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In recent years gene therapy has emerged as a powerful technology for treatment
of a large variety of inherited disorders. With the FDA approval of in vivo gene
therapy of hemophilia A and B using AAV-mediated transgene delivery to
hepatocytes, the path towards a new treatment era seemed paved. Also,
CRISPR-Cas based approaches have reached the clinic, as in the ex vivo
treatment of hematopoietic stem cells for sickle cell disease and thalassemia
patients. The question arises whether these innovative strategies will also be
suitable for patients with von Willebrand Disease (VWD). Whilst in and ex vivo
delivery to endothelial cells (ECs) has been demonstrated, and CRISPR-Cas9
gene editing has been successful in ECs, there are currently no gene therapy
options available for VWD. The wide variety of pathogenic VWF mutations makes
development of broadly applicable, cost-effective gene therapies challenging.
While delivery of vonWillebrand factor (VWF) as a therapeutic transgenewould be
optimal, the size of VWF challenges efficient delivery. Therefore, treatment of
VWD requires targeted, personalized gene therapy; for instance by using the
newest CRISPR-Cas technologies which can be tailored to facilitate alteration
and restoration of various pathogenic VWD variants. This review describes the
inherited bleeding disorder VWD and potential gene therapy approaches for
management of the disease. Thereby we are exploring different CRISPR-Cas
technologies and recent developments in the field. Moreover, we will discuss the
ongoing advances of in vivo delivery systems, all with the scope on ECs.
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1 Introduction on von Willebrand Disease (VWD)

1.1 The heterogeneous landscape of VWD

Von Willebrand Disease (VWD) is the most commonly inherited bleeding disorder,
estimated to have a worldwide prevalence of 25.6 per million people in the general
population (Leebeek and Eikenboom, 2016; Stonebraker et al., 2023). Patients with
VWD have qualitative and/or quantitative abnormalities with von Willebrand Factor
(VWF), a large multimeric protein that is pivotal during primary hemostasis. There are
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different types of VWD, with ranging severities. Type 1 VWD is the
most common, where patients have reduced VWF in circulation and
a mild bleeding phenotype (Atiq et al., 2023). If the reduced amount
of VWF is due to enhanced clearance, it is described as type 1C
VWD. Type 2 VWD is characterized by a qualitative deficiency of
VWF and can be further classified into various subtypes: A, B, M,
and N (Table 1). The qualitative impairment spans from insufficient
multimerization of VWF dimers into its hemostatically active
mature VWF multimer, to impaired binding and susceptibility to
other proteins involved in maintaining hemostasis (Daniel et al.,
2024; Jacobi et al., 2012; Maas et al., 2021; Othman and Favaloro,
2021). Type 3 is the rarest but most severe form, where patients have
close to undetectable VWF levels in circulation and experience a
severe bleeding phenotype (Eikenboom, 2001; van Kwawegen and
Leebeek, 2024).

The different types of VWD often arise from mutations
impacting different domains of VWF (Figure 1A). Currently,
more than 750 unique pathogenic VWF mutations are known,
leading to a range of bleeding complications including
mucocutaneous bleeding, heavy menstrual bleeding, joint bleeds,
gastrointestinal bleeding and bleeding during surgery (de Jong and
Eikenboom, 2017; Weyand and Veronica, 2021). The Leiden Open
Variation Database (LOVD) alone reported a list of 505 VWF
variants that were found in VWD patients in the clinic, of which
~450 were missense and nonsense variants (Seidizadeh et al., 2023).
Utilizing those variants from the LOVD database as an example,
Figure 1B illustrates the distribution of VWF variants. Variants
resulting in type 1 and 3 VWD can be found throughout VWF. In
contrast, type 2 VWD variants are often located around the
A1 domain, affecting the binding to platelets and/or collagen, or
around the D’D3 or CK domains, impacting multimerization. More
VWF variants have been reported by various studies and can be

found in additional databases such as ClinVar, GnomAD, genome
browser, human gene mutation database (HGMD) and more
(UCSC, 2025; gnomAD, 2025; NCBI, 2025; HGMD, 2025).
Although the prevalence of VWD subtypes varies per database
and cohort, multiple studies have shown that type 1 VWD is by
far the most common form, accounting for around 60%–85% of
VWD cases. Type 2 VWD follows as the second most common with
a prevalence of 15%–45% (Soucie et al., 2021; Seidizadeh et al.,
2023). Orphanet estimates the prevalence of type 1 VWDworldwide
to be 1–5/ 10,000, and the prevalence of type 2 VWD worldwide to
be 1–9/1,000,000 (Orphanet, 2025a; Orphanet, 2025b). Type
3 VWD remains the rarest form of the disease.

Even though in around 30% of patients no pathogenic mutation
in VWF could be identified, VWD is generally considered a
monogenic disease. Detecting the location of a disease-causing
variant within VWF may indicate the impaired domain and
binding site of the protein, thus implying the underlying
molecular mechanism impairing VWF. However, the majority of
variants that are found within VWF are not sufficiently
characterized and are thus classified as variants of uncertain
significance (VUS). To shed light on this, studies have sequenced
large patient populations and performed ex vivo characterization
experiments to explore which VWD variants are truly pathogenic
(Atiq et al., 2022; Bär et al., 2025; Christopherson et al., 2022; 2024;
James et al., 2006; Laan et al., 2024; Tosetto et al., 2020;
Vangenechten et al., 2022).

1.2 Inheritance of VWD

VWD is predominantly inherited as an autosomal dominant
disease, with the majority of VWF variants being heterozygous

TABLE 1 Summary of von Willebrand disease sub-types, disease mechanism, and treatment.

VWD
type

Autosomal
inheritance

Common
types of
mutation

Common
localization of

variants

Mechanism of VWF
abnormality

VWD phenotype Common
treatment

1 Dominant Missense, Null
allele

Across VWF gene Reduced VWF synthesis/
secretion, no protein synthesis

from one allele

Reduced VWF levels in
plasma

DDAVP

1c Dominant Missense Across VWF gene Increased clearance of VWF Reduced VWF levels in
plasma

DDAVP

2A Dominant Missense D1 D2 (VWFpp), D3,
A2, CK domains

Decreased formation of HMW
VWF due to defective

dimerization/ multimerization,
increased cleavage by ADAMTS13

Reduced platelet
interaction due to reduced

HMW VWF

DDAVP, VWF/
factor

concentrates

2B Dominant Missense A1 domain Increased and spontaneous
binding to platelet GPIb

Decreased VWF in
circulation due to clearance
of VWF-platelet aggregates

VWF/ factor
concentrates

2N Recessive Missense, Null
allele + missense

D’ D3 domains Decreased FVIII binding Increased bleeding due to
limited VWF chaperoning
of FVIII (reduced FVIII half

life)

DDAVP

2M Dominant Missense A1 and A3 domains Reduced affinity of VWF for
platelet GPIb or collagen

Increased bleeding due to
reduced platelet adhesion

DDAVP

3 Recessive Null allele Across VWF gene Nonsense mediated decay No VWF detectable in
circulation

VWF/ factor
concentrates
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missense mutations. This results mostly in VWD type 1 and
2 subtypes, while type 3 and type 2N often derive out of
homozygous null mutations or compound heterozygous and are
therefore rarer forms of VWD with a typically recessive inheritance
pattern. The prevalence for type 3 lays around 1:250,000 to 1:
1,000,000 but is challenging to determine because of the
increased prevalence in regions where consanguinity is more
common (Nichols et al., 2008).

1.3 The star of primary hemostasis: von
Willebrand Factor (VWF)

In VWD there can be quantitative or functional deficiency of
VWF: a large multimeric protein that is produced by endothelial
cells (EC) and megakaryocytes. Long VWF strings are primarily
stored in Weibel-Palade bodies (WPB) of ECs and α-granules of
platelets, respectively (Lenting et al., 2015). In ECs after synthesis
(Figure 2A), VWF is translocated to the endoplasmic reticulum (ER)
where the VWF signal peptide is removed, and C-terminal
dimerization occurs between VWF monomers via the CK
domains (Hordijk et al., 2024). The dimers are subsequently
shuttled to the Golgi, where Furin cleaves the VWF propeptide
domain (VWFpp) off the dimers, allowing for their multimerization
via the N-terminal D′ D3 domains. Importantly, the VWFpp

remains non-covalently bound to the VWF multimers which is
essential for trafficking and packaging of VWF multimers into
WPBs (Haberichter, 2015). These organelles store ultra large
(UL) and high molecular weight (HMW) VWF multimers which
are secreted into the bloodstream upon endothelial activation. At the
same time, low molecular weight (LMW) VWF is constantly
secreted by the ECs in a process called constitutive secretion. The
third secretion pathway of VWF is the unstimulated fusion of WPBs
and the release of its content during basal secretion (Silva et al.,
2016). The basally secreted VWF is considered the main contributor
to stable VWF levels in plasma. When secreted, the UL and HMW
VWF strings undergo cleavage by ADAMTS13, resulting in a
distinct multimeric pattern of different sizes (Giblin et al., 2008;
Zhang et al., 2009). Biosynthesis of VWF in megakaryocytes also
results in the formation of HMW VWF multimers that are
eventually stored in tubular sub-compartments of platelet α-
granules (Karampini et al., 2020).

In plasma, VWF acts as a chaperone for FVIII, protecting it from
clearance and proteolytic cleavage (Pipe et al., 2016). At sites of
vascular injury, VWF binds to the exposed sub-endothelial collagen
layer through its A3 domain, anchoring itself and unfolding to
expose its platelet binding sites (Romijn et al., 2001). The unfolded
VWF strings provide a platform for platelets to bind to the
A1 domain through their glycoprotein Ibα (GPIbα) receptor,
initiating the formation of a platelet plug (Lenting et al., 2024;

FIGURE 1
Overview of vonWillbrand Factor (VWF) domains, and variant distributions. (A) VonWillebrand Factor domains and binding sites. (B)Distribution and
frequency of von Willebrand Factor variants curated in the Leiden Open Variation Database (LOVD) (Accessed and data retrieved on 8-1-2025). Created
in BioRender.
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Figure 2B). This completes the process called primary hemostasis
(Karampini et al., 2020). Due to the versatile role of VWF and its
complex structure including several binding sites, the variety in
VWD phenotypes is not surprising. Deficiency of VWF impacts
other proteins involved in coagulation and the treatment and
prevention of bleeds caused by faulty or missing VWF is challenging.

1.4 Current treatment of VWD

The plethora of pathogenic variants and disease mechanisms
complicates treatment of VWD tremendously. In addition, the lack
of knowledge about the disease-underlying causes currently prevents
personalized treatment in the clinic. Current treatment aims to
increase VWF and FVIII plasma concentrations on demand in case
of a bleeding event or before and after interventions. A common
treatment approach for VWD patients, especially type 1, is to
increase circulating VWF and FVIII levels by stimulating release
of stored VWF and FVIII from ECs. This is achieved via the
administration of desmopressin (DDAVP), a synthetic version of
the hormone vasopressin, which interacts with the V2R receptor of
ECs to stimulate VWF release (Phua and Erik, 2019). However, not
all VWD patients respond to DDAVP and DDAVP administration
is contraindicated in patients with type 2B VWD, due to increased
risk of thrombocytopenia as their VWF has an increased affinity for
platelets (Laan et al., 2025). Also, patients with type 3 VWD do not
benefit from DDAVP, since there is no stored VWF that can be

released by ECs (Connell et al., 2021). According to the ASH ISTH
NHF WFH 2021 VWD guidelines, DDAVP has to be periodically
tested in patients for which this could be a viable option, and
treatment should be adjusted based on the results of these trials
(James et al., 2021).

An alternative for DDAVP for unresponsive patients or in major
surgery where DDAVP is not sufficient, is replacement therapy with
VWF (FVIII) factor concentrates. Replacement therapy is used in
the management of acute bleeds and in severely affected VWD
patients to prevent bleeding in the long-term. The latter patients
receive factor concentrate 2–3 times per week intravenously (so-
called prophylaxis). Plasma-derived VWF concentrates and
recombinant VWF (rVWF) are both effective to stop and prevent
bleeding (Gill et al., 2015; Leebeek et al., 2022). The antifibrinolytic
agent tranexamic acid is mostly used as an adjunctive therapy to
DDAVP or VWF concentrates (Laffan et al., 2014).

Taken together, there are effective therapies in place for patients
with VWD. However, VWF concentrates need to be administered
intravenously by a healthcare professional and therefore require a
hospital visit. Especially in severely affected patients, like VWD type
3 patients on long term prophylaxis, regular hospital visits decrease
their quality of life. In addition, concentrates are costly and represent
a monetary burden for society due to the life-long treatment need.
The current treatment is therefore sub-optimal and a durable
treatment approach would be ideal to reduce the burden of
disease in patients with VWD; allowing them to engage more in
their daily activities with reduced concern. Therefore, alternative

FIGURE 2
Overview of von Willebrand Factor biosynthesis and its role in primary hemostasis. (A) Key processing steps by endothelial cells of von Willebrand
Factor to form Weibel-Palade Bodies. (B) Function of HMW secreted from WPBs. Adapted from Leebeek and Eikenboom, 2016. Created in BioRender.
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and innovative therapies are needed to optimize treatment of VWD.
In the following paragraphs we will discuss the suitability of different
gene therapy approaches for personalized treatment of VWD.

2 Silencing of mutant VWF in
heterozygous VWD patients using small
interfering RNA (siRNA)

RNA interference (RNAi) is a mechanism whereby mRNA is
degraded through targeting by complementary short interfering
RNA (siRNA) molecules. In hemophilia patients, siRNA targeting
antithrombin has been studied extensively with the aim to restore
the hemostatic balance. Patients treated with this siRNA showed a
normalization of thrombin generation and reduction of the
number of bleedings (Srivastava et al., 2021). A similar
approach can be used in heterozygous VWD patients whereby
siRNA is targeting the mutated, disease-causing allele. As
mentioned above, around 33% of VWF mutations lead to a
qualitative impairment, resulting in type 2 VWD (Seidizadeh
et al., 2023). In human umbilical vein endothelial cells
(HUVECs), siRNA-mediated knock-down of VWF can achieve

90% reduction at the transcript level (Furini et al., 2023; Seidizadeh
et al., 2023). De Jong et al. enhanced this approach by
encapsulating siRNA targeting mutant VWF mRNA in lipid
nanoparticles (LNPs), resulting in allele-selective VWF
degradation in a dominant negative type 2A VWD model
(Figure 3). Through this approach, they demonstrated ex vivo
resolution of VWF ER retention in a VWD type 2A phenotype
using patient-derived venous endothelial colony-forming cells
(ECFCs) (De Jong et al., 2020). The siRNA was designed to
target a non-pathogenic, commonly occurring heterozygous
single-nucleotide polymorphism (SNP) that co-segregated with
the pathogenic mutation encoding for the dominant negative
VWD variant. This concept was then further explored in mice,
by crossing two different mouse strains, B6 and 129S, to create a
heterozygous B6.129S model. This model mimicked a
heterozygous scenario where the siRNA could discriminate
between a single benign SNP present in the two VWF alleles
(Jongejan et al., 2023; 2024). Following this proof of concept,
Linthorst et al. investigated whether this approach could be
extended to a heterozygous VWD type 2B mouse model
(Linthorst et al., 2024). The resulting selective reduction of
mutant VWF protein, the improved multimeric VWF pattern,

FIGURE 3
Broad targeting gene therapy strategies for dominant negative VWD variants to increase the ratio of healthy to diseased VWF subunits. Top)
Untreated VWD results in VWF multimers consisting of healthy and diseased subunits. Middle) Selective siRNA targeting of a benign SNP on the mRNA
originating from the mutant allele results in degradation of the transcript and a higher ratio of healthy to mutant VWF subunits. Bottom) The same
targeting approach of a benign SNP, but the Cas9 directly targets the genomic DNA and induces a frameshift and premature termination codon
(PTC). The knockout of the mutant allele results in sole expression of healthy VWF monomers. Created in BioRender.
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and the normalized bleeding times in two-thirds of the
heterozygous VWD 2B mice highlight the potential of this
personalized therapeutic treatment strategy. The targeting of a
heterozygous SNP instead of the disease-causing variant also
allows for a broader application, independent of the pathogenic
VWD mutation. De Jong et al. identified 4 common SNPs with a
minor allele frequency of approximately 0.3 in the general
Caucasian population. Based on these frequencies, they
calculated that a person has a 74% probability of being
heterozygous for at least one of these SNPs (De Jong et al.,
2020). In another study, WT and a dominant negative VWF

variant plasmid that impacts multimerization were co-injected
into VWF−/− mice. The VWF variant was then counteracted by a
follow-up siRNA injection; demonstrating an improvement in
multimerization on the following day (Campioni et al., 2021).
This elegant approach may potentially be used for successful
treatment of a subset of patients with dominant negative type
2 VWD. However, siRNAs do not provide a permanent solution
for patients with VWD but require regular re-administration
(Linthorst et al., 2025). How long the siRNAs would be
functional in vivo and alleviate the disease phenotype still needs
to be evaluated in large animal models and humans.

FIGURE 4
Illustration of different CRISPR-Cas modalities and their mechanisms of genomic DNA modification. Created in BioRender.
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3 CRISPR-cas technologies

Clustered regularly interspaced short palindromic repeats
(CRISPR) and CRISPR-associated (Cas) proteins are adaptive
immune systems protecting their prokaryotic host against
invading genetic elements. Since 2012, various Cas nucleases have
been repurposed as next-generation genetic engineering tools,
replacing previous time-consuming and costly technologies such
as zinc-finger nucleases (ZFNs) and transcription activator-like
effector nucleases (TALENs). CRISPR-Cas systems are
categorized into two classes, seven types and several subtypes.
Class 2 systems have taken current genome editing applications
by storm, due to their simple architecture of a single effector protein
(Cas9, Cas12, and Cas13), in contrast to the multi-protein effector
complex nature of Class 1 systems. Nowadays, the most widely used
Class 2 nucleases are the type II-A Cas9 from Streptococcus pyogenes
(SpCas9) and the type V-A Cas12a from Lachnospiraceae bacterium
(LbCas12a) or Alicyclobacillus acidoterrestris (AsCas12a). Cas9 and
Cas12a nucleases require a small guide RNA (gRNA) molecule to
bind to a target DNA sequence (protospacer) flanked by a short,
conserved motif (protospacer adjacent motif; PAM) and create a
double-strand DNA break (DSDB) (Jinek et al., 2012; Zetsche et al.,
2015) Several other naturally occurring Cas9 or Cas12 orthologues
and engineered variants thereof have also been harnessed, enriching
the current CRISPR-Cas toolbox (Acharya et al., 2019; Agudelo
et al., 2020; Chatterjee et al., 2018; Fedorova et al., 2020; Harrington
et al., 2017; Hu et al., 2020; Lee et al., 2016; Liu et al., 2019; Müller
et al., 2016; Ran et al., 2015; Trasanidou et al., 2023; Wang et al.,
2023; Wu T. et al., 2023; Wu et al., 2022). Below is an overview of
how different CRISPR-Cas technologies can be employed for
treatment and/or correction of VWD, with Figure 4 illustrating
their mechanisms.

3.1 DSDB-based gene editing: non-
homologous end joining (NHEJ) and
homology directed repair (HDR)

There are two main pathways to repair a DSDB generated by
class 2 Cas nucleases: non-homologous end joining (NHEJ) and
homology-directed repair (HDR). The NHEJ approach exhibits
high efficiency due to its independence from cell cycle and the
continuous editing at the recognition site of the gRNA until
random insertions and/or deletions (INDELs) are achieved,
which usually prevent further Cas:gRNA binding. In contrast,
HDR introduces precise genetic modifications and requires a
DNA repair template and dividing cells. The presence of an
exogenous DNA template tricks the cell to utilize the exogenous
template for repair, rather than the sister chromatid during
homologous recombination (HR) (Liao et al., 2024). Except
from the aforementioned restrictions of HDR, a strong DSDB-
induced NHEJ background is also usually observed (Chapman
et al., 2012; Cox et al., 2015). Confirmation of CRISPR-induced
modifications in the context of VWD can be achieved through both
genotypic and phenotypic analyses. Next-generation sequencing
enables precise detection of molecular alterations introduced by
CRISPR, while phenotypic validation such as improved VWF
synthesis observed via ex vivo confocal microscopy of patient-

derived ECFCs or changes in VWF plasma levels in vivo could
further substantiate successful gene editing.

3.1.1 Non-homologous end joining (NHEJ)
In mammalian cells, the DSDB is mainly repaired via the error

prone NHEJ repair pathway; resulting in frameshifts and premature
termination codons (PTC) due to small INDELs. This approach has
been utilized by Schillemans et al., employing SpCas9 in a lentiviral
system in cord-blood (CB) ECFCs to generate clonal VWF knock-
out (KO) lines (Schillemans et al., 2019). With this study the
effectiveness of Cas9 in ECFCs has been proven and paved the
way for further ex vivo patient-derived ECFC studies.

Following the same rationale as allele-selective siRNA targeting,
the CRISPR-Cas technology may be exploited for the selective
disruption of mutant VWF alleles harboring pathogenic variants
(Figure 3). In an ongoing study we observed a phenotypic rescue in
type 2A and type 2B VWD patient-derived venous ECFCs by
targeting a common heterozygous SNP located on the same allele
as the pathogenic variant (Bär et al., 2024). A key consideration of
CRISPR-based approaches for selectively silencing pathogenic
alleles of VWF lies in the potential for off-target activity. In
particular, insufficient discrimination between the mutant and
wild-type alleles by the gRNA can lead to unintended silencing
of the functional allele. Such off-target effects could exacerbate the
clinical phenotype of VWD, rather than ameliorate it, by further
reducing the levels of functional VWF. Simultaneously, selective
targeting of ECs needs to be ensured to prevent genome-wide off-
targeting of the CRISPR construct. As an additional safety measure,
an EC specific promoter could be leveraged to ensure limited
expression in undesired tissue in vivo. Nevertheless, this targeting
strategy is a promising first step towards a permanent rescue of
heterozygous VWD types, providing a high allele-selectivity, and
limiting disruption of healthy alleles. Whilst the approach of allele-
selective targeting, whether with siRNAs or CRISPR-Cas
technology, show promising results for alleviating the dominant-
negative effect of mutant VWF, the risk of haploinsufficiency
remains, which has previously been reported for VWD type 1
(Desch et al., 2013; Sadler et al., 2022). Theoretically, severely
affected heterozygous VWD type 2 patients could transition to a
mild type 1 VWD following this treatment, shifting from a
qualitative to a quantitative deficiency of VWF. Considering the
generally lower bleeding phenotype in type 1 VWD patients, this
transition would be expected to ease the disease burden, thereby
enhancing the quality of life for these patients rather than curing
them entirely.

CRISPR-Cas has also been used to facilitate in vivo editing of
murine vascular endothelium. Specifically, Cas9 was expressed
under the control of the endothelial-specific CDH5 promoter
from a plasmid-based expression system. Prior to retro-orbital
injection, the plasmid was encapsulated in a PP/PEI (PEG5,000-
b-PLGA/ PEI25,000Da) nanoparticle, leading to 40%–45% editing of
the targeted Pik3cg in lung ECs of the mice, while no INDELS were
detected in lung non-ECs (Zhang et al., 2022). This study shows that
a specific and targeted delivery of CRISPR-Cas into ECs is possible,
and the selectivity of gene targeting is highly dependent on the
gRNA used. A thorough in vitro analysis of efficient and selective
gRNAs beforehand is therefore vital and influences the editing
percentage drastically.
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3.1.2 Homology directed repair (HDR)
While those NHEJ-based approaches are efficient, the NHEJ

pathway is an error-prone repair mechanism and the outcome of the
editing is not completely predictable. In contrast, HDR provides a
mostly error-free repair that alters regions of DNA ranging from a
few to thousand base pairs (bps) (Liao et al., 2024; Martin et al.,
2019). While HDR provides a more controlled way of editing,
efficiency is greatly reduced compared to NHEJ. But the
approach can be highly tailored, e.g., by customization of HAs
including varying lengths, and in the case of single-stranded DNA
(ssDNA) templates, asymmetrical HAs (Di Stazio et al., 2021). The
inclusion of truncated gRNA protospacer sequences on the HAs was
also shown to aid HDR rates, the rationale being that Cas9 can bind
but not cleave the HDR donor; allowing it to traffic the donor into
nucleus due to the Cas9 nuclear localization signal(s) (NLS)
(Nguyen et al., 2019). There are additional strategies aimed at
boosting HDR efficiencies, as greatly summarized by Nambiar
et al. (2022). For research purposes, cell synchronization agents
and NHEJ inhibitor agents have been applied (Eghbalsaied and
Kues, 2023; Selvaraj et al., 2024). Whilst they can improve HDR
rates, they are toxic and not viable for therapeutic applications. A
recent study on AZD7648, which inhibits NHEJ, resulted in
increased translocations and large megabase deletions, including
loss of chromosome arms (Cullot et al., 2024). However,
chromosome rearrangements also occur spontaneously during
HDR due to the involvement of different pathways managing the
pairing of homologous sequences or a prematurely terminated HDR
repair (Al-Zain and Symington, 2021). A major pitfall of CRISPR-
Cas HDR technology is however its restriction to the S and
G2 phases, where normally sister chromatids act as repair
templates. Due to this, HDR is restricted to dividing cells and
might therefore not be the optimal choice to edit the
endothelium in vivo. Another limitation of inserting the full-
length VWF coding sequence (~8.4 kb) is the large payload size
required, which can reduce the efficiency of in vivo delivery.
Targeting specific regions with shorter donor templates would
likely be more beneficial in terms of insertion efficiency. In
VWD, the exon 4 and 5 deletion has been described in a
multitude of VWD patients and would require a considerably
shorter template (Bowman et al., 2012; Sutherland et al., 2009).
Of course, the trade off from a targeted exon approach such as this
sacrifices a broader VWD patient pool that can be treated for a
smaller pool with a potential higher correction achieved.

3.1.3 Homology-independent targeted
integration (HITI)

Homology-independent targeted integration (HITI), as
deployed by Suzuki et al., represents a strategy to increase the
efficiency of gene insertions by leveraging the NHEJ pathway for
donor DNA integration (Suzuki et al., 2016). This approach aims to
overcome the limitations of HDR, which is often inefficient,
especially in non-dividing cells. Instead of relying on HA, the
donor DNA contains sgRNA binding sites located at one or both
sides of the desired insert in an inverted polarity. These sites, when
targeted by Cas9, can lead to the linearization of the donor template
and its subsequent integration into the host genome at a CRISPR-
Cas9 facilitated DSB. The reliance of HITI on NHEJ presents
another limitation, as the occurrence of INDELs cannot be ruled

out and a small risk of undesired fragments and inverted integration
remains. Although HITI demonstrates high efficiency, particularly
in non-dividing cells, its general application to VWD - like HDR -
requires the delivery and integration of the full VWF coding
sequence (CDS). The large size of this insert likely limits the
overall efficacy of this approach. Nevertheless, HITI would
present an attractive personalized editing strategy for VWD
patients harboring exon deletions on VWF, as it has been shown
to achieve precise DNA knock--in in various genetic diseases
including BCD patient-derived iPSCs and mice, a hemophilia B
rat model, and primary CD34+ HSPCs (Bloomer et al., 2020; Chen X.
et al., 2022; Meng et al., 2024).

3.2 Base editing technology

DSDBs have been linked to undesired outcomes, such as
translocations, complex mixtures of products and inactivation of
p53 (Haapaniemi et al., 2018; Ihry et al., 2018; Kosicki et al., 2018).
CRISPR-Cas base editing is an attractive gene editing technology
due to its capability to modify nucleotides without inducing DSDBs,
although unintended DSDBs have been reported in some cases
resulting in genotoxic effects (Fiumara et al., 2024; Huang M.
et al., 2024). The system is based on a deaminase fused to a
(partially) inactive Cas protein. Numerous base editors have been
developed to date, presenting variable efficiency, purity, editing
window, neighboring nucleotide preference, specificity,
targetability and size.

The two main types of base editors are adenine base editors
(ABEs) and cytosine base editors (CBEs). ABEs convert adenine to
inosine, which is read as guanine during DNA replication or repair.
ABEs contain a laboratory-evolved tRNA adenosine deaminase A
(TadA) for the conversion (Gaudelli et al., 2017; Shi et al., 2016). A
recent ABE variant, ABE9, presents high efficiency, specificity and
acts within a window of 1–2 bp (Chen L. et al., 2022). Moreover, Qin
et al. developed a range of highly efficient ABE-Ultramax base
editors (ABE-Umax) possessing either a wider and flexible
editing window or a narrow editing window of 1–2 bp with
increased specificity (Qin et al., 2024).

CBEs convert cytosine to uracil, which is read as thymine during
DNA replication or repair. To prevent uracil-DNA glycosylase-
mediated excision of the uracil, at least one uracil glycosylase
inhibitor (UGI) is usually fused to the CBEs. The inclusion of
multiple UGIs has been shown to increase efficiency, but also
toxicity. Hence, limiting the number of UGIs for in vivo gene
editing is critical. The most widely used CBE systems contain the
apolipoprotein B mRNA editing catalytic polypeptide-like
(APOBEC) enzymes, the Petromyzon marinus cytidine deaminase
1 (PmCDA1) and engineered variants thereof. However, the newest
CBEs evolved from the TadA from ABEs, decreasing off-targeting
probability (Lam et al., 2023).

Except from ABEs (A>G) and CBEs (C>T), additional base
editors, such as CGBEs (C>G), AYBEs (A>C or A>T), gTBEs (T>C
or T>G), gCBE (C>G), CABEs (C>A) and DBEs (C>T and A>G),
have been developed, further expanding the applicability of the base
editing technology (Chen L. et al., 2021; Kurt et al., 2020; Lam et al.,
2023; Sakata et al., 2020; Tong et al., 2023; 2024). However, when
compared to ABEs and CBEs, they currently exhibit lower efficiency
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FIGURE 5
Overview of VWD mutation types and feasibility for base editing from the Leiden Open Variant Database (LOVD). Top) Number of different VWD
mutation types. Bottom) Different CRISPR-Cas base editing technologies to target total Splice, Missense and non-Sense variants (and individually).

Frontiers in Genome Editing frontiersin.org09

Barraclough et al. 10.3389/fgeed.2025.1620438

https://www.frontiersin.org/journals/genome-editing
https://www.frontiersin.org
https://doi.org/10.3389/fgeed.2025.1620438


and purity of conversion as well as larger window of activity, limiting
their use in therapeutic applications. Recent reviews by Xu et al. and
Wang et al. provide a very nice summary on the use of different
classes of base-editors for precision medicine (Wang D. et al., 2024;
Xu F. et al., 2024; Xu W. et al., 2024).

In ECFCs, adenine base editing was successfully applied by Bär
et al. as a means of VWD disease modelling (Bär et al., 2025). The
pathogenic VWF p.M771V point mutation was installed in healthy
CB-ECFCs through lentiviral delivery of the ABE8e-SpG editor. Post
enrichment of puromycin selection showed on-target efficiencies of
around 70% with minimal undesired bystander editing (<2%) at
neighboring base pairs. The introduced patient mutation in healthy
ECFCs mimicked the patient-derived ECFC phenotype, making
base editing the ideal tool to study patient mutations in the
original cell type and under the control of the gene’s natural
promoter. Building on this concept, precise correction of
pathogenic variants using base editors would be a desirable
strategy for curing VWD. However, in addition to the not fully
explored side effects in vivo and the specific genomic requirements
related to the positioning of the small editing window, the size of the
base editors presents a significant limitation, which we will further
discuss in the section regarding delivery.

Base editors appear to be the most suitable correction tool for
the majority of disease-causing variants in VWF, as the majority of
variants are point mutations. An analysis of the LOVD database for
splice, missense, and nonsense variants reveals that in principle
almost half of these point mutations could theoretically be
corrected with ABEs, whereas the theoretical targeting potential
for CBEs lays at around 20% (Figure 5). However, the extensive
heterogeneity of pathogenic VWD variants makes base editing a
largely patient-specific approach, limiting its current viability due
to the high costs associated with developing mutation-specific
reagents. Whilst in-vivo clinical trials for base editing are
underway, further assessment of their suitability for VWD gene
therapy is required.

3.3 Prime editing technology

Similar to base editors, prime editors (PEs) introduce edits on
target double-stranded DNA (dsDNA) without DSDBs and donor
DNA. Moreover, PEs enable any type of single nucleotide
modification including point mutations, small insertions,
deletions and replacements, making it a potent editing tool for all
the VWF variants that cannot be targeted by BEs (Figure 5). PEs
consist of a partially inactive Cas9 or Cas12 protein fused to a reverse
transcriptase (usually a mutant variant from Mouse-Moloney
Leukemia Virus; MMLV). Instead of the standard spacer-scaffold
architecture of the guide RNA, a prime editing guide RNA
(pegRNA) consists of the spacer, the scaffold and additional 3′
elements, including the primer binding site (PBS) and the reverse
transcription template (RTT) (Anzalone et al., 2019). When PE is
guided to the target DNA loci by the spacer, it nicks the DNA,
creating a 3′DNA flap, which then hybridizes to the complementary
PBS on the pegRNA. This serves as the initiation point for reverse
transcription to extend the sequence using RTT, which encodes
desired alterations. This ‘edited’ DNA flap can hybridize to the
genome, resulting in a heteroduplex mismatch. Whether the edit is

incorporated or removed depends on which strand is used for DNA
repair (Anzalone et al., 2019).

Although PEs present limited off-targeting editing due to the
triple checkpoint validation, they have several limiting factors, such
as degradation of the 3′ end of the pegRNA and DNA mismatch
repair (MMR) pathway inhibition. Several strategies have been
developed to bypass these issues which have been nicely
summarized by Murray et al. (2025):

• Introducing silent mutations around a desired target assists in
evading the MMR pathway (Chen P. J. et al., 2021).

• Inclusion of a secondary standard 20bp nicking gRNA to nick
the unedited strand, coercing the cell to utilize the edited
strand as repair template. This secondary nicking gRNA can
be either at the site of editing or at a short distance away
(Anzalone et al., 2019).

• Fusion of a MHL1 variant with a dominant negative effect
impairing MMR. MLH1 is a DNA mismatch repair protein
(Chen P. J. et al., 2021).

• Addition of a 3′motif with a strong secondary structure on the
pegRNA (known as epegRNA) to prevent degradation of the
3′ PBS on the pegRNA (Nelson et al., 2022).

• Fusion of the RNA–binding exonuclease protection factor LA
to the PE. LA interacts with polyuridine tracts at the 3′ end of
transcripts, protecting them from exonucleases (Yan
et al., 2024).

PEs have been used to target theVEGFR-2 gene in human retinal
microvascular ECs and in murine vascular ECs. Both cases achieved
efficiencies just over 50% utilizing a dual lentiviral approach with a
secondary nicking gRNA andMMR inhibitor (Huang X. et al., 2024;
Ma et al., 2024). For applications in VWD, just like base editing,
prime editing would likely fall under a personalized therapy for
patient specific mutations; which currently reduces its applicability.

3.4 Large sequence editing: transposon and
integrase-based systems

Despite the high potential of short sequence editing approaches
(NHEJ, HDR, BE, PE), the large exon deletions and the high
heterogenicity of pathogenic mutations in VWF impose the need
for large sequence editors with the ability to efficiently and precisely
insert or replace multiple kb in a targeted genomic site, preferably in
a DSDB-free and payload size-independent manner.

Transposon systems like the Sleeping Beauty (SB) provide an
avenue to deliver large transgenes such as VWF into the cells
genome. The SB system has been utilized to transfer full length
murine VWF cDNA (8.4 kb) to the liver of VWF−/- mice. Whilst
supra-physiological expression was stably maintained for 1.5 years,
hepatocytes do not endogenously express VWF. So, the hemostatic
efficacy was diminished due to reduced expression of HMW VWF
multimers and did not correct the bleeding phenotype in some mice
(Portier et al., 2018). Here, both episomal and random integrations
into the genome were observed; highlighting the uncontrolled
nature of transposons. Alternatively, Cas nucleases have been
fused to transposase enzymes, generating homology-independent
CRISPR transposon editors with enhanced site-specific integration.
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TABLE 2 Overview of CRISPR-Cas based transposon and integrase technologies to facilitate large insertion templates.

Technology CRISPR technology Fusion system Source/reference

Find and cut-and-transfer (FICAT) Cas (DSDB generated) PiggyBac (PB) transposase Pallarès-Masmitjà et al. (2021)

transCRISTI Cas (DSDB generated) PiggyBac (PB) transposase Bazaz et al. (2022)

Programmable addition via site-specific targeting elements (PASTE) Prime editor Serine integrase Bxb1 Fell et al., 2024; Yarnall et al., 2022

CRISPR-associated transposases (CASTs) dCas Tn7 and Tn5053 like Strecker et al., 2019; Witte et al., 2025

prime-editing-assisted site-specific integrase gene editing (PASSIGE) Prime editor Serine integrase Bxb1 Pandey et al. (2024)

FIGURE 6
Overview of in vivo delivery approaches to endothelial cells and different payload mechanisms. Created in BioRender.
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We briefly outline some of these technologies in Table 2 with
references to further literature about it. Whilst these technologies,
including the ones mentioned in Table 2, facilitate delivery of large
transgenes such as VWF, their applicability in ECs and in vivo is still
unknown. Despite the ability of transposon-based technologies to
deliver large transgenes, their in vivo efficacy is currently still limited.
Although there is constant progress in the development of these
techniques, the on-target insertion efficiencies are overall still low.
Therefore, for VWD type 1 and 2 there is an argument that this small
percentage will have little impact of the bleeding phenotype andmay
only be viable for severe VWD type 3. Given the immature state of
these techniques, we will not elaborate on them further, but Villiger
et al. have discussed alternative CRISPR technologies in detail in
their review, which we recommend for further reading (Villiger
et al., 2024). Overall, the nascent field of large sequence editing
presents several limitations, including poor characterization, low
efficiency, complex design, large editor size, co-delivery of donor
molecules, and undesired sequence scars. Optimization of these
technologies may unlock kilobase-scale gene therapies for VWD.

4 In vivo delivery systems

Delivery of gene editing systems is one of the major challenges
holding back research and application of gene therapy in vivo. For
VWD, multiple studies have been carried out in VWF−/- mice
through hydrodynamic injection. As mentioned above, the SB
system (SB100x) successfully delivered VWF to the liver for
prolonged ectopic expression. Another study by De Meyer et al.
also demonstrated that plasmid hydrodynamic injection resulting in
ectopic liver VWF expression can be sufficient to restore thrombus
formation; highlighting the feasibility of VWF rescue for severe
VWD in vivo (Meyer et al., 2008). In this section, we elaborate on
different delivery systems including adeno-associated viral vectors
(AAV), adenoviral vectors (Ad), retroviral vectors (RV), (integrase-
deficient) lentiviral vectors ((ID)LV), lipid nanoparticles (LNPs),
and virus-like particles (VLPs); most of which are summarized in
Figure 6. Besides these popular delivery systems, other techniques
have been explored in the last years for in vivo gene therapy delivery,
such as cell-penetrating proteins (CPPs), extracellular vesicles (EVs),
and ultrasound-mediated drug delivery (Cecchin et al., 2023;
Perolina et al., 2024; Rackear et al., 2024; Yu et al., 2021). While
these approaches are not new, they have undergone different
modification approaches, tailoring them more towards targeted,
and safe delivery. However, they still require more investigation.

With the choice of which delivery system to use also comes the
decision of which endothelium to target. Since all ECs produce VWF,
the preferred target location could be tailored to the delivery
approach. Generally, the vascular endothelium lining the blood
vessels gets easily exposed by any intravenously administered
product and is the main producer of VWF. A significant
contributor to VWF levels in blood is the lung endothelium
(Kaufmann et al., 2000; Yamamoto et al., 1998). Those ECs could
be specifically targeted in view of their large contribution to circulating
VWF. A third option of targetable endothelium would be liver
sinusoidal endothelial cells (LSEC) (Milani et al., 2024). As any
drug, a potential gene therapeutic agent would pass the liver, and
the regenerative property of the liver could add another safety

measure in case of undesired outcomes (Herman and Santos,
2023). The desired target cell population therefore depends on the
chosen delivery strategy and could vary in their safety and efficacy.

4.1 Adeno-associated viral vectors

AAVs consist of a ssDNA genome and an icosahedral protein
capsid. They are attractive due to their low immunogenicity and non-
integrative nature. Furthermore, the natural occurrence of various
serotypes can help elude existing neutralizing antibodies; which are
considered a contra-indication for most AAV gene therapies. For
bleeding disorders such as hemophilia A and B, AAVs are currently
being used with transgenes of factor VIII and factor IX (Blair, 2022;
Chowdary et al., 2022; George et al., 2021; Heo, 2023; Ozelo et al.,
2022). These studies directed AAVs to the liver to achieve prolonged
factor expression. Subsequently, most patients could discontinue
prophylactic use of clotting factor concentrate infusions and the
number of bleeds were strongly reduced. A review by Zwi-Dantsis
et al. greatly summarizes AAVs and their applications in gene therapy
(Zwi-Dantsis et al., 2025). Unfortunately, the tropism of AAVs for
ECs is rather low, challenging EC transduction (Sreeramoju and
Libutti, 2010). This can be enhanced through capsid modification,
such as peptide insertion, which can alter specificity and infectivity to
specific cells. This was shown by Varadi et al. where capsid engineered
AAV2 and 9 containing peptide ligands selected from random peptide
libraries were successfully used to enhance transduction of different
EC types, such as HUVECS (Varadi et al., 2011). Nevertheless, there
are limitations including the fading therapeutic effects over the years,
but one of the main limitations of AAVs with respect to VWD is their
limited cargo capacity of around 4.5 Kb. Consequently, a single AAV
approach is unfeasible for large transgenes such as SpCas9, LbCas12a
and VWF, with a CDS length of ~8.4 Kb.

Dual AAV systems can be applied to circumvent the size issue
but add further complications: firstly, they usually require a protein
fragment such as a split-intein to combine both terminals together
(Wu Y. et al., 2023). This can be less efficient than standard
expression. Secondly, a higher dose of AAV titer is required
which can cause immunogenic complications during treatment.
Finally, target cells need to be transduced by both AAV
constructs to be effective. This approach was tested in HUVECs
and mice, delivering a human VWF transgene split across dual
AAVs utilizing a recombinant region from the AK region of the
F1 phage genome (Barbon et al., 2021). The plasma levels were
between 1% and 1.5% of WT VWF and determined to be
subtherapeutic.

Generally, single AAV outcompetes dual AAV systems,
especially when AAV dose or tissue can prevent saturating levels
of transduction (Davis et al., 2022). As the field evolves, it is likely
that more efficient dual AAV delivery systems will be developed; but
as it stands now, it is unlikely that AAVs will be utilized for VWF
gene therapy.

4.2 Adenoviral vectors

Ads are commonly studied as vectors for transgene delivery,
oncolytic agent, and vaccines (Paul et al., 2003; Peter and Kühnel,
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2020; Smaill et al., 2013). In humans, more than 57 serotypes of Ads
have been found to form seven Ad groups A-G (Wold and Toth,
2013). While this offers a big variety of Ads, most people are
immune to several serotypes due to previous Ad infections. Ad’s
genetic material is dsDNA with a length of 25–46 kb. The cargo
capacity of Ad5, the most used Ad serotype, exceeds AAVs by far
with 8–36 kb compared to AAV’s ~5 kb (Shiver et al., 2002).
Engineered Ad5 has been shown to transduce the vascular
endothelium and ECs across multiple organs in mice (Lu et al.,
2014). While they have many advantages such as their capacity to
infect non-dividing and dividing cells of various tissues, their non-
integrative nature and large cargo, the strong host immunogenicity
and cellular toxicity of Ad vectors remain a major problem for their
use in gene therapy (Wang and Shao, 2023).

4.3 Retroviral vectors

The first human cancer gene therapy approaches were facilitated
with retroviruses, which consist of three subcategories: gamma-
retroviruses, alpha-retroviruses, and lentiviruses. They all possess
the ability to randomly integrate their cargo into the host-cell
genome, thereby imposing a higher safety concern when
compared to non-integrative gene therapy platforms (Shao et al.,
2022). Liu et al. used a retroviral approach to target tumor-
associated ECs and developed a successful transduction system of
HUVECs and KSY1 ECs (Liu et al., 2000). However, the adverse
events of secondary cancer developments, including leukemia,
render retroviruses too dangerous to use in the clinic (Li et al., 2002).

As one of the most used retroviruses in research, we only further
elaborate on the lentiviral system.

4.4 Lentiviral vectors

LV systems have large size capacities of around 9 Kb. This makes
them attractive for delivery of large transgenes and led to the FDA
approval of several LV-based gene therapies in the last years (Ali et al.,
2019; Jensen et al., 2021; Keam, 2021; Schuessler-Lenz et al., 2019).
LVs infect dividing and non-dividing cells–in contrast to gamma-
retroviral vectors solely infecting dividing cells–which would make
LVs attractive to target ECs, but low transduction efficiency and
significant vector-associated cytotoxicity has been reported for ECs
(Sreeramoju and Libutti, 2010). In vivo pseudotyping of LVs is pivotal
to assure efficient and predominant delivery of agents to desired cells/
tissues. The VSV-G pseudotype has successfully delivered Cas9 to
CB-ECFCs and canine venous blood-derived ECs ex vivo (Meyer et al.,
2006; Schillemans et al., 2019). In a proof of principle
study, phenotypic correction of canine VWD ECFCs was obtained
by LV-mediated gene delivery (Meyer et al., 2006). The
GP64 pseudotyped LV vector has been shown to transduce liver
sinusoidal endothelial cells (LSECs) more efficiently than vascular
ECs. This was taken further with FVIII delivery to LSECs in FVIII KO
mice (Milani et al., 2024). Other in vivo studies showed benefits of
HIV-derived LV vectors over AAV vectors due to the decreased
prevalence of HIV-directed antibodies in humans, reducing the host
immune response (Follenzi et al., 2007). LV delivery was also explored
in a canine model to treat hemophilia B with surprisingly positive

results and no long-term toxicity in the animal model (Cantore et al.,
2015). LV delivery was used to ensure stable gene integration in the
liver cells, preventing dilution of the factor IX transgene. Common
insertion sites (CIS) have been identified in patients undergoing LV
gene therapy for adrenoleukodystrophy (ALD). Biffi et al.
demonstrated that these CIS arise from a benign integration bias
rather than oncogenic selection (Biffi et al., 2011). However, a
recent study using LVs in ALD reported the development of
hematological cancers due to clonal vector insertions within
oncogenes (Duncan et al., 2024).

To increase the safety profile of LVs, IDLVs have been
developed. The vector DNA of IDLV exists as non-replicating
episomal DNA which prevents integration (Cortijo-Gutiérrez
et al., 2021). Nevertheless, the episomal DNA can be subjected to
epigenetic silencing, limiting the efficacy of treatment (Suwanmanee
et al., 2014). Furthermore, unintegrated DNA is diluted out through
cell division, so safe delivery of transiently acting proteins or protein
fusions may be feasible using IDLVs (Wanisch and Yáñez-
Muñoz, 2009).

4.5 Lipid nanoparticles (LNPs)

To date, LNPs are the most popular non-viral delivery systems, as
they are being developed and optimized since the 1990s. They are
FDA-approved (COVID-19 Pfizer/BioNTech andModerna vaccines)
and they exhibit low immunogenicity, transient expression and
feasibility for large-scale production (Jung et al., 2022). Generally,
LNPs are mainly used to deliver RNAs (siRNA or mRNA) but have
also been shown to deliver CRISPR-Cas RNPs (Chen et al., 2024). The
natural target site of LNPs are liver hepatocytes due to their neutral
charge and the spontaneous binding of apolipoprotein E (ApoE) that
functions as an endogenous ligand for hepatocytes. This property has
been exploited for the development of LNP-based gene editing
approaches for treatment of transthyretin amyloidosis as well as
hereditary angioedema (Cohn et al., 2024; Gillmore et al., 2021).
Interestingly, depending on their specific composition, some LNPs
accumulate in LSECs, which leads to immune responses according to
Sato et al. (2017).While this can be circumvented by reengineering the
LNP composition, it can also be used to specifically target LSECs by
modifying physical size and incorporating active targeting ligands,
such as mannose or antibody moieties, to the LNP (Campbell et al.,
2018; Kim et al., 2021; Pattipeiluhu et al., 2022). A recent review by
Wang et al. provides a comprehensive overview of LNPs focusing on
mRNA delivery, therapeutic applications and targeting mechanisms
(Wang J. et al., 2024).

4.6 Viral-like particles (VLPs)

VLPs may provide an alternative to traditional LV approaches
by combining the benefits of viral and non-viral delivery. VLPs are
generated utilizing a fusion of the transgene of interest to the LV
matrix gag protein. The most popular VLPs are pseudotyped with
VSV-G glycoprotein, HIV-1 envelope glycoprotein and so-called
‘nanoblades’, which are murine leukemia VLPs loaded with Cas9-
sgRNA ribonucleoproteins (RNPs) (Mangeot et al., 2019).
Essentially a LV capsid is produced encapsulating the protein of
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interest, but while the envelope and capsids are viral components,
the genome is non-viral. The cargo of mRNA, proteins or RNPs
increase the safety by staying transiently expressed instead of
integrating into the host genome. This improves CRISPR-Cas
therapies regarding off-target activity and host immune response
against the Cas protein, while still facilitating efficient genome
editing (Lyu et al., 2019). The group of David Liu have
engineered VLPs specifically to deliver BEs and PEs, which
renders them promising delivery tools in vivo (An et al., 2024;
Banskota et al., 2022). Furthermore, VLPs are relatively cost-
effective and easily produced but the batch variability remains
problematic (Jaron et al., 2022). Moreover, the immune response
and rapid clearance of VLPs in vivo remains a potential concern. For
further reading on this topic, see the reviews from Gupta et al.
(2023), Nooraei et al. (2021), and Tariq et al. (2022).

As of now, with fine tuning of capsids, lipid composition, and
pseudtyping, an array of delivery vehicles can be directed to the
targeting of EC’s in-vivo. Smaller platforms such as AAVs that cannot
accommodate the bulky nature of gene correction technologies and
VWF currently sit in a suboptimal position; despite their attractive
non-integrative nature. This likely leaves non integrative systems than
can package larger loads as the foremost options.

5 Is gene therapy the future of
VWD treatment?

While the demand for new VWD treatments is clear, the path to
achieving them remains uncertain. Exploiting the latest advances in
genome editing and gene delivery mentioned in this review,
targeting the root cause of VWD through gene therapy now
appears increasingly feasible.

Gene therapy can be achieved through either an ex vivo
(manipulation of cells outside of the body) or an in vivo (direct
manipulation inside the body) approach. As the predominant
producers of VWF, ECs would be the optimal candidate for
targeted therapy. Furthermore, ECs line the vasculature and
therefore would be readily exposed to any agents delivered
intravenously. The most common and accessible patient-derived
ECs are venous blood-derived ECFCs. These cells are hampered by
limited growth potential in vitro, and a vast heterogeneity between
donors in terms of growth and isolation success, which could make
ex vivo correction and transplantation problematic (Olgasi et al.,
2021). Alternatively, human induced pluripotent stem cells (hiPSCs)
derived from the patient as an autologous source could give rise to
ECFCs through the mesoderm lineage, and multiple studies have
successfully produced ECFCs in vitro (Abutaleb and George, 2021;
Hamad et al., 2022). However, these models often exhibit a more
embryonic state compared to primary ECFCs, and as such often lack
WPBs, or produce pseudo-WPBs rather than the clear elongated
shape that is expected (de Boer et al., 2024). These phenotypical
discrepancies are too severe to use hiPSCs-derived ECs for VWD
therapy and their use is even critically discussed for in vitro research.
Consequently, in vivo gene therapy is the only feasible option for
VWD gene therapy.

The allele-selective KO approach using siRNA that was discussed
above seems to be one of the most promising approaches to alleviate
VWD in vivo. So far, mouse models show impressive rescue of the

bleeding phenotype but the duration of the siRNA approach and the
feasibility of repeated treatment still needs further investigation
(Jongejan et al., 2023). In vivo delivery of therapeutic siRNA was
achieved employing encapsulation into 7C1 oligomeric lipid
nanoparticles (composed of PEG, cholesterol and
dioleoylphosphatidylethanolamine) specifically containing C14 alkyl
PEG moieties and were shown to primarily target ECs (Sago et al.,
2018; Yu et al., 2019). The targeting ability of 7C1-containing LNPs
paves the way for siRNA- or CRISPR-based allele-selective disruption
of mutant VWF alleles in VWD patients carrying dominant negative
heterozygous mutations on their VWF. Furthermore, these studies
provide a basis for the cutting-edge base and prime editing
technologies, especially these composed of compact Cas proteins,
that can be tailored to a variety of mutation types.

Proof-of-principle for the feasibility of gene editing employing a
lentiviral-based CRISPR-Cas9 ABE in cord blood derived ECs has
been shown with the goal of introducing a suspected pathogenic
mutation in exon 18 of VWF (Bär et al., 2025). This observation
provides an avenue towards in vivo correction of VWD employing
CRISPR-Cas9 base and prime editing strategies. First in vitro
experiments using a CBE on patient-derived ECFCs to correct the
patientmutation p.M771V showed that correction of at least one allele
leads to a rescue of the ECFC phenotype. However, in the current state
efficiency of this method remains too low (<6%) to translate the
genetic correction to a rescue of the bleeding phenotype. In addition,
the low proliferative nature of ECs in vivo excludes most of the other
genetic tools and enhances the risks associated with stable CRISPR-
Cas expression in the cells. Hence, non-viral delivery of base and
prime editors using the aforementioned 7C1-containing LNPs would
prevent continuous editing and thus limit off-target effects that would
most likely result from viral delivery systems.

Another point to consider for VWD gene therapy is the huge
variety of pathogenic variants along VWF. Gene correction therapy
needs to be personalized, which currently is associated with high costs.
However, targeting the endothelium seems to be a durable approach
and could potentially alleviate patient burden for several years.

Taking everything into consideration, considerable progress has
been made with respect to the development of novel approaches for
VWD gene therapy. In vivo delivery of siRNA-loaded LNPs
targeting ECs has emerged as a potential treatment strategy for
dominant negative VWD type 2. In vitro evidence for base editing
approaches in ECFCs has recently been obtained. We anticipate that
continuously evolving editing systems will allow for the generation
of highly specific on-target editing tools with low off-target effects.
The simultaneous evolution of delivery systems that can efficiently
target therapeutic cargo to ECs has the potential to launch a new era
of gene therapy for patients suffering from VWD.
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Glossary
(ID)LV (integrase-deficient) lentiviral vector

AAV Adeno-associated viral vector

ABE/CBE Adenine base editor/cytosine base editor

Ad Adenoviral vector

Cas CRISPR-associated

CAST CRISPR-associated transposase

CB Cord blood

CDS Coding DNA sequence

CIS Common integration site

CPP Cell-penetrating protein

CRISPR Clustered regularly interspaced short palindromic repeats

DDAVP Desmopressin

DSDB Double strand DNA break

EC Endothelial cell

ECFC Endothelial colony forming cell

ER Endoplasmic reticulum

EV Extracellular vesicle

FiCAT Find and cut and transfer

HA Homology arm

HDR Homology-directed repair

hiPSC Human induced pluripotent stem cell

HITI Homology-independent targeted integration

HMW High molecular weight

INDELs Insertions and/or deletions

LMW Low molecular weight

LNP Lipid nanoparticle

NHEJ Non-homologous end joining

PAM Protospacer adjacent motif

PASTE Programmable addition via site-specific targeting elements

PE Prime editor

RV Retroviral vector

TALEN Transcription activator-like effector nucleases

TransCRISTI Transposase-CRISPR mediated targeted integration

UL Ultra large

VLPs Viral-like particle

VUS Variants of uncertain significance

VWD Von Willebrand disease

VWF Von Willebrand factor

VWFpp Von Willebrand factor propeptide

WPB Weibel Palade Bodie

ZFN Zinc-finger nuclease
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