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Editorial on the Research Topic  

Place-based evidence for clinical artificial intelligence implementation

Introduction

There has been a sustained and broadly held optimism around the potential of 

clinical artificial intelligence (AI) to improve on the quality, efficiency and reach of 

healthcare services. This optimism continues to be signalled by policy makers, 

manufacturers and researchers (1–3). Despite this general tide of optimism, examples 

of scaled adoption of specific clinical AI technologies and the forms of evidence 

traditionally considered most valuable in informing those adoption decisions remain 

scarce (4). The value of such evidence is challenged by the context-sensitivity of 

clinical AI’s value proposition and the limited availability of skills and guidance to 

enable local stakeholders to make informed decisions. In addition, challenges are 

presented by the complexity underpinning the forms of risk that accompany AI’s 

potential benefits (5). Evidence that permits the evaluation of clinical risk is required, 

as well as evidence highlighting legal, financial, operational and reputational risks. 

These factors all contribute to the persistent implementation gap around clinical AI 

and the stubborn but vital challenge of evaluating these interventions in the 

sociotechnical context in which they are embedded and used (6).

This research topic presents a collection of articles which blur the margins of theory 

and practice to support decision makers as they evaluate clinical AI interventions for local 

implementation. The work presented does not seek to directly create the evidence that 

local decision makers require. This is because of an acceptance that the varied forms 

of evidence required to demonstrate that the risks of an AI innovation are outweighed 

by its benefits have limited generalisability beyond the setting in which the evidence 

was generated. Instead, these articles aim to share generalisable and pragmatic 

approaches to create that evidence, ensuring place-based meaning. Authors take 

frameworks from governance, research and industry disciplines and apply varied 

methodological approaches to produce insights and tools which are actionable for the 

individuals who are responsible for implementing AI in real-world healthcare services.
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In our first article, Nair et al. report findings from secondary 

research methods and primary qualitative research to explore 

the activities typical to the implementation of clinical AI. They 

evaluate and refine an established theoretical framework to 

provide a roadmap of these activities for healthcare provider 

organisation. Their analysis highlights the range of individuals, 

the process and the importance of collective effort in bringing 

clinical AI into practice whilst showing the enduring relevance 

of insights from other forms of innovation captured in a 

theoretical framework. This is followed by Macdonald et al.’s

systematic review, which presents a methodology in the form of 

a Target Product Profile (TPP) designed to facilitate 

collaboration on clinical AI innovation, not only within a 

healthcare provider organisation, but also for developers of AI 

solutions from industry and elsewhere. This work identifies and 

consolidates TPPs from across digital health technologies to 

establish a practical framework that enables current and future 

adopters of clinical AI to signal their needs to developers and to 

evaluate potential technologies in a holistic and structured way. 

Our final two contributions offer insights from policy research 

exploring the challenges and opportunities posed by existent 

practical frameworks for clinical AI. These frameworks address 

legal and governance aspects of healthcare innovation which 

were explored through workshops with cross-sector and 

multidisciplinary participation. The article from Evans et al.

examines procurement frameworks. Recommendations for 

practitioners in various roles across the healthcare system are 

presented to unlock the opportunities these frameworks offer, 

addressing key barriers that hinder the scale and spread of 

clinical AI innovation. Gilbert et al.’s article shifts the focus 

from commercial governance to information governance. 

Drawing upon a combination of clinical, academic, and industry 

perspectives, the authors re2ect on the factors that in2uence the 

efficiency and effectiveness of the Data Protection Impact 

Assessment framework for AI research and practice in the UK, 

identifying both challenges and potential solutions. In so doing, 

their analysis highlights the need for training initiatives, 

communities of practice and the standardisation of governance 

processes and structures across NHS Trusts.

The above contributions offer diverse approaches to the varied 

implementation challenges local decision makers face with clinical 

AI. This encompasses i) methodological diversity (evidence 

synthesis, qualitative research, co-design), ii) domain diversity 

(operations, commercial, information governance, innovation) 

and iii) philosophical diversity (theoretical frameworks, practical 

frameworks). Collectively, the articles illustrate the interface 

between implementation research and practice and the potential 

value of bridging the two. Insights from this topic and related 

work, both within and beyond academic literature, help to 

mobilise knowledge from a broader empirical and theoretical base 

to address the challenge of implementing a clinical AI technology 

in a specific context. This challenge presents real problems. 

Significant resources and good will are expended by actors 

designing and executing pilots in isolation, while their 

understanding of the requirements and how to evidence success 

or failure remains limited. The repeated and failed attempts to 

locally evidence these requirements present a significant threat to 

the reputation of AI innovations and a waste of scarce resources. 

In turn, this limited understanding can lead to imprecise 

estimates of the costs of clinical AI implementation for adopter 

organisations. A recent Health Technology Assessment estimated 

the implementation costs for a specific AI intervention for 

fracture detection on radiographs to vary between £1,200 and 

£120,000 (7). This lack of precision threatens to completely 

undermine the viability of decision making under the budgetary 

constraints of a single department or organisation.

The insights presented here aim to help practitioners in 

shifting their focus from the novelties of clinical AI to the 

established knowledge and theory which underpin its successful 

implementation. This approach supports practitioners in 

anticipating and managing the challenges of clinical AI 

implementation, determining what kinds of evidence need to be 

generated and how that can be done. It does not discard the 

pursuit of generalisability but focuses on the generalisability of 

methodologies for place-based evidence generation rather than 

the evidence itself. In summary, this collection highlights the 

importance of interdisciplinarity in safe, effective and efficient 

clinical AI implementation. The articles presented aim to 

provide practical tools and insights that enable stakeholders 

within adopting organisations to engage in collective 

sensemaking to facilitate successful implementation (8).
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