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Improving 1/O phase predictions
in FT1O using hybrid
wavelet-Fourier analysis

Ahmad Tarraf* and Felix Wolf

Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany

With the growing complexity of I/O software stacks and the rise of data-
intensive workloads, optimizing I/O performance is essential for enhancing
overall system performance on HPC clusters. While many sophisticated 1/O
management approaches exist that try to alleviate 1/O contention, they often
rely on models that predict the future 1/O behavior of applications. Yet, these
models are often created from past execution runs and can be error-prone
due to 1/O variability. In this work, we propose an enhancement to an existing
tool that leverages frequency-based techniques to characterize I/O phase. We
explore methods to improve prediction accuracy by incorporating multiple
frequency components. Furthermore, by coupling the wavelet transformation
with the Fourier transformation, we enhance the precision of our predictions
while maintaining a compact and efficient behavioral characterization. We
demonstrate our approach using a deep learning benchmark executed on a
production cluster.
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1 Introduction

Modern HPC applications are increasingly becoming more I/O intensive with the
emergence of machine learning applications and data-intensive workflows. In light of
the emergence of such workloads (e.g., Al, big data analytics, and complex multi-step
workflows) running alongside future exascale applications, workloads are expected to
become increasingly data-intensive, leading to even less predictable I/O behavior and
access patterns in HPC, as depicted by Neuwirth and Paul (2021). Many applications spend
15%-40% of their execution time performing I/O, with a good probability that this value
even further increases in the future (Macedo et al., 2023; Patel et al., 2019, 2020). Depending
on the application, access patterns, data volumes, and parallelism of I/O operations can
vary significantly (Bez et al., 2024). In contrast, I/O profiling and characterization tools
still lack the ability to capture and analyze emerging HPC workloads (Neuwirth and Paul,
2021). Moreover, the landscape of scientific applications is rapidly changing in the era of
exascale computing, with trends toward more dynamic systems and applications (Tarraf
et al,, 2024¢) and concepts like modular supercomputing, which utilizes heterogeneous
resources to improve power efficiency, system utilization, and cluster scalability (Neuwirth,
2023). Indeed, characterizing the I/O behavior of an application is already challenging due
to well-known problems such as I/O variability, I/O bursts, and I/O contention (Wang
et al., 2004; Oral et al., 2014; Liu et al., 2016; Yu et al., 2020) and will likely become even
more difficult in the future.

01 frontiersin.org


https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://www.frontiersin.org/journals/high-performance-computing#editorial-board
https://doi.org/10.3389/fhpcp.2025.1638924
http://crossmark.crossref.org/dialog/?doi=10.3389/fhpcp.2025.1638924&domain=pdf&date_stamp=2026-02-04
mailto:ahmad.tarraf@tu-darmstadt.de
https://doi.org/10.3389/fhpcp.2025.1638924
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fhpcp.2025.1638924/full
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Tarraf and Wolf

Performance degradation and I/O contention are often
encountered when different jobs compete for shared resources,
such as I/O (Tarraf et al., 2024b; Liu et al., 2021; Patel et al., 2020).
HPC applications often exhibit alternating I/O and computational
phases. The I/O phases tend to be periodic, with dominating
write I/O operations (e.g., checkpointing) occurring in bursts
synchronously across several processes (Hu et al., 2016). Jobs that
periodically write can account for a quarter to a third of the node-
hours on large systems and for over a third of the total amount
of written data for all systems examined by Zanon Boito et al.
(2025). However, since modern applications can undergo several
phases, strictly periodic behavior is often only valid in specific
time segments.

Recent studies like Dorier et al. (2014); Jeannot et al. (2021);
Boito et al. (2023) revealed that knowledge of periodic I/O phases,
even when not perfectly precise, leads to good contention avoidance.
This motivated us to develop FTIO (Frequency Techniques for
I/O) (Tarraf et al, 2024a), which allows predicting periodic
I/O phases both online and offline. The tool combines signal
processing techniques with outlier detection methods to determine
the frequency of the I/O phases, along with metrics that gauge
the confidence in the results. This paper presents an approach to
improve the characterizations from FTIO. In particular, this paper
contributes by:

e Provides a hybrid approach that combines the discrete
Wavelet transform with the discrete Fourier transform to
improve the temporal characterization of I/O in HPC.

e Explores two signal processing techniques (filtering and
Fourier fitting) to further improve characterizations.

e Evaluating our solutions on a productive cluster and
demonstrating its applicability.

In what follows, we discuss related work (Section 2) and
present FTIO (Section 3). We then describe our new extensions
for improved characterization in Sections 4 and 5. Afterwards, we
evaluate the approach (Section 6) and provide a conclusion (Section
7).

2 Releated work

Many researchers have focused on characterizing and modeling
I/O in HPC including work by Liu et al. (2014); Bez et al. (2019);
Tang et al. (2014); McKenna et al. (2016); Wang et al. (2018);
Tseng et al. (2019); He et al. (2019); Li et al. (2019); Pavan et al.
(2019); Xie et al. (2019); Isakov et al. (2020); Xie et al. (2021); Kim
et al. (2023); Dorier et al. (2016). A large group of these relies on
past application or system logs like the works of Liu et al. (2014);
McKenna et al. (2016); Wang et al. (2018); He et al. (2019); Li et al.
(2019); Pavan et al. (2019); Xie et al. (2019); Isakov et al. (2020);
Xie et al. (2021); Kim et al. (2023). Yet, such information is often
not available. Several popular machine learning approaches have
been deployed, including neural networks (Bez et al., 2019; Tseng
etal., 2019), LSTMs (Li et al., 2019), decision trees (McKenna et al.,
2016), and pattern matching (Tang et al., 2014), among others.
While such approaches can provide good predictions, models
with high predictive accuracy are often black boxes and cannot
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be interpreted directly to explain I/O performance, as described
by Isakov et al. (2020). Moreover, such approaches require learning
phases that, aside from being expensive, rely on past information
that can be tainted by I/O variability.

Other approaches, like using context-free grammars (Dorier
et al., 2016), are particularly useful for cache management and I/O
prefetching (Dryden et al., 2021). On a higher level of abstraction,
some approaches characterize I/O access patterns using the notion
of I/O phases. For instance, Pavan et al. (2019) clusters jobs
with similar I/O behavior, while Liu et al. (2014) extracts an I/O
signature using grid clustering. Moving away from using system- or
application-dependent thresholds, FTIO Tarraf et al. (2024a) allows
predicting the period of the I/O phases at runtime using frequency
techniques coupled with outlier detection methods. In previous
work (Tarraf et al., 2024a), we demonstrated that, combined with
the I/O scheduler Set-10, FTIO enabled a 26% boost in system
utilization and a 56% reduction of I/O slowdown.

3 Background
3.1 Acquiring I/O information

FTIO supports a variety of file formats’ from different
tools, include Darshan (Snyder et al., 2016), recorder (Wang
et al, 2020), Metric Proxy (Besnard et al, 2024), TMIO
(Tarraf et al, 2024b), and others. Essentially, FTIO requires
the bandwidth over time (i.e., the signal). Based on these
two arrays, FTIO detects the period of the I/O phases either
at runtime (online) or after the jobs execution (offline). For
instance, TMIO, which is a C++ library that is compiled with
the application or simply preloaded (using LD_PRELOAD),
can provide traces online or offline. Consequently, FTIO can
characterize the temporal behavior based on these traces, both
online and offline. Note that TMIO also supports sending
Msgpack (MessagePack Developers, 2025) messages using
ZMQ (ZeroMQ Developers, 2025) over sockets, which avoids
creating an intermediate file. FTIO can characterize any
metric at any level. Internally, these metrics are overlapped
to obtain two arrays that describe the signal values and their
corresponding timestamps.

3.2 Extracting the period of the I/O phases

Using DFT, FTIO examines the behavior of a signal in the
frequency domain. However, this requires the signal to be sampled
at equal steps (i.e., fixed sampling rate T). Hence, FTIO samples
the signal x(¢) with a sampling frequency f; to obtain N = At -
fs samples:

{xn = x(n/fs) |n € [0,N)}

Afterwards, FTIO applies the DFT on the equally spaced
sequence X, to transform it into a sequence Xj of the same size (i.e.,

1 https://github.com/tuda- parallel/FTIO/blob/main/docs/file_formats.md
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k € [0,N)) in the frequency domain:

N-1
—Zﬂkvxi
X = E xpe N,
n=0

for the frequencies fy = % -fs. Considering that the time window
At is usually constant in most cases (i.e., when working offline
with an already collected trace), increasing f; results in more
components (i.e., N), but still with the same frequency resolution
(distance between two consecutive frequencies in the frequency
domain). As x, consists of purely real values for our purposes
(I/O signal), DFT is symmetric and only half the spectrum
is needed to reconstruct the original signal with the inverse
DFT (IDET):

N

2 2k
Xo+ 3 21Xy cos (% + arg(Xk)> (1)

k=1

1
XnZN

with the amplitude [X|
reconstructing the signal only requires half of the spectrum

and the phase arg(Xy). Hence,

(single-sided spectrum), such that the amplitude of the cosine
waves is multiplied by 2 and shifted upwards by the DC offset
Xp. FTIO utilizes the Fast Fourier Transform (FFT) algorithm,
which has a complexity of O(NlogN). Furthermore, it uses
the power spectrum (pr = %X%) to suppress noise from
small amplitude high frequency components. The spectrum
is normalized over the total power of the signal to ease
the next step of the analysis. Afterwards, FTIO extracts the
dominant frequency using one of the supported outlier detection
(default), DBSCAN,

forest, among others. The Z-score, for instance, reveals how

methods, including Z-score isolation
many standard deviations o a power pj is from the mean p of
all powers:
ekl — 1!
Zp = u (2)
o
To identify the dominant frequency f;, FTIO finds the

frequency candidates Dy that satisfy the following equation:
D = {fi | zx > 3 and z;/zmax > 0.8} (3)

A Z-score beyond 3 usually indicates an outlier (Kannan et al,
2015). Since several outliers might exist, we normalize the Z-score
to the largest Z-score zmax = maxy>;(zx) and compare this to
an 80% tolerance. Depending on the number of candidates, we
distinguish threecases:

o Single candidate (Dy = {fi}): The signal is periodic with
Ja = fi

o Two candidates (Dy = {fi,. f,}): fa is the one with the highest
power contribution. However, we have lower confidence in the
results.

e More than two candidates: The signal is not periodic, and there
is no dominant frequency.

FTIO ignores higher harmonic frequencies when candidates
are multiples of two, which indicates periodic I/O bursts. The
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tool provides a confidence ¢, and offers both online and offline
characterization with enhancements like time window adaptation,
among other options, as described in Tarraf et al. (2024a).

4 |Improving the temporal
characterization of I/O signals

As described in Section 3, FTIO provides the dominant
frequency to characterize the periodic behavior of I/O phases.
While this is sufficient in most cases, users might be interested
in characterizing the signal more accurately. For that, the tool
offers the option to further provide frequencies to enhance
characterizations as described Sections 4.1 and 4.2.

4.1 Signal reconstruction with multiple
frequencies

FTIO usually provides a single dominant frequency f; to
characterize the period of the I/O phases as described in Section
3. As Equation 1 indicates, the more frequency components are
used, the more accurate the description becomes. At the same
time, the complexity of the characterization is kept simple, as only
cosine waves are added. To demonstrate this, we executed HACC-
IO with 384 processes (4 nodes) on the Lichtenberg cluster (see
Section 6). We varied the number of extracted frequencies from
the analysis up to 10 (using the “-n” flag). As Figure 1 shows,
the more frequency components are used, the more accurate the
representation becomes.

FTIO prints the sorted cosine waves up to the specified limit
according to their amplitude. Furthermore, as shown in Figure 1,
it also provides the temporal characterizations as a sum of cosine
waves, according to Equation 1 up to the specified number of
components. To refine this description further, we extended FTIO
to use Fourier fitting as described next.

4.2 Fourier fitting

Fourier fitting approximates a function through a sum of
sinusoidal waves. Same as DFT, we can use Equation 1 for
this purpose up to a specified number of components. Unlike
DFT, Fourier fitting approximates the coeflicients (amplitudes,
phases, and frequencies) of a signal. Since DFT returns the exact
decomposition of a signal as a sum of its harmonics for the
fundamental frequency % (Tarraf et al., 2024a), when only a few
selected components are used, the representation is not exact. In
this context, frequencies between the discrete values f; (i.e., for a
frequency resolution of %) might give a better fit for the signal.
Consequently, Fourier fitting might improve the result.

Fourier fitting in FTIO uses the curve_fit function from
SciPy to fit the sampled signal x, using non-linear least square
fitting. As initial parameters for the amplitudes, frequencies, and
phases, the fitting uses the top cosine waves from DFT with up
to the specified number of components. Next, the sampled signal
is fitted and the optimized parameters of these components are
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FIGURE 1
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Improving signal characterization by specifying the number of frequency components to use. The top part illustrates the default behavior of FTIO. The
next three plots show the results obtained with 2, 3, 5, and 10 components, respectively.

returned. We observed that Fourier fitting can improve the results

if the signal contains noise (e.g., I/O variation), the signal is not

strongly periodic, or the sampling frequency f; is too low. Note that
for the last case, FTIO provides an option to automatically specify
the sampling frequency according to the timestamps in the signal.
Section 6 provides an example of how Fourier fitting can be used to
improve the results.

5 Extracting relevant I/O patterns

As mentioned in Section 1, it is well known that I/O in
HPC suffers from performance variability Contrary, not all I/O
activities are equally important, and hence some abstraction in
the models and characterizations can be tolerated, as works

on I/O scheduling showed (Boito et al., 2023). Consequently,
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as we are often not concerned with all I/O activity, we
extended FTIO with another basic building block from the signal
processing domain, namely filtering as described in Section 5.1.
Furthermore, we incorporated the wavelet analysis in FTIO to
extend the tool’s characterization capabilities as explained in
Section 5.2.

5.1 Low- and high-pass filters

Low- and high-pass filters are key components in signal
processing. The filters allow reducing the effect of particular
frequencies in the signal. For instance, as its name implies, a
low-pass filter allows low-frequency components within a range
to pass while suppressing high-frequency components. The cutoff
frequency w, (in rad/s) is used to indicate which frequencies are
filtered. For low frequencies (v < w.), the magnitude response
stays close to 1, while for larger frequencies (v > w.), it
approaches zero. At the cutoff frequency w,, the response is 1/+/2
(-3 dB).

One popular type of low-pass filter is the Butterworth filter
(Blackledge, 2006). For simplicity, we skip the explanation.
Interested readers can find more details about this in Oppenheim
and Schafer (2010). FTIO implements the filters using the butter
function from SciPy. Aside from low and high-pass filters,
FTIO can provide band-pass filters. To use these filters, FTTO
provides the user with the option of selecting the filter type
(low-, high-, or band-pass filter), the cutoff frequencies in Hz
27f.), and the order of the filter. Afterwards,
the discrete sequence x,, is filtered, and the approach continues

(ie, w. =

as usual.

Filtering allows FTIO to focus on a particular frequency
range. If a higher frequency resolution is desired, f; can be
increased, which, however, results in a greater number of frequency
components. If a tool, for instance, can only react after a specific
amount of time, the filter can be used to remove the unnecessary
components. Yet this option should be used with caution, as I/O
variations are artifacts of the signal, and not noise. Consequently,
deviation might be presented from the original behavior.

5.2 Discrete wavelet transform

Often, we are interested not only in the period of a
signal but also in how long this period is or was valid. To
improve FTIO and adapt to such a scenario, a multi-resolution
scheme like the wavelet transformation (Graps, 1995) is used.
In contrast to DFT, the wavelet transform sacrifices frequency
resolution for time resolution. The idea is to convolute an input
signal x(t) with a set of small finite waves (i.e., the wavelets),
which are scaled (i.e, by the scale parameter a € R*) and
translated (by the translation parameter b € R) versions of the
mother wavelet:
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Hence, the Continuous Wavelet Transform (CWT) of a signal
x(t) is (Mallat, 2008; Chaovalit et al., 2011):

Wx<a,b)=fmx<t>iw*(t‘b)dt 5)

|al a

Such that “*” denotes the complex conjugate of the mother
wavelet . However, due to the continuous nature of a
and b, the CWT is highly redundant (Akansu et al., 2010)
and computationally expensive. By restricting the scales and
translations to discrete values (i.e., usually dyadic scales and
2 and b = k), the DWT can be
derived. From the implementation perspective, the DWT is

translations a =

computed by successively passing a signal through high-pass
and low-pass filters, producing detail (from high-pass) and
approximation (from low-pass) coeflicients (Chaovalit et al,
2011). In particular, at each decomposition level j, the signal
is convolved with a low and high-pass filter, and the result
is decimated (downsampled) by 2. Downsampling is necessary
to avoid doubling the data at every level. Furthermore, since
half the frequencies have been removed after filtering, half
the samples can be discarded, as they do not provide any
additional information (Nyquist). At each decomposition level j,
the frequency range can be approximated (as filters are not ideal)
to [Zﬁl , J%] For further information, see Mertins (1999); Mallat
(2008).

FTIO PyWavelets to DWT. The
sampled signal is provided to this function. Consequently,
the sampling frequency f;
frequency in the signal (ff). As a result from DWT, arrays

uses execute

specifies the highest captured

of detail and approximation coeflicients are returned. FTIO
allows specifying the mother wavelet and uses by default
Haar (db1).

5.3 A hybrid approach: combining DWT
with DFT

While the results from DWT could be used to extract the
period of the I/O phases, the approach is not straightforward. When
the coefficients from DWT are upsampled, they essentially show
filtered versions of the signal at different frequency ranges. Yet, our
approach tries to avoid using thresholds as far as possible. Hence,
an approach to tackle the problem is to combine DFT with DWT.

After sampling the signal with f;, the DWT is applied.
Next, we apply DFT on the upsampled approximation coefficients.
Consequently, DFT is applied to a smoother signal with less
variation compared to the existing approach (Section 3). In
case a dominant frequency is found, its used to determine the
width of a sliding window w, and ultimately the number of
samples m inside it. Next, the Pearson correlation between the
dominant cosine wave from DFT (if FTIO found a prediction)
and the upsampled approximation coeflicients is calculated
inside w (ie., for m samples). We iterate over the length
of n — m samples and repeat this calculation, to obtain the
sliding window correlation up till At — w seconds. Note that
this calculation shares similarities with the concept of the
CWT. Afterwards, we examine how long the sliding window
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correlation was positive. The start and end times of these
segments are compared to the dominant cosine wave: Segments
shorter than their own period are discarded, while adjacent
segments whose boundaries lie within one period are merged.
Finally, FTIO returns an array with start and end ranges
when the input signal can be characterized by the dominant

frequency f;.

6 Evaluation

6.1 Experimental setup

All experiments in this paper were performed on the
Lichtenberg cluster (Stage 1 partition), which features 643 compute
nodes, each with 96 CPU cores and 384 GB main memory. The
access mode is user-exclusive, and the shared file system (IBM
Spectrum Scale) achieves a peak performance of 150 GB/s.

6.2 Fourier fitting

To demonstrate how Fourier fitting can improve the
characterizations of a signal, we executed HACC-IO (LLNL,
2025) with 9,216 processes on the Lichtenberg cluster. HACC-IO
mimics one I/O phase of HACC [Hybrid/Hardware Accelerated
Cosmology Code (Habib et al., 2012)]. HACC-IO has four steps:
compute, write, read, and verify. We added a loop to execute
these steps repeatedly. We configured HACC-IO to write to a
single shared file using MPI 1/O. To capture the I/O trace, TMIO
was preloaded (LD_PRELOAD). Afterwards, we used FTIO
with a sampling frequency of 1Hz to characterize the writing
phases with up to 10 frequencies and refine the results using
Fourier fitting. As Figure 2 shows, while selecting 10 frequency
components already result in a good characterization, Fourier
fitting can further improve this. In particular, by comparing
the sampled signal to the output of DFT and Fourier fitting,
we observed that Fourier fitting reduces the mean square error
by 31.11%.

10.3389/fhpcp.2025.1638924

6.3 Combining DWT with DFT

To demonstrate the results of combining the DFT with
DWT, we again used HACC-IO from Section 6.2. We set the
decomposition level to three and executed FTIO on the trace.
The results are illustrated in Figure 3. From the DFT, FTIO found
the dominant frequency of the I/O phases to be 0.055 Hz (i.e.,
18.01s). As the top of Figure 3 shows, this representation is not
valid for the entire time, since the application contains some
variations. Using DWT, the relevant frequencies can be inspected
by examining the approximation coefficients. As described in
Section 5.3, by combining the results from the two transforms
and examining the sliding window correlation, FTIO returns that
the dominant frequency from DFT is valid inside [9.88,72.08]
and [106.38,168.28]s. The entire process (computing DWT,
applying sliding window correlation, and extracting the results)
consumed 4.2s. Note that the trace is 180.1s long, but due to
the sliding window (18s), the correlation is calculated only up
to 168s.

Next, we demonstrate our approach using DLIO (Devarajan
et al., 2021), an I/O benchmark for Deep Learning. We configured
the benchmark to use a modified ResNet50 configuration, which
utilizes PyTorch to generate training data, train the model,
and perform checkpointing (35.4 GB) every epoch (a total of
10 epochs). Furthermore, DLIO trains on 1,024 files (in the
npz format, each containing 100 samples) using 8 readers and
computational threads, with a batch size of 400. We executed
the benchmark with 96 MPI ranks on 2 nodes. On each node,
a metric proxy client was running that forwarded the collected
metrics to the root proxy running on the login node. After the
benchmarks finished, the trace is examined directly by querying
it to FTIO and using the hybrid approach that combines DFT
(with f;=10 Hz) and DWT with a decomposition level of 2. Figure 4
shows the results. In around 4s, FTIO found that the dominant
frequency 0.0361 Hz (i.e., 27.655s) is valid inside [84.54,370.04] s.
While the results are promising, further evaluation is needed
to identify the limitations, optimize the critical parameters
(decomposition level), and enhance the sliding window correlation
at its boundaries.
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FIGURE 3

Combining the results from DFT with DWT. The top part shows the result from DFT on the write behavior of HACC-IO with 9216 ranks. The second
figure from the top shows the scalogram from the DWT with a decomposition level of 2. The next figure shows the dominant cosine wave from the
DFT and the upsampled approximation coefficients from the DWT. The bottom part shows the sliding time window correlation of the two signals for
a window length of 18s.
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7 Conclusion and interpreting their common results. Consequently,

FTIO’s characterizations are improved in the presence of

This paper presented an extension to FTIO that allows 1/O variations. While the results show that this approach
improving charterization using Fourier fitting and extracting is promising, further evaluation and examination are

valid ranges

the detected dominant frequency. The needed to improve the calculation at the boundaries and

later aspect was realized by combining DFT and DWT  parameter selections.

Frontiers in High Performance Computing 07 frontiersin.org


https://doi.org/10.3389/fhpcp.2025.1638924
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org

Tarraf and Wolf

10.3389/fhpcp.2025.1638924

FTIO DFT results

35 ——
Original signal

0 301 mmm Sampled signal
g 25 1 1.72e+12%cos(2m*3.62e-02+t-1.20e+00)
= 20 1
=]
T 15
=
S 101
c
g

i P A a a1 I A

50 100 150 200 250 300 350
Time (s)

Frequency (Hz)

50 100 150 200 250 300 350
Time (s)
0.0 05 10 15 20 25 3.0 35 a0
Amplitude lel0

Signals from DWT and DFT

—
£ — 1.72e+12*cos(2n*3.62e-02+t-1.20e+00) (from DFT)
8 30 1 upsampled approximation coefficients (from DWT)
=
£ 204
prv]

S
= 104
©
c
g 04 =L — . e . =LY N b w S N N
50 100 150 200 250 300 350
Time (s)
Sliding Window Correlation (Window = 27.6 s)

0.6 4

o

O 04

e

L 024

[}

£ oo

o

O -0.2

-0.4 4

Time (s)

FIGURE 4

Combining the results from DFT with DWT for DLIO. After data generation, DLIO writes 10 checkpoints (35.4 GB) at the end of each epoch. By
combining DWT with DFT and examining the sliding window correlation, FTIO yields a range where the dominant frequency is valid.
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