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Objective: This pilot study aimed to evaluate the feasibility and tolerability of 
motor imagery (MI)-based brain-computer interface (BCI) training with robotic 
hand assistance for upper limb rehabilitation, and to explore preliminary neural 
markers in ischemic stroke patients.
Methods: Three post-stroke participants performed MI tasks combined 
with exoskeleton-assisted movements to facilitate rehabilitation training. 
Electroencephalography (EEG) signals were recorded to assess the neural 
correlates of MI. Functional outcomes were evaluated using standard assessment 
tools.
Results: Our results demonstrated significant improvements in motor function 
across all participants. Additionally, EEG analysis revealed event-related 
desynchronization (ERD) in the high-alpha band power at motor cortex 
locations, with individual differences in both the frequency and power of neural 
activity. However, no significant trends in neural activity were observed across 
the training sessions.
Conclusion: These findings suggest that MI-based BCI training, combined 
with robotic assistance, offer a promising approach for enhancing upper limb 
function in ischemic stroke patients.
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1 Introduction

Upper limb motor dysfunction following stroke is one of the most common and disabling 
symptoms, significantly impacting the quality of life of patients. Restoring upper limb function 
is crucial for improving the independence of patients in daily activities and facilitating their 
social participation. Traditional rehabilitation methods, including physical and occupational 
therapy, can improve motor function to some extent; however, there is still room for 
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improvement in terms of rehabilitation effectiveness and sustainability. 
Therefore, accelerating the recovery of upper limb motor function has 
become a major challenge in both clinical medicine and 
neuroscience research.

In recent years, brain-computer interface (BCI) technology has 
brought new hope for stroke rehabilitation (Li et al., 2025; Liu et al., 
2025). Among the various approaches, BCI systems based on MI 
combined with robotic hand applications have emerged as a 
promising method (Bhagat et al., 2020; Kawakami et al., 2016; Lin 
et  al., 2022; Tsuchimoto et  al., 2019). In this approach, patients 
activate the motor areas of the cortex through MI, generating neural 
signals that are decoded by the BCI system to control a robotic hand 
for upper limb training (Frolov et al., 2017). This type of training not 
only provides patients with more intuitive feedback but also allows 
them to establish a link between neural activity and physical 
movement through the robotic hand. Consequently, it enhances 
cortical plasticity, promotes broader neural network reorganization, 
and accelerates motor function recovery (Bai et al., 2020; Baniqued 
et  al., 2021). The integration of the robotic hand provides direct 
feedback during MI training, enabling patients to perceive the 
movement process and gradually regain upper limb motor abilities 
through continuous training.

The dynamic changes in electroencephalography (EEG) signals 
during MI, particularly the phenomena of event-related 
desynchronization (ERD) and event-related synchronization (ERS) 
(Pfurtscheller and Lopes da Silva, 1999), are crucial indicators in the 
study of MI and motor control (Jeon et al., 2011). ERD and ERS are 
particularly relevant in MI tasks, where the brain exhibits distinct 
oscillatory patterns associated with imagined movement. During MI, 
ERD typically occurs in the alpha and beta frequency bands over 
sensorimotor regions, reflecting the suppression of motor cortex 
activity as the brain prepares for movement, even without apparent 
motor execution (Yu et  al., 2022). ERD has been studied as an 
indicator of motor cortex activation (Chen et al., 2021; Kaiser et al., 
2014). In contrast, ERS is commonly observed after the cessation of 
movement or during the recovery phase (Wang et al., 2023), reflecting 
the re-engagement and reorganization of the motor cortex. In the 
context of stroke rehabilitation, we hypothesize that ERD and ERS 
patterns can serve as biomarkers of cortical reorganization, indicating 
the brain ability to adapt and compensate for damage to motor areas.

The changes in ERD and ERS not only provide the 
neurophysiological foundation for the MI process but also serve as key 
signals for decoding in BCI systems (Vidaurre et al., 2021). Modulating 
these oscillatory patterns through BCI training, such as with robotic 
exoskeletons, holds potential for promoting functional recovery by 
reinforcing adaptive neural plasticity (Jia, 2022). However, while the 
ERD and ERS changes during MI have been widely studied, there is 
still limited exploration of how these changes evolve over the course 
of rehabilitation and their relationship with motor function recovery. 
Further investigation into the dynamic shifts of ERD and ERS during 
stroke rehabilitation and their connection to upper limb recovery 
could provide more personalized rehabilitation strategies for patients 
and optimize the application of BCI systems in rehabilitation. Some 
studies suggest that as rehabilitation progresses, EEG signals of stroke 
patients during MI tasks show signs of improvement, with more 
pronounced ERD/ERS changes, indicating a recovery of neural 
function (Bartur et al., 2019; Fong et al., 2021; Kaiser et al., 2012). 
However, other research indicates that although motor function 

gradually recovers, the patterns of synchronization and 
desynchronization do not fully return to normal levels, and this 
recovery process is often individualized with significant variation 
across patients (Kancheva et al., 2023; Ray et al., 2020). These findings 
suggest that ERD and ERS in stroke rehabilitation are influenced not 
only by individual differences but also by factors such as the specific 
rehabilitation protocol, the intensity of training, and the neural 
plasticity (Schranz et al., 2022).

Despite the progress made in understanding ERD and ERS 
changes during MI tasks, their dynamic evolution during stroke 
rehabilitation and their relationship with upper limb motor recovery 
still require further exploration. The present pilot study aimed to 
evaluate the feasibility and tolerability of MI-based BCI training in 
stroke rehabilitation and to explore ERD and ERS candidate neural 
markers of motor imagery–related cortical engagement. Rather than 
assessing efficacy in a large cohort, this investigation focused on 
characterizing neural patterns and preliminary functional changes in 
a small sample, providing proof-of-concept data to inform the design 
of future controlled trials with extended protocols and systematic 
follow-up. This work seeks to advance BCI-assisted rehabilitation 
approaches and provide stroke patients with more optimized 
rehabilitation strategies.

2 Methods

2.1 Participants

This is a preliminary study, included three ischemic stroke 
patients who were recruited from the Department of Rehabilitation 
Medicine at Shenzhen Longhua District Central Hospital. Inclusion 
criteria: (1) Diagnosis of ischemic stroke confirmed by neuroimaging 
(CT or MRI); (2) Stroke onset is the first occurrence, with a stable 
clinical condition, disease duration between 1 and 48 months, and 
the presence of upper limb motor dysfunction; (3) Brunnstrom 
recovery stage ≤ 4 for upper limb and hand function; (4) Modified 
Ashworth Scale score ≤ 3; (5) No significant cognitive impairment, 
as determined by a Mini-Mental State Examination (MMSE) score ≥ 
18, with the ability to understand instructions and cooperate with 
therapy (Monroe and Carter, 2012; Tombaugh and McIntyre, 1992); 
(6) Participants aged between 18 and 80 years, regardless of gender. 
Exclusion criteria: (1) Presence of other neurological disorders; (2) 
Acute deterioration, new ischemic stroke, or intracranial hemorrhage 
during the study; (3) Presence of sensory or mixed aphasia; (4) 
Participants with a history of epilepsy; (5) Conditions affecting motor 
function such as fractures or diseases of the affected limb; (6) Patients 
with significant skull defects or other factors affecting EEG signal 
collection; (7) Participation in other clinical central nervous system 
intervention treatments. Drop-out criteria: (1) Participants 
experiencing significant health decline or adverse reactions during 
the study; (2) Participants unable to complete follow-up assessments 
or rehabilitation training; (3) Missing data that affects the evaluation 
of efficacy or safety; (4) Participants who actively request to withdraw 
their informed consent during the study. The patients were 
hospitalized and underwent daily or alternating-day rehabilitation 
interventions during their stay. See Table  1 for the demographic 
characteristics of the patients (S01-S03). Clinical characterization of 
neurological deficits is summarized as follows: S01: Conscious; mild 
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right facial weakness; right Babinski (+); meningismus (−); right 
upper limb (UL) strength proximal grade 2, distal grade 1; right lower 
limb (LL) grade 4; left limbs normal strength and tone; Brunnstrom: 
right UL IV, hand II, LL IV. S02: Conscious; mild right facial 
weakness; bilateral Babinski (+); meningismus (−); right UL proximal 
2+, distal 3; right LL 2+; decreased tone on right; left UL/LL strength 
4+, tone normal; Brunnstrom: right UL III, hand I, LL III. S03: 
Conscious; facial symmetry; Babinski (−); meningismus (−); left UL 
proximal/distal 4–, left LL 4+; right UL/LL strength 5; tone normal; 
Brunnstrom: left UL IV, hand II, LL IV. The study was approved by 
the ethical committee of the Shenzhen Longhua District Central 
Hospital (Approval No. 2021–001-02) and conducted in accordance 
with the Declaration of Helsinki. All participants signed 
informed consent.

2.2 Motor imagery training protocol

The BCI training was conducted using the RxHEAL BCI Hand 
Rehabilitation Training System (Shenzhen RxHEAL Medical 
Technology Co., Ltd., China). Before the training, patients were 
instructed to sit upright at the treatment table and were reminded to 
minimize any movements of the trunk and limbs during the training, 
except for those required by the protocol.

The BCI rehabilitation system was designed to operate in a 
closed-loop manner by integrating EEG decoding with multisensory 
feedback. The exoskeleton robotic hand was fitted onto the affected 
hand of patient, facilitating MI training. The system allowed multiple 
movement patterns to be programmed for training. In the present 
study, two fundamental actions were implemented: whole-hand 
grasping and whole-hand opening. During each training session, the 
system software presented auditory instructions and action videos to 
guide patients in performing MI of the affected hand (Figure 1). EEG 
signals were continuously recorded during these periods and 
processed in real time. When the extracted features matched the EEG 
characteristics associated with MI, the system classified the trial as 
successful. In such cases, the EEG output was converted into control 
commands that activated the robotic hand, which executed the 
corresponding movement and provided tactile feedback in addition 
to the ongoing auditory and visual cues. Conversely, when EEG 
features did not meet the MI criteria, no robotic movement was 
triggered, and feedback indicated an unsuccessful attempt.

These tasks were designed to engage the motor cortex and activate 
brain regions involved in motor planning and control. Throughout 
the training, the patient was required to maintain high levels of 
attention to complete the MI tasks. If the patient made consecutive 
errors in MI three times, the system would automatically reduce the 
task difficulty. The training duration was determined by the individual 
conditions of patient, with most patients completing 10 sets of 

training in approximately 50 min. Each set consisted of 10 tasks, with 
10 sets per session, one session per day, 5 days a week, for 4 weeks. 
The MI training generally followed this protocol, with appropriate 
adjustments made based on the individual conditions of the 
participants. All participants in this study completed at least 15 
training sessions.

2.3 Concurrent conventional rehabilitation

In addition to the MI training, patients received conventional 
rehabilitation therapies, including physical therapy, occupational 
therapy, and speech therapy (if necessary). The conventional 
rehabilitation aimed to improve the functional recovery, and the MI 
sessions were intended to complement and enhance these therapies. 
The combination of interventions allowed for a holistic 
rehabilitation approach, integrating both motor and cognitive 
aspects of recovery.

2.4 Outcome measurement

The evaluations of motor function were conducted before and 
after the whole training sessions using the Modified Barthel Index 
(MBI) (Ohura et al., 2017), the Action Research Arm Test (ARAT) 
(Yozbatiran et al., 2008), the Fugl-Meyer Assessment Upper Extremity 
(FMA-UE) (Woodbury et al., 2008), and the Wolf Motor Function 
Test (WMFT) (Wolf et al., 2001) for all participants. All assessments 
were carried out by therapists who were blinded to the investigation.

2.5 EEG recording and preprocessing

EEG signals were collected throughout the MI training sessions 
using a 16-channel EEG cap (GREENTEK), with a focus on the 
sensorimotor cortex (C3, C4, Cz, and surrounding regions), and with 
A1/A2 used as the reference electrode. Data were sampled at 256 Hz 
and filtered within a frequency range of 1–100 Hz, with a notch filter 
applied at 50 Hz to eliminate power line noise. Preprocessing was 
performed using the FieldTrip (Oostenveld et al., 2011) and EEGLAB 
(Delorme and Makeig, 2004) toolboxes in Matlab, alongside 
customized scripts. Artifact detection was first by visual inspection to 
remove segments with obvious artifacts. Independent component 
analysis (ICA) was then subsequently applied (Lee et al., 1999), and 
components were classified using the ICLabel plugin in 
EEGLAB. Automatic rejection was performed with the pop_icflag 
function using the threshold array [0 0, 0.9 1, 0.9 1, 0.9 1, 0.9 1; 0.9 1; 
0.9 1], corresponding to flagging components in the Muscle, Eye, 
Heart, Line Noise, Channel Noise, and Other categories if their 
classification confidence exceeded 90%. Under these criteria, no 
components met the rejection threshold, and thus no trials were 
excluded at this stage. A likely explanation is that overt artifacts (e.g., 
large blinks or muscle bursts) had already been minimized during the 
initial visual rejection and that the MI training sessions were 
conducted under controlled conditions with participants instructed 
to minimize extraneous movements. The data were then segmented 
into 4-s epochs, starting 4 s before the trial offset and ending at the 
trial offset.

TABLE 1  Demographic characteristics of the subjects.

Subjects Age 
(year)

Gender Time post-
stroke 

(month)

Affected 
body side

01 45 Male 7 Right

02 55 Male 3 Right

03 52 Female 2 Left
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2.6 Data analysis / statistics

Time-frequency analysis was conducted within a frequency range 
of 3–30 Hz, focusing specifically on ERD and ERS to track dynamic 
neural responses during the MI tasks. The spectral analysis across the 
entire electrode array was performed using the Hanning taper 
method with a 5-cycle time window, applying frequency smoothing 
with 1 Hz steps and variable width depending on the frequency. For 
each epoch, the analysis window spanned from 3 s before the trial 
offset to 1 s before the offset. Baseline correction was performed 
using a 2-s pre-onset period, and the data were expressed in decibels 
(dB). The EEG signatures of frequency and power from the C3 and 
C4 electrodes during MI were derived from the average of all training 
sessions for each participant. To compare the differences between the 
C3 and C4 electrodes, the Wilcoxon signed-rank test was conducted 
for each frequency bin at the training-session level, with significance 
set at p < 0.05. Additionally, regression analysis was employed to 
examine any trends in changes of neural activities over the course of 
training, assessing whether the power within the specified frequency 
bands showed significant increases or decreases as a result of 
the training.

3 Results

The power of EEG frequency (3–30 Hz) recorded from the C3 
and C4 electrodes during training sessions was analyzed in three 
subjects. The corresponding spectral plots (averaged across training 
sessions) for each subject are presented in Figure 2. For all three 
subjects, significant differences in the power of high-alpha activity 
between the C3 and C4 electrodes were observed, particularly in the 
frequency range around 11–13 Hz (Wilcoxon signed-rank test, 
p < 0.05). For Subject 01, the mean power (dB) was −5.12 ± 0.73 
(means ± std) at C3 and −4.66 ± 0.71 at C4. Subject 02 exhibited 
mean powers of −3.69 ± 0.39 at C3 and −3.49 ± 0.35 at C4, while for 
Subject 03, the values were −4.43 ± 0.43 at C3 and −4.64 ± 0.38 at C4. 

In Subject 02, we observed a consistent trend between the beta band 
and high-alpha band activity, with both showing ERD at the C3 
location compared to C4. In contrast, in Subject 03, a reverse trend 
was found: beta band activity exhibited more ERD at C3, while high-
alpha band activity showed more ERD at C4, suggesting differential 
modulation of these frequency bands across the electrodes.

In addition to the spectral plots, topographic maps (see Figure 2) 
illustrate the spatial distribution of high-alpha activity. These maps 
demonstrate marked bilateral hemispheric asymmetry in the spatial 
distribution of the high-alpha band across subjects.

The changes in high-alpha band activity as a function of training 
sessions were also analyzed, as presented in Figure  3. However, 
regression analysis did not reveal any significant trends or changes in 
the high-alpha band power across sessions.

Upper limb function assessments were conducted before and after 
training, and the results are presented in Table 2. It can be observed 
that all three subjects showed improvements in upper limb function 
throughout the entire process.

4 Discussion

The present study investigated how ERD and ERS patterns during 
MI tasks are involved in the rehabilitation process of ischemic stroke 
patients, specifically those undergoing MI-based BCI training with 
robotic hand assistance. Our EEG analysis revealed a consistent trend 
in the ERD of the high-alpha band and individual differences in the 
neural activity across participants. In addition, all three participants 
showed improvements in upper limb function throughout the 
training period, as indicated by functional assessments. These 
findings suggest that MI-based BCI training may have a beneficial 
effect on motor recovery in ischemic stroke patients, supporting 
previous research that highlights the potential of BCI systems 
for rehabilitation.

EEG analysis revealed significant differences in high-alpha band 
power between the C3 and C4 electrodes. Stronger ERD was 

FIGURE 1

BCI training setup. (A) The training environment, with the participant seated and connected to the BCI system, including the EEG cap and robotic 
exoskeleton. (B) The animated scenario displayed on the screen during the training. (© RxHEAL. Reprinted with permission). The animation provides 
instructions to the patient, prompting them to imagine hand movements, such as grasping or opening, while the system monitors the brain activity and 
assists with exoskeleton-controlled movements based on the EEG signals.
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observed in the contralesional side of the hemiparetic patients. For 
example, Subject 01 and 02 showed stronger high-alpha ERD at C3, 
while Subject 03 displayed stronger high-alpha ERD at C4. The 

topographic maps further revealed electrode-specific differences in 
high-alpha band activity, underscoring individual variations in 
neural modulation during MI tasks. These findings are consistent 

FIGURE 2

Frequency and power of EEG signals recorded from the C3 and C4 electrodes during MI. Panels (A–C) represent subjects 01–03, respectively. 
Significant differences (Sig) in high-alpha band activity between the C3 and C4 electrodes are observed across all three subjects, indicated by the gray 
bars (Wilcoxon signed-rank test, p < 0.05). The shaded areas represent the standard deviation. Corresponding topographic maps of high-alpha band 
activity are shown, with black dots indicating the electrode locations, and larger circles denoting the positions of the C3 (left) and C4 (right) electrodes.

FIGURE 3

High-alpha band EEG activities recorded from the C3 and C4 electrodes across three subjects. Panels (A–C) represent subjects 01–03, respectively. 
The curves show the changes in high-alpha power as a function of training sessions.

TABLE 2  Upper limb function scores.

Subjects MBI ARAT FMA-UE WMFT

Pre Post Δ Pre Post Δ Pre Post Δ Pre Post Δ
01 100 100 0 13 24 +11 21 37 +16 28 38 +10

02 20 30 +10 1 6 +5 2 11 +9 0 10 +10

03 76 100 +24 5 34 +29 8 53 +45 8 45 +37

MBI, Modified Barthel Index; ARAT, Action Research Arm Test; FMA-UE, Fugl-Meyer Assessment Upper Extremity; WMFT, Wolf Motor Function Test; Pre, pre-training; Post, post-training; 
Δ, Post–Pre.
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with prior studies indicating that MI, particularly in stroke 
rehabilitation, is associated with specific patterns of cortical 
activation, which may be  localized to the sensorimotor areas 
corresponding to the affected limb (Chen et  al., 2022; Shahid 
et al., 2010).

Furthermore, the relationship between high-alpha and beta 
band activity was explored. In Subject 02, a consistent trend was 
observed between both frequency bands, with C3 showing greater 
ERD than C4. This suggests a potential coupling of neural activity 
in both bands during MI, which could reflect enhanced cortical 
engagement during motor preparation or execution (Gerloff et al., 
2006). However, in Subject 03, the beta band and high-alpha band 
activity exhibited opposing trends. Specifically, C3 showed greater 
ERD in the beta band, while C4 exhibited more ERD in the high-
alpha band. This reversal in neural activity patterns may reflect 
individual differences in how stroke patients engage neural 
resources during MI tasks and could provide insight into 
personalized approaches to BCI-based rehabilitation (Kancheva 
et al., 2023).

Regression analysis of the changes in signal intensity over the 
course of the training sessions did not reveal significant trends in 
either the high-alpha band, suggesting that the high-alpha band 
neural activity during MI remained relatively stable throughout the 
training. This result indicates that MI-based BCI training may require 
longer durations or more intensive sessions to produce measurable 
changes in neural activity (Rimbert and Fleck, 2023). It is also possible 
that the lack of significant changes reflects the individualized nature 
of stroke recovery, where improvements in motor function may not 
always correlate with immediate changes in neural activity.

The overall improvement in upper limb function observed across 
all subjects suggests that MI-based BCI training can potentially 
facilitate motor recovery in stroke patients by engaging residual neural 
resources (Curado et al., 2015). Contralesional high-alpha ERD may 
reflect compensatory recruitment of motor circuits after stroke, and 
recent evidence further indicates that MI-BCI training can enhance 
EEG-based functional connectivity in motor networks, with such 
changes correlating with clinical improvements (Kim et al., 2025). 
Although the EEG changes observed here were subtle, they align with 
the growing body of evidence supporting the role of MI in modulating 
cortical activity and enhancing motor rehabilitation (Ma et al., 2024; 
Monteiro et al., 2021). Further studies with larger sample sizes and 
longer training periods are needed to elucidate the precise mechanisms 
underlying the neural changes associated with MI-based BCI training 
and to determine how these changes relate to functional improvements 
in stroke rehabilitation.

While the findings of this study provide promising insights into 
the potential of MI-based BCI training for stroke rehabilitation, 
several limitations must be considered. First, the study included only 
three participants, which substantially limits generalizability. These 
findings should therefore be interpreted as preliminary, and larger 
samples are needed to draw broader conclusions. Moreover, this 
study was intentionally designed as a pilot case-series study focusing 
on feasibility, tolerability, and the exploration of neural markers in a 
real-world clinical setting. Although our small sample did not allow 
for a direct statistical association between high-alpha ERD and 
functional improvements, highlighting this potential mechanistic 
linkage is important for guiding future research. Accordingly, future 

studies should incorporate randomized or sham-controlled designs 
to distinguish BCI-specific gains from conventional rehabilitation or 
recovery and to strengthen causal inference and generalizability. 
Finally, the duration of the training sessions may have been 
insufficient to reveal significant trends in neural activity; longer 
training periods may provide more robust evidence of training-
induced neuroplasticity.

In conclusion, this study demonstrates the potential of MI-based 
BCI systems for upper limb rehabilitation in stroke patients, with a 
particular focus on the role of ERD in monitoring neural activity 
during rehabilitation. Our findings suggest that changes in the ERD 
of the high-alpha band reflect neural reorganization associated with 
motor recovery. The individual differences observed in neural 
responses highlight the importance of personalizing BCI training 
protocols to optimize rehabilitation outcomes. Future work should 
explore the long-term effects of BCI training on both neural activity 
and motor function, as well as the potential for integrating MI-based 
BCI with other neuroplasticity-promoting therapies.
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