
TYPE Original Research

PUBLISHED 02 December 2025

DOI 10.3389/fhpcp.2025.1669101

OPEN ACCESS

EDITED BY

Michael Brim,

Oak Ridge National Laboratory (DOE),

United States

REVIEWED BY

Giorgis Georgakoudis,

Lawrence Livermore National Laboratory

(DOE), United States

Nikolaos Tampouratzis,

International Hellenic University, Greece

*CORRESPONDENCE

Dirk Pleiter

pleiter@kth.se

RECEIVED 18 July 2025

ACCEPTED 27 October 2025

PUBLISHED 02 December 2025

CORRECTED 08 January 2026

CITATION

Falquez C, Long S, Ho N, Suarez E and

Pleiter D (2025) Processor simulation as a tool

for performance engineering.

Front. High Perform. Comput. 3:1669101.

doi: 10.3389/fhpcp.2025.1669101

COPYRIGHT

© 2025 Falquez, Long, Ho, Suarez and Pleiter.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Processor simulation as a tool for
performance engineering

Carlos Falquez1, Shiting Long2, Nam Ho1, Estela Suarez1,3 and

Dirk Pleiter2,4*

1Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany, 2Division of

Computational Science and Technology, EECS, KTH Royal Institute of Technology, Stockholm,

Sweden, 3Institute of Computer Science, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn,

Germany, 4Department of Computer Science, Bernoulli Institute, University of Groningen, Groningen,

Netherlands

The diversity of processor architectures used for High-Performance Computing

(HPC) applications has increased significantly over the last few years. This

trend is expected to continue for di�erent reasons, including the emergence

of various instruction set extensions. Examples are the renewed interest in

vector instructions like Arm’s Scalable Vector Extension (SVE) or RISC-V’s RVV.

For application developers, research software developers, and performance

engineers, the increased diversity and complexity of architectures have led to the

following challenges: Limited access to these di�erent processor architectures

and more di�cult root cause analysis in case of performance issues. To address

these challenges, we propose leveraging the much-improved capabilities of

processor simulators such as gem5. We enhanced this simulator with a

performance analysis framework. We extend available performance counters

and introduce new analysis capabilities to track the temporal behaviour of

running applications. An algorithm has been implemented to link these statistics

to specific regions. The resulting performance profiles allow for the identification

of code regions with the potential for optimization. The focus is on observables

to monitor quantities that are usually not directly accessible on real hardware.

Di�erent algorithms have been implemented to identify potential performance

bottlenecks. The framework is evaluated for di�erent types of HPC applications

like themolecular-dynamics applicationGROMACS, Ligra, which implements the

breadth-first search (BFS) algorithm, and a kernel from the Lattice QCD solver

DD-αAMG.

KEYWORDS

high-performance computing (HPC), processor architectures, instruction set

extensions, vector instructions, Arm’s Scalable Vector Extension (SVE), RISC-V’s

RVV, performance counters, performance profiles

1 Introduction

Given both acquisition as well as operational costs of High-Performance Computing
HPC systems, in particular exascale-class systems, efficient use of the hardware resources is
becoming increasingly important. However, for computational scientists, who are often
already challenged by the complexity of the numerical problems that they try to solve,
understanding performance remains a huge challenge. A fundamental reason for this
is that today’s computers, in particular HPC systems, are complex systems in the sense
that, based on the behaviour of individual components, it is difficult to extrapolate to the
behaviour of the full system. This applies already to single-core architectures, on which we
focus here. Modern processor architectures comprise different subsystems, each with its
own challenges in understanding their performance. It starts with the micro-architecture

Frontiers inHighPerformanceComputing 01 frontiersin.org

https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://doi.org/10.3389/fhpcp.2025.1669101
http://crossmark.crossref.org/dialog/?doi=10.3389/fhpcp.2025.1669101&domain=pdf&date_stamp=2025-12-02
mailto:pleiter@kth.se
https://doi.org/10.3389/fhpcp.2025.1669101
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fhpcp.2025.1669101/full
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Falquez et al. 10.3389/fhpcp.2025.1669101

of each individual processor core, where various factors influence
the efficiency of utilising all functional units. It continues
with memory subsystems where multi-level cache architectures,
memory pre-fetchers, etc., result in a difficult-to-understand
behaviour of the data transport capabilities. From a computational
scientist’s perspective, the complexity increases due to the increased
diversity of processor architectures used for HPC. The market has
long been dominated by HPC systems with x86-based processors.
Arm-based processors established themselves on the HPC market
with the advent of Marvell’s ThunderX2, Fujitsu’s A64FX, and
NVIDIA’s Grace processors. While being all based on the Arm
Instruction Set Architecture (ISA), the performance characteristics
of these processors are hugely different. In the European context,
there are strong ongoing efforts to develop processors based on
Arm cores supporting SVE, as well as on the RISC-V ISA, in
particular targeting the performance opportunities resulting from
the RISC-V vector instructions extension RVV. Furthermore, the
different ISAs used for HPC processors continue to evolve. One
example is the introduction of instructions optimised for matrix
and tensor operations, like Arm’s Scalable Matrix Extension (SME).
Processors supporting SME are also expected to be used for HPC in
the near future.

During the last decades, a lot of effort has gone into the
development of tools supporting the analysis of performance.
They leverage different techniques for collecting information
during the execution of applications, which helps to understand
the performance. Beyond simple time measurements, over time,
these tools started to leverage the increasingly sophisticated
hardware support for tracking the behaviour of hardware, including
the processor. Any modern processor comprises a Performance
Management Unit (PMU) that can be programmed at run-time for
counting the number of times particular events occur. Counting the
number of cache misses is a typical example. Despite these units
having become increasingly sophisticated, computational scientists
and performance engineers find themselves often in a situation
where the set of events that can be tracked is limited. Furthermore,
often a root cause analysis becomes challenging as the context for a
particular processor behaviour cannot be recorded.

One alternative to running on real hardware and monitoring
the behaviour is the use of simulators. Recently, a range of
open-source simulators have been used in the area of HPC. As
simulations are many orders of magnitude slower compared to real
hardware, a compromise needs to bemade with respect to the scope
of the simulation model on the one hand, and the level of detail on
the other hand. In this work, we focus on cycle-accurate simulations
that in practice are only affordable when restricting the scope to
a single or a small number of processor cores. As in this paper,
we try to argue for a specific conceptual approach, we will limit
ourselves to a single core architecture. While we focus in this paper
on HPC processor architectures and applications, the approach is
also applicable outside of HPC.

One popular choice for such a simulator is gem5 (Binkert et al.,
2011; Lowe-Power et al., 2020), which supports several ISAs. It is
continuously updated to support new architectural developments,
like the emergence of Arm’s SME and RISC-V’s RVV. Furthermore,
various efforts have been made to establish models for existing
processor solutions used for HPC systems and to validate themodel

by comparing simulation results for complex workloads to results
obtained on real hardware.

However, the use of gem5 by computational scientists and
performance engineers for the purpose of performance analysis
has been very difficult. gem5 has become a tool that is widely
used by processor architects to investigate new design ideas. Over
time, the community behind the simulator managed to enable
the necessary flexibility despite the unavoidable complexity of the
simulator. This focus, however, contributed to gem5 becoming
difficult to use, requiring significant training before being ready to
use this simulator in a reliable manner. To address this limitation,
different tools have been proposed to simplify the use of gem5 while
compromising on its flexibility. One example is gem5-dbc (Falquez
et al., 2025).

A second shortcoming of gem5 is the lack of tools to correlate
simulation statistics and application code. Even if the application
is instrumented to restrict event profiling to a confined region
of interest (ROI), gem5 statistical counters are accumulated over
the entire ROI and typically reported as a single aggregate value.
However, even within a single ROI, the application may exhibit
multiple execution phases with significantly different performance
characteristics. Detecting such execution phases and identifying
the corresponding application code sections will make it easier
to localise performance issues and explore root causes. Finally,
based on these statistics, it requires often expert knowledge to
detect performance issues and identify root causes. This makes
gem5 a difficult to use tool for computational scientists or research
software engineers, who work on efficient implementations of an
application, and/or a performance engineer, who aims to reduce
time-to-solution for a given application and workload.

The main contributions of this paper are:

1. A tool for detecting and visualising different phases of an
application that is simulated using gem5 is presented.

2. Different strategies for detecting performance issues using gem5
simulations are discussed and implemented in gem5.

3. A few case studies show how the results of this work can be used
for real-life applications, which have been selected such that they
represented a broad range of computational science research.

This paper is organised as follows: In Section 2, we discuss
related work before introducing the tool for detecting and
visualising computational phases in Section 3. In Section 4,
the detection of selected performance issues leveraging gem5
simulations is discussed. Next, in Section 5, we present three
different case studies before we offer our conclusions in Section 6.

2 Related work

Most of the information, which is needed for a performance
analysis, can only be retrieved via PMUs. However, they only allow
monitoring a limited number of events, which cannot be changed
once a processor design is final, and they are also highly vendor and
processor solution specific. The latter problem has in parts been
mitigated by introducing an Application Programming Interface
(API), e.g. with the PAPI library (Browne et al., 2000). With this
API, the occurrence rate of similar events could be measured

Frontiers inHighPerformanceComputing 02 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1669101
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Falquez et al. 10.3389/fhpcp.2025.1669101

on different processor architectures using the same code. Over
time, the perf tool, which is integrated with the Linux kernel, has
improved significantly and is on many platforms the easier path for
system hardware monitoring (De Melo, 2010).

More recently, several vendors developing processor
technologies and solutions have been integrating advanced
performance monitoring capabilities. Examples are Intel’s
Processor Event Based Sampling (PEBS), which was introduced
with the Intel Nehalem processor, AMD’s Instruction-Based
Sampling (IBS), which appeared with the AMD family 10h
processors, and Arm’s Statistical Profiling Extension (SPE), which
is part of the Armv8.2 ISA. These new features support attributing
events samples to the instructions that trigger them. This can
significantly ease identification and localisation of performance
issues. There have been various studies exploring the precision and
usability of PEBS, IBS, and SPE (see, e.g., Akiyama and Hirofuchi,
2017, Sasongko et al., 2023, Miksits et al., 2024).

Over time, a large range of sophisticated performance tools
have been developed that facilitate collection of performance-
related observables and its analysis. Examples for open-source
solutions include HPCToolkit (Adhianto et al., 2010), which has
been mainly developed in the US, as well as various tools developed
and supported mainly in Europe like PARAVER (Pillet et al., 1995),
Scalasca (Geimer et al., 2010), and Vampir (Knüpfer et al., 2008).
For a very recent overview over some of these tools, see (Wylie et al.,
2025).

Our work can also be seen in the context of making the use of
existing tools easier and/or more productive. This includes efforts
towards more advanced visualisation capabilities and interactivity
(see, e.g., Vavrik et al., 2025). Another effort in this direction
aimed at integrating such tools into Jupyter notebooks, mainly for
educational purposes (Oden et al., 2024).

Another important class of performance tools used for HPC are
static code analysis tools. A few examples are llvm-mca, which is
widely available as it is part of the LLVM compiler infrastructure,
MAQAO (Valensi et al., 2019), one of the older but still actively
developed tools, and OSACA (Laukemann et al., 2018). Both
llvm-mca and OSACA are also conveniently available through the
Compiler Explorer service.1

The advanced visualisation capabilities as well as various
analysis capabilities, which aim to guide application developers or
performance engineers, that are provided by the tools listed above,
are to the best of our knowledge not available for cycle-accurate,
processor-level simulation tools. This work on laying a basis for
closing this gap based on the gem5 simulator.

The gem5 simulator is also an open-source tool (Binkert et al.,
2011; Lowe-Power et al., 2020). It has developed into a popular tools
for computer architecture research, which supports processing
hardware at a cycle-level. It supports different ISAs including x86,
Arm, and RISC-V. gem5 has become an important co-design tool
in the context of the development of HPC processor technology. An
example is the design of the A64FX processor (Kodama et al., 2019),
where it was also used for early porting of computational kernels
using the newly introduced SVE instructions. Within the European
Processor Initiative’s (EPI’s) projects, the gem5 simulator together

1 https://godbolt.org/

FIGURE 1

gem5 sampling methods over a ROI with time interval T. (a) The

current aggregated event sampling over the whole ROI. (b)

Time-binned sampling, where events are sampled over smaller

time-bins of fixed size.

with other simulators was used for design space explorations
(Zaourar et al., 2021). More recently, Domke et al. (2023) used
gem5-based models for exploring processor design concepts for
processor designs for future high-end HPC systems.

There have been various efforts to create reliable models for
different core architectures that are validated on real hardware.
Walker et al. (2018) consider several simpler Arm cores and found
(after some fixes) an average deviation for the considered workload
of about 10%. Nassyr and Pleiter (2024) focussed on dgemmmicro-
kernels on different Arm-based processor architectures and found
in a few cases large discrepancies of up to 40%. Other work did
compare performance results for HPC application benchmarks,
e.g., (Brank and Pleiter, 2023; Brank, 2023) obtained on real
hardware and matching gem5 models. They report a similar level
of accuracy overall, but observed accuracy variability depending on
the considered observable.

3 Time-binned event statistics and
code region detection and labelling
for gem5

In order for gem5 to become a useful tool for performance
engineering, it needs to be able to profile performance over time,
and identify which code was being executed. For this purpose, we
introduce in this work the following functionality to gem5:

1. Support for time-binned event counters, and
2. Automatic labelling of executed code routines (code regions)

As discussed in Section 1, it is common practice to define
Regions of Interest (ROIs) for the benchmarked application to
keep the amount of data that is collected during a simulation
manageable. Statistical data is only collected within the ROI, and
counters are reset after each ROI iteration. In the case of gem5,
defining a ROI requires code instrumentation and linking to the
gem5 m5 help library.

The events are then sampled over the execution period
T of the ROI, as shown in Figure 1a. But the length of

Frontiers inHighPerformanceComputing 03 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1669101
https://godbolt.org/
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Falquez et al. 10.3389/fhpcp.2025.1669101

FIGURE 2

GROMACS: average number of committed instructions (top and middle) and corresponding code regions (bottom). Committed instructions are

labelled by instruction type and commit rate average. The plot was produced with mw = 20.

period T might not offer enough granularity to detect different
execution phases within the ROI, which can be critical for
performance analysis. In this work, we implement time-binned
event counters for gem5, as shown in Figure 1b. Events are
aggregated over time bins Bi of fixed length TB, producing
a sequence of event counts per bin. This provides finer
temporal resolution and improves the ability to detect distinct
execution phases.

The time-binned counter infrastructure implemented in
gem5 allows for event frequency sampling. The sampling
of instruction execution frequency leads to a method
for automatic labelling of executed code regions. Code
regions are contiguous instruction sequences corresponding
to specific routines in the application source code.
Detecting and correctly labelling executed code regions
is essential for attributing execution phases to individual
executed routines.

In the following sections, we describe these improvements in
more detail. Section 3.1 describes the implementation of time-
binned statistics. Section 3.3 describes the code region detection
and labelling.

3.1 Time-binned event statistics

For each ROI, we partition the execution timeline into fixed
length intervals, referred to as time bins B0,B1,B2, . . ., each of
duration TB. This binning increases the temporal resolution of
event sampling and improves the sensitivity of execution phase
detection. If an event E occurs at time t then counter for bin Bi
with i = ⌊ t

TB
⌋ is updated. Figure 1 illustrates the difference between

sampling over the entire ROI, and sampling over time bins Bi.
The number of bins is dynamically reallocated as needed during
runtime. An event E can be, e.g., the commit of an instruction I.
Whenever such an event occurs at a time t with iTB ≤ t < (i+1)TB,
the corresponding counter N(E)

i is incremented.
Aggregating the counters in this way makes it easier to visually

detect computational phases. As computational phases, we define
time periods with particular characteristics, e.g. the continuous
high occurrence rate of particular events. As an example, consider
Figure 2 where results for the molecular-dynamics application
GROMACS is shown. The top panel shows different phases that are
characterised by a high rate of vector load and store instructions as
well as SIMD Floating Point instructions.

Frontiers inHighPerformanceComputing 04 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1669101
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Falquez et al. 10.3389/fhpcp.2025.1669101

Input: List (Li) of label sets Li per time bin i

Parameters: maximum gap length mg, minimum range

length mf, neighbouring merge gap mj,

percentage merge gap mpc

Output: List of merged and filtered labelled

ranges

1 Step 1: Run-length encode label-sets;

2 Normalize each label-set Li (sort + join) to a

single label string;

3 Compress consecutive identical label-sets into

(length,label) segments;

4 Step 2: Smooth small empty gaps;

5 foreach segment do

6 if label is empty and length < mg then

7 merge with previous segment;

8 end

9 else

10 keep segment;

11 end

12 end

13 Step 3: Merge identical neighbours;

14 foreach consecutive pair of segments do

15 if labels are equal then

16 merge into a single segment;

17 end

18 end

19 Step 4: Convert lengths to ranges;

20 Starting at index 0, map each segment length to a

range (start,end);

21 Associate each range with its label;

22 Step 5: Filter short ranges;

23 Remove all ranges with (end− start) ≤ mf;

24 Step 6: Join neighbouring same-label ranges;

25 foreach consecutive pair of ranges do

26 if gap < mj and labels are equal then

27 merge into a single spanning range;

28 end

29 end

30 Step 7: Remove empty labels;

31 Discard all ranges with empty label;

32 Step 8: Aggressive percentage-based merge;

33 m′j ← ⌊mpc· last range end ⌋;

34 Re-run Step 6 with merge distance m′j;

35 return Final list of filtered and merged labelled

ranges (label,start,end);

Algorithm 1. Code region range generation from list of function label

sets.

Next, we determine for each time bin Bi a set Fi of the M most
frequently occurring events, where Fi = {Ei,0,Ei,1,Ei,2, . . . ,Ei,M−1}.

TABLE 1 Linux system used for gem5 full system simulation.

Distribution Debian

Version Testing

Linux Kernel 5.15.68

GCC 14.2.0

GLIBC 2.40

TABLE 2 gem5 simulation parameters used for GROMACS benchmarks.

CPU ARM64

Frontend width 8 instructions

Backend width 16 instructions

ROB 256

FP SIMD latency 2–8 cycles

Clock frequency 2.6GHz

SVE operand width 256bit

#SVE pipelines 2

#CPUs 2

#SLCs 2

L1D/L1I cache 64 kiB, Stride prefetcher

L2 cache 256 kiB, Tagged prefetcher

SLC 2048 kiB

#memory channels 4

Memory model DDR5

Memory BW per channel 25641MBs−1

An event Ei,j is ranked higher if N
(Ei,j)
i > N

(Ei,j+1)
i . In the case of

N
(Ei,j)
i = N

(Ei,j+1)
i the event that occurs earlier is ranked higher.

When sampling events over smaller time bins, the measured
time evolution can exhibit stochastic fluctuations. To reduce noise
and present a clearer signal in the plots, we apply the median filter
implementation provided by the scipy Python package (Virtanen
et al., 2020). The filter replaces the value at each bin with the
median over a sliding window of width mw. The filter suppresses
outliers while preserving sharp changes. The value of mw is chosen
in each case to improve the readability of the plots, not to alter
the underlying measurements, and is always orders of magnitude
smaller than the ROI durationmwTB≪T. The specific value ofmw

for each time-binned statistics plot is reported in its description.

3.2 Code region detection and labelling

To detect and label code regions, the instructions of the
executable are grouped according to the function entry point label
lj. This is implemented by parsing the output of the objdump
tool from the GNU Binutils collection. Let Sj be the set of
instructions that belong to label lj and mi,j = |Fi ∩ Sj| the number
of instructions that appear both in Fi and Sj. For this number of
matching instructions we have 0 ≤ mi,j ≤ M. By introducing a

Frontiers inHighPerformanceComputing 05 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1669101
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Falquez et al. 10.3389/fhpcp.2025.1669101

FIGURE 3

GROMACS: average number of instructions committed per cycle (top), instructions stalled in the IQ (middle), and instructions waiting for data

dependencies to be resolved. The plot was produced with mw = 200.

threshold value mt , the set of labels associated to a time bin Bi can
be defined as Li = {lj|mt ≤ mi,j}. As shown in Listing Algorithm 1,
the label sequence (Li) can be converted to a list of (start, end) time
ranges labelled by the executed function (or list of functions). These
identified code region ranges describe a series of simply connected
segments which can be mapped to the time-binned event counters.
The code region range generation is parametrized by a small set
of threshold lengths, determining the merging and filtering of
identified segments. We set these values heuristically by inspecting
the result and selecting the smallest thresholds that remove obvious
noise while preserving continuous segments. In the following work
we useM = 5, mt = 5, mg = 3, mf = 5, mj = 5, mpc = 0.01. The
time bin width is TB = 5000 cycles.

3.3 gem5 model support

The time-binned counters as implemented are derived from the
Stat base class from which all other gem5 statistic counters are
derived, and can be used as a drop-in replacement. In the following
work, we have added time-binned event and frequency counters for
gem5 out-of-order CPU (O3CPU) model, Classic/Ruby cache and

Simple/DRAM memory controller events. Specific event counters
will be discussed in the sections below.

The time-binned statistics integrated into the various models
are ISA-independent and can be used with any gem5 supported
ISA, provided that the underlying model supports the ISA as
well. In this work, we restrict our simulations to the 64-bit Arm
architecture, but we plan to extend our results to other gem5
supported ISAs in the future.

4 Performance issues detection

In this section, we introduce a selected set of performance issues
that can be detected with the help of our enhanced version of the
gem5 simulator.

4.1 Sensitivity to instruction data
dependencies

In various cases, performance is limited by the throughput of
instructions. This can have different reasons. Complete filling of

Frontiers inHighPerformanceComputing 06 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1669101
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Falquez et al. 10.3389/fhpcp.2025.1669101

TABLE 3 gem5 simulation parameters used for the DD-αAMG

benchmarks.

CPU ARM64

Frontend width 8 instructions

Backend width 15 instructions

ROB 256

FMLA latency 2cycles

Clock frequency 2.6GHz

SVE operand width 256bit

#SVE pipelines 2

#CPUs 2

#SLCs 2

L1D/L1I cache 64 kiB, No Prefetcher

L2 cache 1 MiB, No Prefetcher

SLC 2 MiB

#memory channels 4

Memory model DDR5

Memory BW per channel 25641MBs−1

the micro-architecture’s front-end pipeline or full utilisation of the
relevant instruction pipelines are the most easy to detect because
typical processor architectures do provide suitable hardware
performance counters. More difficult to detect cases are caused
by instruction dependencies. More specifically, we consider the
case of already fetched instructions that cannot be issued as they
are stalled waiting for operands generated by other instructions
that are currently being executed. The impact of this dependency
can vary depending on the depth of the execution pipelines and,
therefore, result in unexpectedly low performance when running
an application on different processor architectures.

Dispatched instructions are allocated to an IQ, where each
instruction waits until all its operand dependencies are available.
Let N(W)

i be the average number of instructions of type i = integer
arithmetics, floating-point arithmetics, . . . waiting in the IQ for
data dependencies to resolve. These instruction becomes ready to
be issued once all its data dependencies have been resolved. Ready
instructions are issued to available execution units. If no execution
units are available, the instruction stalls until the next cycle. Let the
average number of stalled instructions due to busy execution units
be N(S)

i .
Consider a compute bound kernel loop running on an

architecture with effective pipeline depth di for instructions of type
i. If an application is ported to a processor architecture with a
deeper pipeline, i.e., larger di, then the probability of instructions in
the IQ waiting for data dependencies to resolve increases, i.e., N(W)

i

likely becomes larger. At the same time, the pressure on the pipeline
decreases, i.e., N(S)

i becomes smaller and, more importantly, the
pipeline utilisation and, therefore, performance reduces.

To detect this specific scenario, we have added event counters
for both N

(W)
i and N

(S)
i to gem5. The event counter is able to

differentiate between different instruction classes.

Input: φ: rl block vectors of dimension b× vl, ψ:

a block vector of dimension b× vl, vl,rl,b

Output: ρ: a block vector of size b× rl

1 ρ ← 0;

2 for i← 0 to vl− 1 do

3 for j← 0 to rl do

4 for k← 0 to b− 1 do

5 ρ[b× j+ k]+ = φ[j][i× b+ k] · ψ[i× b+ k];

6 end

7 end

8 end

9 return ρ

Algorithm 2. Multiple Inner Product

TABLE 4 DD-αAMG: performance of the multiple inner-product kernel

with varying blocking sizes b taking vl = 49152 and rl = 5.

b MemRd MemWr L1d
access

E�ective
mem.

Performance

(×106 · b) (×105 · b) (×105) bandwidth
(×108)

(flop/cycle)

1 1.2 3.2 7.2 6.0 0.37

2 4.1 3.3 8.3 8.1 0.34

4 8.3 2.4 9.8 15.2 0.65

8 16.6 2.2 39.7 9.8 0.42

16 33.1 2.4 41.1 18.8 0.84

32 66.2 3.2 89.1 20.0 0.89

In Section 5.1, we will describe how both counters can be
used to identify performance issues caused by instruction data
dependencies for a molecular-dynamics application.

4.2 Memory Tra�c and memory controller
queue length

In HPC, the performance of many applications is limited by the
speed at which data can be exchanged with the external memory.
Monitoring data transfer over the memory bus can be limited by
need for privileged access to the hardware. This can, however,
be overcome by suitable services, e.g. the PAPI Performance Co-
Pilot (Barry et al., 2023). On various processor architectures, such
monitoring cannot be reliably done due to lack of suitable hardware
performance counters. As a result, often some modelling approach
is used (see, e.g., McCalpin, 2023 for the case of Intel Xeon Max
processors).

Another observable that helps to understand the interaction
with the external memory is the average filling of the queue for
pending requests at the memory controller.

The gem5 simulator already provides a rich set of event
counters for detailed characterization of memory traffic. Cache
controllers track accesses and line fills. Data transfer bandwidth
and latency can be precisely tracked at the memory controller level,

Frontiers inHighPerformanceComputing 07 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1669101
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Falquez et al. 10.3389/fhpcp.2025.1669101

FIGURE 4

DD-αAMG: commit rate for load instructions for di�erent blocking sizes b. The plot was produced with mw = 25.

FIGURE 5

DD-αAMG: memory read rate with varying blocking sizes, taking time bin width of 5,000 cycles. The plot was produced with mw = 25.

which is difficult to do on real hardware. Moreover, the average
filling of the memory controller queues are tracked.

In Section 5.2, we will describe how measuring the data
transferred via the memory controllers and the tracking of the
memory controller queues helps to analyse the performance of an
application from Lattice Quantum Chromodynamics (LQCD).

4.3 Long-latency instructions

The earlier highlighted issue of the performance impact of
dependencies between different instructions is particular crucial in
case of instructions that need long to complete. A typical example
for such instructions are load instructions. Modern processors
used in HPC systems typically support out-of-order instructions

execution, which can be exploited to hide the latency of, e.g.,
load instructions. However, such a mechanism cannot be easily
exploited if the long-latency instruction is conditioned.

Once detecting such cases, application developers or
performance engineers can try to address this, e.g. by moving the
long-latency instruction outside of the conditioned code section.
An example for how such a case can be resolved is shown in the
following code example:

void upda te (in t , i n t ∗) ;

void t e s t 1 (i n t cond1 , i n t i , i n t ∗p , i n t ∗q) {
/ / Cond i t i o n e d l o ad
i f (cond1 >0) {

i n t d = p [i] ;
f o r (i n t j =0 ; j <d ; j ++)

upda te (j , q) ;
}

}

Frontiers inHighPerformanceComputing 08 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1669101
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Falquez et al. 10.3389/fhpcp.2025.1669101

TABLE 5 gem5 simulation parameters used for the Ligra benchmarks.

CPU ARM64

Frontend width 8 instructions

Backend width 16 instructions

ROB 256

Clock frequency 2.6GHz

#CPUs 2

#SLCs 2

L1D/L1I cache 64kB, No Prefetcher

L2 cache 512kB, No Prefetcher

SLC 1MB

#memory channels 4

Memory model gem5 Simple memory model

Memory BW per channel 40 GBs−1

void t e s t 2 (i n t cond1 , i n t i , i n t ∗p , i n t ∗q) {
/ / Uncond i t i on ed l o ad but c o n d i t i o n e d u s e
i n t d = p [i] ;
i f (cond1 >0 && d > 0) {

f o r (i n t j =0 ; j <d ; j ++)
upda te (j , q) ;

}
}

The gem5 simulator can help to detect such situations by
measuring the instruction squashing rate. Squashed instructions
are instructions that have either already been or are to be
speculatively executed and that need to be discarded because of
miss-speculation.

In Section 5.3, we will describe how this mechanism could
be successfully used to improve a framework for graph-based
algorithms, including Breadth Search First (BFS).

5 Case studies

In this section, we document a number of case studies to
demonstrate how to perform the analysis previously presented.
The codes considered in this section are representative for a broad
range of applications that are widely used on HPC systems. This
includes a molecular-dynamics application (see, Section 5.1), which
is one of the few classes of applications where the performance
of relevant computational kernels are bound by the throughput
of floating-point operations. For many stencil-type applications,
including LQCD simulation applications (see, Section 5.2), the
performance is on the other hand typically memory bandwidth
limited. Furthermore, the performance of graph-based algorithms
(see, Section 5.3) is typically limited by the performance of the
memory subsystem. For these algorithms, control flow andmemory
access patterns are significantly less regular compared to the stencil
application considered here.

For the sake of showing some case studies, we use a single,
gem5-based simulation model. It represents the behaviour of a
processor with a single Arm Neoverse v2 core supporting SVE
instructions. This core is meanwhile used by different processor
solution providers, including NVIDIA in its Grace processor. The
software setup, which has been used, is documented in Table 1.

5.1 Molecular dynamics

GROMACS (Abraham et al., 2015) is a very widely used
package to perform molecular dynamics simulations. It is designed
to simulate systems comprising hundreds to millions of particles
based on the Newtonian equations of motion. The application has
a dedicated back-end for leveraging SIMD instructions. The most
computationally expensive part of simulations is the computation
of the non-bonded interactions, on which we focus here by
using a dedicated benchmark for performance evaluation. For
this kernel, GROMACS provides two different SIMD-optimised
implementations, called 4×M and 2×MM. There is a specialised
version for Arm’s SVE ISA that leverages the Arm C Language
Extensions (ACLE) with operand width fixed at compile time.

We have used gem5 to profile a recent version of GROMACS
(v2024.5) using the solvation free energy benchmark benchSTI
developed at the Max Planck Institute for Multidisciplinary
Sciences.2 For the solvation free energy benchmark benchSTI the
main numerical kernel is gmx::nbnxmKernelSimd. The gem5
architecture parameters used for the simulation are described in
Table 2.

Figure 2 shows the IQ commit rate for load and store
instructions (upper panel) as well and floating-point, integer
arithmetic and branching instructions (middle panel). The bottom
panel of Figure 2 shows the identified executed code regions for
each time bin. We see from the figure that the main numerical
kernel gmx::nbnxmKernelSimd achieves a throughput of
around 1.7 SIMD floating-point instructions, i.e. almost fully utilise
the available 2 pipelines.

The performance sensitivity of GROMACS to long execution
pipelines was already identified by Brank (2023). Brank verified
using gem5 that by increasing the effective execution latency,
GROMACS performance drops significantly compared to shorter
execution lengths, and suggests that this sensitivity is due to
instruction data dependencies.

Here we want to show how gem5 can be used to easily identify
such situations. As discussed in Section 4.1, we have to consider the
following counters:

1. N(W)
FP SIMD, the average number of instructions in the IQ waiting

its data dependencies to resolve.
2. N(S)

FP SIMD, the average number of stalled instructions due to busy
execution units.

The results from gem5 simulations are shown in Figure 3.
The first row of Figure 3 shows how the average commit rate of
FP SIMD instructions decreases for increasing SIMD execution
latency. The second row shows the average number of stalled
instructions due to busy execution units, N(S)

FP SIMD. We see that

for latencies=2,4 cycles, N(S)
FP SIMD > 1, while N

(S)
FP SIMD < 1 for

latencies=6,8 cycles. The third row shows the average number of
SIMDFP instructions at the IQwaiting for the data dependencies to
resolved. For all latencies, this value remains above N(W)

FP SIMD > 30
during the main 3 kernel blocks.

We can conclude from these results that for an effective
execution latency ≥4, the GROMACS vectorized kernel becomes
sensitive to data dependencies. The average number of stalled

2 https://www.mpinat.mpg.de/grubmueller/bench

Frontiers inHighPerformanceComputing 09 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1669101
https://www.mpinat.mpg.de/grubmueller/bench
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Falquez et al. 10.3389/fhpcp.2025.1669101

FIGURE 6

Ligra: Instruction commit rates (top), squashed instruction rate (middle), and code regions (bottom). The plot was produced with mw = 40.

instructions drops below 1, which signals the decrease in the rate
of data dependency resolution, while the number of instructions
waiting at the IQ for missing dependencies remains large, verifying
that the frontend keeps sending instructions to the IQ at sufficient
rate.

5.2 Lattice quantum chromodynamics

LQCD is a specific formulation of the theory of strong
interactions that facilitates numerical simulations, which is often
the only mean of computing fundamental physical quantities
from first principles. Typical LQCD simulations spend most of
the their computational efforts on solving particular linear sets
of equations. For this case study, we focus on a kernel from a
recently extended version3 of the DD-αAMG solver framework
(Frommer et al., 2014). With this extension, support for solving
the linear equations with multiple right-hand sides (RHSs) is
added (Birk and Frommer, 2012). Using multiple RHSs has several
benefits. Firstly, data locality is potentially improved resulting in
a higher arithmetic intensity. Secondly, in innermost loops small
matrix-matrix multiplications need to be performed, for which new

3 https://git.uni-wuppertal.de/strebel/DDalphaAMG-Cpp

instructions like SME can be used. Lastly, SIMD instructions can be
exploited as the same arithmetic can be performed to all RHSs.

However, the optimization of multiple RHSs did not lead
to the expected performance improvements on real hardware.
Although the arithmetic intensity increases with the blocking size
(i.e., the number of RHSs), the observed performance did not scale
proportionally.

With the available performance counters of the A64FX
processor on Ookami (Calder et al., 2023), we have identified that
the effective memory bandwidth varied across different blocking
sizes. This variation directly impacts performance since LQCD
solvers are predominantly memory-bound. Since it is almost
impossible to extract comprehensive information for the cache and
memory controllers from real hardware, we turn to an analysis
using gem5 with the parameters shown in Table 3.

For this case study, we consider a read-intensive kernel with
consistent arithmetic intensity to eliminate the known factors that
impact performance. This kernel is also a bottleneck in the iterative
solver GMRES of DD-αAMG, it computes multiple inner products
of complex vectors:

ρi,k ← φi,j,k · ψj,k , (1)

Frontiers inHighPerformanceComputing 10 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1669101
https://git.uni-wuppertal.de/strebel/DDalphaAMG-Cpp
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Falquez et al. 10.3389/fhpcp.2025.1669101

Input: Graph G = (V,E), active vertex set U, edge

function F, condition function C

Output: Set Out of updated vertices

1 Out← ∅

2 for i ∈ {0, . . ., |V| − 1} do

3 if C(i) == 1 then

4 d← deg−(i)

5 for j ∈ {0, . . .,d} do

6 if ngh−(i,j) ∈ U and F(ngh−(i,j),i) == 1

then

7 Add i to Out

8 if C(i) = 0 then

9 break

10 end

11 end

12 end

13 end

14 end

15 return Out

Algorithm 3. EdgeMapDense as implemented in Ligra, see Shun and

Blelloch (2013).

where k loops over the blocking size b, which is assumed to be
known at compile time. The indices i (0 ≤ i < vl) and j (0 ≤ j ≤ rl)
iterate over the vector length vl and the GMRES restart length rl,
respectively. The two lengths are provided only at runtime.

The implementation of the kernel is specified in Algorithm 2.
We also implement a benchmark driver to repeatedly execute the
kernel and use gem5 to collect operation counts and memory
traffic data. As performancemetric the throughput of floating-point
operations bfp in units of flop/cycle is used. The number of floating-
point operations is derived from an analysis of Algorithm 2: 8 · b ·
vl · (rl+ 1), where the 8 corresponds to a complex multiply add.

The results in Table 4 show that larger blocking sizes enhance
kernel performance, mirroring the trends observed on real
hardware. For b = 1, 2, the kernel performs poorly which is likely
cause by vectorization challenges. Through previous static analysis,
we observe that the compiler vectorizes both the loop over rl and
the loop over b. This results in combinations of SIMD (both SVE
and NEON) and floating-point instructions being generated plus
additional loads and stores.

We observed an unexpected performance drop at b = 8. Unlike
for the other values of b, the compiler does not vectorize the code
in this case, and scalar load instructions are generated instead.
Figure 4 shows that the rate of committed load instructions in the
b = 8 case is slightly reduced. More importantly, Figure 5 shows
that the read requests rate is reduced by a factor of two.

5.3 Breadth first search

BFS is a popular graph algorithm, which is, among others, used
for benchmarking HPC systems for a listing on the Graph500 list.
There are different ways on how the algorithm can be implemented.

Input: Graph G = (V,E), active vertex set U, edge

function F, control function C

Output: Set Out of updated vertices

1 Out← ∅

2 for i ∈ {0, . . ., |V| − 1} do

3 d← deg−(i)

4 if C(i) == 1 then

5 for j ∈ {0, . . .,d} do

6 if ngh−(i,j) ∈ U and F(ngh−(i,j),i) == 1

then

7 Add i to Out

8 if C(i) = 0 then

9 break

10 end

11 end

12 end

13 end

14 end

15 return Out

Algorithm 4. EdgeMapDense with out of branch load.

TABLE 6 Ligra: performance comparison on AWS Graviton 4 (baseline)

and Ligra with modified EdgeMapDense across N = 10 runs.

Graph
scale

Ligra Ligra with
modified

EdgeMapDense

Speed-up

21 0.0394± 0.0001 0.0379± 0.0002 1.04

22 0.0821± 0.0003 0.0773± 0.0004 1.06

23 0.1700± 0.0000 0.1582± 0.0005 1.07

24 0.3398± 0.0011 0.3238± 0.0008 1.05

Execution time in seconds.

The most popular implementations are based on graph
traversing. Based on a representation of the graph as a list of
vertices and edges, efficient algorithms have been engineered for
how to traverse the graph without visiting vertices twice. The
implementation of these algorithms is based on queues and require
in the parallel case atomic updates. For this case study, we consider
Ligra (Shun and Blelloch, 2013). This framework implements edge
visitors for both sparse and dense graphs.

We profile the Ligra BFS implementation’s single-thread
performance, solving a Kronecker graph of scale 16 using gem5.
The architecture parameters used are documented in Table 5. The
results are shown in Figure 6. The top panel shows the commit
rate for scalar memory load and store, integer arithmetic, and
branching instructions. Even though the simulated processor core
has four integer execution units available, the performance profile
shows poor execution unit utilization, with an average commit
rate that is below 1 most of the time. Only the helper routine
pbbs::sliced_for shows an integer commit rate close to 3.

The middle panel shows the rate of squashed instructions.
Using our gem5modifications, we were able to detect themain code
locations causing squashing with its high penalty costs. Most of the

Frontiers inHighPerformanceComputing 11 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1669101
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Falquez et al. 10.3389/fhpcp.2025.1669101

branch mispredictions responsible for the high squashing rate are
found in the EdgeMapDense routine, listed in Algorithm 3.

Lines 3, 5 and 6 each cause about a third of the branch
mispredictions. Due to the irregular nature and sparsity of the
graph, the branch predictor has a difficult job anticipating branch
outcomes. This also affects a load at line 4. By moving the load
instruction outside of the branch, this load can be initiated earlier.
The decision is a trade-off, as unnecessary data transfers may occur.

In order to test this hypothesis, EdgeMapDense is
reimplemented as shown in Algorithm 4. Here the load is
moved outside the test of C(i). Now each loop iteration will cause a
load, but it is initiated earlier.

We have benchmarked both implementations with a recent
version of Ligra and Kronecker graphs of scale 21..24 on an AWS
Graviton 4 bare-metal node. The BFS solver runs single-threaded,
and we present the time to solution in seconds as reported by Ligra.
The results are shown in Table 6. We see a speed-up of around 5%
for all investigated problem sizes.

6 Conclusion

In this paper, we presented a conceptual approach towards
making the gem5 simulator a suitable tool for application
developers and performance engineers. The approach is potentially
also of benefit for compiler engineers and other system software
components, e.g. the operating system. As a first step, we
developed a tool that enables automatic procedure block detection.
Furthermore, we showed how our enhanced version of the gem5
simulator can be used to address a selected set of performance
issues. These results have been applied in the context of different
case studies. For these case studies, we considered different kernels
of applications that represent a range of HPC applications.

The benefit of the proposed approach is that gem5 itself
already provides a large and diverse set of statistics that can help
to improve the often difficult to uncover interplay between the
observed performance of an application, and the complex hardware
architecture on which it is being executed. There is a lot of freedom
to add further event monitors to gem5 as well as more complex
analysis mechanisms. In this paper, only a few examples have been
shown.

There are, however, a number of limitations to this approach.
While the performance of gem5 allows for simulation of complex
application kernels, simulations of such kernels on a larger number
of cores or even a full many-core processor architecture is likely
to be prohibitively expensive. Single-core simulations are about
5-6 orders of magnitude slower compared to execution on real
hardware. Distributed frameworks like COSSIM (Tampouratzis
and Papaefstathiou, 2024) may help to mitigate this challenge.
Furthermore, the use of gem5 to optimise code for specific
processor solutions depends on the availability of validated
gem5 configurations. At this point, no library for ready-to-use
configurations is available. Finally, while various studies have
shown good agreement between results obtained on real hardware
and corresponding gem5 simulations, the discrepancies may not
be good enough for all cases. There is also a risk of mismatches
between the origin, i.e. a specific processor solution, and the model,
i.e. a gem5 setup, which only show up under specific circumstances.

For the future, we plan to extend the list of performance
issues for which automatic detection can be integrated into gem5.
Furthermore, we aim for further case studies to further explore the
benefits and disadvantages of the proposed approach.

Data availability statement

The modified version of the gem5 simulator used for this
article has been made available at https://github.com/FZJ-JSC/
gem5-tbstats.

Author contributions

CF: Writing – original draft. SL: Writing – original draft. NH:
Writing – review & editing. ES: Writing – review & editing. DP:
Writing – original draft.

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. Funding for
parts of this work has been received from the European Union’s
HORIZON MSCA Doctoral Networks programme AQTIVATE
under Grant Agreement No. 101072344 as well as the EuroHPC
Joint Undertaking under Grant Agreements 101034126 (The
European PILOT) and 101036168 (EPI-SGA2).

Acknowledgments

We want to thank the Open Edge and HPC Initiative
for access to an Arm-based development environment as well
as computational resources for gem5 simulations through the
HAICGU cluster at the Goethe University of Frankfurt. Finally, we
would like to acknowledge the feedback from the reviewers, which
led to various improvements of this manuscript.

Conflict of interest

The author(s) declared that this work was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Correction note

A correction has been made to this article. Details can be found
at: 10.3389/fhpcp.2025.1763887.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Frontiers inHighPerformanceComputing 12 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1669101
https://github.com/FZJ-JSC/gem5-tbstats
https://github.com/FZJ-JSC/gem5-tbstats
https://doi.org/10.3389/fhpcp.2025.1763887
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Falquez et al. 10.3389/fhpcp.2025.1669101

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., et al. (2015).
GROMACS: high performance molecular simulations through multi-level parallelism
from laptops to supercomputers. SoftwareX 1, 19–25. doi: 10.1016/j.softx.2015.06.001

Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,
J., et al. (2010). HPCTOOLKIT: tools for performance analysis of optimized parallel
programs. Concurr. Computat.: Pract. Exp. 22, 685–701. doi: 10.1002/cpe.1553

Akiyama, S., and Hirofuchi, T. (2017). “Quantitative evaluation of Intel PEBS
overhead for online system-noise analysis,” in Proceedings of the 7th International
Workshop on Runtime and Operating Systems for Supercomputers ROSS 2017, ROSS
2017 (New York, NY: Association for Computing Machinery).

Barry, D., Jagode, H., Danalis, A., and Dongarra, J. (2023). “Memory traffic
and complete application profiling with papi multi-component measurements,” in
2023 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW) (Melbourne: IEEE), 393–402.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A.,
et al. (2011). The gem5 simulator. SIGARCH Comput. Archit. News 39, 1–7.
doi: 10.1145/2024716.2024718

Birk, S., and Frommer, A. (2012). A CG method for multiple right hand
sides and multiple shifts in lattice QCD calculations. PoS, Lattice 2011:027.
doi: 10.22323/1.139.0027

Brank, B. (2023). Vector length agnostic SIMD parallelism on modern processor
architectures with the focus on Arm’s SVE (PhD thesis). Bergische Universität
Wuppertal, North Rhine-Westphalia, Germany.

Brank, B., and Pleiter, D. (2023). “CPU architecture modelling and co-design,” in
High Performance Computing, eds. A. Bhatele, J. Hammond, M. Baboulin, and C. Kruse
(Cham: Springer).

Browne, S., Dongarra, J., Garner, N., Ho, G., and Mucci, P. (2000). A portable
programming interface for performance evaluation on modern processors. Int. J. High
Perform. Comput. Appl. 14, 189–204. doi: 10.1177/109434200001400303

Calder, A. C., Siegmann, E., Feldman, C., Chheda, S., Smolarski, D. C.,
Swesty, F. D., et al. (2023). Ookami: An A64FX Computing Resource. arXiv.
doi: 10.48550/arXiv.2311.04259

De Melo, A. C. (2010). “The new linux ‘perf ’ tools,” in Slides from Linux Kongress,
18.

Domke, J., Vatai, E., Gerofi, B., Kodama, Y., Wahib, M., Podobas, A., et al. (2023).
At the locus of performance: quantifying the effects of copious 3D-stacked cache on
HPC workloads. ACM Trans. Archit. Code Optim. 20:4. doi: 10.1145/3629520

Falquez, C., Ho, N., Suarez, E., Schätzle, F., Portero, A., and Pleiter, D. (2025).
“gem5-dbc: a declarative benchmark configuration framework for architectural
exploration with gem5,” in , Presentation at the gem5Workshop at ISCA 2025. Available
online at: https://www.gem5.org/events/isca-2025

Frommer, A., Kahl, K., Krieg, S., Leder, B., and Rottmann, M. (2014). Adaptive
aggregation-based domain decomposition multigrid for the lattice wilson-dirac
operator. SIAM J. Scient. Comp. 36, A1581–A1608. doi: 10.1137/130919507

Geimer, M., Wolf, F., Wylie, B. J. N., Ábrahám, E., Becker, D., and Mohr, B.
(2010). The Scalasca performance toolset architecture. Concurr. Comp.: Pract. Exp. 22,
702–719. doi: 10.1002/cpe.1556

Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., et al.
(2008). “The vampir performance analysis tool-set,” in Tools for High Performance
Computing, eds. M. Resch, R. Keller, V. Himmler, B. Krammer, and A. Schulz (Berlin:
Springer), 139–155.

Kodama, Y., Odajima, T., Asato, A., and Sato, M. (2019). Evaluation of the RIKEN
Post-K Processor Simulator. arXiv. doi: 10.48550/arXiv.1904.06451

Laukemann, J., Hammer, J., Hofmann, J., Hager, G., and Wellein, G. (2018).
“Automated Instruction Stream Throughput Prediction for Intel and AMD
Microarchitectures.” in 2018 IEEE/ACM Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS), 121–131.

Lowe-Power, J, Ahmad, A., Armejach, A., Herrera, A., Roelke, A., Farmahini-
Farahani, A., Mondelli, A., et al. (2020). The gem5 Simulator: Version 20.0+.

McCalpin, J. D. (2023). “Bandwidth limits in the Intel Xeon Max (sapphire rapids
with HBM) processors,” in High Performance Computing, eds. A. Bienz, M. Weiland,
M. Baboulin, and C. Kruse (Cham: Springer Nature Switzerland), 403–413.

Miksits, S., Shi, R., Gokhale, M., Wahlgren, J., Schieffer, G., and Peng, I. (2024).
“Multi-level memory-centric profiling on ARM processors with ARM SPE,” in SC24-
W: Workshops of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 996–1005.

Nassyr, S., and Pleiter, D. (2024). “Exploring processor micro-architectures
optimised for BLAS3 micro-kernels,” in Euro-Par 2024: Parallel Processing, eds. J.
Carretero, S. Shende, J. Garcia-Blas, I. Brandic, K. Olcoz, and M. Schreiber Cham:
Springer Nature Switzerland, 47-61,

Oden, L., Nölp, K., and Brauner, P. (2024). “Integrating interactive performance
analysis in jupyter notebooks for parallel programming education,” in 2024 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
(San Francisco, CA: IEEE), 369–376.

Pillet, V., Labarta, J., Cortes, A., and Girona, S. (1995). “PARAVER: A tool to
visualize and analyze parallel code,” in World Occam and Transputer User Group
Technical Meeting (Manchester: IOS Press), 17.

Sasongko, M. A., Chabbi, M., Kelly, P. H. J., and Unat, D. (2023). Precise
event sampling on AMD versus Intel: quantitative and qualitative comparison.
IEEE Trans. Parallel Distrib. Syst. 34, 1594–1608. doi: 10.1109/TPDS.2023.3257
105

Shun, J., and Blelloch, G. E. (2013). “Ligra: a lightweight graph processing
framework for shared memory,” in Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2013 (New York, NY:
Association for Computing Machinery), 135–146.

Tampouratzis, N., and Papaefstathiou, I. (2024). “Fast, accurate and distributed
simulation of novel HPC systems incorporating ARM and RISC-V CPUs,” in
Proceedings of the 33rd International Symposium on High-Performance Parallel and
Distributed Computing, HPDC 2024 (New York, NY: Association for Computing
Machinery), 389–392.

Valensi, C., Jalby, W., Tribalat, M., Oseret, E., Ibnamar, S., and Camus, K.
(2019). “Using MAQAO to analyse and optimise an application,” in 2019 IEEE 27th
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS) (Rennes: IEEE), 423–424.

Vavrik, R., Panoc, T., Garcia-Gasulla, M., Wylie, B. J. N., and Mohr, B. (2025).
“POP3: advancing HPC performance and productivity: invited paper,” in Proceedings
of the 22nd ACM International Conference on Computing Frontiers: Workshops and
Special Sessions, CF 2025 Companion (New York, NY: Association for Computing
Machinery), 157–162.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat. Methods 17, 261–272. doi: 10.1038/s41592-020-0772-5

Walker, M., Bischoff, S., Diestelhorst, S., Merrett, G., and Al-Hashimi, B.
(2018). “Hardware-validated CPU performance and energy modelling,” in 2018 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS)
(San Francisco, CA: IEEE), 44–53.

Wylie, B. J., Giménez, J., Feld, C., Geimer, M., Llort, G., Mendez, S., et al.
(2025). 15+ years of joint parallel application performance analysis/tools training with
Scalasca/Score-P and Paraver/Extrae toolsets. Fut. Generat. Comp. Syst. 162:107472.
doi: 10.1016/j.future.2024.07.050

Zaourar, L., Benazouz, M., Mouhagir, A., Jebali, F., Sassolas, T., Weill, J.-
C., et al. (2021). “Multilevel simulation-based co-design of next generation
HPC microprocessors,” in 2021 International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS) (St.
Louis, MO: IEEE), 18–29.

Frontiers inHighPerformanceComputing 13 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1669101
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1002/cpe.1553
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.22323/1.139.0027
https://doi.org/10.1177/109434200001400303
https://doi.org/10.48550/arXiv.2311.04259
https://doi.org/10.1145/3629520
https://www.gem5.org/events/isca-2025
https://doi.org/10.1137/130919507
https://doi.org/10.1002/cpe.1556
https://doi.org/10.48550/arXiv.1904.06451
https://doi.org/10.1109/TPDS.2023.3257105
https://doi.org/10.1038/s41592-020-0772-5
https://doi.org/10.1016/j.future.2024.07.050
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

	Processor simulation as a tool for performance engineering
	1 Introduction
	2 Related work
	3 Time-binned event statistics and code region detection and labelling for gem5
	3.1 Time-binned event statistics
	3.2 Code region detection and labelling
	3.3 gem5 model support

	4 Performance issues detection
	4.1 Sensitivity to instruction data dependencies
	4.2 Memory Traffic and memory controller queue length
	4.3 Long-latency instructions

	5 Case studies
	5.1 Molecular dynamics
	5.2 Lattice quantum chromodynamics
	5.3 Breadth first search

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Correction note
	Generative AI statement
	Publisher's note
	References

	Button2:
	Button3:
	Button4:
	Button5:
	Button6:
	Button7:

