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Groundwater sustainability in rapidly developing regions is increasingly threatened 
by over-extraction, land-use conversion, and limited public engagement in 
water governance. Socio-hydrogeology offers a multidisciplinary framework 
for understanding the reciprocal interactions between human behavior and 
groundwater conditions; however, its application remains limited, particularly 
in contexts where user and non-user groundwater group coexist. This study 
investigates the socio-hydrogeological factors shaping groundwater management in 
the Brantas–Metro Groundwater Basin, East Java, Indonesia—an area experiencing 
severe aquifer stress. A mixed-methods survey of respondents was conducted 
using a validated and reliable questionnaire representing six dimensions of socio-
hydrogeology. Principal Component Analysis (PCA) was applied to identify the 
dominant latent factors influencing community responses. Three key variables 
emerged: Community Awareness, Community Participation, and the Ability to 
Accept and Adapt to Information, Technology, and Disaster Risks. The PCA results 
highlight six principal socio-hydrogeological factors: (1) perceived impacts of 
over-pumping, (2) the importance of groundwater information, (3) effectiveness 
of groundwater information dissemination, (4) willingness to participate, (5) 
recognition of management ineffectiveness, and (6) the need for hydrogeologist 
involvement. Notably, groundwater users demonstrated higher self-imposed 
conservation behaviors, whereas non-users relied more on external institutional 
support. Despite good conceptual understanding of groundwater issues, both 
groups exhibited reluctance to participate in management programs, revealing a 
persistent knowledge-action gap. The findings underscore the need for strengthened 
participatory governance, targeted information diffusion, and expert-supported 
community engagement to enhance groundwater resilience in stressed basins.

KEYWORDS

socio-hydrogeology, hydrogeology, groundwater management, community 
awareness, community participation

OPEN ACCESS

EDITED BY

Shah Md. Atiqul Haq,  
Shahjalal University of Science and 
Technology, Bangladesh

REVIEWED BY

María Teresa González Moreno,  
University of Granada, Spain
Sanju Ramesh Phulpagar,  
P.E.S. College of Engineering, India

*CORRESPONDENCE

Ferryati Masitoh  
 ferryati@student.ub.ac.id;  
 ferryati.masitoh.fis@um.ac.id

RECEIVED 16 March 2025
REVISED 26 November 2025
ACCEPTED 16 December 2025
PUBLISHED 12 January 2026

CITATION

Masitoh F, Bisri M, Supriyono B and 
Wahyudi ST (2026) Socio-hydrogeological 
approach for strengthening groundwater 
management (case study of the 
Brantas-Metro Groundwater Basin, Malang, 
East Java Province, Indonesia).
Front. Hum. Dyn. 7:1594424.
doi: 10.3389/fhumd.2025.1594424

COPYRIGHT

© 2026 Masitoh, Bisri, Supriyono and 
Wahyudi. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  12 January 2026
DOI  10.3389/fhumd.2025.1594424

https://www.frontiersin.org/journals/Human-dynamics
https://www.frontiersin.org/journals/Human-dynamics
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fhumd.2025.1594424&domain=pdf&date_stamp=2026-01-12
https://www.frontiersin.org/articles/10.3389/fhumd.2025.1594424/full
https://www.frontiersin.org/articles/10.3389/fhumd.2025.1594424/full
https://www.frontiersin.org/articles/10.3389/fhumd.2025.1594424/full
https://www.frontiersin.org/articles/10.3389/fhumd.2025.1594424/full
https://www.frontiersin.org/articles/10.3389/fhumd.2025.1594424/full
https://www.frontiersin.org/articles/10.3389/fhumd.2025.1594424/full
mailto:ferryati@student.ub.ac.id
mailto:ferryati.masitoh.fis@um.ac.id
https://doi.org/10.3389/fhumd.2025.1594424
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Human-dynamics#editorial-board
https://www.frontiersin.org/journals/Human-dynamics#editorial-board
https://doi.org/10.3389/fhumd.2025.1594424


Masitoh et al.� 10.3389/fhumd.2025.1594424

Frontiers in Human Dynamics 02 frontiersin.org

1 Introduction

Everybody has the basic human right to clean water and 
sanitation. Understanding this, Sustainable Development Goal 6 
specifically focuses on access to clean water and sanitation, including 
that from groundwater resources. The accomplishment of the clean 
water and sanitation objective will facilitate the achievement of other 
SDG objectives, including the enhancement of the quality of human 
life (SDG 3), reduced hunger (SDG 1), and poverty (SDG 2). Water 
can be sourced from rainwater, lakes, groundwater, and rivers (Yuan 
et al., 2022). Groundwater is the main available water source, triggered 
by its commonality (Foster et al., 2013; Cantonati et al., 2020). 
However, population growth and a variety of human activities have 
put groundwater resources under considerable stress (Bierkens and 
Wada, 2019). Such pressure can cause the depletion of groundwater 
and the loss of water quality (Jia et al., 2019; Jain et al., 2021).

Groundwater sustainability is important to ensure the availability 
of clean water. Groundwater sustainability is becoming increasingly 
challenging due to the infiltration of pollutants into groundwater 
(Ouedraogo and Vanclooster, 2016; Muhib et al., 2023) and the over-
extraction of groundwater resulting from substantial human activity 
(Mukherjee et al., 2018; Jia et al., 2019; Jain et al., 2021). While 
groundwater management approach were well understood by the 
community in Central Arizona, unwillingness to act on these 
approach limited the efficacy of conservation efforts, thus necessitating 
the involvement of hydrogeologists and government agencies (Bernat 
et al., 2023). Therefore, enhanced management of groundwater 
resources is essential to ensure their long-term sustainability.

Previous research has found failures in groundwater management 
(Molle et al., 2018; Nabavi, 2018; Rodríguez-Escales et al., 2018; 
Augustsson et al., 2020; Mianabadi et al., 2020; Bostic et al., 2023). 
Systematic and continuous failures potentially lead to water 
shortages. The impacts will be increasingly felt, especially in areas 
where groundwater is the primary source (Mianabadi et al., 2020). 
Facts from various places indicate that groundwater management is 
largely state-centered governance. Such management proves to be 
ineffective (Molle and Closas, 2019). The causes are weak monitoring 
and insufficient strengthening of management by the state/
government. Whereas groundwater management should ideally be 
based on community-centered management (Molle et al., 2018). The 
social impacts of failed groundwater management include failure of 
rural domestic water supplies, increased costs for agricultural and 
industrial water provision, and hindering regional development 
(Gailey et al., 2022; Bostic et al., 2023). Research in Iran mentions 
that groundwater management failure occurs due to mistrust 
between local communities and policymakers, resulting in low 
public participation. Furthermore, communities also exhibit a lack 
of social learning experiences in groundwater management. This 
indicates the crucial importance of groundwater co-management 
(Nabavi, 2018). Research in the Mediterranean Basin recharge areas 
(Portugal, Spain, Italy, Malta, and Israel) shows that non-technical 
aspects are more critical than technical aspects in groundwater 
management. These non-technical aspects play a role in mitigating 
management risks. Non-technical aspects include legal constraints, 
economic conditions, social conditions, governance, and the 
evolution of issues related to groundwater quantity and quality 
(Rodríguez-Escales et al., 2018). Meanwhile, groundwater 
management failures occur more frequently in shallow groundwater, 

for instance in the San Joaquin Valley, California. Well owners 
continue to extract water from their wells, leading to increasingly 
deeper groundwater wells (Bostic et al., 2023). This highlights the 
need for greater attention to human aspects as a social factor in 
groundwater management.

Groundwater is part of the co-evolution of the water cycle and 
humanity, which means groundwater management must be a 
multidisciplinary endeavor (Hossain and Mertig, 2020). An 
interdisciplinary framework focused on human-water interactions, 
termed socio-hydrology, has been widely used to study human-flood 
interactions, socio-ecological transformations, and water shortages 
(Di Baldassarre et al., 2013; Han et al., 2017; Hossain and Mertig, 
2020; Khadim et al., 2023). Although socio-hydrology offers 
significant insights, additional research is warranted to 
comprehensively address critical groundwater challenges, with 
particular attention to variations in infiltration and their subsequent 
effects on agricultural irrigation resources. Community reluctance to 
engage in groundwater management initiatives, despite abundant local 
understanding of groundwater, calls for active collaboration with both 
hydrogeologists and government agencies for effective local 
management (Hund et al., 2018; Oshun et al., 2021; Khadim et 
al., 2023).

This study defines groundwater as water extracted from below the 
ground surface by shallow dug wells or drilled wells. Rainwater 
infiltrates the earth below the surface, resulting in the formation of 
groundwater. Hydrogeologically, groundwater is stored in certain 
geological structures and materials referred to as aquifers (Jena et al., 
2020). Groundwater is extracted from wells located on privately 
owned land or public/village property. Groundwater is cooperatively 
utilized by members of a groundwater user group. There are also 
non-groundwater users who do not utilize groundwater. Both groups 
established a community residing in the Brantas-Metro Groundwater 
Basin region of Malang.

The community may function either as an individual entity or as 
a collective, facilitating the exchange of information which impacts 
groundwater dynamics (Pouladi et al., 2019). The role of the 
community member as an individual considers factors such as 
population, gender, type of occupation, education level, and their 
activities (Pouladi et al., 2019; Re et al., 2021b; Calliera and Capri, 
2022). The community member acts as a stakeholder group agent 
within its context (Pouladi et al., 2019; Carrión-Mero et al., 2021). 
Their actions are influenced by regulations from customary law or 
local government, agreements among community members, and their 
perceptions of groundwater (Carrión-Mero et al., 2021; He and James, 
2021). Generally, public perception determines their active 
involvement in groundwater management, whether as users, 
stakeholders, or academics (Limaye, 2017; de Lafaye Micheaux and 
Jenia, 2021). In contrast to the previous research, this study divided 
the community into groundwater user groups and non-groundwater 
user groups, which did not include scientists/academics in the 
research.

The community also has the ability to identify the condition of 
every type of water they use, for example, the type of water, the 
amount of water used, and its quality (Pham et al., 2023). If there are 
changes in water conditions, for instance, during a disaster, the 
community generally seeks information, finds alternatives, and adapts 
to ensure the availability of potable water. Communities with lower 
education and low-income face higher barriers in their ability to 
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receive and adapt to information, technology, and disaster risks 
(Limaye, 2017). This is also one of the considerations in this research.

Social factors in the wider community are also related to 
regulation and administration. These two aspects contain explanations, 
problem identification, technical rules, and financial assistance to the 
groups or communities (Limaye, 2017; Rodríguez-Escales et al., 2018). 
Official regulations by local/national governments and customary/
local laws are also part of groundwater management variables (de 
Lafaye Micheaux and Jenia, 2021; Gailey et al., 2022). Groundwater 
management divides community into user groups and managing 
group (Rahimi-Feyzabad et al., 2022; Pham et al., 2023). Groundwater 
user groups are individuals who actually extract and use groundwater 
to support their activities. Besides user groups, there are managing 
groups. Managing groups are individuals/institutions who carry out 
processes of cooperation and communication in managing 
groundwater (Rahimi-Feyzabad et al., 2022). They also perform 
problem identification, problem-solving, and rule-setting processes 
(Bernat et al., 2023). Managing groups functioning as policymakers/
government tend to engage in groundwater conservation (Rahimi-
Feyzabad et al., 2022). In this study, it did not consider groundwater 
user groups and managing Groups, but groundwater user groups and 
non-groundwater user groups.

The community in this study is an individual living in Brantas-
Metro Groundwater Basin, Malang, East Java Province, Indonesia. The 
community consists of groundwater user groups and non-groundwater 
user groups. This distinguishes current study from past studies. 
Groundwater user groups are individuals who actually extract and use 
groundwater to support their everyday activities. Groundwater is 
primarily used for washing, cooking, drinking, and other activities 
such as gardening, agriculture, service businesses, and industry. 
Groundwater user groups have specific behaviors regarding 
groundwater use. Research in Ca Mau explains that groundwater user 
behavior is determined by awareness of groundwater use, knowledge 
and information obtained about groundwater, ownership of water 
sources/wells, and the cost/price of groundwater (Pham et al., 2023). 
Furthermore, research in Vietnam also explains that factors such as 
water price control, increased awareness of groundwater use, and 
dissemination of hydrogeological investigations of groundwater are 
the most important aspects of groundwater management (Muenratch 
and Nguyen, 2023). In contrast to the Groundwater user group, 
non-groundwater user groups are individuals who do not take 
groundwater within the Brantas-Metro Groundwater Basin area, but 
they also live in the same area. Both Groundwater user groups and 
non-groundwater user groups do not include scientists or academics 
living in the region.

Socio-hydrogeology incorporates both social and hydrogeological 
factors, presenting an approach for managing groundwater sustainably 
(Re, 2015; Limaye, 2017; Hynds et al., 2018a; Hynds et al., 2018b). 
Originally introduced by Re (2015) this focuses on: (1) understanding 
human impacts on groundwater bodies; (2) the social impacts on 
human needs from the changes in groundwater quality and quantity; 
(3) the interactions between stakeholders in groundwater 
management; (4) how hydrogeological knowledge is used effectively; 
(5) how scientific knowledge closes the gap between questions and 
answers; (6) scientist and stakeholders’ knowledge sharing. 
Emphasizing, however, the insight that the community has on the 
concepts of groundwater management, Re (2015) notes their 
unwillingness to engage in management programs. Such process 

requires the cooperation of hydrogeologists, governmental entities 
and community members for a proper and sustainable management 
of groundwater. The community in the Brantas-Metro Groundwater 
Basin relies exclusively on groundwater for its water supply. All 
requirements are entirely met by groundwater. This condition aligns 
with the prior idea of socio-hydrogeology. This research aims to 
determine the factors influencing groundwater management in the 
Brantas-Metro Groundwater Basin using socio-hydrogeological 
approach. Compared to previous research, there is a practical-
knowledge gap with the current study. Previous studies did not fully 
utilize the socio-hydrogeological approach across all 6 aspects/foci. 
Additionally, they did not apply this approach to groundwater user 
groups and non-groundwater user groups. Thus, this research will 
provide new insights into the implementation of the socio-
hydrogeology approach in sustainable groundwater management.

2 Methods

2.1 Research area

The research area is located in the Brantas-Metro Groundwater 
Basin, East Java Province, Indonesia, based on the Directorate of 
Environmental Geology (1984) (Figure 1). This basin, which includes 
the Malang Region, is under considerable stress from excessive 
groundwater extraction (Santoso and Nurumudin, 2020). This pressure 
results from the reduction of water catchment areas, which occurs when 
green areas such as forests and plantations are converted into recreational 
spaces for tourism or residential development (Atasa et al., 2022).

The heavy stress of groundwater resources caused by the increasing 
population highlights a vital requirement of researching the interaction 
between human activities and groundwater systems. Observation 
results indicate that community reliance on well water leads to a 
reduction in its availability. Wells are no longer used because they have 
relatively little water available (Figure 2). Consequently, the community 
has to seek other sources by subscribing to water from government-
owned or local community-owned water distribution networks. Water 
networks owned by local community organizations generally involve 
establishing pipe distribution channels originating from springs, 
especially in villages located on the slopes of Kawi Volcano (Figure 3). 
Village communities in lowland areas near industrial and service zones 
generally switch to government-owned water distribution networks. 
To obtain this water, residents are required to pay a certain tariff. This 
is certainly different from using water from their own groundwater 
wells, which does not incur any cost. This condition impacts the 
increase in water costs for every household. Furthermore, the high-
water demand has led to the drying up of several springs located in the 
Kawi Volcano Valley (Figure 4). The defunct springs subsequently 
cause irrigation channels to dry up, which can disrupt agriculture, 
especially during the dry season (Figure 5).

Currently, the upstream (western part) of the research location is 
a water catchment area, protected forest, community plantations, and 
agriculture, while the downstream (eastern and southern part) of the 
research location comprises agricultural areas, settlements, and 
industries. The eastern and southern parts of the research area are 
designated for urban, residential, and industrial development based 
on Regional Regulation of East Java Province Number 10 of 2023 
concerning Spatial Planning of East Java Province 2023–2043. This 
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regional regulation also states that the research location falls into 
several spatial categories, including: National Settlement Center with 
Malang City as its hub, Areas Providing Protection to Other Areas in 
the Form of Protected Forests (in the upstream of Kawi Volcano), 
Industrial Areas, Water Catchment Areas (Upstream Kawi Volcano), 
and Cultivation Areas (including Production Forests, Community 
Plantation Forests, Agricultural Areas, and Settlement Areas). Based 
on this regulation, there is a potential for a decrease in the extent of 
protected areas and water catchment areas, as well as an increase in 
community water demand. The further impact is the disruption of 
groundwater availability, especially shallow groundwater, as is the 
current condition. This situation is further exacerbated by regulations 
set by local governments that mostly concern the protection of areas 
around springs and deep groundwater aquifers. Local government 
regulations, such as Malang Regent Regulation No. 8 of 2015 
concerning Sustainable Water Catchment and Infiltration 
Management, only discuss: water catchment area conservation, 
land-use control, flood prevention, construction of infiltration wells, 
and biopores. Regulations by the Central Government of the Republic 
of Indonesia also focus more on deep groundwater aquifers and do not 
consider shallow groundwater. However, there are quite a number of 
shallow groundwater users, especially in the research area (Figure 6).

The groundwater problems faced by the community in the 
research area are crucial and threaten groundwater sustainability. 
Groundwater sustainability can only be achieved through groundwater 
conservation. Groundwater conservation is essential to sustainability, 
but it is not fully adopted in the community (Kustamar et al., 2010). 
To fill this gap, this study used socio-hydrogeological approach to 
investigate community perspectives on groundwater management in 
the Brantas-Metro Groundwater Basin, Malang Region, Indonesia. 
Considering that each region has its own set of socio-hydrogeological 
characteristics, this research will provide new insights into the 
integration of social factors with hydrogeological science for this 
context. Also, since socio-hydrogeological studies for this study area 
are still in their infancy, this project will generate knowledge for future 
groundwater management strategies.

2.2 Research instrument

The research instrument is prepared based on the results of field 
observation and literature review. Previous research has shown that 
social factors, such as the role of the government (Carrión-Mero et al., 
2021), community involvement, stakeholders, and socioeconomic 

FIGURE 1

Research area.
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factors (Hynds et al., 2018b), have previously been used to explain 
hydrogeology phenomena. However, previous studies indicate that 
socio-hydrogeology does not explicitly use Socio-Hydrogeological 
approach (Eléa et al., 2021; Frommen and Moss, 2021; Re et al., 
2021a). Unlike earlier studies, this research employs three variables, 
each consisting of multiple sub-variables as detailed in Table 1. Each 
variable represents the Socio-Hydrogeological aspects defined by Re 
(2015). The use of variables and keys will clarify the community’s 
comprehension of groundwater management in the study area.

This study used a questionnaire as its research instrument. A 
structured questionnaire was administered to survey respondents, 
incorporating key socio-hydrogeological considerations outlined (Re, 
2015). Prior to data collection, the questionnaire underwent rigorous 
validity and reliability testing to ensure its validity and accuracy in 
measuring the intended constructs (Sugiyono, 2024). The Pearson 
product–moment correlation is employed to assess the validity of the 
instrument by examining the correlation between the score of each 
question item and the total score (Equation 1). In Equation 1, rxy is the 
Pearson correlation coefficient between the variables x and y, while n 
is the sum of the sample or data pairs. Based on the number of 
respondents and the level of significance, the item is considered valid 
if the r-value of the analysis of the calculation results is higher than the 
r-value of the table derived from the statistical table. A comparison of 
the significance level and p-value can also be used for validation. The 
correlation is deemed significant, and the item is acceptable if the 
p-value (significance value) is less than the significance level (α, 
typically 0.05) (Sugiyono, 2024).

	

( ) ( )( )

( ) ( ) ( ) ( )

∑ − ∑ ∑
=

   ∑ − ∑ ∑ − ∑      
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n xy x y

r
n x x n y y

	

(1)

The reliability of the questionnaire was tested using Alpha 
Cronbach. In Equation 2, the value α is the Cronbach’s Alpha 
coefficient, the value N is the number of items, c  is the average 
covariance value within the items, while v  is the average variance 
value. The researcher utilized SPSS Statistics v27 to calculate the 
Cronbach’s Alpha value. A high degree of internal consistency among 
the questionnaire items, indicated by a strong correlation between 
items relative to their individual variances, is crucial for reliability. 
Cronbach’s Alpha ranges from 0 to 1, with values greater than 0.6 
generally considered to indicate acceptable reliability (Taber, 2018).

	 ( )
α =

+ −1
Nc

v N c 	
(2)

2.3 Data acquisition and analysis

Population data for the study was sourced from the Central 
Statistics Agency of East Java Province (BPS Malang City, 2022; BPS 
Malang Regency, 2022). A sample of 100 respondents was selected 
using Proportional Stratified Random Sampling (Sugiyono, 2024). 
Respondents were chosen based on the following inclusion criteria: 
(1) residence within the research area; (2) a minimum educational 
attainment of a high school diploma; and (3) representation from each 
sub-district within the study area. The high school education 
requirement was implemented to ensure respondents could readily 
comprehend the questionnaire and because they are more likely to 
hold decision-making authority within their households.

The survey data were analyzed using descriptive statistics and 
Principal Component Analysis (PCA). PCA, a versatile statistical 
technique, is employed for various purposes, including factor analysis, 
correlation analysis, clustering, and classification. Its strength lies in 
simplifying data interpretation by Rahimi-Feyzabad et al. (2022), 
reducing dimensionality (Wang and Zhang, 2017) and mitigating noise 
by eliminating less informative components (Berenschot and Grift, 
2019). As explained by Chowdhury et al. (2020), PCA optimizes the 
input vector dimensions while minimizing reconstruction error. The 
method yields eigenvalues, representing the variance explained by each 
principal component, with higher eigenvalues indicating greater 
variance. Factor loadings, also generated by PCA, reveal the contribution 
of each variable to a given principal component; high loadings signify a 
substantial contribution (Wang and Zhang, 2017; Chowdhury et al., 
2020). The software used in analyzing PCA is SPSS Statistics v27. The 
device has the ability to analyze PCA quickly and comprehensively.

3 Results and discussion

3.1 General characteristics of respondents

A questionnaire was used to collect data for this study. Ensuring 
the reliability of this instrument is crucial for generating trustworthy 

FIGURE 2

Unproductive wells in Ngajum village. Dug wells with brick walls, 
approximately 8 meters deep. The water in the wells is very minimal, 
rendering them unusable by residents. Water can only be collected 
using a bucket and rope.
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data. Pearson’s product moment validity testing revealed that all values 
were less than 0.05 (at a significant level of 0.05). Consequently, the 
instrument was declared valid. A Cronbach’s alpha value of 0.871 was 
obtained, indicating strong internal consistency and thus good 
reliability. This level of reliability suggests the instrument could be 
suitable for similar research projects.

The respondents’ primary occupations included civil servants (42, 
or 42.7%), such as village heads, government office staff, and village 
support staff; private sector employees (30, or 30.3%), working in 
fields like digital marketing, architecture, food sales, and small and 

medium-sized businesses; and other professions (28, or 27.0%), 
including students, housewives, teachers, and farmers. Regarding 
education, 42 respondents (41.6%) held university degrees, while 58 
(58.4%) had completed high school (both general and vocational). 
Most respondents (69, or 68.5%) resided in residential areas, with the 
remainder living near business and industrial development areas, dan 
agricultural area. Of the respondents, 60 (60%) used groundwater as 
a water source, while 40 (40%) relied on government-operated piped 
water networks. The groundwater users obtained water from a variety 
of sources, including community-owned piped networks (fed by 

FIGURE 3

Cokro waterspring storage facility. Residents constructed an underground reservoir (tandon) to store groundwater. This facility is built beneath the 
ground on the slopes of Jedong Village Valley. Being located near the riverbank, it can collect a larger volume of water. The water is then pumped and 
distributed to residents’ homes situated on higher slopes.

FIGURE 4

No water flow at Cokro spring. Cokro spring no longer flows into the river because the groundwater has been collected and stored in the storage 
facility.

https://doi.org/10.3389/fhumd.2025.1594424
https://www.frontiersin.org/journals/Human-dynamics
https://www.frontiersin.org


Masitoh et al.� 10.3389/fhumd.2025.1594424

Frontiers in Human Dynamics 07 frontiersin.org

springs), shallow drilled wells, shallow dug wells, and direct access to 
springs. Respondents who obtain water from government-operated 
piped water networks are classified as non-groundwater users.

3.2 Community awareness

Awareness can be defined as a human attitude or behavior formed 
as a result of certain consequences that lead to a positive attitude. One 
way to determine an individual’s level of awareness is through the 

cognitive component. The cognitive component is expressed as the 
knowledge an individual possesses about a specific situation (Ham 
Josip Juraj Strossmayer et al., 2015). Consequently, community 
awareness relates to collective human attitudes or behaviors. Prior 
research has demonstrated a link between insufficient community 
awareness and groundwater challenges, such as over-extraction and 
the risk of seawater intrusion, as public conditions in Baton Rouge, 
Louisiana (Hemmerling et al., 2024). Research in the Republic of 
Ireland shows that the enhancement of community awareness at both 
regional and local levels is the most effective strategy for groundwater 

FIGURE 5

Dry irrigation channels. Irrigation flows from Sawah Valley Watersprings toward the agricultural lands of Wagir District.

FIGURE 6

Research workflow.
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management (Mooney et al., 2020). Community awareness is crucial 
for effective groundwater management. Increased awareness 
empowers communities to actively participate in such efforts.

Figure 7 presents respondent opinions regarding Community 
Awareness, a variable comprised of two sub-variables and 11 
parameters (Table 1). Responses are categorized for all respondents, 
groundwater users, and non-groundwater users. Regarding the 
significance of groundwater management (SSP1), 32.6% of 
respondents strongly agreed. A larger proportion (76.4%) agreed with 
the importance of periodic discussions related to groundwater 

management (SSM1). However, a notable minority (28.1% combined) 
expressed disagreement (18%) or strong disagreement (10.1%) with 
the indicator related to knowledge of groundwater well conditions 
(STP1), within the sub-variable concerning knowledge of groundwater 
management.

Respondents were categorized as groundwater users and 
non-users. Both groups showed similar levels of strong agreement 
(33%) regarding the importance of groundwater management (SSP1). 
Among groundwater users, 76% agreed with the need for periodic 
discussions to raise community awareness (SSM1). Non-groundwater 

TABLE 1  Research variables based on the socio-hydrogeology approach.

No Variables Sub variables ID Indicators

1 Community awareness Groundwater management 

knowledge

STP1 Well Condition

2 STP2 Determine Impact Method

3 STE1 Over-pumping Impact

4 STE3 Evaluation of Over-pumping Impact

5 Community awareness efforts STI1 Stakeholders Identification

6 STI3 Issues and conflict risks

7 SSP1 The significance of groundwater management

8 SSP2 Promotion of hydrogeological research

9 SSM1 Periodic Discussion

10 SSM3 Groundwater information distribution

11 SSI1 Educational Programs

12 Community participation Types of community involvement TMP2 The extent of the community involved

13 TMP3 Community Involvement in Impact Assessment

14 TME2 Assessment of Community Activity Types

15 TME3 Assessment of Over-pumping Effects

16 Management program 

implementation

TJI1 Program Identification

17 TJI2 Identify targets, program outcomes, and conflict risks

18 TSP3 Willingness to Participate in the Program

19 Willingness to exchange data and 

information

TSM1 Fully involved in the socialization of the Groundwater Management 

Program

20 TSM3 Willingness to participate as a participant in the groundwater 

conservation program

21 TSI1 Publication of hydrogeological investigation results

22 TSI3 Hydrogeology experts’ involvement

23 The ability to accept and adapt to 

information, technology, and disaster 

risks

The ability to accept information, 

technology, and disaster risks

MMD1 Independent information-seeking

24 MMD2 Receiving and understanding the impact of information of activities

25 MME1 Saving/conserving independently under conditions

26 MME3 Understanding the societal consequences of inaccurate information

27 MMI1 Recognition of management ineffectiveness

28 MMI3 Ability to resolve organizational conflicts

29 The ability to adapt to changes in 

groundwater conditions

MMP2 Capable of adjusting and responding upon obtaining information

30 MMP3 Use innovative technology to solve groundwater problems

31 MMJ2 Requesting government, academic, and NGO support

32 MMJ3 Capacity to adjust to new technology

33 MMU1 Access to hydrogeological data

34 MMU3 Developing new technology in hydrogeology
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users frequently agreed (83%) with the importance of community 
awareness efforts regarding issues and conflict risks (STI3). Notably, 
groundwater users differed from non-users in their perception of 
conflict risks, with groundwater users less likely to consider excessive 
groundwater use as a significant conflict risk. This aligns with prior 
study indicating that groundwater extraction by well owners will not 
result in issues with groundwater, hence they will continue in 
extracting water (Bostic et al., 2023).

Increased community awareness is essential for understanding the 
environmental challenges associated with groundwater. Studies have 
shown that limited awareness can lead to future complications, as 
observed in Myanmar (Re et al., 2021b) and Vietnam, where a lack of 
groundwater management has contributed to numerous problems 
(Pham et al., 2023). Enhanced education is a key strategy for improving 
public understanding of groundwater management (Mooney et al., 
2021). This aligns with broader research indicating a positive 
correlation between education levels and community awareness of 
groundwater management (Ahmed et al., 2021; Re et al., 2021b). While 
this study confirms the importance of community awareness, it further 
distinguishes between groundwater users and non-users, particularly 
in their perceptions of conflict risk. Potential conflict triggers include 
water quality changes, decreased supply, and excessive extraction.

3.3 Community participation

Arnstein (1969) explained that participation constitutes a 
mechanism of power sharing, enabling citizens lacking authority to 

engage intentionally and actively in the decision-making process. 
Citizens have several conditions of participation, including 
non-participation (not involved in decision-making), Degrees of 
Tokenism (superficial), and Degrees of Citizen Power (active) 
(Arnstein, 1969). The public’s participation in water resources 
management is dependent upon their own factors, according to 
research conducted in the United Kingdom (Fritsch, 2017). 
Government policies, family, socioeconomic level, and possible risks 
are some of the factors that influence whether or not someone chooses 
to participate (Fritsch, 2017; Kabogo et al., 2017; Ocampo-Melgar et al., 
2022; Xiaomei, 2023). Research indicates that community participation 
is very important and the most effective element in integrated water 
resources management (Ali and Kamraju, 2024). Participation may 
escalate when issues emerge that have extensive impacts (Barthel et al., 
2017). Previous studies indicated that the participation of groundwater 
users surpasses that of non-users (Mooney et al., 2020). Thus, 
community participation can be defined as the involvement of 
communities without authority in the decision-making process.

Regarding community involvement (TME2), 24% of respondents 
(both users and non-users) strongly agreed with the need to evaluate 
community activity types (Figure 8). A larger proportion (71%) 
agreed with this evaluation (TME2) and also with the importance of 
identifying aims, program outcomes, and potential conflict risks 
within groundwater management programs (TJI2). This indicates 
general agreement on the value of evaluating program participation 
and understanding program goals, outcomes, and potential conflicts. 
However, a substantial minority (26%) disagreed with the need for 
hydrogeology expert involvement and willingness to participate in 

FIGURE 7

Respondents’ perception of community awareness on the socio-hydrogeology approach. (a) Groundwater users, (b) Non-groundwater users, and (c) 
Overall respondents.
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groundwater management programs (TSI3 and TSP3, respectively). 
This discrepancy suggests that while respondents recognize the 
importance of program evaluation and identification of key program 
elements, they are less inclined toward expert involvement and direct 
program participation. This finding echoes research in Maneadero 
Valley, Mexico, which suggests that community participation is not 
always sustainable, potentially due to factors like diminishing power 
and ineffective participation mechanisms (Villada-Canela et al., 2021).

Groundwater users most strongly agreed (22%) with the need to 
assess the effects of overpumping (TME2). A similar level of strong 
agreement was observed regarding the identification of targets, 
program outcomes, and conflict risks within groundwater management 
programs (TJI2). However, respondents expressed disagreement or 
strong disagreement with the involvement of hydrogeology experts 
(TSI3). Non-groundwater users, in contrast, strongly agreed with the 
need to assess community activity types (TME2) and the publication 
of hydrogeological investigation results (TSI1). Among groundwater 
users, 71% agreed with the assessment of over-pumping effects 
(TME3). Disagreement or strong disagreement was again noted 
regarding hydrogeology expert involvement and willingness to 
participate in management programs (TSI1 and TSP3, respectively). 
These findings suggest a general willingness among both user and 
non-user groups to evaluate management impacts and identify key 
program elements. In TSP3, 25% of all respondents stated they strongly 
disagreed with participating in the groundwater management program. 
In fact, 20% of groundwater users and 31% of non-groundwater users 
stated they strongly disagreed with participating. According to 

Arnstein’s degree of participation, they are classified as 
non-participating citizens (1969). Only 9% of groundwater users and 
non-groundwater users are willing to actively or fully participate 
(TSM1). This indicates that the willingness for full participation in 
groundwater management is still relatively low. This reluctance may 
stem from social, economic, cultural, and knowledge-based factors that 
influence participation (Bernacchi et al., 2020). Therefore, collaborative 
efforts among all stakeholders are crucial to foster genuine community 
participation. Developing participatory scenarios that promote mutual 
understanding is one such strategy (Rouillard et al., 2022). Kengganan 
berpartisipasi ini mirip dengan penelitian sebelumnya di (Hund et al., 
2018; Oshun et al., 2021; Khadim et al., 2023).

3.4 The ability to accept and adapt to 
information, technology, and disaster risk

The variable concerning the Ability to Accept and Adapt to 
Information, Technology, and Disaster Risks is crucial for 
understanding individual capacity in groundwater management. This 
capacity is essential for navigating various potential environmental 
changes, including those impacting groundwater (Lal et al., 2018). 
Understanding this adaptive capacity can inform the development of 
more effective management approaches, particularly given the current 
landscape of readily available information, diverse technologies, and 
increasing disaster risks (Hendrickson and Bruguera, 2018). 
Information access, often through media channels, can significantly 

FIGURE 8

Respondents’ perception of community participation on the socio-hydrogeology approach. (a) Groundwater users, (b) Non-groundwater users, and 
(c) Overall respondents.
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shape community perceptions and concerns (Bernacchi et al., 2020). 
Informed adaptation strategies enhance community resilience to 
environmental changes and mitigate stress on both individuals and 
their environment (Elpida and Dimitrios, 2020). Effective adaptation 
requires comprehensive strategies involving all community 
stakeholders (Aida et al., 2020).

Overall, respondents strongly agreed with the “Saving/Conserving 
Independently Under Conditions” indicator within the “Ability to 
Accept and Adapt to Information, Technology, and Disaster Risks” 
sub-variable (MME1) (Figure 9). Regarding adaptation to changing 
shallow groundwater conditions (MMJ2), respondents more 
frequently agreed with the need for support from the government, 
academia, and NGOs. However, disagreement was noted concerning 
the “Recognition of management ineffectiveness” indicator and the 
“Ability to resolve organizational conflicts” indicator (MMI3). 
Furthermore, respondents disagreed with the “Independent 
information-seeking” indicator within the “Ability to accept 
information, technology, and disaster risks” sub-variable (MMD1).

Respondents were categorized as groundwater users and 
non-users. Among groundwater users, 15% strongly agreed with the 
“Saving/conserving independently under conditions” indicator within 
the “Ability to accept information, technology, and disaster risks” 
sub-variable (MME1), and another 15% strongly agreed with the 
“Developing new technology in hydrogeology” indicator within the 
“Ability to adapt to changes in groundwater conditions” sub-variable 
(MMU3). A larger proportion of groundwater users (81%) agreed 
with the “Saving/conserving independently under conditions” 
indicator (MME1). However, 26% of groundwater users disagreed 

with both the “Recognition of management ineffectiveness” indicator 
within MMI1 and the “Ability to resolve organizational conflicts” 
indicator within MMI3. This pattern suggests that while groundwater 
users are receptive to new technologies and information related to 
water conservation, they are less likely to support organizations they 
perceive as ineffective in implementing groundwater management 
initiatives or resolving related issues. Non-users, unlike groundwater 
users who prioritized independent action (MME1), more readily 
agreed with the need to adapt to changing groundwater conditions by 
seeking assistance from government, scientist/academic, and NGO 
entities (MMJ2 and MMJ3). In essence, groundwater users 
demonstrate a preference for independent conservation efforts, 
whereas non-users are more inclined to rely on external support.

3.5 Socio-hydrogeology factor analysis

Principal Component Analysis (PCA) was used to identify the 
primary factors among the research variables. Communalities in PCA 
represent the proportion of each variable’s variance explained by the 
principal components (Li et al., 2023). The highest communality 
(0.883) was observed for the “Willingness to Participate in the 
Program” indicator within the “Management Program 
Implementation” sub-variable (TSP3). While respondents generally 
supported the existence of groundwater management programs, a 
disconnect emerged regarding participation. Many respondents, 
despite their support for the programs, did not perceive a need to be 
actively involved. Consequently, the lack of community participation 

FIGURE 9

Respondents’ perception of ability to accept and adapt to information, technology, and disaster risk on the socio-hydrogeology approach. (a) 
Groundwater users, (b) Non-groundwater users, and (c) Overall respondents.
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may lead to sustainability challenges in groundwater management 
(Mooney et al., 2021). A separate study indicates that if the community 
is unwilling to participate, alternative options are necessary for 
groundwater management. The local government, as the primary 
administrator, can designate the communities under its authority as 
groundwater managers (Baran et al., 2021).

The second highest communality (0.876) was observed for the 
“Recognition of management ineffectiveness” indicator within the 
“Ability to Accept and Adapt to Information, Technology, and Disaster 
Risks” variable (MMI1). Most respondents disagreed with this 
indicator, asserting that groundwater management is not ineffective 
and that conflicts among stakeholders are minimal. While academic 
literature suggests that groundwater conflicts typically arise from 
diminishing water availability, declining water tables, water quality 
changes, and limited access to wells (Jia et al., 2019; Santos et al., 2019; 
Sen et al., 2020) and can even escalate to communal violence (Döring, 
2020). Respondents in this study area did not perceive these conditions 
as problematic or conflict-inducing. This discrepancy highlights a 
difference in problem definition between academic theory and local 
experience. When faced with groundwater issues, respondents 
generally preferred to seek independent solutions, often consulting 
local experts such as well diggers. Involvement of external parties like 
government agencies, academics, hydrogeologists, and NGOs was 
typically reserved for situations beyond the community’s capacity to 
resolve independently (Nazari and Ahmadi, 2019; Döring, 2020). 
Consequently, overt conflicts related to groundwater were rare and 
largely unacknowledged within the community (Table 2).

The third highest communality (0.841) was associated with the 
“Over-pumping Impact” indicator within the “Groundwater 
Management Knowledge” sub-variable of the Community Awareness 
variable (STE1). Responses regarding the effects of excessive 
groundwater extraction varied considerably, indicating diverse 
perspectives on this issue. Declining groundwater levels in the area are 
a consequence of overpumping, driven by increased community 
demand (Mukherjee et al., 2018; Jain et al., 2021). This demand is 
likely to escalate with continued population growth and economic 
development across sectors like industry, agriculture, residential use, 
and drinking water consumption (Yin et al., 2017; Bierkens and Wada, 
2019; Elshall et al., 2020). Existing research confirms the link between 
overpumping and groundwater depletion (Somaratne et al., 2013; 
Koïta et al., 2018; Jena et al., 2020). In this study, most respondents, 
both users and non-users, acknowledged the social consequences of 
excessive groundwater extraction and recognized the potential need 
to seek alternative water sources as a result of groundwater changes.

The lowest communality (0.552) was observed for the 
“Significance of groundwater management” indicator within the 
“Community Awareness Efforts” sub-variable (SSP1). Low 
communality values suggest that this indicator may not be strongly 
related to the other variables in the analysis and may not contribute 
significantly to the overall model (Li et al., 2023). Despite this, 
respondents generally agreed or strongly agreed with the importance 
of groundwater management. Effective groundwater management is 
indeed crucial for the long-term sustainability of this vital resource 
(Kabogo et al., 2017; Rahimi-Feyzabad et al., 2022).

Principal Component Analysis (PCA) revealed 10 components. 
Table 3 shows the eigenvalue of these 10 components. Overall, these 
10 components collectively explain 74.605% of the total variance in 
the data. Based on Kaiser’s criterion (eigenvalue > 1), all 10 

components qualify for retention. The first component exhibits the 
highest eigenvalue (8.591), indicating substantial variability within the 
data. This first principal component accounts for 25.269% of the total 
data variance and is crucial for identifying primary data patterns. The 
eigenvalue table is used to generate a scree plot, which is its graphical 
illustration (Figure 10). From the scree plot results, four main 
components were identified: 1, 2, and 3. These components contribute 
significantly to the overall variance, a characteristic often associated 
with eigenvalues exceeding 1 (Li et al., 2023).

The scree plot from the PCA analysis results show three main 
components (Figure 11). The curve’s decline slows down after 
Component 3, characterized by an elbow point. This indicates that 
components after this point have significantly less variance and may 
be less informative. Figure 11 also depicts the component plot. The 
component plot has three axes: X, Y, and Z. The X-axis represents 
Component 1, which accounts for the biggest variability. The Y-axis 
represents Component 2, derived from the remaining variability 
values that are uncorrelated with Component 1. The Z-axis represents 
Component 3, which provides additional information from the 
preceding components. The component plot can help identify 
sub-variables that tend to cluster together. Sub-variable clusters that 
exhibit similar variations will appear in close proximity. The 
component plot in this study yielded two clusters. Cluster 1 (yellow 
circle) shows positive values on Components 1 and 3, but negative 
values on Component 2. Cluster 1 includes the sub-variables STP2, 
STE1, STE3, STI1, STI3, SSP1, SSP2, SSM1, SSM3, TMP2, TME2, 
TME3, and TJI1. Cluster 1 is dominated by the variables ‘Community 
Awareness’ and ‘Community Participation’. Cluster 2 (red circle) 
shows positive values on Components 1, 2, and 3. Cluster 2 includes 
the sub-variables: STP1, TMP3, TSP3, TSM1, TSM3, TSI1, TSI3, 
MMD1, MMD2, MME1, MME3, MMI1, MMI3, MMP2, MMP3, 
MMJ2, MMJ3, MMU1, and MMU3. This cluster is dominated by ‘The 
Ability to Accept and Adapt to Information, Technology, and Disaster 
Risks’. Although the component plot can assist in interpreting patterns 
within the research sub-variables, it is not yet able to fully display the 
names of all sub-variables, such as SSM3, TJI2, TSI1, and TSI3.

The Component Matrix resulting from the PCA includes 10 
components and their corresponding loadings. Higher loading values 
(approaching 1 or −1) indicate a stronger contribution of the variable 
to the principal component. While the first component represents the 
overall situation, subsequent components capture more specific 
variations. The variable with the highest loading on the first 
component is considered the dominant factor. In this case, the highest 
loading value (0.687) was observed for the “Groundwater information 
distribution” indicator within the “Community awareness efforts” 
sub-variable of the Community Awareness variable (SSM3). This high, 
positive loading signifies the variable’s substantial influence and 
positive correlation with socio-hydrogeology. In this study, a higher 
loading value suggests that effective groundwater information 
distribution can significantly enhance community awareness, a crucial 
factor for successful groundwater management (Kabogo et al., 2017; 
Medrano-Pérez et al., 2022). This also suggests that respondents 
recognize the importance of groundwater information distribution for 
raising public awareness. Such programs, potentially delivered in 
collaboration with external experts, can foster new relationships 
among stakeholders, facilitating knowledge exchange and open 
dialogue. Information distribution can also be carried out through 
mass media, website development, and mobile apps (Hynds et al., 
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2018b), making it easily accessible to a wider community. Ultimately, 
the goal of these programs is to empower the community to effectively 
manage groundwater resources (Rouillard et al., 2022).

The variable with the highest negative loading (−0.508) was the 
“Overpumping Impact” indicator within the “Groundwater 
Management Knowledge” sub-variable of the Community Awareness 
variable (STE1). This suggests that while respondents acknowledge the 
existence of overpumping impacts, their understanding of the 
underlying processes may be limited. Although this indicator had the 
third-highest communality, indicating its importance, it received less 
direct attention from respondents. Overpumping, a significant 
anthropogenic activity, is often overlooked, despite its potential for 
irreversible environmental damage (Ashraf et al., 2021). Such 
consequences include land subsidence and drought, both of which can 

be exacerbated by climate change (Haacker et al., 2019; Iquebal et al., 
2021; Bremard, 2022; Chen et al., 2023).

The PCA correlation matrix revealed a strong positive 
correlation (0.784) between respondents’ willingness to participate 
in groundwater management programs (TSP3) and their views on 
the involvement of hydrogeology experts (TSI3). This suggests 
that a greater willingness to participate is associated with a 
stronger belief in the value of expert involvement. This finding 
supports the core principle of socio-hydrogeology, which 
emphasizes knowledge transfer to the community, and is 
consistent with prior research demonstrating the importance of 
integrating social considerations with hydrogeological expertise 
for effective groundwater management (Limaye, 2017; Re et 
al., 2021b).

TABLE 2  Respondent profile in the research area.

No Respondent profiles Total Percentage (%)

A Occupation

1 Teacher 4 4

2 Housewife 9 9

3 Civil Servants 42 42

4 Student 12 12

5 Farmer 3 3

6 Private Sector 30 30

B Educational background

1 University 42 42

2 General High School 38 38

3 Vocational High School 20 20

C Water source

1 Government-owned water pipe networks 40 40

2 Community-owned water pipe networks 16 16

3 Springs 10 10

4 Shallow Drilled Well 10 10

5 Shallow Dug Wells 24 24

D Land use

1 Residential 69 69

2 Business and Industrial Development Area 3 3

3 Agricultural Area 28 28

E Water usage

1 Washing, bathing, cooking 82 82.02

2 Washing, bathing, cooking, Others 1 1.12

3 Washing, bathing, cooking, farming 1 1.12

4 Washing, bathing, cooking, farming, service business 4 4.49

5 Washing, bathing, cooking, farming, service businesses, medium-sized companies 1 1.12

6 Washing, bathing, cooking, medium-sized companies 4 3.37

7 Washing, bathing, cooking, medium-sized companies, Others 1 1.12

8 Washing, bathing, cooking, service business (e.g.: cakes, laundry, motorbike/car washing) 1 1.12

9 Farming 1 1.12

10 Other 4 3.37
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FIGURE 10

Scree plot of PCA.

FIGURE 11

Component plot of PCA.

Figure 12 depicts the key socio-hydrogeological elements 
identified in the study area, which should be considered in local 
groundwater management strategies. Notably, the assessment of 
the social implications of groundwater resource changes (quality 
and quantity) on human well-being was not identified as a 
significant factor by respondents, who generally did not perceive 
such changes as having social consequences, thus diminishing the 
perceived need for formal evaluation. While respondents 
demonstrated a good understanding of hydrogeological conditions 
and groundwater management approach, including the impacts of 
over-extraction, they exhibited a reluctance to participate in 
management initiatives. This reluctance aligns with their 

perception of ineffective groundwater management. However, 
these discrepancies between perceived problems and willingness 
to act should be addressed by stakeholders, as they can lead to 
future challenges (Karjalainen et al., 2013; Rahimi-Feyzabad et al., 
2022; Bernat et al., 2023). Respondents did, however, support 
improved groundwater information dissemination and the 
involvement of hydrogeology experts, which could potentially 
increase community participation (Re et al., 2018). Critically, 
Groundwater Information dissemination emerged as a key factor 
for enhancing both community awareness of groundwater 
conditions and participation in management efforts. Overall, a 
socio-hydrogeological approach, by incorporating community 

TABLE 3  Eigenvalue in each research component.

Component Eigenvalues

Total % of 
Variance

Cumulative %

1 8.591 25.269 25.269

2 4.166 12.254 37.522

3 2.64 7.763 45.286

4 2.146 6.313 51.599

5 1.721 5.063 56.661

6 1.593 4.685 61.347

7 1.26 3.707 65.054

8 1.145 3.367 68.421

9 1.094 3.218 71.639

10 1.008 2.966 74.605
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perceptions, offers a promising pathway toward achieving 
groundwater sustainability in the study area.

This research has several limitations that may affect the 
generalization of its results. The data comes from a perception-
based study without real groundwater monitoring therefore it 
reflects public opinion rather than physical conditions. The 
research also has a limited number of respondents and the specific 
coverage area in the Brantas-Metro Groundwater Basin may 
restrict the applicability of these results to other regions with 
different social and hydrogeological conditions. The analysis used 
(Principal Component Analysis) in this research is effective in 
identifying main factors but cannot directly show cause-and-effect 
relationships. Further studies with more extensive methods and a 
larger sample size are needed to strengthen these findings.

4 Conclusion

Socio-hydrogeology provides an interdisciplinary framework 
for linking groundwater issues with social processes, which is 
important since groundwater sustainability is inherently a social 
problem. Questionnaires were distributed based on predetermined 
criteria in this study to survey the management of groundwater in 
Brantas-Metro Groundwater Basin. Although the survey responses 
converge on agreement regarding the factors and sub-variables 
explored, Principal Component Analysis (PCA), revealed 
Willingness to Participate in the Program as a major driver. Other 
main socio-hydrogeological factors derived from PCA analysis 
include (1) Overpumping Impact, (2) The Importance of 
Groundwater management, (3) Groundwater Information 
Dissemination, (4) Hydrogeologist Involvement, and (5) 
Management Ineffectiveness recognition. The community members 

had a good general knowledge of groundwater management, yet 
they were hesitant to get involved in groundwater management 
initiatives. Hence, the key to community awareness and active 
involvement in groundwater management will be through the 
consultation of various other stakeholders including hydrogeology 
experts as well as government organizations. Through this 
participation, the community will increase their capacity to adapt 
and mitigate challenges associated with groundwater in their 
region. These discoveries provide important information for future 
research and groundwater management plans in the region.
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