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Programmed cell death (PCD) pathways with druggable potential represent a 
promising but still underexplored frontier in heart failure (HF) research for 
diagnosis, prognosis, and therapy. To address this gap, we developed a Druggable 
Programmed Cell Death Index (DPCDI) through an integrative machine learning 
framework. An optimal combination of Lasso and Random Forest algorithms 
identified 15 pivotal genes (CALCOCO2, VPS13D, CLU, STAT3, OPTN, UBB, 
CXCL12, PPP1R15A, ATF4, IVNS1ABP, HMGB2, JAK2, EXOC7, ENO1, TPCN1) for 
DPCDI construction. Non-negative matrix factorization (NMF) analysis stratified HF 
patients into two distinct subtypes, with Subtype 2 exhibiting elevated apoptosis and 
mitophagy activity. Single-cell RNA sequencing revealed dynamic JAK2 and IVNS1ABP 
expression during cardiomyocyte state transitions, while CXCL12 showed stage- 
specific regulation in endothelial cells. Mendelian randomization analysis indicated 
that genetic predisposition to elevated JAK2 and STAT3 expression was associated 
with reduced HF risk, whereas CXCL12 overexpression increased susceptibility. 
Experimental validation in HF mouse models confirmed increased Cxcl12 and 
Jak2 expression and decreased Stat3 levels. Furthermore, knockout of Cxcl12, 
Jak2, and Stat3 induced HF phenotypes. Molecular docking identified pifithrin-α as 
a potent ligand for CXCL12 and strophanthidin for STAT3. Collectively, DPCDI 
provides a comprehensive framework for HF diagnosis, risk stratification, and 
targeted therapeutic development.
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1 Introduction

Despite decades of laboratory research and clinical advances in heart failure (HF) 
treatment, global HF-related mortality and morbidity continue to rise (Heidenreich et al., 
2022). According to the Global Burden of Disease Study 2017, an estimated 64.3 million 
people worldwide suffer from HF (GBD 2017 Disease and Injury Incidence and Prevalence 

OPEN ACCESS

EDITED BY 

Enkai Li, 
Washington University in St. Louis, United States

REVIEWED BY 

Chunhua Liu, 
Shanghai Ocean University, China 
Baihe Sun, 
Tongji University, China

*CORRESPONDENCE 

Dong Huang, 
huangdong1004@sjtu.edu.cn

†These authors have contributed equally to 
this work

RECEIVED 25 November 2025
REVISED 13 December 2025
ACCEPTED 19 December 2025
PUBLISHED 15 January 2026

CITATION 

Zhang L, Zhu Y, Fang Y, Yang Y, Yu Y, Wang H, 
Jiang X, Zhang X and Huang D (2026) DPCDI: an 
artificial intelligent-derived indicator 
interpreting the diagnostic, stratification, and 
therapeutic implications of druggability 
programmed cell death in heart failure. 
Front. Genet. 16:1753636. 
doi: 10.3389/fgene.2025.1753636

COPYRIGHT 

© 2026 Zhang, Zhu, Fang, Yang, Yu, Wang, 
Jiang, Zhang and Huang. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 15 January 2026
DOI 10.3389/fgene.2025.1753636

https://www.frontiersin.org/articles/10.3389/fgene.2025.1753636/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1753636/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1753636/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1753636/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1753636/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1753636/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1753636/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1753636&domain=pdf&date_stamp=2026-01-15
mailto:huangdong1004@sjtu.edu.cn
mailto:huangdong1004@sjtu.edu.cn
https://doi.org/10.3389/fgene.2025.1753636
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1753636


Collaborators, 2018), imposing persistent medical and financial 
burdens. HF is a complex multifactorial clinical syndrome 
characterized by structural or functional impairment of 
ventricular filling and/or blood ejection (Bozkurt et al., 2021), 
leading to heart dysfunction. Its etiology involves diverse factors, 
notably ischemic heart disease, hypertension, and dilated 
cardiomyopathy (Savarese et al., 2023), making it impossible to 
attribute HF to a single cause. Given this high prevalence and 
etiological heterogeneity, efforts to improve HF management 
remain imperative. Consequently, novel biomarkers and 
therapeutic targets have garnered increasing interest for their 
potential to enhance preventive and therapeutic strategies (Shu 
et al., 2022).

Programmed cell death (PCD), an evolutionarily conserved 
process, plays a critical role in the pathogenesis of cardiovascular 
diseases including HF (Del Re et al., 2019; Zhou et al., 2021). 
Accumulating evidence indicates that dynamic alterations in 
druggable PCD pathways—such as apoptosis, necrosis, 
ferroptosis, and autophagy—drive HF progression (Zhou et al., 
2021; Narula et al., 2006), which indicates an attractive 
therapeutic manipulation by targeting PCD. For example, 
administration of empagliflozin and sacubitril has been found to 
reduce apoptosis in rat models with HF symptoms, which 
demonstrates protective effects on cardiac functions (Jankowski 
et al., 2024). Additionally, different types of PCD signaling are 
interconnected at multiple levels in HF progression (Zhou et al., 
2021), underscoring the need to focus on the interactions between 
various PCD patterns rather than an individual PCD. Over the past 
years, numerous efforts have been made to establish HF-predictive 
signatures using an individual PCD pattern (Jiang et al., 2022; Gu 
et al., 2023), and moderate diagnostic performances were observed 
in small-scale or different specimen-source cohorts. As such, 
leveraging multiple PCD forms to construct a signature based on 
single-source specimen cohorts may better represent the 
characteristic of HF than using a single PCD information. Also 
of note is that the biological mechanisms underlying most of these 
published signatures in HF were poorly understood, which greatly 
limits their future applications. A more profound comprehension of 
the mechanisms governing druggable PCD patterns in the context of 
HF, particularly their complex interactions, is crucial for advancing 
our current knowledge. However, to date, this in-depth 
understanding remains elusive.

To address these shortcomings, we aimed to comprehensively 
investigate the diagnosis, stratification, and therapeutic 
significance of four druggable PCD patterns (apoptosis, 
necrosis, ferroptosis, and autophagy), as well as elucidate the 
latent biological mechanisms in HF. Herein, we first designed an 
integrative machine learning (ML) framework to discover a 
Druggable Programmed Cell Death Indicator (DPCDI) on the 
basis of large expression profiling cohorts, which was used to 
identify and stratify patients with HF. Then, we implemented the 
single-cell RNA sequencing to expound the biological 
mechanisms underlying DPCDI in the context of the HF cell 
atlas. Using Mendelian randomization (MR) analysis, in-silicon 
drug prediction, and molecular docking, we also investigated the 
therapeutic applications of DPCDI in the treatment of HF. 
Altogether, we proposed a DPCDI with a potential implication 
in diagnosing, stratifying, and medicating patients with HF.

2 Methods

2.1 Data collection and processing of 
HF cohorts

Gene expression profiling of left ventricle (LV) from control 
and HF cases was downloaded from the GEO database (http:// 
www.ncbi.nlm.nih.gov/geo). Herein, we collected a total of ten 
independent cohorts, including GSE141910 (Tan et al., 2020; Flam 
et al., 2022), GSE116250 (Yamaguchi et al., 2020; Sweet et al., 
2018), GSE135055 (Hua et al., 2020), GSE16499 (Kong et al., 2010), 
GSE5406 (Hannenhalli et al., 2006), GSE57338 (Liu et al., 2015), 
GSE79962 (Matkovich et al., 2017), GSE42955, GSE52601, and 
GSE21610. Regarding the high throughput sequencing cohorts 
(GSE141910, GSE116250, GSE135055), the raw count value was 
converted to log2 (TPM+1) value. For the array cohorts 
(GSE16499, GSE5406, GSE57338, GSE79962, GSE42955, 
GSE52601, and GSE21610), the raw signal value was processed 
through quantile normalization and log2 transformation. We also 
enrolled GSE121893, a single-cell RNA sequencing data on LV and 
left atrium (LA) samples collected from four HF patients (Wang 
et al., 2020). Information on HF cohorts collected in this study can 
be found in Table 1. For detailed processing of GSE121893, see 
Methods-Expression patterns and dynamics of DPCDI at single- 
cell resolution.

2.2 Development and external validation of 
DPCDI model

GSE141910, which contains the largest case numbers in our 
enrolled cohorts, was used as a training cohort for discovering a 
DPCDI model. And the other five cohorts (GSE116250, GSE135055, 
GSE16499, GSE5406, GSE57338, and GSE79962) were selected as 
testing cohorts for DPCDI validation. Before establishing DPCDI, 
we collected 1,066 druggability PCD-related genes (Supplementary 
Table S1), which encompass apoptosis, ferroptosis, autophagy, and 
necroptosis-related genes. Subsequently, we applied Self-Organizing 
Maps (SOM) to cluster the identified PCD-related genes based on 
their expression patterns in the GSE141910 dataset. The SOM grid 
dimensions were set to 10 × 10. Training was performed for 
1,000 iterations, and the optimal number of clusters (k = 15) was 
determined by minimizing the within-cluster sum of squares 
(WCSS). This analysis yielded a distinct cluster of genes 
exhibiting high expression in HF. Here we designed an 
integrative ML framework, which was composed of 
113 combinations derived from 12 ML algorithms (Zhu et al., 
2024; Liu et al., 2022), to generate a DPCDI model for HF 
recognition. In this framework, least absolute shrinkage and 
selection operator (Lasso), random forest (RF), stepwise 
generalized linear model (Stepglm), and generalized linear model 
by likelihood-based boosting (glmBoost) (Zhu et al., 2024), were 
initially used to select features from SOM-identified PCD genes. 
Next, the other eight algorithms, including Ridge, elastic network 
(Enet), support vector machine (SVM), linear discriminant analysis 
(LDA), partial least squares regression for generalized linear models 
(plsRglm), gradient boosting machine (GBM), eXtreme Gradient 
Boosting (XGBoost), and NaiveBayes (Zhu et al., 2024), were 
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implemented to establish prediction models on the selected features. 
AUC (Area Under the Receiver Operating Characteristic Curve) is 
an important indicator for evaluating the performance of binary 
classification models. It comprehensively reflects the model’s ability 
to distinguish between positive and negative samples by quantifying 
the area under the ROC curve. In the case of imbalanced sample 
classes, AUC can objectively reflect the model’s performance. In 
total, 113 combinations were generated after parameter tuning and 
ten-fold cross-validation, of which the best combination with the 
highest average AUC was regarded optimal. This optimal 
combination was termed DPCDI. We also assessed the AUC 
performance of DPCDI in four external validation cohorts 
(GSE79962, GSE42955, GSE52601, and GSE21610). To ensure 
productivity of the integrative ML framework and our DPCDI, 
the source code, scripts, processed datasets, and instructions have 
been archived in the Zenodo repository (https://doi.org/10.5281/ 
zenodo.17918314).

2.3 Comparison between DPCDI and other 
published signatures

To compare the predictive power of DPCDI with other 
signatures, we gathered 51 mRNA signatures for HF prediction 
that were published in the last 5 years, which was summarized in 
Supplementary Table S2. These mRNA signatures were established 
by diverse algorithms, such as RF, Lasso, Boruta, and SVM (Guo and 
Xu, 2023; Bian et al., 2022). Additionally, these signatures were 
derived from different biological processes, such as cellular 
senescence (Guo and Xu, 2023), immune microenvironment 
(Wang et al., 2024), and N7-methylguanosine modification (Ma 
et al., 2023). Model 50 (NPPA and NPPB) and model 51 
(TNNT2 and TNNI3) integrate the genes corresponding to the 
two categories of traditional cardiac markers, respectively. For 
equitable comparability, we filtered out the signatures with more 
than 30% of genes not matched in cohorts for DPCDI training and 
testing. We calculated the AUC performance for each signature in 
all cohorts.

2.4 Construction of DPCDI-derived 
subtypes

We initially applied Rank-In (Tang et al., 2021), a well- 
established approach to combine the high throughput sequencing 
and array data, to integrate all cohorts into a meta-cohort for HF 
subtype discovery. We extracted 657 HF cases from the meta-cohort 
for subtype analysis. According to the expression profiling of 
DPCDI genes from these HF cases, the Non-negative Matrix 
Factorization (NMF) technique (Gaujoux and Seoighe, 2010) was 
performed to partition the HF patients into different subtypes. To 
ensure a stable identification, we used the brunet approach, with a 
setting of 100 iterations, to execute the NMF process. The 
cophenetic coefficient was used to determine the optimal rank 
for clustering (Gaujoux and Seoighe, 2010), and the optimal rank 
(=2) was selected to construct two subtypes. Furthermore, the 
principal components analysis (PCA) plot was used to assess the 
dispersion of the identified two subtypes. We also investigated the 
expressions of DPCDI genes and HF markers between the 
two subtypes.

2.5 Biological mechanisms and enrichment 
analysis of DPCDI

To understand the detailed biological peculiarities of DPCDI, we 
performed Gene Ontology (GO)-Biological Process (BP) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses 
using the clusterProfiler package (Yu et al., 2012). The GO-BP and 
KEGG enrichment terms with P value <0.05 and PCD correlation 
were retained. Subsequently, we used the clusterProfiler package to 
implement Gene Set Enrichment Analysis (GSEA), to evaluate the 
enrichment distribution of the DPCDI-related terms across the two 
HF subtypes. The single-sample Gene Set Enrichment Analysis 
(ssGSEA) was also conducted using the GSVA package 
(Hänzelmann et al., 2013), to calculate the enrichment scores of 
these DPCDI-related terms. To delve into the biological peculiarities 
underlying DPCDI in HF progression and two HF subtypes, the 

TABLE 1 Information on HF cohorts collected in this study.

Accession Type Sample Platform Control HF Usage

GSE141910 RNA-seq Left ventricle GPL16791 166 200 Training

GSE116250 RNA-seq Left ventricle GPL16791 14 50 Testing

GSE135055 RNA-seq Left ventricle GPL16791 9 21 Testing

GSE16499 Array Left ventricle GPL5175 15 15 Testing

GSE5406 Array Left ventricle GPL96 16 194 Testing

GSE57338 Array Left ventricle GPL11532 136 177 Testing

GSE79962 Array Left ventricle GPL6244 11 20 External validation

GSE42955 Array Left ventricle GPL6244 24 5 External validation

GSE52601 Array Left ventricle GPL570 8 4 External validation

GSE21610 Array Left ventricle GPL10558 30 8 External validation

GSE121893 scRNA-seq Left ventricle and atrium GPL18573 2 4 scRNA-seq cohort
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KEGG database (https://www.genome.jp/kegg/) was acquired to 
depict the cross-talk between DPCDI genes and their 
enrichment terms.

2.6 Expression patterns and dynamics of 
DPCDI at single-cell resolution

We used GSE121893, which contains single-cell RNA 
sequencing information on LA and LV samples from four HF 
patients (Wang et al., 2020). Consistent with our previous 
analysis of LV cohorts, we retained LV samples for subsequent 
exploration. Herein, the single-cell RNA sequencing analysis on 
GSE121893 was accomplished by the Seurat package (Hao et al., 
2021). Initially, we eliminated the poor-quality cells with gene count 
(less than 200 or larger than 5, 000) and mitochondrial proportion 
larger than 20%, and a total of 1,668 cells were retained. Next, we 
carried out a log transformation to normalize gene expression and 
identified the top 2,000 highly variable genes for downstream 
reduction. We then conducted a linear transformation to scale 
the gene expression, which assigns each gene the same weight. 
According to the scaling data, PCA was used based on the top 
2,000 highly variable genes. Batch correction was performed using 
the harmony package with the following parameter settings 
(reduction = “pca”, dims = 1:15, max.iter = 20). The optimal 
number of PC (=15) was determined and subjected to Uniform 
Manifold Approximation and Projection (UMAP) clustering. 
Afterward, we obtained five different clusters based on the 
parameters setting (dimension = 1:15, resolution = 0.5). The 
identities of clusters were annotated using the well-known gene 
markers of heart cells (Wang et al., 2020; Hu et al., 2023). Thus, 5 cell 
populations were annotated: (1) Cardiomyocyte (CM), as reflected 
with higher expressions and proportions of MYL2, MYH7, FHL2, 
TTN, TNNT1, and TNNT2; (2) Endothelial cell (EC), as reflected 
with higher expressions and proportions of VWF, PECAM1, CDH5, 
and IFI27; (3) Fibroblast (FB), as reflected with higher expressions 
and proportions of ACTA2, CALD1, and MYH11; (4) Smooth 
muscle cell (SMC), as reflected with higher expressions and 
proportions of DCN, GSN, C7, LUM, FBLN1, and COL1A2; (5) 
Macrophage (MP), as reflected with higher expressions and 
proportions of PTPRC, CD163, CCL4, CXCL8, and LAPTM5. 
We next explored the expression patterns of DPCDI genes in 
these 5 cell populations. Additionally, we used the CellChat 
package (Jin et al., 2021) to quantitatively infer and analyze cell- 
cell communication, thereby understanding the intricate cell atlas in 
the context of HF.

Regarding the DPCDI genes-enriched cell population (CM and 
EC), we subsequently annotated their sub-populations. Next, we 
investigated the expression patterns of DPCDI genes in these defined 
sub-populations of CM and EC. Using the monocle3 package (Cao 
et al., 2019), we proposed a pseudo-time analysis to infer the 
transition trajectory across the CM or EC sub-populations, so as 
to expound the dynamics of DPCDI genes. The inferred trajectory 
was then projected to a UMAP plot for visualization. To gain insight 
into a comprehensive molecular program underlying the transition, 
we analyzed the Differential Expressed Genes (DEGs) that 
significantly changed among the pseudo-time under the threshold 
of Moran’s I > 0.05 and Q-value <0.05. The ClusterGVis package 

(Zhang, 2022) was used to divide these DEGs into distinct patterns 
using K-means clustering. GO and KEGG enrichment analyses were 
implemented for each pattern using the clusterProfiler package (Yu 
et al., 2012), and the enriched terms with P < 0.05 were regarded as 
significant.

2.7 Mendelian randomization of the causal- 
effect between DPCDI expression and 
HF risk

Two-sample Mendelian randomization (2SMR) analysis (Hemani 
et al., 2018) was used to assess the causal association between the 
genetic predisposition of three DPCDI genes (CXCL12, JAK2, STAT3) 
and HF. This data was retrieved from the IEU Open GWAS (https:// 
gwas.mrcieu.ac.uk/) and deCODE (https://www.decode.com/ 
summarydata/) (Ferkingstad et al., 2021; Elsworth et al., 2020). The 
population source of the database is Europe, with samples derived 
from peripheral blood. The exposure IDs were summarized as follows: 
JAK2-eQTL (eqtl-a-ENSG00000096968 in IEU Open GWAS); 
STAT3-eQTL (eqtl-a-ENSG00000168610 in IEU Open GWAS); 
CXCL12-pQTL (3516_60_CXCL12_SDF in deCODE); JAK2-pQTL 
(11816_84_JAK2_JAK2 in deCODE); STAT3-pQTL (10346_5_ 
STAT3_STAT3 in deCODE); HF (ebi-a-GCST009541 in IEU Open 
GWAS). Following the 2SMR assumption, the Single Nucleotide 
Polymorphisms (SNPs) closely related to DPCID genes 
(P-value <5 × 10–8) but not with HF (P-value >0.05) were 
obtained. To avoid linkage disequilibrium (LD), we excluded the 
SNPs with LD-R2 greater than 0.01 within a cropping range of 
5,000 Kb. Eventually, the assumption-compliant SNPs, with an 
F-statistic greater than 100, were retained as strong Instrumental 
Variables (IVs) for MR analysis. The inverse variance weighted 
(IVW) method, with the highest statistical power in 2SMR, was 
used to expound the causality between DPCDI genes and HF risk. 
Additionally, the Bayesian weighted Mendelian randomization 
(BWMR) (Zhao et al., 2020) was used to validate the results of 
2SMR. To further explore the biological significance of these three 
DPCDI genes, the Mouse Genome Informatics (MGI) database 
(https://www.informatics.jax.org/) was accessed to show the 
cardiovascular phenotypes of CXCL12-, JAK2-, and STAT3- 
knockout mouses.

2.8 Heart failure mouse model and 
echocardiographic assessment

The animal experiments were approved by the Institutional 
Animal Ethics Committee of Shanghai Jiao Tong University 
(Approval number: 2025-0821), and complied with NIH 
guidelines. Male and female C57BL/6 mice (8 weeks old) were 
housed under standardized conditions (24 °C ± 2 °C, 40% ± 5% 
humidity, 12-h light/dark cycle). HF was induced by Transverse 
Aortic Constriction (TAC). Sham-operated mice underwent 
identical procedures without aortic ligation. Ejection fraction 
(EF) and fractional shortening (FS) were assessed by 
echocardiography 24 h after surgery. Heart tissues were harvested 
at 1 month post-surgery for analysis. Biometric data (EF, FS, body 
weight, and heart weight) are presented in Supplementary Table S3.
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2.9 Hematoxylin and eosin (H&E) and 
masson staining

Heart tissues were fixed, paraffin-embedded, and cut into 
sections. Tissue morphology and fibrosis were assessed by 
hematoxylin and eosin (H&E) and Masson’s trichrome staining 
according to standard protocols. The infarct size and fibrosis area 
were quantified using ImageJ software.

2.10 RNA isolation and quantitative real- 
time PCR (qPCR) analysis

Total RNA from mouse heart tissue was isolated via an EZ- 
press RNA Purification Kit (EZBioscience). Reverse transcription 
to cDNA was performed with an RT Kit (EZBioscience). 
Quantitative PCR was performed via a Roche480 LightCycler® 
96 real-time PCR system with 2×SYBR Green qPCR Master Mix 
(EZBioscience). The primer sequences are listed in 
Supplementary Table S4. An unpaired t-test was applied to 
assess the differences in gene expression between the control 
and HF groups. Pearson’s correlation analysis was used to 
examine the relationship between gene expression levels and 
echocardiographic indicators (EF and FS).

2.11 Drug prediction and molecular docking 
of DPCDI

The L1000 fireworks display (L1000FWD) database (https:// 
maayanlab.cloud/l1000fwd/) (Wang et al., 2018) was queried to 
identify the small-molecule drugs targeting CXCL12 and STAT3, 
which displayed an opposite relationship with the expressions of 
CXCL12 and STAT3 in HF. According to the information on 
toxicity and availability of predicted drugs, we selected pifithrin 
and strophanthidin as the candidate drugs with potential utility in 
treating HF. Next, we conducted molecular docking to validate 
the reliability of the drug-target interaction based on the binding 
affinity and pattern (Yu et al., 2024a). We first downloaded the 
three-dimensional structures of pifithrin (PubChem CID: 4817) 
and strophanthidin (PubChem CID: 6185) from the PubChem 
website (https://pubchem.ncbi.nlm.nih.gov/), which was 
subjected to energy minizine using the ChemBio3 software. 
Next, we gained the three-dimensional structures of CXCL12 
(ID: 3HP3) and STAT3 (ID: 6NJS) from the Protein Data Bank 
(https://www.rcsb.org/). The source of these protein structures 
was all X-ray crystal detection and derived from Homo sapiens. 
PyMOL software was used to preprocess the protein structures, 
including the removal of solvents, ligands, and hydrogens. To 
determine the active pockets of CXCL12 and STAT3 for docking 
drugs, we employed the AutoDock Vina software to perform polar 
hydrogenation and optimize the docking site. AutoDock Vina 
software was then utilized to dock the target proteins and drugs, 
including the interactions of CXCL12-pifithrin, CXCL12- 
strophanthidin, STAT3-pifithrin, and STAT3-strophanthidin. 
Subsequently, the affinity was computed to appraise the 
binding efficiency for each drug-target interaction, with an 
affinity lower than 5.0 kcal/mol indicating a superior bind 

efficiency. We visualized the binding pattern of each drug- 
target interaction using the PyMOL software.

3 Results

3.1 DPCDI derived from an integrative ML 
framework in multi-cohorts enables an 
accurate HF diagnosis

A flowchart outlining our study is delineated in Figure 1. SOM 
was initially performed in the training cohort, revealing a total of 
251 DPCD-related genes that were actively expressed in HF 
(Figure 2A). DPCD-related genes assigned in each SOM- 
identified cluster were summarized in Supplementary Table S5. 
Subsequently, the expression profile of 251 DPCD-related genes 
from the training cohort was subjected to an integrative ML 
framework to develop a DPCDI, which was depicted in 
Figure 2B. In this computational framework, we established 
113 kinds of algorithmic combinations under the ten-fold cross- 
validation and calculated the AUC score of each combination in all 
cohorts to assess their predictive performances. As shown in these 
113 combinations, we noted that the best-performing combination, 
consisting of Lasso and RF algorithms, achieved the highest mean 
AUC (0.9815) across the training and five independent testing 
cohorts (Figure 2C). The AUC performances of all combinations 
can be found in Supplementary Data 2. Lasso identified the most 
valuable 36 DPCD-related genes with non-zero coefficients via the 
optimal lambda (Figure 2D), with a regression binominal deviation 
reaching minimum (Figure 2E). These 36 DPCD genes were then 
subjected to an RF algorithm using 1,000 trees (Figure 2F), and a 
final set of 15 genes to build DPCDI was identified, including 
CALCOCO2, VPS13D, CLU, STAT3, OPTN, UBB, CXCL12, 
PPP1R15A, ATF4, IVNS1ABP, HMGB2, JAK2, EXOC7, ENO1, 
and TPCN1 (Figure 2G). Moreover, we displayed the case 
distribution and confusion matrix of DPCDI in each cohort 
(Figure 2H). Four indicators for evaluating DPCDI prediction 
(accuracy, sensitivity, specificity, and F1 score) were then 
calculated in each cohort. Remarkably, we observed a relatively 
higher sensitivity of DPCDI, above 0.9 in all cohorts, suggesting a 
potential capability of DPCDI to accurately recognize HF. We also 
verified the robust predictive power of DPCDI in four external 
cohorts (GSE79962, GSE21610, GSE42955, and GSE52601), as 
demonstrated in Supplementary Figure S1. Overall, we provided 
a 15 gene signature, termed DPCDI fitted by Lasso and RF, as an 
attractive panel to predict HF occurrence.

3.2 Comparison of diagnostic performance 
of DPCDI and published HF-predictive 
signatures

We analyzed the expression landscape of altered DPCDI genes 
in each cohort, as displayed in Figure 3A. Expression changes in 
these genes were consistent in all cohorts, in which ATF4, ENO1, 
CALCOCO2, OPTN, VPS13D, and STAT3 were downregulated in 
HF. The log2fold change (log2FC), p-value and False Discovery Rate 
(FDR) of these genes between control and HF cases across cohorts 
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were summarized in Supplementary Table S6. Whereas, CXCL12, 
HMGB2, IVNS1ABP, PPP1R15A, UBB, EXOC7, TPCN1, CLU, and 
JAK2 showed up-regulations in HF. These DPCDI genes were 
largely related to apoptosis or autophagy. Interestingly, these 
genes are expressed differently in HF, suggesting their intricate 
regulation in apoptosis and autophagy. To enable an equitable 
comparison of our DPCDI and other HF-predictive signatures, 
we systemically incorporated 51 gene signatures published within 
the past 5 years (see Methods). We filtered out signatures with larger 
than 30% missing genes in our enrolled cohorts, and a final set of 
35 signatures was retained for comparison. These signatures were 
different functional gene panels, such as cellular senescence, 
immune microenvironment, and N7-methylguanosine. Notably, 
our DPCDI demonstrated better AUC performance than almost 
most signatures in the training (GSE141910), three testing 
(GSE116250, GSE135055, GSE57388), and meta-cohort 
(Figure 3B). Regarding the other two testing cohorts 
(GSE16499 and GSE5406), the AUC performance of DPCDI 
remained relatively robust (larger than 0.85) even though it was 
not the top-ranked model. Also worthy of note is that some 
signatures possessed better performance in their discovery cohort 
but were weak in other cohorts, which may arise from an over-fitting 
troublesome. For instance, the AUC of model three ranked second 
in the GSE16499 cohort, but relatively weakened within GSE116250 
(ranked 27/35) and GSE5406 (ranked 21/35). In sum, our DPCDI 
showed a superior predictive performance than almost most 

published signatures, suggesting its extrapolation possibility with 
better generalization.

3.3 Partitioning of DPCDI-derived molecular 
subtypes for HF

To identify the HF molecular subtypes with different degrees, we 
performed NMF clustering to explore the molecular features of these 
DPCDI genes in HF. Based on the NMF metrics of cophenetic, 
residuals, RSS, and silhouette (Figure 4A), the suitable cluster 
number (rank = 2) was determined to subtyping. Accordingly, 
the HF cases merged in meta-cohort (N = 657) were successfully 
classified into two distinct clusters (Figure 4B), and this apparent 
dispersion was also demonstrated in the PCA plot (Figure 4C). As 
shown in Figure 4D, we also measured the expression landscape of 
DPCDI genes and HF markers among the C1 (N = 297) and 
C2 clusters (N = 360). Among the DPCDI genes, the significant 
downregulation of HMGB2, IVNS1ABP, CALCOCO2, and STAT3 
(P-value <0.001) were observed in C2, while PPP1R15A and 
JAK2 showed the elevated pattern (P-value <0.001). We also 
found that TNINT2 and EGFR were significantly upregulated in C2.

To delve into the different molecular characteristics of 
DPCDI between these two clusters, we initially implemented 
the GO and KEGG enrichment analyses on the DPCDI genes. 
Detailed information on these analyses can be found in 

FIGURE 1 
Overview of this study. (A) DPCDI modeling. (B) Biological mechanisms underlying DPCDI. (C) Pathogenic potential of DPCDI. (D) Therapeutic 
applications of DPCDI.
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FIGURE 2 
Establishment of an HF-predictive DPCDI using an integrative ML framework. (A) SOM identification of three sets of HF-susceptible genes in the 
training cohort. (B) Design of the integrative ML framework. (C) The AUC performance of 113 ML combinations for distinguishing HF from control across 
the training and five independent testing cohorts was sorted, and top 30 combinations was visualized as a heatmap. The best combination (Lasso and RF) 
with the highest average AUC was marked with a red star. (D) Lasso coefficients of 176 DPCD-related genes under optimal λ construction. A total of 

(Continued ) 
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FIGURE 2 (Continued) 

36 genes with non-zero coefficients were retained (labeling on the right panel). (E) The minimum deviance was reached under the 36 Lasso-selected 
genes. (F) Changes in error rates using different tree numbers in RF. (G) Feature importances of 15 DPCD-related genes screened from 36 Las-so-selected 
genes via RF. (H) Confusion matrix and diagnostic assessment of DPCDI within the training and five independent testing cohorts. Each cohort was 
displayed respectively.

FIGURE 3 
Superior predictive capability of DPCDI. (A) Heatmap displaying the expressions of DPCDI genes between control and HF cases within the training 
and five independent testing cohorts. (B) Comparison of diagnostic performance of DPCDI and other 50 published signatures. The AUC performance of 
DPCDI in each cohort was marked in a red bracket respectively. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.001.
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Supplementary Table S7. We showed that the intrinsic apoptotic 
signaling pathway, regulation of apoptotic signaling pathway, 
and regulation of autophagy represent the GO functional terms 
(Figure 4E). Additionally, we found that mitophagy, autophagy, 
and chemokine signaling pathway were the significant KEGG 
pathway terms, of which mitophagy integrates ATF4, UBB, 
CALCOCO2, and OPTN, and chemokine signaling pathway 
links CXCL12, JAK2, and STAT3. GSEA was then performed 
to measure the enrichment distribution of these functional and 
pathway terms between the C1 and C2 clusters. As shown in 
Figure 4F, we noticed that the intrinsic apoptotic signaling 
pathway, regulation of apoptotic signaling pathway, 
mitophagy, autophagy, and chemokine signaling pathway 
were highly enriched in C2 (NES >1; Supplementary Table 
S8), but regulation of autophagy was lowly enrichment 
(NES <1; Supplementary Table S8). Using the ssGSEA 
approach, we also observed the same tendencies in these 
DPCDI-enrichment terms between C1 and C2 (Figure 4G). 
Consequently, we observed that patients in C2 exhibited 
enhanced activity in apoptosis and autophagy-related 
pathways, specifically intrinsic apoptosis and mitophagy, 
while demonstrating reduced regulation of autophagy 
initiation (Figure 4H). We next investigated the interplays 
between the DPCDI genes in these biological processes, as 
depicted in Supplementary Figure S2. A pathway overview of 
crosstalk between the DPCDI genes and their regulators was 
summarized in Figure 4I. Interestingly, we noted that 
CALCOCO2 and TPCN1, two important regulators of 
autophagy cargo recognition, were decreased in C2, which 
partly explained the inhibited autophagy regulation in C2. 
More intriguingly, we found that the downstream STAT3 in 
the chemokine signaling pathway, which is supposed to be 
activated by CXCL12 and JAK2, was significantly 
downregulated in C2 patients. This data suggests that the 
C2 subtype exhibits more active apoptotic and autophagic 
processes, but the regulation of autophagy is impeded. 
Notably, the C1 and C2 subtypes were identified using 
transcriptomic data, in the absence of correlated clinical 
parameters such as baseline cardiac function or comorbidity 
profiles. Consequently, this observed differences between 
subtypes must be interpreted cautiously and require 
validation through future studies.

3.4 Expression patterns of DPCDI in HF cell 
atlas at single-cell resolution

We next questioned whether the expression patterns of DPCDI 
genes differ by the cellular diversity of LV. We applied scRNA-seq 
analysis of individual cells isolated from LV tissues of four HF 
patients. The workflow was shown in Figure 5A. A total of 
1,668 high-quality cells were gained after data trimming and 
filtering (Supplementary Figure S3). Then, we performed 
unsupervised clustering to partition 1,668 cells that were 
identified as five distinct clusters using UMAP. Five main cell 
populations, including cardiomyocyte (CM), endothelial cell 
(EC), fibroblast (FB), smooth muscle cell (SMC), and 
macrophage (MP), were subsequently annotated based on their 

respective markers (Figures 5B,C). Next, we visualized the global 
expression of DPCDI genes among these 5 cell populations 
(Figure 5D). Worthy of noting is that the IVNS1ABP 
(Figure 5E), JAK2 (Figure 5F), and OPTN (Figure 5G) were 
highly expressed in the CM population. Nonetheless, STAT3 was 
almost absent in CM compared to other populations, suggesting its 
dysfunction despite JAK2 being actively expressed. Moreover, we 
noticed that CXCL12 expression was enriched in EC and SMC 
populations (Figure 5H). Interestingly, the CM population was only 
enriched for JAK2 activation but lacked CXCL12 and STAT3, yet the 
close relationship of the CXCL12-JAK2-STAT3 axis in chemokine 
signaling was reported. Thus, it is believed that CM and NCM 
populations interact dynamically in the context of HF. Given this 
specific DPCDI gene expression in CM and EC, we selected these 
cell types for further investigation.

CellChat, based on the information on ligands, receptors, and 
cofactors from scRNA-seq data, was implemented to quantitatively 
infer and analyze intercellular communication. The cell-to-cell 
interaction among CM, EC, FB, SMC, and MP was respectively 
visualized as circular plots by interaction number (Figure 5I) and 
interaction strength (Figure 5J). The cell-to-cell interaction for each 
population was respectively exhibited by interaction number 
(Figure 5K) and interaction strength (Figure 5L). Using cell 
centrality analysis, we next extrapolated the roles of cell 
populations in signaling pathways. Figure 5M shows the inferred 
intercellular communication network for CXCL12 signaling. Of 
note, EC and SMC are dominant senders, and MP is the receiver 
of CXCL12 signaling. Specifically in the most important 
contribution for ligand-receptor, EC and SMC highly expressed 
CXCL12 ligand, which acts as a sender to active CXCR4 receptor in 
MP (Supplementary Figure S4A). We also showcased an inferred 
intercellular communication network for VISFATIN signaling 
(Figure 5N), consisting of MP as a sender and CM as a receiver. 
Interestingly, both MPs and CMs are predicted to be influencers, 
suggesting their roles as interactive controls in VISFATIN signaling. 
Given that MPs are activated via CXCL signaling, we speculated that 
these pro-inflammatory MPs show the activity of the NAMPT ligand 
and subsequently activate the INSR ligand of CMs (Supplementary 
Figure S4B), which may drive the regulation of JAK2 in CMs.

3.5 Dynamics of DPCDI was observed during 
the transition of sub-populations of CM 
and EC

To elucidate the dynamics of DPCDI genes, we defined the sub- 
populations of CM and EC (Supplementary Figure S5; Supplementary 
Figure S6), representing two major DPCDI-enriched groups in the LV 
landscape of HF. The Two sub-populations of CM were identified 
(Figure 6A), including CM1 and CM2. The expressions of three CM- 
enriched DPCDI genes (IVNS1ABP, JAK2, and OPTN) were depicted 
in Figure 6B, showing that CM2 expressed higher levels of IVNS1ABP 
and JAK2. Notably, CM1 expressed increased levels of mitochondrial 
oxidative stress-related genes (Figure 6C), such as NDUFA4 and 
C14ORF2; and CM2 demonstrated greater expressions of HF cardiac 
genes (Figure 6C), such as NPPA and NPPB. Therefore, CM2 may 
represent an end-stage CM population, suggesting a vibrant activity of 
apoptosis. We further performed pseudo-time analysis and the 
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trajectory of two CM sub-populations was constructed (Figure 6D). 
Interestingly, we found that CM1 was expressed at a relatively earlier 
pseudo-time, with two branches significantly differentiating from nodes 
across the pseudo-time. Early branch was largely dominated by CM1, 
whereas the late branch was mainly composed of CM2. Next, we 

examined the dynamics of cardiac genes and DPCDI genes along 
the pseudo-time. Considering these cardiac genes, we showed that 
MYL4, MYL9, NPPA NPPB, and TNNT1 progressively increased 
(Figure 6E), representing a shift towards CM1 to CM2. As shown in 
Figure 6F, IVNS1ABP and JAK2 were gradually decreased along the 

FIGURE 4 
Construction of a DPCDI-derived HF subtype and biological peculiarities of DPCDI. (A) The distribution of cophenetic, residuals, RSS, and silhouette 
through ranks from 2 to 10. (B) Consensus map of NMF clustering when rank equals 2. (C) The three-dimensional PCA plot shows the distinct distribution 
of two clusters. (D) The expressions of DPCDI genes and HF biomarkers between control and HF. (E) Enriched GO and KEGG terms of DPCDI genes. (F) 
GSEA enrichment plot of DPCDI-related terms. (G) ssGSEA enrichment plot of DPCDI-related terms. (H) Schematic chart illustrating the differences 
in enrichment of DPCDI-related terms between HF and control cases. (I) Overview depicting the cross-talk between DPCDI genes and regulators.
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pseudo-time, suggesting their potential in mediating CM differentiation. 
Additionally, STAT3 expressed relatively lower expression in CM2 and 
almost absent in CM1. Next, we partitioned genes that were significantly 
expressed along the pseudo-time trajectory into four different clusters 
(Figure 6G). During the CM differentiation, genes in cluster 4 (C4), such 
as IVNS1ABP and JAK2, were progressively decreased from an 
intermate state to an end state, and significantly enriched in terms 
related to the cytoskeleton. Additionally, cluster 1 (C1) including HF 

cardiac genes, were progressively elevated, and mostly enriched for 
terms related to muscle contraction and cytoskeleton. We also identified 
two sub-populations of EC (Figure 6H), including EC1 and EC2. As 
shown in Figures 6I,J, CXCL12 (an EC-enriched DPCID gene) was 
mostly expressed in the EC2 sub-population. Notably, EC1 exhibited an 
increased expression of Ca2+ ATPase-related genes (Figure 6K), such as 
CSRP3, PLN, and ATP2A2. EC1 also highly expressed ANKRD1, an EC 
activation factor contributing to repressing cardiac gene expression, 

FIGURE 5 
Exploration of DPCDI expression in HF patients at single-cell resolution. (A) Schematic illustration of this flow. (B) UMAP visualization and numbers of 
five annotated cell populations isolated from LV of HF patients. (C) Heatmap displaying marker genes for annotating each cell population. (D) Expression of 
DPCDI genes among the cell populations. Expression distribution of IVNS1ABP (E), JAK2 (F), OPTN (G), and CXCL12 (H) among the cell populations. (I) The 
number of interactions of the five populations. (J) The number of interactions of each cell population. (K) The interaction weights/strength of the 
5 cell populations. (L) The interaction weights/strength of each cell population. The line color and width represent cell type and interaction pairs, 
respectively. (M) Identification of CXCL signaling pathway network between EC, SMC, and MP. Left and right portions show the interactions and signaling 
roles in CXCL signaling pathway, respectively. (N) Identification of VISFATIN signaling pathway network between MP and CM. The left and right portions 
show the interactions and signaling roles in the VISFATIN signaling pathway, respectively.
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which promotes cardiac modeling. As depicted in Figure 6K, EC2 was 
characterized by cell migration-related genes (CX3CL1 and CXCL12) 
and vessel morphogenesis-related genes (COL4A1 and NR2F2). 
Pseudo-time analysis was then performed to construct the trajectory 
of two EC sub-populations (Figure 6L). Notably, the early branch with 
lower pseudo-time was largely dominated by EC2, whereas the late 
branch was mainly composed of EC1. We next examined the dynamics 
of EC1 and EC2 marker genes along the pseudo-time, as depicted in 
Figures 6M,N. We showed that EC2 marker genes, especially CXCL12, 
progressively decreased during the state transformation. Next, the 
differential expressed genes across the pseudo-time were partitioned 
into four distinct clusters, as shown in Figure 6O. EC2 maker genes were 
allocated to C2, demonstrating a stronger involvement in ribosome- 
related functions. EC1 marker genes were clustered to C4 that were 
progressively elevated, which displayed an enrichment in muscle 
contraction-related terms.

3.6 Genetic predisposition towards CXCL12, 
JAK2, and STAT3 were found to casually 
associated with HF

To investigate the causal relationship between genetically 
proxied DPCDI expression and HF risk, we systematically 
applied 2SMR and BWMR. Among the DPCDI genes, the results 
of CXCL12 (pQTL), JAK2 (eQTL and pQTL), and STAT3 (eQTL 
and pQTL) were demonstrated to be statistically significant, 
suggesting high-support evidence for a genetic association linked 
to HF. Using 2SMR, the effect sizes of the SNP characteristics of 
eQTL expressions (JAK2, STAT3) and HF risk were negatively 
related, which were depicted in Figures 7A,D. The forest plot, 
leave-one-out plot, and funnel plot of SNP characteristics can be 
found in Supplementary Figure S7 and Supplementary Figure S8. 
The negative relationship was also demonstrated using the BWMR 

FIGURE 6 
In-depth exploration of DPCDI dynamics in sub-populations of CM and EC during HF progression. (A) UMAP visualization and numbers of CM 
population. (B) Global expression of JAK2, OPTN, and IVNS1ABP among the CM population. (C) Heatmap displaying marker genes for CM1 and CM2 sub- 
populations. (D) Inference of pseudo-time trajectories of CM population. The left and right portions represent the branch trajectories with cells colored by 
pseudo-time and branch trajectories with cells colored by sub-population, respectively. (E) Expression dynamic of marker genes (MYL4, MYL9, NPPA, 
NPPB, TNNI1, TNNT1) across the pseudo-time. (F) Expression dynamic of IVNS1ABP, JAK2, OPTN, and STAT3 across the pseudo-time. (G) Gene dynamic 
analysis of CM population transition. The left part was a heatmap displaying the expression dynamics of DEGs with distinct patterns along the pseudo- 
time. The right part was GO and KEGG enrichment terms of each cluster. (H) UMAP visualization and numbers of EC population. (I) Global expression of 
CXCL12 among the EC population. (J) Expression distribution of CXCL12 between EC1 and EC2 sub-populations. (K) Heatmap displaying marker genes for 
EC1 and EC2 sub-populations. (L) Inference of pseudo-time trajectories of EC population. The left and right portions represent the branch trajectories with 
cells colored by pseudo-time and branch trajectories with cells colored by sub-population, respectively. (M) Expression dynamic of EC1-marker genes 
(ANKRD1, ATP2A2, CSRP3, PLN) across the pseudo-time. (N) Expression dynamic of EC2-marker genes (COL14A1, CX3CL1, CXCL12, NR2F2) across the 
pseudo-time. (O) Gene dynamic analysis of EC population transition. The left part was a heatmap displaying the expression dynamics of DEGs with distinct 
patterns along the pseudo-time. The right part was GO and KEGG enrichment terms of each cluster.
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FIGURE 7 
Mendelian randomization assessing the causal relationship between DPCDI genes and HF. (A–C) MR analysis of JAK2 (eQTL), in which A and B 
represent the correlation between the SNP effect of JAK2-eQTL (x-axis) and HF (y-axis) based on 2SMR and BWMR respectively, C was a forest plot 
summarizing the OR effects and P-values of 2SMR and BWMR on the causal relation-ship between JAK2-eQTL and HF. (D–F) MR analysis of STAT3 
(eQTL), in which D and E represent the correlation between the SNP effect of STAT3-eQTL (x-axis) and HF (y-axis) based on 2SMR and BWMR 
respectively, F was a forest plot summarizing the OR effects and P-values of 2SMR and BWMR on the causal relationship between STAT3-eQTL and HF. 
(G–I) MR analysis of CXCL12 (pQTL), in which G and H represent the correlation between the SNP effect of CXCL12-pQTL (x-axis) and HF (y-axis) based on 
2SMR and BWMR respectively, I was a forest plot summarizing the OR effects and P-values of 2SMR and BWMR on the causal relationship between 
CXCL12-pQTL and HF. (J–L) MR analysis of JAK2 (pQTL), in which J and K represent the correlation between the SNP effect of JAK2-pQTL (x-axis) and HF 
(y-axis) based on 2SMR and BWMR respectively, L was a forest plot summarizing the OR effects and P-values of 2SMR and BWMR on the causal 
relationship between JAK2-pQTL and HF. (M–O) MR analysis of STAT3 (pQTL), in which M and N represent the correlation between the SNP effect of 
STAT3-pQTL (x-axis) and HF (y-axis) based on 2SMR and BWMR respectively, O was a forest plot summarizing the OR effects and P-values of 2SMR and 
BWMR on the causal relationship between STAT3-pQTL and HF. (P) Schematic illustration of this flow. (Q) Cardiovascular phenotypes of CXCL12, JAK2, 
STAT3 knockout from the MGI database. Red and blue stand for a risk and protective factor of HF, respectively.
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method (Figures 7B,E). Using the IVW approach, with the highest 
statistical power, we found that genetic predisposition toward 
mRNA expressions of JAK2 and STAT3 significantly decreased 
the risk of HF (Figures 7C,F; OR <1, P < 0.05). Additionally, the 
direction of effect estimate through IVW was consistent with the 
other five approaches. Horizontal heterogeneity and pleiotropy were 
not observed (Supplementary Table S9; Supplementary Table S10), 
which guarantees the analytic reliability.

With regard to the pQTL data on CXCL12, JAK2, and STAT3, 
we found that the effect size of the SNP characteristics of 
CXCL12 was positively associated with HF (Figure 7G), whereas 
the SNPs of JAK2 (Figure 7J) and STAT3 (Figure 7M) were 
negatively correlated to HF. The forest plot, leave-one-out plot, 
and funnel plot of these SNP characteristics can be found in 
Supplementary Figure S9 (pQTL of CXCL12), Supplementary 
Figure S10 (pQTL of JAK2), and Supplementary Figure S11
(pQTL of STAT3). Consentient with 2SMR, the relationships of 
CXCL12, JAK2, and STAT3 were observed in BWMR, which were 
respectively shown in Figures 7H,K,N. Using the IVW approach, we 
found that genetic predisposition toward protein expressions of 
CXCL12 significantly increased the HF risk (Figure 7I; OR > 1, P < 
0.05). Though the estimated direction of JAK2-pQTL was consistent 
with the eQTL data, no statistical significance was shown (Figure 7L; 
OR < 1, P > 0.05). Interestingly, we showed that genetically proxied 
higher protein expression of STAT3 also significantly decreased the 
HF risk (Figure 7O; OR < 1, P < 0.05), which was corroborate with 
the eQTL data. Also, we did not note heterogeneity and pleiotropy in 
the analyses of pQTL data on CXCL12, JAK2, and STAT3 
(Supplementary Table S11; Supplementary Table S12; 
Supplementary Table S13). The workflow was shown in 
Figure 7P. Furthermore, the MGI database was queried to 
identify the cardiovascular phenotypes relevant to the knock-out 
of CXCL12, JAK2, and STAT3 genes in mouse models (Figure 7Q). 

Abnormal angiogenesis and poor arterial differentiation were 
induced after the knockout of CXCL12 and JAK2. More 
important traits, such as dilated heart and cardiomyopathy, 
occurs in STAT3-knockout mice, suggesting its crucial role in 
HF progression. Altogether, our data indicates that 
CXCL12 plays a risk factor contributing to HF, but JAK2 and 
STAT3 act protective factors against HF.

3.7 Mouse model validation of Cxcl12, Jak2, 
and Stat3 expression

To investigate the expression profile of DPCDI-core genes 
(CXCL12, JAK2, STAT3) in HF, we established TAC-induced HF 
mouse models. The experimental flow is outlined in Figure 8A. 
Echocardiography confirmed significantly impaired cardiac 
function in the TAC group compared to sham-operated 
controls, as evidenced by reduced ejection fraction (EF) and 
fractional shortening (FS) (Figures 8B,C; P < 0.05). 
Histological analysis revealed marked cardiomyocyte 
hypertrophy and inflammatory cell infiltration by H&E staining 
(Figure 8D), while Masson’s trichrome staining demonstrated 
extensive interstitial fibrosis (Figure 8E). Furthermore, qPCR 
analysis of cardiac tissue showed significant upregulation of 
Jak2 and Cxcl12 mRNA levels and downregulation of 
Stat3 mRNA levels (Figure 8F; all P < 0.001). As depicted in 
Figure 8G, correlation analysis revealed negative correlations 
between the expression levels of Jak2 and Cxcl12 and cardiac 
function parameters (EF and FS), whereas a positive correlation 
was observed between Stat3 expression and cardiac function (EF 
and FS). Taken together, these findings suggest that elevated 
Jak2 and Cxcl12 expression may promote HF progression, 
whereas Stat3 expression may exert a protective effect against HF.

FIGURE 8 
Animal Validation of Cxcl12, Jak2, and Stat3 expressions in the HF context. (A) Study flow. (B,C) Echocardiography of the sham and HF mouse models. 
(D) HE staining of the sham and HF mouse models. (E) Masso staining of the sham and HF mouse models. (F) Expressions of Cxcl12, Jak2, and Stat3 in the 
sham and HF mouse models. (G) Correlations between gene expressions and echocardiography indicators. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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3.8 Therapeutic implications of CXCL12 and 
STAT3 in mitigating HF

Given the risk role of CXCL12 and the protective role of 
STAT3 against HF, we next sought to explore their therapeutic 
values for HF treatment. The L1000 FWD database was employed 
to predict the potential small-molecule drugs with opposite 
patterns to reverse the upregulation of CXCL12 and 
downregulation of STAT3 in HF (Figure 9A). The detailed 
information on the top 20 predicted drugs, including the 
similarity score, P-value, Q-value, Z-score, and combined 
score, was summarized in Supplementary Table S14. 
Considering the toxicity and availability of these drugs, we 
selected pifithrin and strophanthidin as the candidate drugs. 
The two-dimensional structures of pifithrin and strophanthidin 
can be found in Figures 9B,C, respectively. Next, we performed 
molecular docking to validate the predicted drug-gene 
interactions. The binding patterns of pifithrin-CXCL12 
(Figure 9D, left panel), pifithrin-STAT3 (Figure 9E, left panel), 
strophanthidin-CXCL12 (Figure 9F, left panel), and 
strophanthidin-STAT3 (Figure 9G, left panel) were visualized 
through molecular docking. Importantly, the binding affinities 
of these dockings were all lower than −5 kcal/mol, indicating 
reliable interactions. Specifically, pifithrin formed two hydrogen 
bonds with CXCL12 (Figure 9D, right panel): with ARG-41 and 
ASN-46 residues at the distance of 2.7 Å and 3.3 Å. Pifithrin 
formed two hydrogen bonds with STAT3 (Figure 9E, right panel): 

with ALA-250 and GLN-326 residues at the distance of 2.0 Å and 
3.3 Å. Moreover, strophanthidin only formed one hydrogen bond 
with CXCL12 (Figure 9F, right panel): with GLU-63 residue at a 
distance of 3.1 Å. Lastly, strophanthidin formed two hydrogen 
bonds with STAT3 (Figure 9G, right panel): with ILE-258 and 
GLN-326 residues at the distance of 2.4 Å and 3.0 Å. Thus, 
pifithrin and strophanthidin may serve as a potential 
therapeutic candidate for further investigation, repressing the 
CXCL12 elevation and STAT3 decrease in HF.

4 Discussion

HF, a complex clinical syndrome of global epidemic 
proportions, poses a significant health burden due to its high 
prevalence and heterogeneous etiology. While management 
strategies have advanced considerably in recent decades (Bozkurt, 
2024), our understanding of its molecular mechanisms remains 
limited by cardiac complexity (Zhang et al., 2024), hindering precise 
diagnosis and effective treatment. This underscores the urgent need 
for novel predictive and therapeutic targets.

Advances in sequencing and bioinformatics have enabled the 
identification of molecular signatures for disease prediction from 
omics data (Pilarczyk et al., 2022). Consequently, numerous mRNA 
signatures derived from transcriptomic assays have been proposed 
for HF prediction. However, signatures derived from disparate 
specimen types (such as LV tissues and myocytes isolated from 

FIGURE 9 
Therapeutic value of DPCDI genes using small-molecule drug prediction and molecular docking. (A) The top 20 most significant small-molecule 
drugs with signature similarity of STAT3 upregulation and CXCL12 downregulation by the L1000fwd database. Pifithrin and strophanthidin were selected. 
(B) Chemical structure of pifithrin. (C) Chemical structure of strophanthidin. (D) Molecular docking between pifithrin and CXCL12. (E) Molecular docking 
between pifithrin and STAT3. (F) Molecular docking between strophanthidin and CXCL12. (G) Molecular docking between strophanthidin and STAT3.
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LV (Fan and Hu, 2022)) may lack diagnostic specificity due to 
cellular heterogeneity during disease progression, limiting their 
reliability. To address this, we exclusively curated LV-derived 
gene expression profiles.

Given the established role of programmed cell death (PCD) 
in cardiovascular disorders (Del Re et al., 2019) and its potential 
significance in HF, we hypothesized that PCD-related genes 
could aid in HF identification, stratification, and therapy. We 
focused on four druggable PCD forms: apoptosis, necrosis, 
ferroptosis, and autophagy. Ten independent HF cohorts 
(429 controls, 694 HF cases) from GEO were designated as 
training, testing, and external validation sets to develop a 
DPCDI. In the existing studies, the modeling of signature 
mostly depended on personal preferences (Wang et al., 2022). 
To avoid this bias, we collected 12 prevalent ML algorithms to 
construct a predictive signature. Upon packing and 
benchmarking 12 ML approaches into 113 algorithmic 
combinations, we successfully designed an integrative 
computational framework, as our previous studies of building 
signatures to identifying patients with acute myocardial 
infarction (Zhu et al., 2024). Ultimately, the optimal 
combination of Lasso and RF algorithms achieved the highest 
average AUC score (=0.9815) across the training and testing 
cohorts, and also performed excellent external validation 
cohorts. We termed this optimal combination DPCDI, which 
was fitted on the expressions of 15 DPCD-related genes 
(CALCOCO2, VPS13D, CLU, STAT3, OPTN, UBB, CXCL12, 
PPP1R15A, ATF4, IVNS1ABP, HMGB2, JAK2, EXOC7, ENO1, 
and TPCN1). Interestingly, we found these 15 DPCDI genes 
were differentially expressed in HF, and largely associated with 
apoptosis and autophagy. This data underscores the intricate 
plays between these DPCDI genes in apoptosis and autophagy 
that contribute to HF.

Overfitting often occurs when establishing predictive 
signatures, reflected in the high predictive accuracy of the 
discovery cohort but generalized poor encountering external 
data (Deo, 2015). Using an integration of Lasso and RF, we 
minimize the abundant information and identify the most 
significant genes to generate DPCDI. Benchmarking against 
50 published HF signatures revealed DPCDI’s superior 
generalizability (AUC >0.85 across all cohorts). Notably, 
while model four model 4 (a 14-aging gene signature by Yu 
et al.) (Yu et al., 2024b) and model 7 (a 17-gene signature by 
Portokallidou et al.) (Portokallidou et al., 2023) ranked highly, 
their external validation performance was suboptimal, likely 
due to overfitting. In contrast, our DPCID also presents a good 
predictive performance regarding the external validation. 
DPCDI’s robustness stems from Lasso’s L1 regularization 
(reducing dimensionality, preventing overfitting) (Li et al., 
2022) and RF’s handling of unbalanced cohorts (Biau and 
Scornet, 2016). The combined approach outperformed either 
algorithm alone (Lasso with AUC = 0.9299; RF with 
AUC = 0.9599).

The molecular subtype of HF remains incompletely explored. 
We investigated whether DPCDI contributes to HF molecular 
subtyping. NMF partitioned 657 HF patients into two divergent 
subtypes (C1, N = 297; C2, N = 360). DPCDI genes were 
differentially expressed between subtypes, with two HF 

markers (NINT2 and EGFR) significantly elevated in C2 versus 
C1. Given DPCDI’s role in apoptosis and autophagy, we used 
GSEA and ssGSEA to compare molecular characteristics between 
DPCDI-derived subtypes. C2 showed greater enrichment in 
apoptosis, autophagy, mitophagy, and chemokine signaling, but 
less enrichment in autophagy regulation. Conversely, 
C1 exhibited the opposite pattern. Studies have showed that 
apoptosis and autophagy cooperate or antagonize, controlling 
the cell fate (Noguchi et al., 2020; Nikoletopoulou et al., 2013). 
Mitophagy, central to mitochondria quality control (Wanderoy 
et al., 2020), balances apoptosis and autophagy. Based on this 
evidence, we speculated that the dysregulated mitophagy in 
C2 exacerbates apoptosis.

Integrating KEGG and literature evidence, we outlined a 
mechanistic overview of DPCDI gene crosstalk with enriched 
pathways. HMGB2, IVNS1ABP, ATF4, and PPP1R15A 
contribute to intrinsic apoptosis. Downregulated ATF4 relieves 
BCL2L1 inhibition of pro-apoptotic factors BAX and BAK, 
stimulating mitochondrial outer membrane permeabilization 
(MOMP) (Yamazaki and Galluzzi, 2022). The upregulation of 
HMGB2 and PPP1R15A aggravates intrinsic apoptosis through 
stimulating RELA and BID (Yagi et al., 2003), respectively. 
INVS1ABP has been found to stabilize actin to inhibit intrinsic 
apoptosis (Hotter et al., 2020). In C2 patients, the decreasing of 
INVS1ABP may lose its protective function, and upregulated 
PPP1R15A may induce apoptosis. Also, we depicted the 
CXCL12-JAK2-STAT3 axis in the chemokine signaling activates 
intrinsic apoptosis. Intriguingly, despite activation of CXCL12 and 
JAK2, STAT3 was inhibited, suggesting a dysphosphorylation of 
STAT3. STAT3 exerts cytoprotective effects through anti-apoptosis, 
but its dysregulation induces dilated cardiomyopathy and adverse 
remodeling post-myocardial infarction (Haghikia et al., 2011; 
Haghikia et al., 2014). We speculated PTPN2 and SOCS3 inhibit 
the JAK2-STAT3 activities (Zhang et al., 2018; Carow and 
Rottenberg, 2014). Regarding C2 patients, we found that 
CXCL12 and JAK2 increase significantly compared to C1, but 
STAT3 is downregulated. In this regard, a lower level of 
STAT3 attenuates its inhibition of apoptosis and thus 
exacerbates apoptosis.

Additionally, we demonstrated that ENO1, CLU, and UBB, 
which belong to the SUPER family as apoptotic cell surface 
markers, were differentially expressed in HF to induce 
ubiquitination and apoptosis (Díaz-Ramos et al., 2012). 
Particularly, UBB was significantly elevated in HF, suggesting a 
higher ubiquitination. VPS13D, a ubiquitin-binding gene in 
mitochondrial clearance (Anding et al., 2018), was decreased in 
HF. EXO7 serves as a key component of the mitophagy scaffold 
(Farré and Subramani, 2011), and was found to be upregulated in 
HF. Except for the decrease in ENO1, there were no significant 
changes regarding the mitophagy-upstream regulators (CLU, UBB, 
VPS13D, and EXO7) in C2 compared to C1. Furthermore, we 
showed that two cargo receptors for mitophagosome recognition, 
CALCOCO2 and OPTN (Adriaenssens et al., 2024), were decreased 
in HF. Despite the activation of ubiquitination to mitophagosome 
formation, the inhibition of two cargo receptors (CALCOCO2 and 
OPTN) suggests that the impairment cargo of mitophagosome. 
TPCN1, which controls Ca2+ channels to regulate autophagy, 
shows an upregulation pattern in HF (Xiong and Zhu, 2016). 
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More importantly, we noted that CALCOCO2 and TPCN1 were 
significantly decreased in C2. Therefore, we concluded that the 
recruitment and ubiquitination of mitophagosomes continue in 
C2 patients. However, the cargo regulation is chaotic because of 
the impaired expressions of CALCOCO2 and TPCN1. Also, the 
impeded mitophagy regulation might enhance apoptosis 
(Noguchi et al., 2020). This may explain the low enrichment 
of mitophagy but the high enrichment of mitophagy and 
apoptosis in C2.

We next explored DPCDI expression patterns at single-cell 
resolution to investigate detailed molecular mechanism. Using 
scRNA-seq, we plotted the LV cell atlas from four HF patients, 
including CM, EC, FB, SMC, and MP populations. Among DPCDI 
genes, JAK2, IVNS1ABP, and OPTN showed higher expression in 
CM, while CXCL12 was enriched in EC and SMC. JAK2 was highly 
expressed in CM, but its upstream CXCL12 and downstream 
STAT3 were not correspondingly enriched, prompting 
investigation into the CXCL12-JAK2-STAT3 axis across 
populations. JAK-STAT signaling contributes to HF progression 
(Pang et al., 2023), but cell-to-cell mechanisms are poorly explained. 
Using CellChat, we analyzed cell interactions. CXCL12-expressing 
ECs and SMCs bind CXCR4 receptors on MPs, leading to CXCL 
signaling that promotes MP pro-inflammation (Kim et al., 2014). 
Pro-inflammatory MPs exhibit NAMPT activity and bind INSR 
ligands on CMs. INSR activation promotes JAK2-STAT3 signaling 
(Salminen et al., 2021). We propose that CXCL12-expressing ECs/ 
SMCs stimulate MP pro-inflammation via CXCL12-CXCR4; pro- 
inflammatory MPs then interact with CMs via NAMPT-INSR to 
activate JAK2-STAT3 signaling. Pseudo-time analysis inferred 
trajectories for CM and EC populations. Two CM-expressed 
DPCDI genes (IVNS1ABP and JAK2) decreased dynamically 
during CM transition from oxidative stress to failure. CXCL12, 
an EC-expressed DPCDI gene, declined during EC transformation 
from migration and vessel morphogenesis. This indicates roles for 
IVNS1ABP and JAK2 in CM differentiation, and CXCL12 in EC 
differentiation.

To assess DPCDI druggability, we performed two large 
population-based MR studies at mRNA and protein levels. 
Using eQTL datasets, we identified negative causal associations 
between JAK2/STAT3 mRNA expression and HF risk. pQTL 
datasets validated protective roles of JAK2/STAT3 proteins 
against HF. CXCL12 protein level positively correlated with HF 
prevalence. Knockout of CXCL12, JAK2, and STAT3 in mice 
caused cardiovascular phenotypes like abnormal angiogenesis, 
poor arterial differentiation, and dilated heart, underscoring 
their pivotal roles in cardiovascular development and 
validating our MR results. CXCL12 level associates with 
increased MACEs in CAD patients (Zhang et al., 2022), 
indicating high risk. HF patients show JAK2 activation but 
severe STAT3 reduction (Cambi et al., 2012). 
STAT3 downregulation relates to end-stage HF (Hilfiker- 
Kleiner et al., 2005; Harhous et al., 2019), highlighting its 
protective role. Our findings support CXCL12 as a high-risk 
factor and JAK2/STAT3 as protective factors, suggesting 
therapeutic targets.

We predicted 20 small-molecule drugs reversing 
CXCL12 upregulation and STAT3 downregulation in HF. 
Pifithrin and strophanthidin were promising candidates, 

showing close affinities with CXCL12 and STAT3 through 
molecular docking. Pifithrin, a p53 inhibitor, protects 
against doxorubicin-induced apoptosis and attenuates 
myocardial ultrastructural alterations (Liu et al., 2004). 
Strophanthidin, a Na+/K+-ATPase inhibitor, exerts positive 
inotropic effects on failing human myocardium concentration- 
dependently (von Lewinski et al., 2007) and enhances anti- 
tumor activity via STAT3 in HepG2 cells (Reddy et al., 2019). 
Although predicted and validated in silico to interact with 
CXCL12 and STAT3, their cardio-protective mechanisms 
through reversing CXCL12/STAT3 expression remain 
unclear. Detailed investigations into pifithrin and 
strophanthidin effects on CXCL12 inhibition and 
STAT3 activation for HF alleviation are needed.

Our study has limitations. First, cohorts were retrospective. 
Further DPCDI investigation requires larger, multi-ethnic 
cohorts and clinical correlation. Second, DPCDI gene 
crosstalk in HF is incompletely explored, and more functional 
experiments are needed. Third, the therapeutic significance of 
CXCL12 and STAT3, particularly interactions with pifithrin and 
strophanthidin, requires detailed pharmacological study.

5 Conclusion

In summary, an optimal combination of Lasso and RF that 
contribute to a 15-gene signature (CALCOCO2, VPS13D, CLU, 
STAT3, OPTN, UBB, CXCL12, PPP1R15A, ATF4, IVNS1ABP, 
HMGB2, JAK2, EXOC7, ENO1, and TPCN1) was developed and 
validated to accurately predict HF, termed as DPCDI. We next 
leveraged DPCDI to partition HF into two subtypes, in which 
C2 presents a higher degree of apoptosis and mitophagy, while 
C1 shows the opposite. At the single-cell resolution, we found 
the dynamic expression of JAK2 and OPTN among the CM 
transition to failure status; and CXCL12 in EC transition to 
vessel morphogenesis. Moreover, we used the MR analysis on the 
large-scale eQTL and pQTL to elaborate on the causality between 
DPCDI and HF, with JAK2 and STAT3 as protective factors and 
CXCL12 as a high-risk factor. Using molecular docking, two 
agents including pifithrin and strophanthidin were predicted to 
closely interact with CXCL12 and STAT3. Repressing 
CXCL12 and stimulating STAT3 through the medication of 
pifithrin or strophanthidin may represent new therapeutic 
strategies for HF. Collectively, DPCDI provides a translatable 
framework for HF diagnosis, molecular subtyping, and precision 
therapeutics.
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