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Accurate and continuous monitoring of plant development is crucial for
managing closed cultivation systems effectively. Optical reflectance-based
sensors offer a non-destructive, scalable, and cost-efficient method to track
plant growth, physiological status and stress responses. However, existing
vegetation indices predominantly utilize wavelengths in the near-infrared
(> 800nm) range, a spectral range typically absent in horticultural LED lighting
systems, limiting their applicability in horticultural LED-lit environments. This
study investigates spectral metrics within the visible spectrum (440nm - 740nm)
that robustly correlate with leaf order, a proxy for leaf age, in cucumber (Cucumis
sativus) plants grown under controlled artificial lighting conditions. We
systematically compared adaxial and abaxial leaf surfaces, identifying significant
spectral variations associated with leaf order. Results demonstrate that abaxial
leaf reflectance strongly correlates with leaf order, especially in the blue and red
spectral regions. While adaxial reflectance showed weaker correlations, specific
reflectance ratios (e.g., p720/p700) €nhanced this relationship, providing metrics
suitable for sensor integration. These findings supply metrics for the
development of simple optical sensors optimized for growth monitoring in
greenhouse or indoor farming systems.

KEYWORDS

spectral reflectance, vegetation index, leaf age, horticultural lighting, non-destructive
sensing, optical sensors

1 Introduction

Accurate and continuous monitoring of plant development is crucial for the
management of closed cultivation systems such as greenhouses and indoor farming.
Optical sensors offer non-invasive, cost-effective, and scalable methods to monitor key
plant traits such as growth, physiology, and stress responses.

During leaf development, spectral reflectance changes as a result of structural and
biochemical modifications within the leaf tissue. Classical studies, such as those by Woolley
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(1971), demonstrated that leaves act as effective diffusers due to
their irregular internal structure, which causes multiple scattering of
incident light. The reflectance and transmittance spectra therefore
result from the interplay between surface reflection, internal
scattering, and pigment absorption. Pigments such as chlorophyll
and carotenoids strongly absorb light in the blue and red regions,
whereas internal scattering within mesophyll tissues dominates in
the green and near-infrared regions. Consequently, variations in
pigment concentration and tissue water content directly influence
spectral reflectance. Consequently, monitoring reflectance
dynamics enables non-invasive inference of the plant’s
physiological state (Sims and Gamon (2002); Gitelson and
Merzlyak (1994)).

Reflectance-based optical sensing has a long history in
quantifying plant status non-destructively. Typically, these
methods measure reflected light from leaves at specific
wavelengths to calculate vegetation indices associated with
physiological parameters. The most widely utilized metric, the
Normalized Difference Vegetation Index (NDVI), relies primarily
on red and near-infrared reflectance (Tucker, 1979). Subsequently,
numerous alternative indices have emerged, designed to improve
the specificity toward traits such as chlorophyll content (Katsoulas
et al., 2016), leaf area index (LAI) (Wu et al., 2008; Gitelson and
Merzlyak, 1994) water status (Katsoulas et al., 2016), leaf age
(Merzlyak et al., 1999), nitrogen content (Daughtry, 2000) and
pigment composition (Gamon and Surfus, 1999; Pen Uelas et al.,
1995) have been proposed. Many of these physiological parameters,
such as chlorophyll content change during leaf ontogeny, leading to
the assumption that reflectance could also serve as an indicator for
developmental stage.

However, existing spectral indices frequently depend on
reflectance data beyond 740nm, a spectral region often not
emitted by horticultural LED systems predominantly used in
greenhouses and indoor farms. Moreover, many indices originally
developed for satellite or Unmanned Aerial Vehicle-based remote
sensing of entire canopies might lack direct applicability for
monitoring individual plants in controlled environments, where
background signals and viewing geometry are different.

Low-cost reflectance sensing technologies based on photodiodes
coupled with narrowband filters (spectral sensors) have gained interest
due to their ability to support simplified, application-specific hardware
designs suitable for distributed sensor networks in greenhouse
environments (Tran et al, 2022; Kirci et al, 2022; Kaiser et al.,
2024). In contrast, RGB imaging-based methods are suitable for
large-scale screening of morphological traits such as leaf area or
biomass, yet their limited spectral resolution restricts their capability
to detect subtle biochemical shifts such as pigment variations or early-
stage developmental transitions (Kaiser et al., 2024).

Despite advances in spectral sensing, systematic studies
examining the relationship between leaf reflectance and leaf age,
particularly within the visible spectrum (440-740nm), remain
scarce. While the effects of species variation, stress factors, and
nutrient availability on reflectance have been widely studied, the
influence of leaf order (counting with leaf appearance) on spectral
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reflectance under controlled cultivation conditions has received
limited attention. Furthermore, publicly available spectral datasets
for near-field, single-leaf reflectance under controlled lighting
conditions are currently limited.

This study addresses these research gaps by investigating
spectral metrics suitable for detecting leaf age via leaf order, using
cucumber (Cucumis sativus) cultivated under controlled artificial
lighting as a model organism. Specifically, we aim to:

 Identify spectral indices and wavelength-specific reflectance
metrics within the visible spectrum (440nm-740nm) that
robustly correlate with leaf order.

* Compare adaxial (upper) and abaxial (lower) leaf surfaces
to determine differences in spectral sensitivity related to
ontogenetic stage.

* Provide a detailed spectral dataset enabling the development of
simple, real-time reflectance-based sensors tailored for growth
monitoring of cucumber plants, serving as a first step toward
sensor design, with subsequent validation needed under
practical greenhouse conditions.

2 Materials and methods
2.1 Plant materials

Cucumber plants (Cucumis sativus, cv. Saladin F1, Philipp
Klein GmbH, Fiirth, Germany) were cultivated in individual pots
(7 x 7 x 8 cm) under a 16-hour photoperiod using white
horticultural LEDs (Luxeon SunPlus 2835, 250 #50 umolm 2 s™").
Germination occurred in a growth tray and plants were transferred
after 8-10 days to an automated drip irrigation system supplying
each plant with 20mL nutrient solution twice daily. The nutrient
solution comprised demineralized water enriched with calcium-
magnesium supplements (CalMag, Plagron, Weert, Netherlands)
and hydroponic fertilizers (Hydro A+B, Plagron, Weert,
Netherlands). Plants were utilized at the five-leaf developmental
stage, approximately 30 days post-sowing. Leaves were numbered
according to their date of first appearance, starting from the first one
labeled as order one to the fifth, labeled as order five.

2.2 Measurement setup

Leaf spectral reflectance measurements were conducted using
an integrating sphere (ISP-REF, Ocean Optics, USA) coupled to a
spectrometer (Ocean HDX, Ocean Optics, USA), see Figure 1,
providing a spectral range of 200nm to 1100nm with a resolution
of approximately 0.75nm to 1.2nm. Measurements were calibrated
for instrument nonlinearities and dark- current correction
according to manufacturer specifications. Illumination was
provided by a deuterium-halogen lamp (DH-2000, Ocean Optics,
USA) guided via fiber optics into the integrating sphere. Stray light
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FIGURE 1

Schematic of the measurement setup used to determine leaf spectral

reflectance. A deuteriumhalogen lamp illuminates the leaf sample held
at the port of an integrating sphere. Reflected light is collected by the

sphere and measured by a fiber-coupled spectrometer.

and back-reflections were minimized using a custom-built black
light trap lined with highly absorptive Musou Black felt (Koyo
Orient, Japan; absorbance > 99.9%). Reflectance spectra were
normalized relative to a Spectralon white reference standard (99%
reflectance), with integration times dynamically adjusted to
maintain optimal detector utilization (approximately 90% of
detector saturation).
Final reflectance values were calculated as in Equation 1:

_ ¢probe(/1) - ¢dark (Z,) .
q)white (l) - ¢dark(/l)
with the spectral radiant flux of the leaf probe @y,;qpe(4), the one

of the white reference standard @y;.(4), the dark spectral radiant
flux @g.n(A) and the spectral reflectance of the whitestandard

p(ﬂ') pwhite(ﬂ') (1)

Puhite(r)- Spectral measurements were limited to the range from 440

nm to 850 nm.

2.3 Determination of measurement point
number per leaf

The analysis revealed that using five sampling points per leaf
reduced the standard error of integrated reflectance from 6.9% at
one point to 3.1% at five points, further decreasing to 2.1% when
using ten points and reaching a minimum of 1.6% at twenty points.
The sampling density of five points provided a practical balance
between measurement speed and precision. Consequently, all
subsequent leaf-level spectral measurements were performed
using five representative points per leaf, in total 34 plants. All
measured spectral reflectance data is available in the Supplementary
Data. In cucumber leaves, which are larger than those of e.g. tomato
or basil, pigment inhomogeneities can affect measurement results.
Smaller leaves tend to average out such variation across the field of
view, but for larger leaves, increased sampling density improves
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accuracy. This should be considered when performing similar
measurements with different species.

2.4 Established vegetation indices

To evaluate whether the optical properties of cucumber leaves
vary systematically with leaf order, a set of established vegetation
indices originally developed for remote sensing applications was
calculated from adaxial reflectance spectra. These indices were not
specifically designed for greenhouse crops such as cucumber, but
are commonly used to estimate parameters such as chlorophyll and
anthocyanin content, leaf area index (LAI), leaf mass, water status,
or senescence stage (Coops and Stone, 2005). Their definitions and
target variables are summarized in Table 1.

The simplest metrics are the reciprocal-reflectance indices (RR),
where the inverse of reflectance at a given wavelength is used as a
proxy (e.g., RRs30, RRss0, RR7p) to relate to chlorophyll (Gitelson
et al,, 2003). To reduce the influence of non-photosynthetic/
background effects, ratio-type metrics have been introduced. The
modified simple ratio (MSR) enhances sensitivity relative to simple
ratios and compresses dynamic range (Chen, 1996; Chen et al,
2013). Chlorophyll index (CI) variants (Carter’s CI, Datt’s CI, and
the Gitelson & Merzlyak forms) use red/red-edge (Horler et al,
1983) and NIR bands to estimate chlorophyll concentration (Carter,
1994; Datt, 1999; Gitelson and Merzlyak, 1994).

The modified and transformed chlorophyll absorption ratio
indices (MCARI, TCARI) quantify absorption features around
670nm to 700nm while incorporating a reference at 550nm,
thereby reducing structural/background influences (Daughtry, 2000;
Wu et al, 2008). The modified normalized difference (MND)
minimizes structural effects by including a structurally insensitive
band near 445nm (Sims and Gamon, 2002). The red-edge vegetation
stress index (RVSI) exploits reflectance differences around the red-
edge region as a stress-sensitive proxy (Merton, 1999).

Beyond chlorophyll, the structure insensitive pigment index
(SIPI) targets the carotenoid-to-chlorophyll balance (Pen Ueclas
et al, 1995), and the red-to-green index (RGI) is linked to
anthocyanin content (Gamon and Surfus (1999)). Variants of the
normalized difference vegetation index (NDVI) use red or red-edge
bands against a reference band (e.g. at 800nm) and are frequently
related to canopy greenness and LAI (Katsoulas et al. (2016); Wu
et al. (2008)). Finally, the plant senescence reflectance index (PSRI)
is used as an indicator of leaf age and fruit ripening (Merzlyak
et al. (1999)).

2.5 Method for correlation analysis

The relationship between spectral metrics and leaf order (as an
indicator of leaf age) was analyzed through the following
systematic approach:

1. Metric computation per leaf: Metric values (x,oine) Were
computed at each measurement location. The leaf-specific mean
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TABLE 1 Spearman correlation coefficients between established vegetation indices and cucumber leaf order, calculated from adaxial reflectance data.
Based on the work of (Coops and Stone, 2005) and additional own research.

Spearman correlation

Designation Formula Context o Reference
coefficient
Carters CI Peos. Chl. 0.652 Carter (1994)
P60
Datts CI Psso = P10 Chl, -0.58 Datt (1999)
Pss0 ~ Peso
G&M CI Prso Chl. -0.672 Gitelson and Merzlyak (1994)
P05
G&M Norm Prso = Pros Chl. -0.66 Gitelson and Merzlyak (1994)
P750 T P05
MCARIg;,709 ((Pmo ~ Pe70) = 0.2 - (Pr00 — P550)> I(\:I]?l.’ LAL 0.453 V;,(l)logt al. (2008); Daughtry
P00/ Pero itrogen ( )
Maccol Prso = Pr1o Chl. -0.662 Elvanidi et al. (2018)
P70 + P10
MND _ Pro=Pros Chl, -0.573 Sims and Gamon (2002)
P750 + Pros — 2Paas
MSRg70500 (m B 1) (m . 1) Chl. -0.66 Chen et al. (2013); Chen (1996)
Ps70 Ps70
MSR 05 750 (@ B 1) (@ . 1) Chl, LAI -0.666 Wu et al. (2008)
Pr0s Pr0s
MSR Prso ~ Pus Chl. -0.578 Sims and Gamon (2002)
P705 ~ Paas
ND V0620 Ps ~ Paso Water content 0.2531 Katsoulas et al. (2016)
Pe20 T Paso
_ LAI Chl,
NDVIg40,00 Powo ~ Poso . -0.662 Katsoulas et al. (2016)
Psoo + Peso Weight
NDVIg500 Psoo ~ Pero LAI -0.678 Wu et al. (2008)
Psoo + Pe70
_ LAI Chl,
NDVIggo500 Psoo = Peso Wei -0.698 Katsoulas et al. (2016)
Psoo + Peso eight
NDVI;5.750 P50 ~ Pros LAIL -0.66 Gitelson and Merzlyak (1994);
P750 + P05
PSRI* Peso ~ Psoo Leaf age -0.074 Merzlyak et al. (1999)
P50
RGI (Eiiosoop(Z,))/(Eiiosoop(/l)) Anthocyanin -0.534 Gamon and Surfus (1999)
RRs3 Psao Chl. -0.423 Gitelson et al. (2003)
RRs5 P Chl. -0.423 Gitelson et al. (2003)
RRygp Pro Chl. -0.429 Gitelson et al. (2003)
RVSI (P714 + Pr52)/ (2 = Pra3) Chl 0.54 Merton (1999)
SIPI Psoo = Paas Carotinoid"" 0.268 Pen Uelas et al. (1995)
Psoo ~ Peso
T .
TCARIg0.700 3 (P700 = Pe70) = 0.2 - (P700 — P3s0) Chl, LAI 0.48 Wau et al. (2008); Daughtry
, . (2000)
P00/ Pero

LAI (Leaf Area Index), Leaf area index; Chl., chlorophyll. The correlation coefficients given refer to the Spearman correlation of the reflectance of the adaxial leaf side with the leaf order. The p
value of all metrics, with the exception of PSRI(*¥), is < 0.01. Calculated from 34 plants, with five leaves per plant and five measurement points per leaf.

value was derived from five replicate measurements per leaf as in 2. Within-plant centering: Leaf-averaged metric values were
Equation 2: normalized per plant by subtracting the median (Equation 3):
across all five leaves, removing plant-specific systematic offsets

Xjeat = Mean (x1, X3, X3, %4, X5) @ (Equation 4):
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FIGURE 2

Averaged spectral reflectance of both leaf sides with enveloping standard deviation. Calculated from all plant data sets of 34 plants, each with five
leaves and five measurement points per leaf, a total of 850 measurements per leaf side. The colorbar illustrates the corresponding color

representation for the human-visible wavelength range.

Xplant = Med (Eleafl > Xleaf2> Xleaf3> Xleaf4> EleafS) (3)

Xcentered,i = Ecentered,i - xplant (4)

3. Statistical Correlation: The centered values were correlated
with leaf order, where a lower order number indicates an older leaf.
The Spearman order correlation coefficient was used to assess
monotonic relationships without assuming linearity. All
calculations were performed using the SciPy library (Virtanen
et al., 2020).

No data points were excluded as outliers. Potential
measurement noise and biological variability were accounted for
statistically by averaging five replicate points per leaf (Equation 2)
and by within-plant centering (Equation 4), which removed plant-
specific offsets. Since the analysis relied on Spearman rank
correlations, which are non-parametric and insensitive to absolute
magnitude deviations, individual extreme values exert minimal
influence on correlation strength or direction.

3 Results and discussions
3.1 Mean spectral reflectance

The mean adaxial and abaxial reflectance spectra of cucumber
leaves exhibit characteristic patterns associated with chlorophyll-
dominated absorption in the visible range and internal structural
scattering in the near-infrared (Figure 2). Across all leaf orders and
measurement points, adaxial surfaces reflected more light than
abaxial ones, particularly below 700nm.

In the blue region (< 500nm), average reflectance was
approximately 19% on the adaxial and 14% on the abaxial
surface. A distinct local maximum occurred at 550nm, with
values of 26% (adaxial) and 19% (abaxial). Reflectance dropped to
a local minimum near 670nm, corresponding to the red chlorophyll
absorption peak before rising again toward the red-edge (Horler
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et al., 1983). At 700nm, reflectance reached 26% (adaxial) and 20%
(abaxial), respectively.

These side-dependent differences were consistent across
samples and most pronounced in the green and red spectral
regions. The standard deviation across biological replicates
remained relatively constant across wavelengths, indicating stable
measurement conditions and low within-group variability.

The higher reflectance on the adaxial surface is likely
attributable to anatomical asymmetries, including differences in
epidermal structure, wax layer thickness, or palisade cell
orientation. These findings establish a baseline for subsequent
analyses of order-dependent reflectance variation.

To statistically assess whether these spectral differences
between leaf surfaces are significant, a two-sided Mann-Whitney
U test was applied at each wavelength using the SciPy library in
Python (Virtanen et al., 2020). The test compared the distributions
of reflectance values from all adaxial and abaxial leaf
samples, respectively.

¥R 100 —
&5
ga 80-
% o0~
B &
&0
S w-
53
8z 20-— ,
o
£E o I I |
500 600 700

Wavelength in nm

FIGURE 3

Proportion of different leaf sides of spectral reflectance based on
the Mann-Whitney-U hypothesis test (p < 0.05). 170 tests were
carried out, with five measurement points per leaf side.
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FIGURE 4

The Spearman correlation coefficients of the calculated metrics
from the remote sensing range in relation to the leaf order are
shown. The calculation is based on the spectral reflectance values.
Significant correlations (p < 0.01) are marked with a cross. The
indicated correlation coefficients refer to the correlation of the
reflectance of the adaxial leaf side with the leaf order. Calculated
from 34 plants, with five leaves per plant and five measurement
points per leaf.

As shown in Figure 3, over 90% of all wavelengths below 700nm
yielded statistically significant differences between the two surfaces
(p < 0.05). Above 700nm, these differences sharply declined, with
significance observed in less than 10% of the spectral range. This
confirms that reflectance is strongly dependent on leaf side
throughout the photosynthetically active region and should be
considered accordingly in optical sensor design.

3.2 Correlation between adaxial vegetation
indices and leaf order

The Spearman correlation coefficients between each index and
leaf order were computed and are shown in Figure 4. Most indices
exhibited strong absolute correlations (|r| > 0.6), especially those
related to chlorophyll content, LAL and biomass. Indices based on
spectral ratios generally yielded stronger correlations than those
based on inverse reflectance, such as RRs3,.

The observed correlation between order and chlorophyll-
sensitive indices suggests a relationship between chlorophyll
content and leaf age. This is supported by results from Liu et al.,
who found systematic changes in chlorophyll concentration across
different leaf ages in six plant species (Liu et al., 2009).

In contrast, the Plant Senescence Reflectance Index (PSRI),
which targets age-related pigment degradation in senescing tree
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FIGURE 5

Spearman correlation coefficients of the spectral reflectance and
transmittance of the two leaf sides with the leaf order. Significant
correlations are entered as a cross (p < 0.01). Calculated from 34
plants, with five leaves per plant and five measurement points per leaf.

species, did not correlate in this study. This is consistent with
expectations, as young cucumber plants do not exhibit the strong
seasonal pigment shifts observed in deciduous species.

Among NDVI-based metrics, all but NDV1Ig0,620 (Which relates to
water content) were negatively correlated with leaf order. NDVIsgy,500»
which reflects LAI, showed the strongest correlation among them.
This negative relationship indicates increasing leaf area with
developmental progression, consistent with plant growth dynamics.

Indices based on inverse reflectance at 530nm, 550nm, and
700nm had moderate negative correlations around r = —0.45, which
were notably lower than those of NDVI-type metrics targeting
chlorophyll content. The SIPI, which combines chlorophyll and
carotenoid sensitivity, showed a weaker correlation of r = 0.27. The
-0.53,

RGI, associated with anthocyanin content, reached r
similar to inverse single-band metrics.

In summary, most indices linked to chlorophyll, anthocyanin,
and LAI showed significant correlations with leaf order, while
indices associated with water or nitrogen content showed weaker
relationships. Interestingly, the only metric designed specifically to
estimate leaf age, PSRI, did not correlate in this context, likely due to
the limited pigment variation in young cucumber foliage compared
to autumn leaves of trees.

These findings suggest that several established reflectance
indices may be useful for in situ estimation of leaf developmental
stage. However, many of them incorporate spectral bands outside
the 440nm to 740nm range. For use in sensor-based plant
monitoring systems, particularly with simplified multispectral
hardware, further investigations on more metrics will be required.
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FIGURE 6

Spearman correlation coefficients between leaf order and spectral reflectance ratios computed from abaxial reflectance. Ratios were calculated as p(An,m)/
PlAgen) for all combinations of wavelengths between 440nm and 740nm in 20nm steps. Asterisks mark statistically significant correlations (p < 0.01).
Calculated from 34 plants, with five leaves per plant and five measurement points per leaf.

3.3 Wavelength-specific correlation of
reflectance with leaf order

Beyond index-based metrics, we examined how spectral
reflectance at discrete wavelengths correlates with leaf order.
Spearman correlation coefficients were calculated in 20nm
increments across the measured spectrum, results are shown
in Figure 5.

On the abaxial leaf surface, reflectance generally decreases with
increasing leaf order (i.e., younger leaves). Correlation coefficients
were consistently negative and reached values below r = —0.5 across
most parts of the spectrum. The strongest correlations were
observed in the blue and red regions, with a minimum of
r = —0.87, indicating pronounced age-related spectral changes on
the abaxial side.

In contrast, reflectance on the adaxial surface exhibited weaker
and more wavelength-dependent correlations. In the blue
(<500nm) and red absorption bands (640nm to 680nm), no
significant correlation was detected. Slight positive correlations
were observed in the green spectral range between 520nm and
620nm, with a maximum of r = 0.43 around 540nm. A minor
negative correlation also appeared near 740nm. These results
suggest that adaxial reflectance shows only a weak association
with leaf age, primarily in the green spectral region.

Figure 5 highlights the spectral intervals where statistically
significant correlations (p < 0.01) were found. In particular, the
ranges around 520nm to 580nm and near 700nm yielded the most
consistent relationships with leaf order.

Overall, the analysis demonstrates that reflectance-order
correlations are wavelength-dependent and leaf-side specific.
While the abaxial side exhibits stronger monotonic trends,
especially in pigment-absorbing bands, the adaxial side provides
localized but weaker correlations. These findings further support
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the selection of narrowband spectral regions for sensor-based leaf
age monitoring.

3.4 Correlation matrices of spectral
reflectance ratios

Several established vegetation indices yielded strong
correlations with leaf order when computed from adaxial
reflectance data. However, many of these indices include
wavelengths above 740nm, which are outside the PAR spectral
range and could not be present in solely artificial lighting cultivation
systems. In addition, the previous spectral analysis showed that
reflectance-based metrics in the PAR region can still exhibit
informative correlations with leaf order.

To systematically evaluate which spectral combinations carry
the strongest ontogenetic signals, we computed pairwise reflectance
ratios for all measured wavelengths between 440nm and 740nm in
20nm increments. The general formula for spectral ratios is:

_ PPam)
R(ﬂnum’ 2'den) = p(/lden)

Here, A,um and A4e, denote the wavelengths at which
reflectance p(A) is evaluated for the numerator and denominator

(5)

of the ratio, respectively.

Spearman correlation coefficients between each spectral ratio
and leaf order were calculated. The resulting correlation maps are
shown in Figures 6, 7 for abaxial and adaxial reflectance,
respectively. Note that the visualizations differ from conventional
correlation matrices: axes represent numerator and denominator
wavelengths instead of distinct variables.

Figure 6 shows that several abaxial spectral ratios exhibit strong
correlations with leaf order, particularly when the numerator or
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FIGURE 7

Spearman correlation coefficients between leaf order and spectral reflectance ratios computed from adaxial reflectance. Ratios were calculated as
PAnum)/p(Agen) for all combinations of wavelengths between 440nm and 740nm in 20nm steps. Asterisks mark statistically significant correlations
(p < 0.01). Calculated from 34 plants, with five leaves per plant and five measurement points per leaf.

denominator includes 440nm, 720nm, or 740nm. The strongest
absolute correlation (r = —0.835) was observed for the ratio
p(720nm)/p(640 nm), although this value remained below the
correlation achieved by the pure reflectance at 440nm alone.

In contrast to the direct reflectance values shown previously,
spectral ratios from adaxial reflectance produced significantly
higher correlation coefficients (Figure 7), reaching up to r =
0.741, compared to a maximum of r = 0.433 for single
wavelengths. On the adaxial side, however, the specific
wavelength combinations had a greater influence on correlation
strength. For example, ratios involving 720nm yielded strong
correlations only when paired with 540nm or 560nm.

These results suggest that appropriately chosen spectral ratios
can enhance sensitivity to leaf ontogeny, especially for adaxial
reflectance. While single-wavelength metrics may suffice in some
cases, ratio-based metrics allow for improved robustness and
potentially better sensor integration within the 440nm to
740nm range.

4 Conclusion

This study identified spectral metrics within the PAR range for
monitoring cucumber leaf order and thus the plants development
stage. Abaxial leaf reflectance showed a strong, direct correlation
with leaf age across the visible spectrum, while adaxial reflectance
required the use of spectral ratios.

In a first step, established vegetation indices based on adaxial
reflectance were tested. Indices associated with chlorophyll content
and LAI showed strong negative correlations with order. However,
many of these indices use spectral bands beyond 740nm, which are
typically not present in LED-light environments. Thus, while they
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confirm an age-related signal, their applicability for sensor-based
monitoring within the PAR range is limited.

Subsequent correlation analysis focused on direct reflectance
values between 440nm and 740nm. Abaxial reflectance showed
strong negative correlations with leaf order across large parts of this
range. Adaxial reflectance, in contrast, exhibited weaker but
positive correlations around 540nm and 700nm. These findings
suggest that while adaxial reflectance is less strongly correlated with
leaf order overall, specific regions of the spectrum still carry
ontogenetic information.

Spectral ratio metrics further supported this conclusion. Several
adaxial ratios achieved correlation coefficients up to r = 0.696, and
abaxial ratios up to r = 0.818. The reflectance ratio p(720nm)/
p(700nm) consistently emerged as one of the most informative
features across all datasets and leaf surfaces.

Based on these results, reflectance should be measured
separately by leaf order when used for developmental stage
estimation. The identified spectral metrics could also be applied
to estimate leaf age in situ using reflectance sensor data under real
cultivation conditions.

Furthermore, given the stronger order-dependency observed on
the abaxial surface, these findings suggest that bottom-up
reflectance measurement, rather than conventional top-down
approaches, may be more sensitive to physiological changes in
leaf development. Its application requires further investigation since
no established sensor configuration currently exists.

Although the results appear robust within the investigated leaf
type, follow-up studies should examine the transferability to other
varieties, species and light regimes. Future studies should investigate
whether spectral markers can indicate not only the developmental
stage, but also stress or disease phases at an early stage. As a
pragmatic near-term step, we recommend deploying compact top-
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down VIS spectral sensors in LED-illuminated environments to
verify, under operational conditions, the observed relationship
between developmental stage and the reflectance ratio p(720nm)/
p(700nm). In practical terms, the present results delineate which
VIS bands such sensors should prioritize in LED-dominated
settings, particularly the region around 700nm to 730nm together
with the 700nm reference band.
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