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Identifying reliable visible-
spectrum reflectance metrics
for monitoring cucumber
leaf development
Jens Balasus*, Felix Wirth, Alexander Herzog
and Tran Quoc Khanh

Laboratory of Adaptive Lighting Systems and Visual Processing, Department of Electrical Engineering
and Information Technology, Technical University of Darmstadt, Darmstadt, Germany
Accurate and continuous monitoring of plant development is crucial for

managing closed cultivation systems effectively. Optical reflectance-based

sensors offer a non-destructive, scalable, and cost-efficient method to track

plant growth, physiological status and stress responses. However, existing

vegetation indices predominantly utilize wavelengths in the near-infrared

(> 800nm) range, a spectral range typically absent in horticultural LED lighting

systems, limiting their applicability in horticultural LED-lit environments. This

study investigates spectral metrics within the visible spectrum (440nm - 740nm)

that robustly correlate with leaf order, a proxy for leaf age, in cucumber (Cucumis

sativus) plants grown under controlled artificial lighting conditions. We

systematically compared adaxial and abaxial leaf surfaces, identifying significant

spectral variations associated with leaf order. Results demonstrate that abaxial

leaf reflectance strongly correlates with leaf order, especially in the blue and red

spectral regions. While adaxial reflectance showed weaker correlations, specific

reflectance ratios (e.g., r720/r700) enhanced this relationship, providing metrics

suitable for sensor integration. These findings supply metrics for the

development of simple optical sensors optimized for growth monitoring in

greenhouse or indoor farming systems.
KEYWORDS

spectral reflectance, vegetation index, leaf age, horticultural lighting, non-destructive
sensing, optical sensors
1 Introduction

Accurate and continuous monitoring of plant development is crucial for the

management of closed cultivation systems such as greenhouses and indoor farming.

Optical sensors offer non-invasive, cost-effective, and scalable methods to monitor key

plant traits such as growth, physiology, and stress responses.

During leaf development, spectral reflectance changes as a result of structural and

biochemical modifications within the leaf tissue. Classical studies, such as those by Woolley
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(1971), demonstrated that leaves act as effective diffusers due to

their irregular internal structure, which causes multiple scattering of

incident light. The reflectance and transmittance spectra therefore

result from the interplay between surface reflection, internal

scattering, and pigment absorption. Pigments such as chlorophyll

and carotenoids strongly absorb light in the blue and red regions,

whereas internal scattering within mesophyll tissues dominates in

the green and near-infrared regions. Consequently, variations in

pigment concentration and tissue water content directly influence

spectral reflectance. Consequently, monitoring reflectance

dynamics enables non-invasive inference of the plant ’s

physiological state (Sims and Gamon (2002); Gitelson and

Merzlyak (1994)).

Reflectance-based optical sensing has a long history in

quantifying plant status non-destructively. Typically, these

methods measure reflected light from leaves at specific

wavelengths to calculate vegetation indices associated with

physiological parameters. The most widely utilized metric, the

Normalized Difference Vegetation Index (NDVI), relies primarily

on red and near-infrared reflectance (Tucker, 1979). Subsequently,

numerous alternative indices have emerged, designed to improve

the specificity toward traits such as chlorophyll content (Katsoulas

et al., 2016), leaf area index (LAI) (Wu et al., 2008; Gitelson and

Merzlyak, 1994) water status (Katsoulas et al., 2016), leaf age

(Merzlyak et al., 1999), nitrogen content (Daughtry, 2000) and

pigment composition (Gamon and Surfus, 1999; Pen Uelas et al.,

1995) have been proposed. Many of these physiological parameters,

such as chlorophyll content change during leaf ontogeny, leading to

the assumption that reflectance could also serve as an indicator for

developmental stage.

However, existing spectral indices frequently depend on

reflectance data beyond 740nm, a spectral region often not

emitted by horticultural LED systems predominantly used in

greenhouses and indoor farms. Moreover, many indices originally

developed for satellite or Unmanned Aerial Vehicle-based remote

sensing of entire canopies might lack direct applicability for

monitoring individual plants in controlled environments, where

background signals and viewing geometry are different.

Low-cost reflectance sensing technologies based on photodiodes

coupled with narrowband filters (spectral sensors) have gained interest

due to their ability to support simplified, application-specific hardware

designs suitable for distributed sensor networks in greenhouse

environments (Tran et al., 2022; Kirci et al., 2022; Kaiser et al.,

2024). In contrast, RGB imaging-based methods are suitable for

large-scale screening of morphological traits such as leaf area or

biomass, yet their limited spectral resolution restricts their capability

to detect subtle biochemical shifts such as pigment variations or early-

stage developmental transitions (Kaiser et al., 2024).

Despite advances in spectral sensing, systematic studies

examining the relationship between leaf reflectance and leaf age,

particularly within the visible spectrum (440–740nm), remain

scarce. While the effects of species variation, stress factors, and

nutrient availability on reflectance have been widely studied, the

influence of leaf order (counting with leaf appearance) on spectral
Frontiers in Horticulture 02
reflectance under controlled cultivation conditions has received

limited attention. Furthermore, publicly available spectral datasets

for near-field, single-leaf reflectance under controlled lighting

conditions are currently limited.

This study addresses these research gaps by investigating

spectral metrics suitable for detecting leaf age via leaf order, using

cucumber (Cucumis sativus) cultivated under controlled artificial

lighting as a model organism. Specifically, we aim to:
• Identify spectral indices and wavelength-specific reflectance

metrics within the visible spectrum (440nm–740nm) that

robustly correlate with leaf order.

• Compare adaxial (upper) and abaxial (lower) leaf surfaces

to determine differences in spectral sensitivity related to

ontogenetic stage.

• Provide a detailed spectral dataset enabling the development of

simple, real-time reflectance-based sensors tailored for growth

monitoring of cucumber plants, serving as a first step toward

sensor design, with subsequent validation needed under

practical greenhouse conditions.
2 Materials and methods

2.1 Plant materials

Cucumber plants (Cucumis sativus, cv. Saladin F1, Philipp

Klein GmbH, Fürth, Germany) were cultivated in individual pots

(7 x 7 x 8 cm) under a 16-hour photoperiod using white

horticultural LEDs (Luxeon SunPlus 2835, 250 ±50 μmolm−2 s−1).

Germination occurred in a growth tray and plants were transferred

after 8–10 days to an automated drip irrigation system supplying

each plant with 20mL nutrient solution twice daily. The nutrient

solution comprised demineralized water enriched with calcium-

magnesium supplements (CalMag, Plagron, Weert, Netherlands)

and hydroponic fertilizers (Hydro A+B, Plagron, Weert,

Netherlands). Plants were utilized at the five-leaf developmental

stage, approximately 30 days post-sowing. Leaves were numbered

according to their date offirst appearance, starting from the first one

labeled as order one to the fifth, labeled as order five.
2.2 Measurement setup

Leaf spectral reflectance measurements were conducted using

an integrating sphere (ISP-REF, Ocean Optics, USA) coupled to a

spectrometer (Ocean HDX, Ocean Optics, USA), see Figure 1,

providing a spectral range of 200nm to 1100nm with a resolution

of approximately 0.75nm to 1.2nm. Measurements were calibrated

for instrument nonlinearities and dark- current correction

according to manufacturer specifications. Illumination was

provided by a deuterium-halogen lamp (DH-2000, Ocean Optics,

USA) guided via fiber optics into the integrating sphere. Stray light
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and back-reflections were minimized using a custom-built black

light trap lined with highly absorptive Musou Black felt (Koyo

Orient, Japan; absorbance > 99.9%). Reflectance spectra were

normalized relative to a Spectralon white reference standard (99%

reflectance), with integration times dynamically adjusted to

maintain optimal detector utilization (approximately 90% of

detector saturation).

Final reflectance values were calculated as in Equation 1:

r(l) =
fprobe(l) − fdark(l)
fwhite(l) − fdark(l)

· rwhite(l) (1)

with the spectral radiant flux of the leaf probe fprobe(l), the one
of the white reference standard fwhite(l), the dark spectral radiant

flux fdark(l) and the spectral reflectance of the whitestandard

rwhite(l). Spectral measurements were limited to the range from 440

nm to 850 nm.
2.3 Determination of measurement point
number per leaf

The analysis revealed that using five sampling points per leaf

reduced the standard error of integrated reflectance from 6.9% at

one point to 3.1% at five points, further decreasing to 2.1% when

using ten points and reaching a minimum of 1.6% at twenty points.

The sampling density of five points provided a practical balance

between measurement speed and precision. Consequently, all

subsequent leaf-level spectral measurements were performed

using five representative points per leaf, in total 34 plants. All

measured spectral reflectance data is available in the Supplementary

Data. In cucumber leaves, which are larger than those of e.g. tomato

or basil, pigment inhomogeneities can affect measurement results.

Smaller leaves tend to average out such variation across the field of

view, but for larger leaves, increased sampling density improves
Frontiers in Horticulture 03
accuracy. This should be considered when performing similar

measurements with different species.
2.4 Established vegetation indices

To evaluate whether the optical properties of cucumber leaves

vary systematically with leaf order, a set of established vegetation

indices originally developed for remote sensing applications was

calculated from adaxial reflectance spectra. These indices were not

specifically designed for greenhouse crops such as cucumber, but

are commonly used to estimate parameters such as chlorophyll and

anthocyanin content, leaf area index (LAI), leaf mass, water status,

or senescence stage (Coops and Stone, 2005). Their definitions and

target variables are summarized in Table 1.

The simplest metrics are the reciprocal-reflectance indices (RR),

where the inverse of reflectance at a given wavelength is used as a

proxy (e.g., RR530, RR550, RR700) to relate to chlorophyll (Gitelson

et al., 2003). To reduce the influence of non-photosynthetic/

background effects, ratio-type metrics have been introduced. The

modified simple ratio (MSR) enhances sensitivity relative to simple

ratios and compresses dynamic range (Chen, 1996; Chen et al.,

2013). Chlorophyll index (CI) variants (Carter’s CI, Datt’s CI, and

the Gitelson & Merzlyak forms) use red/red-edge (Horler et al.,

1983) and NIR bands to estimate chlorophyll concentration (Carter,

1994; Datt, 1999; Gitelson and Merzlyak, 1994).

The modified and transformed chlorophyll absorption ratio

indices (MCARI, TCARI) quantify absorption features around

670nm to 700nm while incorporating a reference at 550nm,

thereby reducing structural/background influences (Daughtry, 2000;

Wu et al., 2008). The modified normalized difference (MND)

minimizes structural effects by including a structurally insensitive

band near 445nm (Sims and Gamon, 2002). The red-edge vegetation

stress index (RVSI) exploits reflectance differences around the red-

edge region as a stress-sensitive proxy (Merton, 1999).

Beyond chlorophyll, the structure insensitive pigment index

(SIPI) targets the carotenoid-to-chlorophyll balance (Pen Uelas

et al., 1995), and the red-to-green index (RGI) is linked to

anthocyanin content (Gamon and Surfus (1999)). Variants of the

normalized difference vegetation index (NDVI) use red or red-edge

bands against a reference band (e.g. at 800nm) and are frequently

related to canopy greenness and LAI (Katsoulas et al. (2016); Wu

et al. (2008)). Finally, the plant senescence reflectance index (PSRI)

is used as an indicator of leaf age and fruit ripening (Merzlyak

et al. (1999)).
2.5 Method for correlation analysis

The relationship between spectral metrics and leaf order (as an

indicator of leaf age) was analyzed through the following

systematic approach:

1. Metric computation per leaf: Metric values (xpoint) were

computed at each measurement location. The leaf-specific mean
FIGURE 1

Schematic of the measurement setup used to determine leaf spectral
reflectance. A deuteriumhalogen lamp illuminates the leaf sample held
at the port of an integrating sphere. Reflected light is collected by the
sphere and measured by a fiber-coupled spectrometer.
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value was derived from five replicate measurements per leaf as in

Equation 2:

xleaf = Mean (x1, x2, x3, x4, x5) (2)
Frontiers in Horticulture 04
2. Within-plant centering: Leaf-averaged metric values were

normalized per plant by subtracting the median (Equation 3):

across all five leaves, removing plant-specific systematic offsets

(Equation 4):
TABLE 1 Spearman correlation coefficients between established vegetation indices and cucumber leaf order, calculated from adaxial reflectance data.
Based on the work of (Coops and Stone, 2005) and additional own research.

Designation Formula Context
Spearman correlation
coefficient

Reference

Carters CI r695
r760

Chl. 0.652 Carter (1994)

Datts CI r850 − r710
r850 − r680

Chl. -0.58 Datt (1999)

G&M CI r750
r705

Chl. -0.672 Gitelson and Merzlyak (1994)

G&M Norm r750 − r705
r750 + r705

Chl. -0.66 Gitelson and Merzlyak (1994)

MCARI670,700 (r700 − r670) − 0:2 · (r700 − r550)
r700=r670

� � Chl., LAI,
Nitrogen

0.453
Wu et al. (2008); Daughtry
(2000)

Macco1 r780 − r710
r780 + r710

Chl. -0.662 Elvanidi et al. (2018)

MND r750 − r705
r750 + r705 − 2r445

Chl. -0.573 Sims and Gamon (2002)

MSR670,800 r800
r670

− 1

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r800
r670

+ 1

� �s
Chl. -0.66 Chen et al. (2013); Chen (1996)

MSR705,750 r750
r705

− 1

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r750
r705

+ 1

� �s
Chl., LAI -0.666 Wu et al. (2008)

MSR r750 − r445
r705 − r445

Chl. -0.578 Sims and Gamon (2002)

NDVI490,620
r620 − r490
r620 + r490

Water content 0.2531 Katsoulas et al. (2016)

NDVI640,800
r800 − r640
r800 + r640

LAI, Chl.,
Weight

-0.662 Katsoulas et al. (2016)

NDVI670,800
r800 − r670
r800 + r670

LAI -0.678 Wu et al. (2008)

NDVI680,800
r800 − r680
r800 + r680

LAI, Chl.,
Weight

-0.698 Katsoulas et al. (2016)

NDVI705,750
r750 − r705
r750 + r705

LAI -0.66 Gitelson and Merzlyak (1994);

PSRI* r680 − r500
r750

Leaf age -0.074 Merzlyak et al. (1999)

RGI (o700
l=600r(l))=(o600

l=500r(l)) Anthocyanin -0.534 Gamon and Surfus (1999)

RR530 r−1530 Chl. -0.423 Gitelson et al. (2003)

RR550 r−1550 Chl. -0.423 Gitelson et al. (2003)

RR700 r−1700 Chl. -0.429 Gitelson et al. (2003)

RVSI (r714 + r752)=(2 − r733) Chl. 0.54 Merton (1999)

SIPI r800 − r445
r800 − r680

Carotinoidhl./ 0.268 Pen Uelas et al. (1995)

TCARI670,700 3 ·
(r700 − r670) − 0:2 · (r700 − r550)

r700=r670

� �
Chl., LAI 0.48

Wu et al. (2008); Daughtry
(2000)
LAI (Leaf Area Index), Leaf area index; Chl., chlorophyll. The correlation coefficients given refer to the Spearman correlation of the reflectance of the adaxial leaf side with the leaf order. The p
value of all metrics, with the exception of PSRI(*), is < 0.01. Calculated from 34 plants, with five leaves per plant and five measurement points per leaf.
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~xplant = Med (xleaf1, xleaf2, xleaf3, xleaf4, xleaf5) (3)

xcentered,i = xcentered,i − ~xplant (4)

3. Statistical Correlation: The centered values were correlated

with leaf order, where a lower order number indicates an older leaf.

The Spearman order correlation coefficient was used to assess

monotonic relationships without assuming linearity. All

calculations were performed using the SciPy library (Virtanen

et al., 2020).

No data points were excluded as outliers. Potential

measurement noise and biological variability were accounted for

statistically by averaging five replicate points per leaf (Equation 2)

and by within-plant centering (Equation 4), which removed plant-

specific offsets. Since the analysis relied on Spearman rank

correlations, which are non-parametric and insensitive to absolute

magnitude deviations, individual extreme values exert minimal

influence on correlation strength or direction.
3 Results and discussions

3.1 Mean spectral reflectance

The mean adaxial and abaxial reflectance spectra of cucumber

leaves exhibit characteristic patterns associated with chlorophyll-

dominated absorption in the visible range and internal structural

scattering in the near-infrared (Figure 2). Across all leaf orders and

measurement points, adaxial surfaces reflected more light than

abaxial ones, particularly below 700nm.

In the blue region (< 500nm), average reflectance was

approximately 19% on the adaxial and 14% on the abaxial

surface. A distinct local maximum occurred at 550nm, with

values of 26% (adaxial) and 19% (abaxial). Reflectance dropped to

a local minimum near 670nm, corresponding to the red chlorophyll

absorption peak before rising again toward the red-edge (Horler
Frontiers in Horticulture 05
et al., 1983). At 700nm, reflectance reached 26% (adaxial) and 20%

(abaxial), respectively.

These side-dependent differences were consistent across

samples and most pronounced in the green and red spectral

regions. The standard deviation across biological replicates

remained relatively constant across wavelengths, indicating stable

measurement conditions and low within-group variability.

The higher reflectance on the adaxial surface is likely

attributable to anatomical asymmetries, including differences in

epidermal structure, wax layer thickness, or palisade cell

orientation. These findings establish a baseline for subsequent

analyses of order-dependent reflectance variation.

To statistically assess whether these spectral differences

between leaf surfaces are significant, a two-sided Mann–Whitney

U test was applied at each wavelength using the SciPy library in

Python (Virtanen et al., 2020). The test compared the distributions

of reflectance values from all adaxial and abaxial leaf

samples, respectively.
FIGURE 2

Averaged spectral reflectance of both leaf sides with enveloping standard deviation. Calculated from all plant data sets of 34 plants, each with five
leaves and five measurement points per leaf, a total of 850 measurements per leaf side. The colorbar illustrates the corresponding color
representation for the human-visible wavelength range.
FIGURE 3

Proportion of different leaf sides of spectral reflectance based on
the Mann-Whitney-U hypothesis test (p < 0.05). 170 tests were
carried out, with five measurement points per leaf side.
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As shown in Figure 3, over 90% of all wavelengths below 700nm

yielded statistically significant differences between the two surfaces

(p < 0.05). Above 700nm, these differences sharply declined, with

significance observed in less than 10% of the spectral range. This

confirms that reflectance is strongly dependent on leaf side

throughout the photosynthetically active region and should be

considered accordingly in optical sensor design.
3.2 Correlation between adaxial vegetation
indices and leaf order

The Spearman correlation coefficients between each index and

leaf order were computed and are shown in Figure 4. Most indices

exhibited strong absolute correlations (|r| > 0.6), especially those

related to chlorophyll content, LAI, and biomass. Indices based on

spectral ratios generally yielded stronger correlations than those

based on inverse reflectance, such as RR530.

The observed correlation between order and chlorophyll-

sensitive indices suggests a relationship between chlorophyll

content and leaf age. This is supported by results from Liu et al.,

who found systematic changes in chlorophyll concentration across

different leaf ages in six plant species (Liu et al., 2009).

In contrast, the Plant Senescence Reflectance Index (PSRI),

which targets age-related pigment degradation in senescing tree
Frontiers in Horticulture 06
species, did not correlate in this study. This is consistent with

expectations, as young cucumber plants do not exhibit the strong

seasonal pigment shifts observed in deciduous species.

Among NDVI-basedmetrics, all but NDVI490,620 (which relates to

water content) were negatively correlated with leaf order. NDVI680,800,

which reflects LAI, showed the strongest correlation among them.

This negative relationship indicates increasing leaf area with

developmental progression, consistent with plant growth dynamics.

Indices based on inverse reflectance at 530nm, 550nm, and

700nm had moderate negative correlations around r ≈ −0.45, which

were notably lower than those of NDVI-type metrics targeting

chlorophyll content. The SIPI, which combines chlorophyll and

carotenoid sensitivity, showed a weaker correlation of r = 0.27. The

RGI, associated with anthocyanin content, reached r = −0.53,

similar to inverse single-band metrics.

In summary, most indices linked to chlorophyll, anthocyanin,

and LAI showed significant correlations with leaf order, while

indices associated with water or nitrogen content showed weaker

relationships. Interestingly, the only metric designed specifically to

estimate leaf age, PSRI, did not correlate in this context, likely due to

the limited pigment variation in young cucumber foliage compared

to autumn leaves of trees.

These findings suggest that several established reflectance

indices may be useful for in situ estimation of leaf developmental

stage. However, many of them incorporate spectral bands outside

the 440nm to 740nm range. For use in sensor-based plant

monitoring systems, particularly with simplified multispectral

hardware, further investigations on more metrics will be required.
FIGURE 4

The Spearman correlation coefficients of the calculated metrics
from the remote sensing range in relation to the leaf order are
shown. The calculation is based on the spectral reflectance values.
Significant correlations (p < 0.01) are marked with a cross. The
indicated correlation coefficients refer to the correlation of the
reflectance of the adaxial leaf side with the leaf order. Calculated
from 34 plants, with five leaves per plant and five measurement
points per leaf.
FIGURE 5

Spearman correlation coefficients of the spectral reflectance and
transmittance of the two leaf sides with the leaf order. Significant
correlations are entered as a cross (p < 0.01). Calculated from 34
plants, with five leaves per plant and five measurement points per leaf.
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3.3 Wavelength-specific correlation of
reflectance with leaf order

Beyond index-based metrics, we examined how spectral

reflectance at discrete wavelengths correlates with leaf order.

Spearman correlation coefficients were calculated in 20nm

increments across the measured spectrum, results are shown

in Figure 5.

On the abaxial leaf surface, reflectance generally decreases with

increasing leaf order (i.e., younger leaves). Correlation coefficients

were consistently negative and reached values below r = −0.5 across

most parts of the spectrum. The strongest correlations were

observed in the blue and red regions, with a minimum of

r = −0.87, indicating pronounced age-related spectral changes on

the abaxial side.

In contrast, reflectance on the adaxial surface exhibited weaker

and more wavelength-dependent correlations. In the blue

(<500nm) and red absorption bands (640nm to 680nm), no

significant correlation was detected. Slight positive correlations

were observed in the green spectral range between 520nm and

620nm, with a maximum of r = 0.43 around 540nm. A minor

negative correlation also appeared near 740nm. These results

suggest that adaxial reflectance shows only a weak association

with leaf age, primarily in the green spectral region.

Figure 5 highlights the spectral intervals where statistically

significant correlations (p < 0.01) were found. In particular, the

ranges around 520nm to 580nm and near 700nm yielded the most

consistent relationships with leaf order.

Overall, the analysis demonstrates that reflectance–order

correlations are wavelength-dependent and leaf-side specific.

While the abaxial side exhibits stronger monotonic trends,

especially in pigment-absorbing bands, the adaxial side provides

localized but weaker correlations. These findings further support
Frontiers in Horticulture 07
the selection of narrowband spectral regions for sensor-based leaf

age monitoring.
3.4 Correlation matrices of spectral
reflectance ratios

Several established vegetation indices yielded strong

correlations with leaf order when computed from adaxial

reflectance data. However, many of these indices include

wavelengths above 740nm, which are outside the PAR spectral

range and could not be present in solely artificial lighting cultivation

systems. In addition, the previous spectral analysis showed that

reflectance-based metrics in the PAR region can still exhibit

informative correlations with leaf order.

To systematically evaluate which spectral combinations carry

the strongest ontogenetic signals, we computed pairwise reflectance

ratios for all measured wavelengths between 440nm and 740nm in

20nm increments. The general formula for spectral ratios is:

R(lnum, lden) =
r(lnum)
r(lden)

(5)

Here, lnum and lden denote the wavelengths at which

reflectance r(l) is evaluated for the numerator and denominator

of the ratio, respectively.

Spearman correlation coefficients between each spectral ratio

and leaf order were calculated. The resulting correlation maps are

shown in Figures 6, 7 for abaxial and adaxial reflectance,

respectively. Note that the visualizations differ from conventional

correlation matrices: axes represent numerator and denominator

wavelengths instead of distinct variables.

Figure 6 shows that several abaxial spectral ratios exhibit strong

correlations with leaf order, particularly when the numerator or
FIGURE 6

Spearman correlation coefficients between leaf order and spectral reflectance ratios computed from abaxial reflectance. Ratios were calculated as r(lnum)/
r(lden) for all combinations of wavelengths between 440nm and 740nm in 20nm steps. Asterisks mark statistically significant correlations (p < 0.01).
Calculated from 34 plants, with five leaves per plant and five measurement points per leaf.
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denominator includes 440nm, 720nm, or 740nm. The strongest

absolute correlation (r = −0.835) was observed for the ratio

r(720nm)/r(640 nm), although this value remained below the

correlation achieved by the pure reflectance at 440nm alone.

In contrast to the direct reflectance values shown previously,

spectral ratios from adaxial reflectance produced significantly

higher correlation coefficients (Figure 7), reaching up to r =

0.741, compared to a maximum of r = 0.433 for single

wavelengths. On the adaxial side, however, the specific

wavelength combinations had a greater influence on correlation

strength. For example, ratios involving 720nm yielded strong

correlations only when paired with 540nm or 560nm.

These results suggest that appropriately chosen spectral ratios

can enhance sensitivity to leaf ontogeny, especially for adaxial

reflectance. While single-wavelength metrics may suffice in some

cases, ratio-based metrics allow for improved robustness and

potentially better sensor integration within the 440nm to

740nm range.
4 Conclusion

This study identified spectral metrics within the PAR range for

monitoring cucumber leaf order and thus the plants development

stage. Abaxial leaf reflectance showed a strong, direct correlation

with leaf age across the visible spectrum, while adaxial reflectance

required the use of spectral ratios.

In a first step, established vegetation indices based on adaxial

reflectance were tested. Indices associated with chlorophyll content

and LAI showed strong negative correlations with order. However,

many of these indices use spectral bands beyond 740nm, which are

typically not present in LED-light environments. Thus, while they
Frontiers in Horticulture 08
confirm an age-related signal, their applicability for sensor-based

monitoring within the PAR range is limited.

Subsequent correlation analysis focused on direct reflectance

values between 440nm and 740nm. Abaxial reflectance showed

strong negative correlations with leaf order across large parts of this

range. Adaxial reflectance, in contrast, exhibited weaker but

positive correlations around 540nm and 700nm. These findings

suggest that while adaxial reflectance is less strongly correlated with

leaf order overall, specific regions of the spectrum still carry

ontogenetic information.

Spectral ratio metrics further supported this conclusion. Several

adaxial ratios achieved correlation coefficients up to r = 0.696, and

abaxial ratios up to r = 0.818. The reflectance ratio r(720nm)/

r(700nm) consistently emerged as one of the most informative

features across all datasets and leaf surfaces.

Based on these results, reflectance should be measured

separately by leaf order when used for developmental stage

estimation. The identified spectral metrics could also be applied

to estimate leaf age in situ using reflectance sensor data under real

cultivation conditions.

Furthermore, given the stronger order-dependency observed on

the abaxial surface, these findings suggest that bottom-up

reflectance measurement, rather than conventional top-down

approaches, may be more sensitive to physiological changes in

leaf development. Its application requires further investigation since

no established sensor configuration currently exists.

Although the results appear robust within the investigated leaf

type, follow-up studies should examine the transferability to other

varieties, species and light regimes. Future studies should investigate

whether spectral markers can indicate not only the developmental

stage, but also stress or disease phases at an early stage. As a

pragmatic near-term step, we recommend deploying compact top-
FIGURE 7

Spearman correlation coefficients between leaf order and spectral reflectance ratios computed from adaxial reflectance. Ratios were calculated as
r(lnum)/r(lden) for all combinations of wavelengths between 440nm and 740nm in 20nm steps. Asterisks mark statistically significant correlations
(p < 0.01). Calculated from 34 plants, with five leaves per plant and five measurement points per leaf.
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down VIS spectral sensors in LED-illuminated environments to

verify, under operational conditions, the observed relationship

between developmental stage and the reflectance ratio r(720nm)/

r(700nm). In practical terms, the present results delineate which

VIS bands such sensors should prioritize in LED-dominated

settings, particularly the region around 700nm to 730nm together

with the 700nm reference band.
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