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High-tide flooding (HTF) is an increasingly frequent and disruptive phenomenon in 
coastal regions worldwide, driven by rising local sea levels. Despite recent attention 
to the drivers of this emerging flood hazard, the scope and extent of socio-
economic impacts of HTF impacts are not well understood. This study presents a 
global systematic review of studies that quantitatively assess the socio-economic 
impacts of HTF. A total of 993 peer-reviewed English-language studies published 
between 1985 and October 2024 were identified through Scopus and Google 
Scholar. Of these, 194 focus on HTF events, of which 26% address socio-economic 
impacts. The review shows that the vast majority of HTF impact studies, 72%, are 
focused on U.S. geographies with Indonesia having the second largest number 
of HTF impact studies (20%). In the United States, socioeconomic impacts from 
HTF events have been assessed in 24 cities across the Atlantic, Gulf and Pacific 
coasts with Norfolk, VA and Miami, FL on the Atlantic having the most number 
of assessments. HTF impacts affect multiple socio-economic sectors, including 
public infrastructure, private sectors, and environmental health. However, even 
among studies in the same sector, the use of different baselines, scales, and HTF 
event threshold definitions makes it difficult to compare HTF impacts across 
locations. From these findings our review identifies four points for further research 
on the socio-economic impacts of HTF to improve collective understanding of 
these emerging coastal risks.
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1 Introduction

Coastal areas offer numerous benefits to people, industry, and the economy, and are home 
to more than 600 million people worldwide (Macmanus et al., 2021). However, these regions 
face increasing threats from climate change, particularly sea-level rise (SLR) (Cazenave and 
Cozannet, 2014). Globally, nearly 900 million people live within the Low-Elevation Coastal 
Zone, defined by the 10 meter elevation contour, and are exposed to coastal flood risks 
(Reimann et al., 2023). Research shows that coastal population and urbanization are expected 
to grow significantly throughout the 21st century, particularly in the Low-Elevation Coastal 
Zone (Reimann et al., 2023). The largest increases are projected in Asia, especially in China, 
India, Bangladesh, Indonesia, and Viet Nam, and in parts of Africa such as Egypt and 
sub-Saharan regions of West and East Africa (Neumann et al., 2015).
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In addition to rapid growth along coastal zones, high-tide flooding 
(HTF), i.e., intermittent flooding of low-lying coastal areas due to 
higher-than-expected tide-induced water levels, is an emerging coastal 
hazard (Moftakhari et al., 2018). Also known as “sunny-day flooding” 
or “nuisance flooding,” HTF is a complex phenomenon driven by 
global SLR and local conditions like wind patterns (Thelen et  al., 
2024), land subsidence (Fiaschi and Wdowinski, 2020), or channel 
dredging (Li et al., 2021). As local sea levels continue to rise, HTF 
events are projected to become more frequent and severe across global 
coastal regions (Hague et al., 2023), and are already being studied 
worldwide, including the United  States (U.S.) (Sweet et  al., 2018; 
Thompson et  al., 2021), Australia (Hague et  al., 2022), Indonesia 
(Marfai et al., 2008), and China (Li et al., 2023).

As SLR is one of the main drivers of HTF events, research on the 
impacts of HTF is often linked with assessments of the effects of future 
SLR. These studies evaluate future HTF impacts based on SLR 
scenarios, estimating increased flood frequency, expanded inundation 
extents, and rising economic losses (Hsiao et  al., 2024), risks to 
archaeological sites (Elliott and Williams, 2021), isolation due to 
roadway flooding (Jasour et al., 2022), and inundation risks to seaports 
(Allen et al., 2021). However, studies focused on future SLR impacts 
do not capture the scope or severity of HTF challenges already 
affecting coastal communities.

Studies that examine present-day coastal flooding often consider 
HTF, or more generally tides, as a component of broader compound 
flooding or extreme sea level (ESL) events, i.e., flooding from multiple 
sources, making it difficult to isolate the specific role and impact of 
HTF events. For example, compound flood modeling frameworks 
often simulate interactions between tides, storm surge, river discharge, 
and waves, where tidal elevations are one of several overlapping flood 
drivers (Bennett et al., 2023; Nederhoff et al., 2024). Furthermore, 
models combine tide and surge events, rather than isolating their 
individual contributions to tidal flooding, which risks overlooking the 
impacts of recurring HTF (Wong et al., 2022). This blending of flood 
sources, combined with the lack of studies specifically addressing HTF 
events, complicates efforts to assess specific, present-day impacts of 
HTF on coastal communities.

The challenge of assessing HTF impacts is further complicated by 
the localized nature of topography, sea level variability, built 
environment, and social vulnerability, which makes geographic 
context and spatial scale critical for accurate impact assessment. 
Unlike storm surge assessments that often apply broad increments, 
such as 1 to 2 meters of increase in water levels (Peter Sheng et al., 
2022), HTF thresholds are typically much smaller and more sensitive 
to local conditions. In the U.S., the National Oceanic and Atmospheric 
Administration (NOAA) proposed a national HTF threshold, which 
is typically set at around 0.5 to 0.6 meters above the local Mean Higher 
High Water (MHHW) line (Sweet et al., 2018). This means that even 
small variations in elevation or sea level can significantly affect which 
areas experience flooding (Li et al., 2021). Even within the same city, 
neighborhood-level differences in built environment and social 
vulnerability to flooding from HTF can lead to drastically different 
impacts (Bukvic et  al., 2021), highlighting the importance of 
understanding local variations for effective flood risk management 
(De Moel et al., 2015).

Managing the risks posed by HTF requires a nuanced 
understanding of how these events impact society across multiple 
sectors. HTF events pose persistent risks to daily functioning in tidally 

influenced communities, where flooding can occur without storms, 
particularly in tidally influenced human populations and economic 
activities (Spanger-Siegfried et  al., 2017; Spanger-Siegfried et  al., 
2014). Unlike storm-induced flood events that are often associated 
with catastrophic damages requiring extensive recovery efforts, flood 
insurance payouts, and long recovery times (Schneider et al., 2019; 
Galloway, 2008), a single HTF event typically results in minor damage 
that often falls below the lowest deductible rate of 1,000 USD in 
Special Flood Hazard Areas (SFHAs) under the National Flood 
Insurance Program (NFIP) in the U.S. (Dombrowski et al., 2020). Yet, 
as these events become more frequent, their cumulative impacts, such 
as transportation route disruptions (Jacobs et al., 2018), stormwater 
systems issues (Habel et  al., 2020), challenges for vulnerable 
populations such as seniors (Mueller et al., 2024), impacts on local 
businesses (Hino et al., 2019), and increased public health concerns 
around water contamination (Macías-Tapia et al., 2021), can rival the 
long-term costs of more severe disasters (Moftakhari et  al., 2017; 
Paulik et al., 2021).

The unique nature of HTF events and their ongoing impacts on 
coastal communities, combined with a poor understanding of nature 
and magnitude of socio-economic impacts, and their geographic 
distribution and scale make it challenging for flood risk managers to 
assess and plan for HTF events. This includes developing robust cost–
benefit analyses, which are essential for designing and implementing 
effective mitigation strategies (Mechler et al., 2014). While a growing 
number of studies have examined the impact of HTF in specific 
locations or sectors, no global synthesis has systematically assessed its 
socio-economic dimensions across geographic regions and 
impact sectors.

To address this gap, we  conducted the first global systematic 
review of socio-economic impacts of HTF, guided by the following 
questions: (1) How are HTF impacts understood in relation to SLR 
and other types of coastal flooding?, (2) Where are HTF-related socio-
economic impacts being observed or modeled?, and (3) What is the 
type and extent of these impacts? To answer these questions, 
we examined the evolution of current scientific understanding of HTF 
events as a unique driver of coastal flood risks, described the 
geographic distribution and scales of the observed and modelled 
impacts of HTF events across the world, and quantified the relative 
extent of different socio-economic impacts due to HTF events.

2 Method

2.1 Selecting studies focused on HTF

This systematic literature review followed the PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses) 
guidelines for systematic reviews (Page et al., 2021). A structured 
selection process was followed to identify and select articles that 
aligned with the study’s objectives (Figure 1). Study selection was 
conducted in duplicate, with the lead author and one co-author 
independently screening titles, abstracts, and full texts. Discrepancies 
were discussed and resolved by consensus. Data extraction was 
conducted by the lead author and reviewed by co-authors to 
ensure accuracy.

The first step in the review process involved selecting studies 
focused on HTF events. HTF is often referred to by a variety of terms 
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in the literature, including “high tide flooding” (Fant et al., 2021), “king 
tide flooding” (Hunter, 2020), “spring tide flooding” (Macías-Tapia 
et al., 2021), “sunny-day flooding” (Mueller et al., 2024), “sea level rise 
induced flooding” (Habel et al., 2020), “nuisance flooding” (Moftakhari 
et al., 2018), and “chronic flooding” (Ghanbari et al., 2020). These 
keywords were used to identify HTF-related studies.

A literature search was conducted using the Scopus database, 
which supports Boolean operators. The OR operator was applied to 
capture documents containing any of the listed keywords. To 
be  included, studies had to be  English-language, peer-reviewed 
journal articles (excluding dissertations, theses, conference abstracts, 
technical government reports, and book chapters) published between 
1985 and 2024, with 1985 chosen as the starting point because it is the 
earliest study that appeared after search.

The following search string was applied in Scopus on October 24, 
2024: “High tide flooding” OR “Nuisance flooding” OR “King tide 
flooding” OR “Spring tide flooding” OR “Sea level rise induced 
flooding” OR “Sunny day flooding” OR “Chronic flooding” AND 
PUBYEAR > 1984 AND PUBYEAR < 2025 AND (LIMIT-TO 
(DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)).

To ensure no relevant studies were missed, the same keywords 
were also searched in Google Scholar as a supplementary source. 
Studies from the first ten pages of Google Scholar search results were 
reviewed. In total, the search identified 1,097 peer-reviewed journal 
articles: 722 from Scopus and 375 from Google Scholar. Among these, 
104 were duplicates.

Studies were further excluded from all identified non-duplicates 
(n  = 933) if they did not meet the definition of flooding as the 
temporary wetting of dry areas (Flick et al., 2012). First, titles and 

abstracts were manually reviewed and categorized based on whether 
the study focused on flooding or non-flooding, using this definition 
of “flooding.” This review identified a total of 720 studies focused on 
flooding, and 273 non-flooding related studies.

The abstracts and full texts of all flooding related studies were then 
screened to identify the main type of flooding explored, and each 
study was classified into one of eight different flooding categories 
(Table  1). Studies were classified as HTF if they focused on 
low-intensity, recurrent coastal flooding primarily driven by tides, 
with or without other contributing factors such as rising sea levels, 
land subsidence, or local wind and atmospheric conditions. To ensure 
conceptual consistency, studies involving extreme compound 
flooding, storm surges, tropical cyclones, or heavy rainfall were not 
considered HTF-related unless tide was explicitly identified as a 
distinct flooding mechanism and its specific impacts were reported in 
the abstract or main text. This review identified a total of 194 studies 
that specifically addressed present-day HTF, while 526 focused on the 
other seven flooding categories. All HTF-related studies were further 
sub-categorized based on the specific manner in which they treated 
HTF events, i.e., studies that focused only on past and present HTF, 
studies that included future SLR, studies that reported the contribution 
of different compound flooding factors including HTF, and studies 
that reported multiple types of flooding, including HTF.

2.2 Identifying HTF related studies

The next step involved identifying and sub-categorizing the 
HTF-related studies. This review classified all HTF-related studies 

FIGURE 1

Flowchart of the study selection process following PRISMA guidelines. After removing duplicates, 993 studies were reviewed, 720 focused on flooding, 
194 focused on HTF, and 51 addressed the socio-economic impacts of HTF.
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into three main thematic categories based on their primary 
research focus: (1) natural and physical aspects, (2) socio-
economic impacts, and (3) responses to HTF. The natural and 
physical category includes studies that examine the physical 
aspects of HTF hazards, such as frequency, depth, velocity, or 
future occurrence (Dahl et al., 2017; Hague and Taylor, 2021). 
This category also includes research on the interactions between 
HTF and ecosystems or geosystems (Brand et  al., 2023). The 
socio-economic impacts category includes studies that address the 
impact of HTF on human populations and economic activities, 
such as a study which evaluated how HTF events cause road 
closures, increasing local travel times in affected areas (Jacobs 
et al., 2018). The responses category includes studies that focus on 
mitigation efforts or adaptive strategies related to addressing HTF 
risks (Aishwarya et al., 2023; Stephens et al., 2018). For studies 
that covered more than one category, this review created three 
additional combined categories to account for overlapping themes. 
Of the 194 studies that examined present-day HTF, this review 
identified a total of 51 studies that addressed socio-economic 
impacts (see Supplementary Table S1), including those with 
overlapping themes, while 143 did not.

2.3 Analyzing socio-economic impacts of 
HTF

2.3.1 Geographic distribution and extent
This review examined the geographic distribution and extent 

of the impacts of HTF events by analyzing the reported study area 
and spatial scale of analysis of all HTF-related studies categorized 
under socio-economic impacts. Spatial scale was assigned based 
on the geographic extent described in each study’s methods 
section. Based on this analysis, the studies were categorized into 
three levels: (1) National (covering an entire country), (2) Regional 
(encompassing an entire state or significant portions thereof), or 
(3) Local level (focused on a city, county, metropolitan areas, or 
small island). These categories often correspond to differences in 
data resolution and availability, with local scale studies often using 

finer-scale demographic or infrastructure data, while national-
scale studies typically rely on coarser datasets (Morrison et al., 
2022). Each study’s geographic names and locations were recorded, 
and the frequency of studies at each spatial scale was analyzed 
using ArcGIS Pro.

2.3.2 Categorizing socio-economic impact types
Based on a full-text review of each socio-economic HTF study, 

this review categorized reported impacts into four main sectors: public 
infrastructure, private property, population, and public health-related 
environmental contamination (Table  2). The first sector, public 
infrastructure, includes transportation, drainage, sewage, schools, fire 
stations, parks, and other important public facilities. Impacts reported 
in this sector include traffic delays, canceled trips, infrastructure 
damage, and drainage failures. The private sector includes businesses, 
homes, and farmland, with associated impacts such as property 
damage, revenue loss, or devaluation. The human behavior sector 
includes studies that assess how HTF affects housing choices, daily life 
routine, and personal economic loss. The final sector of public health-
related environmental contamination focuses on issues of water 
contamination and the spread of pollutants. Subsectors were further 
identified within each category to better describe the identified 
impacts in each study. When selected studies reported multiple types 
of impact, each was reported as a separate observation within the 
relevant subsectors in this study.

2.3.3 Calculating extents and relative scales of 
HTF impacts

To evaluate the quality of included studies, this review applied a 
structured classification system based on the quantifiability and 
comparability of reported socio-economic impacts from HTF. The 
studies varied widely in their methodological approaches, including 
qualitative descriptions, survey-based assessments, geospatial 
modeling, and empirical measurements. In response to this diversity, 
we developed a three-part framework to assess the reporting format 
of findings across studies. Specifically, each study was evaluated by 
asking: (1) whether the HTF impact results were presented in 
quantitative terms; (2) whether those quantitative values were 

TABLE 1  Classification of flooding studies used in the systematic review - this table categorizes flooding studies into different types based on their 
primary focus, with specific criteria for selecting HTF-related studies.

Category Description

High-tide flooding (HTF) Studies included current HTF, which refers to a high-frequency, low-intensity flooding hazard mainly driven by tides in the coastal 

context.

Future sea-level rise (SLR) Studies focused on the impact of flooding based on future SLR, including studies only focused on future HTF impact with various 

SLR scenarios.

Compound flooding/extreme sea 

level (ESL)

Studies focused on major flooding hazards driven by multiple factors, while ESL being more relevant in coastal contexts with a 

combination of storm surges, tides, and waves (Tebaldi et al., 2021).

River flooding Studies focused on fluvial flooding, including studies on flow, stream behavior, and discharge. Major high-intensity flooding is 

caused by river overflow.

Rainfall flooding Studies focused on pluvial flooding, including studies on flash street flooding or cases where rainfall is the primary driving factor of 

the flooding hazard. Major high-intensity flooding is caused by heavy precipitation.

Storm surges Studies focused on major hurricanes and tropical storms in coastal contexts.

Multiple flooding Studies focused on different types of flooding separately, excluding HTF.

General flooding Studies did not specifically identify the type of flooding.
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reported relative to a baseline (e.g., percentage of homes affected); and 
(3) if not reported explicitly, whether relative values could be derived 
from the data presented.

Based on this assessment, all HTF studies were classified into 
four categories (see Supplementary Table S1). Non-quantitative 
studies presented impacts through descriptive or qualitative formats, 
such as ethnographic narratives, interview quotes, or photographs 
(Stephens and DeLorme, 2024). Absolute quantitative studies 
reported numerical values (e.g., length of road flooded or number of 
infrastructure units impacted) but lacked information on the total or 
baseline values needed to interpret the scale of impact (Fant et al., 
2021). In contrast, relative quantitative studies either explicitly 
reported, or non-explicitly allowed us to derive, the proportion or 
rate of affected units relative to a total (e.g., the percentage of 
stormwater inlets that failed) (Habel et al., 2020).

In cases where raw numbers were reported, but not explicitly 
analyzed by the authors, this review calculated relative values using 
the available data to standardize comparisons across studies. For 
instance, if a study reported the pre- and post-event volume of sand 
dunes affected by HTF, the rate of change was calculated to 
determine the magnitude of impact (Harris and Ellis, 2021). If there 
was more than one type of measure within a single subsector of 
observation, we reported the relative values based on each measure. 
For example, one study reported the percentage of water 
infrastructure affected by HTF, which included three different 
measures: percentage of stormwater inlets that failed due to HTF, 
percentage of cesspools that became non-functional due to HTF, 
and percentage of cesspools that were fully flooded due to HTF 
(Habel et al., 2020). This review reported these three relative values 
separately for this analysis.

To support cross-study comparisons, we report the individual 
values and value range for all quantitative impacts, separately for 
absolute impacts and relative change impacts. These values are further 
categorized by scale, i.e., local, regional or national scale for each 
country for which these data were available. If a study reported 
multiple values for a single measure, for example, 3 values for impacts 

on road closure at a site, we report the average of these values for 
each measure.

3 Results

3.1 HTF in flooding-related studies

Of the 720 studies that focused on flooding, there were 194 that 
looked at present-day HTF (Figure 2, Panel A). The second-largest 
group, totaling 181 studies, were those that examined future SLR. The 
third largest group of 98 studies focused on compound flooding or 
extreme sea level (ESL) issues. Storm surge flooding has 71 studies, 
rainfall has 51, while river flooding has the fewest with 27 studies. 
Another 22 studies cover multiple flooding hazards but do not mention 
HTF. Lastly, 76 studies discuss general flooding hazards without 
specifically targeting any particular type of flooding.

Among the 194 studies focused on HTF, 93 examined solely 
current or past HTF, while many others also incorporated broader or 
future-oriented flood contexts (Figure 2, Panel B). Specifically, 58 
studies examined future SLR combined with current HTF conditions, 
and 38 studies addressed multiple types of flooding beyond HTF 
alone. A few studies (n = 5) specifically reported HTF in the context 
of compound flooding or ESL events.

We also analyzed publication years for all identified studies to 
assess research trends over time (Figure  3). Among the 194 HTF 
studies, 68% of these studies were published within the last five years 
(2020 to 2024). Similarly, of the 51 studies focused on socio-economic 
impacts, 78% were also published during this period.

3.2 Socio-economic impacts in HTF studies

Among the 194 HTF-focused studies identified, 51 
(approximately 26%) addressed the socio-economic impacts of HTF 
events (see Supplementary Table S1). Of the total HTF-focused 

TABLE 2  Classification of socio-economic exposure sectors and their impacts – this table categorizes the different types of socio-economic exposures 
to HTF.

Sectors Subsectors Description

Public infrastructure Transportation Disruptions to roads and seaports/shipyards, causing delays, infrastructure damage, and economic losses in land 

and maritime transport.

Water infrastructure Impacts on stormwater drainage, sewage systems, potable water supply, and flood protection structures.

Other public infrastructure Impacts on other public infrastructures, such as power utilities and recreational parks.

General public infrastructure Studies mentioning public infrastructure impacts without specifying a particular type.

Private sector Agriculture Impacts on agricultural fields, affecting production and soil conditions.

Commercial businesses Economic losses from business closures, property damage, and reduced customer access.

General private property Studies mentioning private property impacts without specifying the type of property affected.

Human behavior Specific socio-economic 

population

Impacts on specific groups such as seniors, homeowners, students, developers, and farmers.

General population Studies mentioning people impact without specifying affected socio-economic groups.

Public health-related 

environmental 

contamination

Biological pollutant Spread of bacteria, such as Escherichia coli (E. coli), in environment.

Microplastic Spread of microplastics in environment.

Heavy metal Spread of toxic heavy metals in environment.
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studies, 128 studies focused solely on understanding the natural or 
physical aspects of HTF, 33 examined only the socio-economic 
impacts, and 12 addressed only response efforts related to HTF. In 
addition to single-focused studies, 11 studies examined both natural 
and socio-economic impacts [e.g., understanding saltwater intrusion 
caused by HTF and its economic impact on crops (Mondal et al., 
2023)], three covered natural impacts and response [e.g., developing 
an adaptation trigger for sea-level rise based on the increasing 
occurrence of HTF (Stephens et al., 2018)], and three studies covered 
both socio-economic impacts and response [e.g., investigating how 
shipyards are impacted by HTF and how they respond to it (Hill et al., 
2022)]. Lastly, four studies addressed all three aspects of HTF [e.g., 

understanding coastal flooding types, including HTF, their impacts 
on coastal sewage systems, and how people respond to them (Vorhees 
et al., 2022)] (Figure 4).

3.3 Spatial scales, types and relative extents 
of socio-economic impacts of HTF

3.3.1 Study locations and spatial scales
Of the 51 socio-economic impact HTF studies, 37 examined 

socio-economic HTF impacts in the U.S., ten in Indonesia, one in the 
Philippines, one in Italy, one in French Guiana, and one in Mayotte 

FIGURE 2

Distribution of studies by flooding category. (A) The distribution of 720 flooding-related studies by category, with Present-day HTF having the most 
studies, followed by Future SLR. (B) The distribution of 194 studies addressing Present-day HTF, highlighting research that spans from present-day to 
future contexts.
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Island (Figure 5). These studies varied widely on spatial scale, with 
most (42 out of 51) conducted at the local scales and nine conducted 
at the regional or national level.

Given that most socio-economic HTF studies were U.S.-based, 
we mapped the study sites they covered, which span four coastal 
regions: the Atlantic Coast, Gulf Coast, Pacific Coast, and Hawaiʻi 
(Figure  6). These studies span 24 metropolitan areas across 

22 U.S. coastal states. For the local studies, the Norfolk (Hampton 
Roads) Metropolitan Area in Virginia was the most frequently 
studied location, with nine study counts, followed by the Miami 
Metropolitan Area in Florida with six study counts. Regionally, the 
Atlantic Coast of the U.S., particularly the South Atlantic states, has 
received the most attention in studying the socio-economic 
impacts of HTF.

FIGURE 3

Number of HTF studies published each year up to 2024. The red bars represent studies that specifically examined the socio-economic impacts of HTF, 
while orange bars indicate the other HTF studies that do not report socio-economic impacts of HTF, the number on top of the bar showing the total 
number of HTF studies for given year.

FIGURE 4

The categorization of HTF studies for all Present-day HTF studies: Socio-Economic Impact (red, 33), Natural and Physical (green, 128), and Response 
(blue, 12). Overlaps include 11 studies between Socio-Economic and Natural, 3 between Socio-Economic and Response, 3 between Response and 
Natural, and 4 studies intersecting all three categories.
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FIGURE 5

Geographic distribution of studies on HTF socio-economic impacts. Number of HTF studies by country, with yellow dots indicating the count of 
studies focused on each country.

FIGURE 6

Geographic distribution of HTF study sites in the U.S. The size of each green circle represents the number of studies conducted in that specific 
location, with Norfolk, VA, and Miami, FL, having the highest numbers. The shading across states indicates the number of regional or national studies 
that include each state, with darker shades representing higher study counts and showing greater concentrations among Mid-Atlantic states. Pacific 
Coast and Hawaii regions are shown as insets on the top left.
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3.3.2 Categorization of socio-economic impacts 
of HTF

Among the 51 studies that addressed socio-economic impacts of 
HTF events, we identified a total of 55 distinct observations of HTF 
impacts. These observations reflect unique impact types reported 
across the studies, with some studies contributing more than one 
observation. This review found 55 observations of HTF impacts across 
four main socio-economic sectors: public infrastructure (26 
observations), private sector (14 observations), human behavior (10 
observations), and public health-related environmental contamination 
(5 observations) (Figure 7, Panel A). Each observation corresponds to 
a distinct subsector of impact reported in an individual study. Of the 

26 public infrastructure observations, 18 were related to transportation, 
including 16 roads and two seaports/shipyards (Figure 7, Panel B).

At the local level, we found that the mid-south Atlantic coast of the 
U.S. is the most studied region, with HTF impacts reported across 
nearly all exposure subsectors except agriculture (Figure 8). Specifically, 
Norfolk, VA, and Charleston, SC are the only two sites that cover all four 
main impact sectors. In contrast to the Atlantic Coast, which is well 
represented across multiple sectors and cities, the Gulf Coast and Pacific 
Coast are notably underrepresented in the HTF literature. In Indonesia, 
all local-level HTF impact observations related to agriculture were 
located there. Additionally, we did not find studies addressing health-
related environmental contamination in countries outside the U.S.

FIGURE 7

HTF impact sectors and subsectors by number of observations. (A) Distribution of HTF impact sectors based on the number of observations, with public 
infrastructure being the most frequently studied sector, followed by private sector, human behavior, and environmental contamination. (B) Breakdown of 
HTF impact subsectors with colors corresponding to the exposure sector (blue – public infrastructure, orange – private sectors, green – human 
behaviors, and red – public health related environmental contamination).
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3.3.3 Relative extents of socio-economic impacts 
of HTF

Each observation refers to a distinct socio-economic impact 
subsector reported in an individual study. Within a single observation, 
there may be one or more measures used to describe or quantify the 
impact. Among the 55 defined HTF impact observations, this review 
identified a total of 66 values, which include nine non-quantitative 
descriptions, seven absolute quantitative values, and 50 relative 
quantitative values. The 50 relative quantitative values include the 

percentage of total impact from HTF (n = 33) or the rate of increase or 
decrease of a variable due to HTF (n = 17), which includes both event-
driven changes (e.g., increases in contamination) and frequency-driven 
changes over time (e.g., increases in vehicle delay hours as HTF events 
become more frequent). These relative impact values vary notably by 
sector and across spatial scales. To capture this variation, we present the 
range of values by subsector for the U.S. and Indonesia, where relative 
impact values are available: HTF impact unit (%) (Figure 9, Panels A 
and C) and HTF impact change rate (%) (Figure 9, Panel B).

FIGURE 8

Global distribution of local-scale HTF impact studies by socio-economic subsectors maps show study locations categorized into four main socio-
economic sectors: (A) Public infrastructure, (B) Private sector, (C) Human behavior, and (D) Environmental contamination. Each symbol represents one 
observation, with shapes and colors indicating subsectors within each category. Insets highlight clusters of studies along the U.S. Atlantic coast.
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In the public infrastructure sector, most reported values are 
related to transportation, commonly measured as the percentage 
of road length or other transportation infrastructure affected by 

HTF. At the local level, these values fall within a small range at low 
percentages, as studies in this category generally use the entire 
local transportation network as the baseline. For example, one 

FIGURE 9

HTF impact sectors and subsectors by number of observations. (A) Distribution of HTF impact sectors based on the number of observations, with public 
infrastructure being the most frequently studied sector, followed by private sector, human behavior, and environmental contamination. (B) Breakdown of 
HTF impact subsectors with colors corresponding to the exposure sector (blue – public infrastructure, orange – private sectors, green – human 
behaviors, and red – public health related environmental contamination).
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study found no roads in Norfolk, VA were impacted by tide alone, 
without storm surge or rainfall (Shen et al., 2022). However, this 
does not mean the area is less affected by HTF, as other studies 
reported high impact change rates, typically expressed as increases 
in vehicle delay hours or decreases in visits to specific locations. 
For instance, in Norfolk, VA, vehicle delay hours increased by 
310.0% as a result of HTF (Zahura et  al., 2024). For water 
infrastructure, impacts are typically measured as the percentage of 
direct exposure or system failure due to HTF. We found a wide 
range of values at the local level, with one study reporting 
exceptionally high impacts, where 90.0% of cesspools in Honolulu, 
HI became non-functional due to HTF (Habel et al., 2020), while 
other studies reported values between 2.4 and 5.8%.

In the private sector, most studies in the U.S. did not explicitly 
indicate the type of private sector examined and generally measured 
impacts as the percentage of properties directly exposed to or 
damaged by HTF, with values ranging from 1 to 19%. Change rate 
measurements, however, focused on property value shifts due to HTF 
and revealed more substantial impacts compared to direct exposure 
or damage. For example, properties in recurrent HTF areas 
experienced appreciation rates up to 41.2% lower than those in 
non-HTF zones (Keenan et al., 2018). In contrast to the U.S., most 
relative HTF impact values on agriculture were reported from 
Indonesia. Only one U.S. study addressed agriculture, noting that 
recurring HTF increased salt patches on the Delmarva Peninsula at 
regional level, which reduced farmable land and caused economic 
losses at the regional scale (Mondal et al., 2023). In Indonesia, three 
studies documented agricultural impacts: on coastal fish farming 
(Putiamini et al., 2022), salt farming (Nirwansyah and Braun, 2019), 
and rice fields (Kamil et al., 2024), with unit impact values ranging 
from 68.5 to 83.6%.

For the human behavior sector, impact values have been reported 
for specific populations, including renters and homeowners moving 
out of HTF zones (Buchanan et  al., 2019), developers avoiding 
construction in flood-prone areas (Buckman and Sobhaninia, 2022), 
and students being unable to attend classes due to HTF (Cadag et al., 
2017). Notably, one human behavior-focused study found that HTF 
disrupted fish farmers’ activities, causing economic losses (Putiamini 
et al., 2022). When considered alongside three studies on the impacts 
of HTF on agricultural land, these findings highlight the particular 
vulnerability of agriculture-related activities in rural coastal 
communities of Indonesia.

Health-related environmental contamination impact values were 
reported only in U.S. studies. Unit impact values were expressed as the 
percentage of collected samples in which biological pollutant 
abundance exceeded local recreational water use standards, ranging 
from 45 to 95%. Reported change rates included a 342% increase in 
microplastics in HTF water samples (Ertel et al., 2023), and a 400% 
increase in arsenic (As) concentrations in HTF-impacted areas 
(Squiggins et al., 2024).

At the regional and national scales, transportation impacts show 
greater variation than at the local level, ranging from 0.2% of travel 
demand in North Carolina being underserved due to HTF (Fan et al., 
2023) to 31% of surveyed shipyard managers identifying HTF as the 
greatest coastal hazard threat to shipyards (Hill et al., 2022). Human 
behavior impacts at broader geographic levels appear more limited, 
with both increases and decreases below 1%. For example, every 2 cm 
increase in tidal flooding depth raised the mortality rate among 

individuals aged 65 or older by 0.6% (Mueller et al., 2024). Meanwhile, 
nationwide rental rates decreased by 0.2% due to HTF (Lee 
et al., 2023).

4 Discussion

This review analyzes 194 studies published between 1985 and 
2024 on high tide flooding (HTF) and its impacts, examining how 
HTF is defined, the types of socio-economic impacts reported, and 
their geographic scope and scale. Most studies concentrate on the 
U.S. Atlantic Coast, with increasing frequency and severity of HTF 
and its widespread impacts on public infrastructure, private property, 
vulnerable populations, and environmental quality. To guide 
interpretation, the discussion is organized into five thematic areas: (1) 
the relationship between HTF and other coastal flooding drivers, (2) 
definitional inconsistencies and standardization challenges, (3) 
geographic gaps and regional underrepresentation, (4) sector-specific 
socio-economic impacts, and (5) social vulnerability and unequal 
adaptive capacity.

4.1 HTF in relation to sea-level rise and 
other flooding types

The publication trend of HTF-focused studies indicates a growing 
research interest in this topic in recent years (Figure 3). However, 
recognition of HTF events as a distinct hazard within coastal risk 
management frameworks remains relatively low. Of the 720 flooding 
related studies identified through our keyword search, only about 27% 
explicitly addressed the present-day HTF events (Figure 2).

This review found that HTF is often associated with sea-level 
rise (SLR) and is often modeled using long-term SLR projections, 
despite its short-term and localized dynamics. Over 25% 
(n  = 181) of the 720 flood-focused studies reviewed focused 
primarily flooding related to future SLR, while within the 194 
HTF-focused studies, 58 studies (about 30%) also incorporated 
future SLR scenarios, addressing both present and projected HTF 
impacts. Over the past two decades, both global and local SLR 
have increased the frequency of coastal flooding, even in the 
absence of storms, where high tides alone are capable of 
inundating streets on clear days (Sweet et al., 2014). Managing 
the risks from present-day HTF events requires distinguishing 
their impacts from the projected impacts of future SLR.

In this review, 98 of the 720 (about 14%) studies on flooding 
focused on compound flooding, with tide frequently considered 
an important factor in these multi-driver flood scenarios. 
However, only five studies specifically quantified the contribution 
of tides to compound flooding, highlighting a gap in how tide-
specific impacts are accounted for when modeling compound 
flood hazards. An additional 71 studies from the HTF keyword 
search focused on large-scale coastal storms. In these studies, tide 
was often considered either as a contributing factor in flood risk 
analysis or as part of the background conditions influencing the 
increasing risk of coastal storms under rising sea levels (Al-Attabi 
et al., 2023; Callahan et al., 2022).

Rainfall-induced flooding was the fifth most common focus in the 
reviewed studies. This may be  partly due to the overlapping 
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terminology, words used to describe HTF, such as “nuisance flooding” 
are also frequently used to describe flooding from non-HTF flood 
events, most commonly, rainfall-driven event particularly in inland or 
low-lying urban areas (Canon-Barriga et al., 2023; Hasala et al., 2020; 
Johnston et al., 2018).

Most HTF-focused studies to date describe the physical drivers of 
HTF and their impacts on natural systems (Figure 4). This review 
identified diverse drivers of HTF events, from earthquakes and 
chronic land subsidence to onshore wind events. Studies on HTF have 
examined how land subsidence and coastal degradation contribute to 
increased local tidal variability, leading to more frequent occurrences 
of HTF (De Leo et al., 2022; Li et al., 2021). Persistent onshore winds 
can temporarily raise coastal water levels, further elevating high tides 
and playing a significant role in triggering HTF (Coz et al., 2021; 
Davies et al., 2022; Thelen et al., 2024). Land subsidence accelerates 
relative SLR, further increasing the risk of HTF in low-lying coastal 
areas (Karegar et  al., 2017; Le Cozannet et  al., 2021; Fiaschi and 
Wdowinski, 2020). One study also pointed out that earthquakes can 
lower land elevation, causing land subsidence and relative SLR, which 
in turn leads to HTF (Jeanson et al., 2021).

4.2 Challenges in defining and 
standardizing HTF

The lack of standardized HTF definitions across studies 
remains a challenge, as inconsistent definitions can undermine 
cross-study comparisons and complicate the understanding, 
management, and communication of risk from these events. In the 
U.S., researchers use different criteria to define HTF, with 
thresholds typically based on physical characteristics, statistical 
frequency, or expected impact levels. The most widely cited 
framework comes from NOAA, which proposed national 
thresholds ranging from 50 to 60 cm above Mean High Higher 
Water (MHHW) to define HTF, based on empirical observations 
(Sweet et  al., 2018). These thresholds are commonly used in 
HTF-related socio-economic studies (Jacobs et al., 2018; Fan et al., 
2023; Lee et al., 2023), which use NOAA’s HTF extent layers or 
categorize HTF events between minor and moderate flooding 
levels. However, many parts of the U.S. rely on local National 
Weather Service (NWS) thresholds, which are derived from 
historical water level records and may differ substantially from 
NOAA’s benchmarks (NOAA, n.d.-a). For instance, the NOAA 
proposed thresholds are overly generalized and cannot reflect local 
conditions (Mahmoudi et al., 2024). For example, in Charleston, 
SC (U.S.), NOAA’s minor flooding threshold is set at 57 cm above 
MHHW, which exceeds both the local NWS minor threshold 
(38 cm) and the moderate threshold (53 cm).

In addition to the NOAA’s national and local NWS thresholds, 
several studies adopt alternative methods to define HTF, that allow 
for more refined analyses of specific, localized impacts. For example, 
one study used field observations of traffic disruptions (Hino et al., 
2019), while another study proposed impact-based thresholds that 
consider local topography, pedestrian safety, and potential property 
damage, ranging from as little as 3 to 10 cm of water depth 
(Moftakhari et  al., 2018). These discrepancies create confusion 
about whether HTF is classified as a minor-level flooding hazard, 
which could result in HTF-affected areas not being considered and 

prioritized when planning coastal hazard adaptation strategies 
(Federal Emergency Management Agency, 2025).

Outside the U.S., HTF definitions are often rooted in observed 
physical inundation levels. In Indonesia, where HTF is known as Rob 
(an Indonesian term meaning “tidal flooding”), it typically refers to 
tidal flooding between 20 and 50 cm in depth, frequently linked with 
land subsidence and SLR (Setyowati et al., 2012; Marfai et al., 2008). In 
Venice, Italy, high tide events known as Acqua Alta (an Italian term 
meaning “high water”) are considered “intense” when sea level rises to 
110 cm above the historical mean (Angelini et al., 2024). While these 
specific definitions reflect local variations in HTF dynamics, they also 
complicate comparisons across locations. The use of consistent and 
well-defined terms and thresholds to describe HTF hazards could help 
improve the reliability of inter-regional assessments and comparisons 
of HTF risks (Gall et al., 2009).

4.3 Geographic gaps in HTF research

While HTF events have been observed across North America, 
South America, Africa, Asia, Australia and Europe, several geographical 
gaps remain in global observations and measurements of their socio-
economic impacts (Figures 5, 8). In countries like Indonesia (Marfai 
and King, 2008), China (Li et al., 2023), Vietnam (Takagi et al., 2014), 
India (Krishna et al., 2023), Bangladesh (Haque and Nicholls, 2018), 
Australia (Hague et  al., 2020), and Argentina (Santamaria-Aguilar 
et al., 2017), that have large populations living below the 10 m elevation 
contour (Neumann et al., 2015), studies have already reported HTF 
occurrences in the past and expect an increase in the future SLR. Yet, 
outside the U.S. we found only Indonesia has multiple HTF impact 
studies, just one study each in Europe and South America, and no 
socio-economic impact studies from Africa or the Pacific Ocean region 
(Figure  5, Panel A and Figure  8). HTF impacts are understudied 
globally compared to other flood events such as flash floods and storm 
surges, that have higher immediate and visible impacts 
(Ramiaramanana and Teller, 2021; Aliyu et al., 2023). The imbalance 
in study distribution also reflect broader socio-economic disparities 
between countries, which shape research funding availability and 
institutional capacity to prioritize emerging hazards such as HTF (Stein 
et al., 2024). Additionally, this review is limited to English-language 
literature which might exclude relevant studies conducted in other 
languages and limit the global geographic scope of this review.

In the U.S., HTF events have been well-studied relative to 
other countries, however even in the U.S., geographic distribution 
of current research on the socio-economic impacts of HTF is not 
equal across the country (Figure 6). Research hotspots for HTF 
impacts in the U.S. include the Norfolk Area in Virginia, 
Charleston in South Carolina, and the Miami Metropolitan Area 
in Florida, likely due to their vulnerability and historical exposure 
to HTF events (Fiaschi and Wdowinski, 2020; Burgos et al., 2018). 
Charleston and Norfolk have some of the highest documented 
relative impacts from HTF across multiple sectors. On the other 
hand, the Gulf Coast region, which recorded the highest number 
of tide-driven flooding events in 2020 and is projected to see the 
most substantial increase in such events over the next 30 years 
(Sweet et al., 2018; Sweet et al., 2021), has only two out of 31 local 
level studies addressing socio-economic issues in this region 
(Moftakhari et  al., 2017; Stephens and DeLorme, 2024). 
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Additionally, the Gulf Coast’s higher minority population may 
be  more vulnerable to HTF impacts but potentially less 
represented in research efforts, due to biases in the availability of 
funding and data for research projects (Ohenhen et al., 2023).

4.4 Sector-specific socio-economic 
impacts

Among the socio-economic impacts of HTF, the most studied 
category is public infrastructure, with the most studied subsector here 
being transportation (Figure 7). Transportation systems are especially 
vulnerable because HTF can disrupt community access, posing serious 
risks for areas with limited alternative routes for evacuation and 
emergency services (Hauer et al., 2021; Mueller et al., 2024). Although 
there are no past reports of disrupted emergency services causing 
fatalities, coastal communities should consider developing response 
plans to cope with the increasing frequency of HTF due to rising sea 
levels by the middle of this century (Hague et al., 2023; Sweet et al., 
2018). Current studies on HTF impacts on transportation mainly discuss 
accessibility issues caused by HTF, yet only a few studies have addressed 
how HTF can physically damage roads and other public transportation 
infrastructure. For example, prolonged HTF exposure weakens asphalt 
roads, leading to costly repairs (Martina et al., 2021). On Route 21 N 
near Hilton Head, SC, repair costs were reported to range between 
$33,230 and $153,400 per mile annually, depending on the duration of 
inundation (Fant et al., 2021). Similar challenges are already evident 
elsewhere in the U.S.: in the Florida Keys, sea level rise and recurrent 
high tides are undermining roadways and utilities, prompting costly 
resilience investments (Monroe County, 2022), while in St. Augustine, 
FL, lawsuits have arisen over efforts to build seawalls, drainage upgrades, 
and pump stations to address chronic HTF in historic neighborhoods 
(Sanchez, 2025). These cases demonstrate that even wealthy coastal 
communities face mounting financial and institutional pressures from 
HTF. In emerging economies, where budgets are more limited, such 
recurring costs can become prohibitively high, making it difficult to 
maintain infrastructure due to poverty, institutional fragility, and limited 
state capacity, thereby amplifying risk of displacement (Vestby et al., 
2024; Lincke and Hinkel, 2021).

Agriculture and daily livelihood disruptions are another critical 
area of impact, featuring in four out of 14 private sectors and six out of 
ten specific population focused studies (Figure 6, Panel B). Saltwater 
intrusion from recurrent HTF increases soil salinity and spreads toxic 
minerals such as arsenic, leading to crop failure (Sricharoenvech et al., 
2024; Izaditame et al., 2022; Tapas et al., 2024; Mondal et al., 2023). In 
countries like Indonesia and the Philippines, HTF also disrupts daily 
routines, with studies noting that people may be unable to go to work, 
attend school, cook, or wash clothes due to recurrent inundation 
(Cadag et al., 2017; Marfai et al., 2008). Communities in countries with 
emerging economies are often more vulnerable to HTF than those in 
developed nations, primarily due to rapid urban expansion, unplanned 
settlements, and weaker infrastructure and economic foundations 
(Rufat et al., 2015). Compounding these challenges, limited financial 
and emergency resources constrain both disaster preparedness and 
recovery efforts, making it difficult for affected populations to recover 
and adapt effectively (Hinkel et al., 2014).

HTF can potentially spread pollution in the water, posing a risk to 
local public health, as identified in five studies (Figure 6). These health 

risks are particularly severe in areas with outdated infrastructure, such 
as sewer systems, where floods lead to the spread of toxic materials 
(Kekeh et al., 2020). We found that there is no study addressing the 
direct physical injury and mental stress associated with HTF. NOAA 
recommends that water depths of 6 inches (15 cm) are the maximum 
safe limit for pedestrians and 1 foot (30 cm) for vehicles (NOAA, n.d.-
b). Based on observations of HTF water depth relative to ground level 
in North Carolina, average depths can reach up to 0.76 feet (23 cm), 
with a maximum of 1.9 feet (58 cm), posing a hazard to both 
pedestrians and vehicles (Hino et al., 2025). The dangers are not limited 
to immediate physical injuries but also extend to long-term physical 
and mental health impacts. The frequent recurrence of flooding can 
bring risk of chronic anxiety among affected populations (Terpstra 
et al., 2006; Campbell et al., 2021).

A key challenge for cross-study synthesis is the lack of 
standardized, directly comparable measures of HTF impacts. 
While we present results as ranges (Figure 9), further cross-study 
comparison was not possible because different studies used 
different baselines, units, and definitions of HTF. For example, in 
transportation studies, some reported direct exposure of roads to 
HTF, while others reported the length of roads experiencing 
slowdowns due to HTF, making it difficult to combine results into 
a single metric. Similarly, our “change rate” category included 
both event-driven changes (e.g., increases in contamination 
following HTF) and frequency-driven changes over time (e.g., 
increases in vehicle delay hours as HTF becomes more frequent), 
which are not strictly comparable across studies. For this reason, 
we presented the results for each subsector using bar charts to 
show only the ranges of reported values rather than attempting to 
generate standardized comparisons. These inconsistencies 
highlight the need for future research to adopt more consistent 
baselines to enable comparability across regions and sectors.

4.5 Social and demographic distribution of 
relative HTF impacts

In addition to variations in absolute observed impacts, our review 
reveals wide variations in the relative impacts of HTF events by impact 
sectors and geographic scales (Figure 8). The relative extent of HTF 
risks to the total exposed people and assets at a location are influenced 
by multiple factors such as socio-economic conditions and natural 
landscapes. As a result, regions experiencing frequent HTF require 
tailored mitigation strategies that address vulnerabilities at the local 
level (Cutter et al., 2008). At the same time, the variation in impact 
severity across geographic scales underscores the value of multi-level 
research and policy approach. Integrating insights from both localized 
and larger-scale studies, such as done in this review, can lead to more 
comprehensive flood risk management strategies. While local studies 
provide critical information for immediate, location-specific actions, 
regional and national studies help identify broader trends and long-
term risks, which are essential for sustainable planning and resource 
allocation (De Moel et al., 2015).

While there are multiple socio-economic impacts of HTF, there is 
growing concern about the disproportionate impact of HTF on socially 
vulnerable populations. As recurrent HTF makes low-elevation 
properties less desirable, property values in these areas decline, while 
consumer preferences shift toward higher-elevation neighborhoods 
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(McAlpine and Porter, 2018; Buckman and Sobhaninia, 2022). This 
dynamic has led to climate gentrification in cities like Miami, FL, where 
higher-elevation areas are becoming more attractive to buyers 
retreating from flood-prone zones. This process displaces long-term, 
lower-income residents, altering community demographics and 
accelerating economic inequality (Keenan et al., 2018). At the national 
scale, affordable housing units face rapidly growing exposure to SLR 
and recurrent flooding, with projections indicating that risk will more 
than triple by 2050 (Buchanan et  al., 2020). These patterns reflect 
broader concerns about social equity in flood risk management, where 
socially vulnerable populations, including low-income households, 
racial minorities, and renters, are more likely to live in flood-prone 
areas while receiving fewer adaptation resources (Roy and Berk, 2022). 
While inequity in disaster recovery is well documented (Elliott and 
Pais, 2006; Kamel, 2012), the unequal burdens of frequent, 
low-magnitude events such as HTF are only beginning to 
be recognized. A recent study in Miami, FL, found that higher-income 
commuters were more likely to adapt by relocating their homes or 
workplaces to reduce HTF-related commuting delays, a strategy that 
may not be equally accessible to lower-income groups (Hauer et al., 
2021). As research on HTF continues to grow, integrating equity 
considerations is essential to ensure that adaptation policies do not 
inadvertently widen existing socio-economic inequities.

5 Recommendations for future 
research

High-tide flooding (HTF) poses significant socio-economic risks 
to coastal communities worldwide. This review shows that research 
on HTF impacts is heavily concentrated in the U.S., often conflated 
with other flooding types, and inconsistent in scale and sector focus. 
These limitations underscore the need for more systematic, 
standardized, and globally representative studies of HTF. We 
recommend that future studies focus on the following four priorities.

5.1 Clarify HTF event definitions and 
thresholds

HTF is often conflated with wind-driven flooding, compound 
events, or long-term sea-level rise scenarios. Consistent definitions and 
thresholds, harmonized across regions and agencies, are needed to 
isolate HTF-specific impacts. Developing common definitions is 
essential to enable cross-regional comparisons and to inform more 
effective mitigation strategies (Moftakhari et al., 2018).

5.2 Broaden geographic coverage of HTF 
impact studies

While U.S. Atlantic coastal cities dominate current research, 
high-risk regions such as the Gulf Coast, Southeast Asia, and 
Africa remain underrepresented. Expanding studies  

to these areas will improve the global understanding of 
HTF impacts.

5.3 Standardize impact baselines for 
comparability

Comparisons are currently limited because impact metrics 
use different denominators, such as road length,  
vehicle delay hours, households, or economic losses. Developing 
standardized baselines would allow more meaningful  
synthesis and statistical analysis across regions  
and sectors.

5.4 Integrate equity considerations

HTF disproportionately affects socially vulnerable 
populations through unequal exposure, displacement pressures, 
and limited adaptive resources. Applying equity frameworks can 
help assess these disparities and guide inclusive adaptation 
policies, contributing to more equitable and informed decision-
making in flood risk mitigation efforts (Roy and Berk, 2022).
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