants resulted group- and gender-balanced in terms
of mean age [#(13) = 0.818, p = 0.428 and #(13) = 1.034, p =
0.320, respectively]. However, the groups resulted in an unbalanced
in terms of gender proportion [E: 2 females, T: 7 females, x%(1) =
5.402, p = 0.020].

A sensitivity analysis performed with G*Power (Faul et al.,
2007) considering a within-between design with 2 groups, 8
measures, and standard parameters (¢ = 0.05, 1 — 8 = 0.95, € =
1, p = 0.5) confirmed a minimum detectable effect size of f =
0.302, interpreted as medium-to-large (Cohen, 1992).

The study was approved by the Ethical Committee of Universitd
IULM (approval number: 0067814). All the procedures adhered to
the guidelines of the Helsinki Declaration, and informed consent
was secured from each participant.

3.2 Instrumentation

The EEG was acquired using the NVX-52 device (Medical
Computer System Ltd.) from 38 Ag/AgCl scalp electrodes, 2
Ag/AgCl ear clips (Al and A2), and 1 adhesive Ag/AgCl patch
placed on the left mastoids (M1). The electrode positioning,
detailed in Bilucaglia et al. (2024), followed the 10-10 system
(Nuwer, 2018), and the montage was monopolar, reference-free,
and grounded to M1. Neorec software (Medical Computer System
Ltd) was used to record the data at a sample frequency of 2kHz and
a resolution of 24bits.

The iMotions software (iMotions A/S) was used to deliver the
experiment instructions and collect the sensory evaluations.

Data synchronization was ensured by a transistor-to-transistor
(TTL) pulse, sent by iMotions at the beginning of the experiment
and fed into the NVX-52 by means of the ESB synchronization box
(Bilucaglia et al., 2020).

All computations were carried out on a workstation equipped
with an AMD RyzenTM Threadripper PRO 5975WX CPU (32 cores,
64 threads, 3.6 GHz base clock) and 256 GB of DDR4-3,200
MHz ECC. No GPU acceleration was used. Code was executed
in MATLAB R2024b (The Mathworks, Inc.) with Statistics and
Machine Learning Toolbox 12.3.
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3.3 Experimental protocol

The experiment consisted of a starting 60s eye-closed baseline
(BSL) and two experimental phases, namely benchmark (Be) and
coffee (Co).

The Be phase involved 4 tasting trials with solutions of
sucrose (20g/1), caffeine (0.6g/1), citric acid (0.6g/]), and potassium
aluminum sulfate (1g/), to elicit sweet, bitter acid, and astringent
flavors respectively (Anbarasan et al., 2022). Micro-filtered mineral
water was used as diluent. According to Rousmans et al. (2000),
the exact concentration of the solutions was determined from a
previous pilot test.

According to Abubakar et al. (2020), the Co phase involved
four tasting trials with coffees at various arabica/robusta ratios
(100:0, 80:20, 85:15,and 70:30).

The phase order was fixed (i.e., first Be and then Co), and the
tasting trials were randomized within each phase.

The administration of liquids was masked. The Be solutions
were served at room temperature, while the Co at approximately
60 °C. According to Di Flumeri et al. (2017), participants were
instructed to rinse the palate with a glass of water before any tasting
trial (WR task) and to keep the liquid (solution or coffee) in the
mouth for 10s (TL task) before swallowing. At the end of each
tasting trial, subjective ratings for bitter, astringent, sweet, and acid
attributes were collected on a 0 — 10 scale.

The following Figure 1 summarizes the experimental protocol.

3.4 Data processing

Data processing was performed using the EEGLab toolbox
(Delorme and Makeig, 2004). The EEG was resampled at 512Hz
and filtered in the 0.1 — 40Hz band (IV zero-phase Butterworth
filter). Power line interference (50 and 100Hz) was reduced
through the CleanLine, a multi-taper-based regression technique
(Bokil et al., 2010), while non-stationary artifacts were corrected
using the Artifact Subspace Reconstruction (ASR) method (Chang
20). ASR
represents the gold standard for handling high-amplitude artifacts,

et al., 2020) with standard cutoff parameter (k =

such as those related to locomotor tasks in real-world and
Mobile Brain Imaging (MoBI) contexts (Kim H. et al, 2025).
Independent component analysis (ICA) decomposition was carried
out using the second-order blind identification (SOBI) algorithm
(Urigtien and Garcia-Zapirain, 2015) on a resampled (100Hz)
and heavily filtered (1 — 30Hz, IV order zero-phase Butterworth
filter) copy of the data. According to Bilucaglia et al. (2024), the
resulting weight matrix was multiplied by the original data to
obtain the independent components (ICs). The ICLabel classifier
(Pion-Tonachini et al.,, 2019) was used to detect artifactual ICs
as those with not-brain probability Pr{!brain} > 0.9. On
7) artifactual ICs
over 38 were identified and removed. Finally, a re-reference to

average, 3.8 & 1.373 (min = 2, max =

the approximately zero ideal potential was performed through
the Representational State Transfer (REST) algorithm (Yao,
2001).

The cleaned EEG was offline aligned to the starting TTL
pulse and epoched according to the experimental phases (i.e., EYC
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Schematic representation of the experimental protocol.

£
2?

@

VA ey e A e R E W\

&
>3
=
==
fe—

(a) (b) 1s

FIGURE 2
Representative 5s—long segments showing the (a) raw and (b) pre-processed EEG signal. The data refer to the TL task of As solution, with onset
marked by the pink vertical line.

and TL tasks of Be and Co). The following Figure 2 shows a  etal,2019):
representative segment of raw and pre-processed EEG data.
For each subject, the Individual Alpha Frequency (IAF) was

computed as the center of gravity of the Power Spectral Density 8 =[0,IAF — 6]
(PSD) in the extended (7.5 — 12.5Hz) alpha band (Klimesch, 1999). 0 =[IAF — 6,IAF — 2]
As PSD, the average occipital Welch’s PSD (1s—long Hamming o =[IAF — 2,IAF + 2] 1)

window at 50% of overlapping) estimated in the BSL epoch was
considered (Bilucaglia et al., 2019). The IAF served to define the
following subject-specific 8, 0, «, B, and y EEG bands (Borghini y =[IAF + 16,IAF + 25]

B =[IAF + 2,IAF + 16]
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3.5 Feature extraction

Features were extracted exclusively from WR and TL epochs,
thereby excluding non-task-related activity that could also have
been potentially contaminated by residual muscle artifacts. For
each channel C and band B = {8, 0, «, B, v}, normalized spectral
powers pc,p were computed as (Bilucaglia et al., 2022):

_ [z xc(f)df
S22 xc(f)df

where xc(f) is the Welch’s PSD (1s—long Hamming window with

pcB (2)

50% of overlapping).

Additionally, the following activity (Ac), mobility (Mc¢), and
complexity (Cc) temporal parameters were computed as (Hjorth,
1970):

Ac { dx;t(t) }

Ac {xc(t)} > (3)

where o {-} is the temporal variance operator.

Expertise level (group) and age were also considered, since
their impact on flavor evaluation has been previously reported
(Croijmans and Majid, 2016; Mojet, 2003).

The feature vectors (306 — long) were finally obtained by
concatenating spectral (38 x 5 = 190) and temporal (38 x 3 = 114)
vectors, as well as age and group (categorical: T, E) scalars. For
each tasting trial T and each phase P, the TL vectors x7.p were
normalized with respect to the WL vectors y; p as:

Xrp=(*¥1,p —yrp) @yrp (4)

where @ represents the Hadamard (i.e., element-wise) division
operator.

Three datasets corresponding to the Be and Co phases (60 x
306 each) as well as the BeCo (120 x 360) consisting of the
normalized TL vectors x7. , were finally built. The target variables y,
consisting of the attribute ratings, were transformed as log(1 + y),
following general recommendations for ratio scales (Keene, 1995).

3.6 Model training and evaluation

The selected model was LSBoost, a least-squares variant of
Boosted Trees (Friedman, 2001). It was chosen for the enhanced
predictive performance, as a non-linear ensemble method, and
because it incorporates feature selection within the weak learners
(Decision Trees, DTs). Regressors belonging to the boosted
trees family have been previously shown to outperform in EEG
prediction tasks (Hussain et al., 2019; He et al., 2022; Isabona et al.,
2022).

LSBoosts tunable hyperparameters included the number
of learners (n) and the learning rate (p), while DTS ones
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included the leaf size (L)
of splits (ns). Since the dataset pre-processing is known

and the maximum number

to impact the performance of the EEG-based prediction
models (Apicella et al, 2023; Tryon et al, 2025), different
standardization techniques (S) were also considered. They
included the subject-wise z-score and min-max normalisations,
as well as a non-linear transformation based on the median
value (Arevalillo-Herrdez et al, 2019) and the lack of
standardization (none).

The best hyperparameters (n*, p*,If, n},S*) were obtained
through a Bayesian optimization (Snoek et al., 2012), considering
the cross-validated Mean Absolute Error (MAE) as objective
function L. This solved the following Combined Algorithm
Selection and Hyperparameter (CASH) problem (Kotthoff et al.,
2017):

(n*, p*, I¥, n, %) = argmin L(n, p, 5, 5, S), (5)

1,0,l5,15,S
where n € [1 — 500], p € [0.01,1], [,n, € [1 — 100] and
S € {z-score, minmax, median, none}.

The maximum number of evaluations was set to 100 and the
seed was fixed at rng (1), to ensure replicability.

The cross-validation followed a Leave-One-Subject-Out
(LOSO) (Fazli et al., 2009) scheme to address the subject-wise
data dependence.

As baselines for a robust model evaluation, a regressor
constantly predicting the training sets mean target (Me) and a
lasso regressor (LR) (Tibshirani, 1996) were additionally fitted
following the same LOSO approach. The lasso’s penalisation
term A was set at (Bihlmann and Van De Geer, 2011, p.
14):

)= 2log(p)/n, ©)

where n = 56 and p = 306 are the dimensions of the training
set.

The cross-validated MAEs of LSBoost vs. Me and LBoost vs.
LR were compared by means of the following Cohen’s d-scores
(Goulet-Pelletier and Cousineau, 2018):

MMe, LR — M[LSBoost (7)

dMe, R = >
SMe,LR

where Sy LR = \/(sﬁ/[e)LR + siSboost)/Z, m.y and sy are the mean
and standard deviation of the cross-validated MAEs, respectively.
Cutoffs for small, medium, and large differences are placed at 0.2,
0.5, and 0.8, respectively (Cohen, 1992).

The significance at « = 0.05 level of each d coeflicient was
assessed from its 95% Confidence Intervals, estimated from a non-
central ¢ distribution (Goulet-Pelletier and Cousineau, 2018).

To assess the predictive power of the features, models
showing significant dpgrr coeflicients were trained on the
complete datasets using optimal hyperparameters. Then, LSBoost’s
feature importance scores were extracted, normalized to the
total importance score, and then summed across the channels.
According to Bilucaglia et al. (2019), a topographic map showing
the feature importance distribution was then obtained by averaging
the scores across datasets, targets, and models.
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TABLE 1 Significant models with best hyper-parameters and training time
(in seconds) split for dataset and target.

D T n ) Is ng S t

Be Bi 20 0.078 4 27 Z-score 38.115
Be Sw 16 0.657 4 4 Median 41.324
Co Ac 4 0.531 10 79 Median 35.779
BeCo As 38 0.075 13 96 Min-max 37.162

D, dataset; T, target; n, number of learners; p, learning rate; I, leaf size; ny, number of splits;
S, standardization method; t, training time [s].

4 Results

Four models reported significant improvements from the
benchmarks, with an overall MAE 0f 0.5374-0.073 (anti-log: 0.714+
0.124) and d scores of dyje = 0.858 £ 0.341, dig = 0.897 £ 0.326.
The targets were Bi (trained on Be), Sw (on Be), Ac (on Co), and As
(on BeCo).

The Ac prediction obtained the best MAE (Co: 0.459 £ 0.178),
while Sw the worst one (Be: 0.600 &= 0.282). The highest robustness
against benchmark regressors was achieved by Bi trained on Be
(dpe = 1.344, drgr = 1.372), while the lowest one was observed
for Sw trained on Be (dp, = 0.651, drg = 0.660).

The following Table 1 reports the best hyperparameters and the
training time (in seconds) of the significant models, split for dataset
and target. The following Table 2 summarizes the performances
(cross-validated MAEs and Cohen’s d coefficients) of the significant
models, split for datasets and targets.

Both spectral and temporal features contributed to the
predictions, but their importance scores varied substantially across
datasets and targets. The highest median score was observed for
po (Med = 0.139, IQR = 0.190), whereas the lowest was for
M (Med = 0.034, IQR = 0.037). Age and Group appeared as
predictors in two models each: Age in Sw with Be and Ac with Co,
while Group in Ac with Co and As with BeCo. Group achieved
the highest importance, not only compared to Age but also across
all features (Med = 0.252, IQR = 0.136). Table 3 summarizes
the channel-averaged feature importance scores, split by dataset
and target.

The topographic plot in Figure 3 qualitatively identified central,
occipital, parietal, and frontal regions as most important for the
overall prediction.

5 Discussion

In this study, we trained Least-Squares Boosted Trees
(LSBoost) with spectral and temporal EEG features to predict
sensory attributes—bitterness (Bi), sweetness (Sw), acidity (Ac),
and astringency (As)—of Coffee (Co) and basic solutions
(Be). The best configuration of hyperparameters and data
normalization was obtained through a Bayesian optimisation
approach, following a Leave-One-Subject-Out (LOSO) scheme.
The LSBoost’s performances were compared with mean (Me) and
lasso (LR) regressors through Cohen’s d coefficients, and the
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feature importance for type and channel was assessed from the
trees’ coeflicients.

The significant models achieved high performances, with an
average anti-log MAE of about 7% of the scale range and a medium-
to-large (daerr > 0.5) (Cohen, 1992) robustness against the
benchmarks. The lowest MAE of Ac is in line with previous studies
that identified sour as the best predictable flavor, with the highest R
coeflicient in Zhao et al. (2022) and the second (after salty) highest
accuracy in Li et al. (2025). Compared to other dimensions, Sw has
already shown poor performances (De et al., 2023) and low feature
discriminability (Xia et al., 2024), supporting the obtained highest
MAE and lowest d coefficients. Finally, the robustness of Bi against
benchmarks may reflect the well-known evolutionary adaptation in
vertebrates toward heightened bitter taste sensitivity for early toxin
detection and avoidance (Wooding et al., 2021).

The feature importance of py, pg, and p,, is in line with past
studies that effectively trained ML models using spectral powers
in @, B, and y bands (De et al., 2023; Vo et al., 2023). The
role of ps, and py as key predictors is supported by previous
research studies that identified differences in § and 6 bands during
flavor evaluation (Wallroth et al., 2018; Yang et al., 2023). Overall,
the involvement of EEG features from specific central, parietal,
and frontal regions has already been observed in predictive (Li
et al, 2025) and experimental (Lejap et al., 2024) studies. The
contribution of temporal parameters, represented by C, M and A,
matches the good performance of past deep-learning models (e.g.,
CNNs and RNNs) trained with the raw EEG signal (De et al,
2023; Xia et al., 2024). Finally, the significance of Group and Age
could be related to the previously reported influence of expertise
(Croijmans and Majid, 2016) and aging (Mojet, 2003) on sensory
evaluations. However, the reasons why they impacted only in two
models require further investigation.

This study acknowledges some limitations. First, despite being
in line with DSA studies that typically involve 5-15 experts (Gacula
and Rutenbeck, 2006), the sample size must still be considered
limited. Increasing it in both magnitude and heterogeneity
(e.g., adding non-expert tasters and accounting for their coffee-
consumption frequency) would potentially improve not only the
performance but also the generalisability of the models. An
increase in dataset size would also yield less noisy results, which
is particularly relevant in chemo-sensory studies. In fact, despite
the use of advanced denoising techniques and the selection of
short epochs with minimal muscular artifacts, the data quality in
the present study should still be regarded as suboptimal. Second,
the experiment has not accounted for confounders given by the
fixed Be-Co order, the temperature difference between the Be and
Co samples, as well as potential visual cues (e.g., the colors of
the liquids), potentially biasing the sensory analyses (Delwiche,
2023). Future confirmatory studies should be, thus, based on a
fully-randomized and truly-blind design. Third, our models were
trained and validated in a single session per subject. Although
being standard practice in multivariate-pattern-analysis with brain-
imaging data (Taxali et al., 2021), it prevented us from quantifying
the test-retest reliability of the models. Future works should acquire
longitudinal recordings—at least a second session separated by
days or weeks—to determine the stability of features and models
over time.
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TABLE 2 Performances of the significant models split for the dataset and target.

LSBoost
M
Be Bi 0.490 0.176 0.694 0.127 0.692 0.118 1.344 1.372
Be Sw 0.600 0.282 0.743 0.158 0.774 0.247 0.651 0.660
Co Ac 0.459 0.178 0.604 0.165 1.008 1125 0.844 0.841
BeCo As 0.598 0.132 0.681 0.146 1.058 1.153 0.595 0.717

D, dataset; T, target; LSBoost, Least-Square Boosted Tree; Me, mean regressor; LR, lasso regressor; M, mean; SD, standard deviation; d, Cohen’s d.

TABLE 3 Feature importance scores, split for dataset and target.

D T Age Group Ps Po Pa pg Py A M C

Be Bi 0.076 0.115 0.454 0.055 0.009 0.009 0.005 0276
Be Sw 0.158 0.003 0.135 0.080 0.123 0.037 0.355 0.037 0.072
Co Ac 0.088 0.388 0.035 0.048 0.084 0.116 0.039 0.030 0.173
BeCo | As 0.116 0.089 0.121 0.198 0.140 0.073 0.069 0.131 0.063

D, dataset; T, target; Age, participant’s age; Group, expertise level; pp, normalized spectral power in band B = {§, 0, «, B, y}; A, activity; M, mobility; C, complexity.
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FIGURE 3
Topographic distribution of the feature importance scores.

Nevertheless, our exploratory study endorses the Data availabi llty statement
use of regression techniques based on EEG data in
flavor  assessment, as an alternative to  self-report The raw data supporting the conclusions of this article will be
sensory evaluations. made available by the authors, without undue reservation.
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