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Programmed cell death (PCD) pathways with druggable potential represent a
promising but still underexplored frontier in heart failure (HF) research for
diagnosis, prognosis, and therapy. To address this gap, we developed a Druggable
Programmed Cell Death Index (DPCDI) through an integrative machine learning
framework. An optimal combination of Lasso and Random Forest algorithms
identified 15 pivotal genes (CALCOCO?2, VPS13D, CLU, STAT3, OPTN, UBB,
CXCL12, PPP1R15A, ATF4, IVNSIABP, HMGB2, JAK2, EXOC7, ENO1, TPCN1) for
DPCDI construction. Non-negative matrix factorization (NMF) analysis stratified HF
patients into two distinct subtypes, with Subtype 2 exhibiting elevated apoptosis and
mitophagy activity. Single-cell RNA sequencing revealed dynamic JAK2 and IVNS1ABP
expression during cardiomyocyte state transitions, while CXCL12 showed stage-
specific regulation in endothelial cells. Mendelian randomization analysis indicated
that genetic predisposition to elevated JAK2 and STAT3 expression was associated
with reduced HF risk, whereas CXCL12 overexpression increased susceptibility.
Experimental validation in HF mouse models confirmed increased Cxcll2 and
Jak2 expression and decreased Stat3 levels. Furthermore, knockout of Cxcll2,
Jak2, and Stat3 induced HF phenotypes. Molecular docking identified pifithrin-a as
a potent ligand for CXCL12 and strophanthidin for STAT3. Collectively, DPCDI
provides a comprehensive framework for HF diagnosis, risk stratification, and
targeted therapeutic development.

bioinformatics, cell death, heart failure, machine learning, multi-omics

1 Introduction

Despite decades of laboratory research and clinical advances in heart failure (HF)
treatment, global HF-related mortality and morbidity continue to rise (Heidenreich et al.,
2022). According to the Global Burden of Disease Study 2017, an estimated 64.3 million
people worldwide suffer from HF (GBD 2017 Disease and Injury Incidence and Prevalence
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Collaborators, 2018), imposing persistent medical and financial
burdens. HF is a complex multifactorial clinical syndrome
characterized by structural or functional impairment of
ventricular filling and/or blood ejection (Bozkurt et al., 2021),
leading to heart dysfunction. Its etiology involves diverse factors,
and dilated

cardiomyopathy (Savarese et al., 2023), making it impossible to

notably ischemic heart disease, hypertension,
attribute HF to a single cause. Given this high prevalence and
etiological heterogeneity, efforts to improve HF management
Consequently,

therapeutic targets have garnered increasing interest for their

remain imperative. novel biomarkers and
potential to enhance preventive and therapeutic strategies (Shu
et al., 2022).

Programmed cell death (PCD), an evolutionarily conserved
process, plays a critical role in the pathogenesis of cardiovascular
diseases including HF (Del Re et al, 2019; Zhou et al, 2021).
Accumulating evidence indicates that dynamic alterations in
druggable PCD pathways—such as apoptosis, necrosis,
ferroptosis, and autophagy—drive HF progression (Zhou et al,
2021; 2006), which

therapeutic manipulation by targeting PCD. For example,

Narula et al, indicates an attractive
administration of empagliflozin and sacubitril has been found to
reduce apoptosis in rat models with HF symptoms, which
demonstrates protective effects on cardiac functions (Jankowski
et al,, 2024). Additionally, different types of PCD signaling are
interconnected at multiple levels in HF progression (Zhou et al.,
2021), underscoring the need to focus on the interactions between
various PCD patterns rather than an individual PCD. Over the past
years, numerous efforts have been made to establish HF-predictive
signatures using an individual PCD pattern (Jiang et al., 2022; Gu
et al,, 2023), and moderate diagnostic performances were observed
in small-scale or different specimen-source cohorts. As such,
leveraging multiple PCD forms to construct a signature based on
single-source specimen cohorts may better represent the
characteristic of HF than using a single PCD information. Also
of note is that the biological mechanisms underlying most of these
published signatures in HF were poorly understood, which greatly
limits their future applications. A more profound comprehension of
the mechanisms governing druggable PCD patterns in the context of
HF, particularly their complex interactions, is crucial for advancing
our current knowledge. However, to date, this in-depth
understanding remains elusive.

To address these shortcomings, we aimed to comprehensively
stratification, and
PCD patterns
necrosis, ferroptosis, and autophagy), as well as elucidate the

latent biological mechanisms in HF. Herein, we first designed an

investigate the diagnosis, therapeutic

significance of four druggable (apoptosis,

integrative machine learning (ML) framework to discover a
Druggable Programmed Cell Death Indicator (DPCDI) on the
basis of large expression profiling cohorts, which was used to
identify and stratify patients with HF. Then, we implemented the
RNA sequencing to
mechanisms underlying DPCDI in the context of the HF cell

single-cell expound the biological
atlas. Using Mendelian randomization (MR) analysis, in-silicon
drug prediction, and molecular docking, we also investigated the
therapeutic applications of DPCDI in the treatment of HF.
Altogether, we proposed a DPCDI with a potential implication

in diagnosing, stratifying, and medicating patients with HF.
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2 Methods

2.1 Data collection and processing of
HF cohorts

Gene expression profiling of left ventricle (LV) from control
and HF cases was downloaded from the GEO database (http://
www.ncbi.nlm.nih.gov/geo). Herein, we collected a total of ten
independent cohorts, including GSE141910 (Tan et al., 2020; Flam
et al., 2022), GSE116250 (Yamaguchi et al.,, 2020; Sweet et al,
2018), GSE135055 (Hua et al., 2020), GSE16499 (Kong et al., 2010),
GSE5406 (Hannenhalli et al., 2006), GSE57338 (Liu et al., 2015),
GSE79962 (Matkovich et al., 2017), GSE42955, GSE52601, and
GSE21610. Regarding the high throughput sequencing cohorts
(GSE141910, GSE116250, GSE135055), the raw count value was
converted to log, (TPM+1) value. For the array cohorts
(GSE16499, GSE5406, GSE57338, GSE79962, GSE42955,
GSE52601, and GSE21610), the raw signal value was processed
through quantile normalization and log2 transformation. We also
enrolled GSE121893, a single-cell RNA sequencing data on LV and
left atrium (LA) samples collected from four HF patients (Wang
etal., 2020). Information on HF cohorts collected in this study can
be found in Table 1. For detailed processing of GSE121893, see
Methods-Expression patterns and dynamics of DPCDI at single-
cell resolution.

2.2 Development and external validation of
DPCDI model

GSE141910, which contains the largest case numbers in our
enrolled cohorts, was used as a training cohort for discovering a
DPCDI model. And the other five cohorts (GSE116250, GSE135055,
GSE16499, GSE5406, GSE57338, and GSE79962) were selected as
testing cohorts for DPCDI validation. Before establishing DPCDI,
we collected 1,066 druggability PCD-related genes (Supplementary
Table S1), which encompass apoptosis, ferroptosis, autophagy, and
necroptosis-related genes. Subsequently, we applied Self-Organizing
Maps (SOM) to cluster the identified PCD-related genes based on
their expression patterns in the GSE141910 dataset. The SOM grid
dimensions were set to 10 x 10. Training was performed for
1,000 iterations, and the optimal number of clusters (k = 15) was
determined by minimizing the within-cluster sum of squares
(WCSS). This analysis yielded a distinct cluster of genes
exhibiting high expression in HF. Here we designed an
integrative = ML  framework, which was composed of
113 combinations derived from 12 ML algorithms (Zhu et al,
2024; Liu et al, 2022), to generate a DPCDI model for HF
recognition. In this framework, least absolute shrinkage and
(Lasso), (RF),
generalized linear model (Stepglm), and generalized linear model
by likelihood-based boosting (glmBoost) (Zhu et al., 2024), were
initially used to select features from SOM-identified PCD genes.
Next, the other eight algorithms, including Ridge, elastic network

selection  operator random forest stepwise

(Enet), support vector machine (SVM), linear discriminant analysis
(LDA), partial least squares regression for generalized linear models
(plsRglm), gradient boosting machine (GBM), eXtreme Gradient
Boosting (XGBoost), and NaiveBayes (Zhu et al, 2024), were
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TABLE 1 Information on HF cohorts collected in this study.

10.3389/fgene.2025.1753636

Accession Type Sample Platform Control HF Usage
GSE141910 RNA-seq Left ventricle GPL16791 166 200 Training
GSE116250 RNA-seq Left ventricle GPL16791 14 50 Testing
GSE135055 RNA-seq Left ventricle GPL16791 9 21 Testing

GSE16499 Array Left ventricle GPL5175 15 15 Testing

GSE5406 Array Left ventricle GPL96 16 194 Testing

GSE57338 Array Left ventricle GPL11532 136 177 Testing

GSE79962 Array Left ventricle GPL6244 11 20 External validation
GSE42955 Array Left ventricle GPL6244 24 5 External validation
GSE52601 Array Left ventricle GPL570 8 4 External validation
GSE21610 Array Left ventricle GPL10558 30 8 External validation
GSE121893 scRNA-seq Left ventricle and atrium GPL18573 2 4 scRNA-seq cohort

implemented to establish prediction models on the selected features.
AUC (Area Under the Receiver Operating Characteristic Curve) is
an important indicator for evaluating the performance of binary
classification models. It comprehensively reflects the model’s ability
to distinguish between positive and negative samples by quantifying
the area under the ROC curve. In the case of imbalanced sample
classes, AUC can objectively reflect the model’s performance. In
total, 113 combinations were generated after parameter tuning and
ten-fold cross-validation, of which the best combination with the
highest average AUC was regarded optimal. This optimal
combination was termed DPCDI We also assessed the AUC
performance of DPCDI in four external validation cohorts
(GSE79962, GSE42955, GSE52601, and GSE21610). To ensure
productivity of the integrative ML framework and our DPCDI,
the source code, scripts, processed datasets, and instructions have
been archived in the Zenodo repository (https://doi.org/10.5281/
zeno0do.17918314).

2.3 Comparison between DPCDI and other
published signatures

To compare the predictive power of DPCDI with other
signatures, we gathered 51 mRNA signatures for HF prediction
that were published in the last 5 years, which was summarized in
Supplementary Table S2. These mRNA signatures were established
by diverse algorithms, such as RF, Lasso, Boruta, and SVM (Guo and
Xu, 2023; Bian et al, 2022). Additionally, these signatures were
derived from different biological processes, such as cellular
senescence (Guo and Xu, 2023), immune microenvironment
(Wang et al., 2024), and N7-methylguanosine modification (Ma
et al, 2023). Model 50 (NPPA and NPPB) and model 51
(TNNT2 and TNNI3) integrate the genes corresponding to the
two categories of traditional cardiac markers, respectively. For
equitable comparability, we filtered out the signatures with more
than 30% of genes not matched in cohorts for DPCDI training and
testing. We calculated the AUC performance for each signature in
all cohorts.
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2.4 Construction of DPCDI-derived
subtypes

We initially applied Rank-In (Tang et al, 2021), a well-
established approach to combine the high throughput sequencing
and array data, to integrate all cohorts into a meta-cohort for HF
subtype discovery. We extracted 657 HF cases from the meta-cohort
for subtype analysis. According to the expression profiling of
DPCDI genes from these HF cases, the Non-negative Matrix
Factorization (NMF) technique (Gaujoux and Seoighe, 2010) was
performed to partition the HF patients into different subtypes. To
ensure a stable identification, we used the brunet approach, with a
setting of 100 iterations, to execute the NMF process. The
cophenetic coefficient was used to determine the optimal rank
for clustering (Gaujoux and Seoighe, 2010), and the optimal rank
(=2) was selected to construct two subtypes. Furthermore, the
principal components analysis (PCA) plot was used to assess the
dispersion of the identified two subtypes. We also investigated the
expressions of DPCDI genes and HF markers between the
two subtypes.

2.5 Biological mechanisms and enrichment
analysis of DPCDI

To understand the detailed biological peculiarities of DPCDI, we
performed Gene Ontology (GO)-Biological Process (BP) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses
using the clusterProfiler package (Yu et al., 2012). The GO-BP and
KEGG enrichment terms with P value <0.05 and PCD correlation
were retained. Subsequently, we used the clusterProfiler package to
implement Gene Set Enrichment Analysis (GSEA), to evaluate the
enrichment distribution of the DPCDI-related terms across the two
HF subtypes. The single-sample Gene Set Enrichment Analysis
(ssGSEA) was also conducted using the GSVA package
(Hanzelmann et al., 2013), to calculate the enrichment scores of
these DPCDI-related terms. To delve into the biological peculiarities
underlying DPCDI in HF progression and two HF subtypes, the
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KEGG database (https://www.genome.jp/kegg/) was acquired to
depict the cross-talk between DPCDI their
enrichment terms.

genes and

2.6 Expression patterns and dynamics of
DPCDI at single-cell resolution

We used GSE121893, which contains single-cell RNA
sequencing information on LA and LV samples from four HF
patients (Wang et al., 2020). Consistent with our previous
analysis of LV cohorts, we retained LV samples for subsequent
exploration. Herein, the single-cell RNA sequencing analysis on
GSE121893 was accomplished by the Seurat package (Hao et al,
2021). Initially, we eliminated the poor-quality cells with gene count
(less than 200 or larger than 5, 000) and mitochondrial proportion
larger than 20%, and a total of 1,668 cells were retained. Next, we
carried out a log transformation to normalize gene expression and
identified the top 2,000 highly variable genes for downstream
reduction. We then conducted a linear transformation to scale
the gene expression, which assigns each gene the same weight.
According to the scaling data, PCA was used based on the top
2,000 highly variable genes. Batch correction was performed using
the harmony package with the following parameter settings
(reduction = “pca”, dims = 1:15, max.iter = 20). The optimal
number of PC (=15) was determined and subjected to Uniform
Manifold Approximation and Projection (UMAP) clustering.
Afterward, we obtained five different clusters based on the
parameters setting (dimension = 1:15, resolution = 0.5). The
identities of clusters were annotated using the well-known gene
markers of heart cells (Wang et al., 2020; Hu et al., 2023). Thus, 5 cell
populations were annotated: (1) Cardiomyocyte (CM), as reflected
with higher expressions and proportions of MYL2, MYH7, FHL2,
TTN, TNNTI, and TNNT2; (2) Endothelial cell (EC), as reflected
with higher expressions and proportions of VWF, PECAM1, CDH5,
and IF127; (3) Fibroblast (FB), as reflected with higher expressions
and proportions of ACTA2, CALDI, and MYHI11; (4) Smooth
muscle cell (SMC), as reflected with higher expressions and
proportions of DCN, GSN, C7, LUM, FBLN1, and COL1A2; (5)
Macrophage (MP), as reflected with higher expressions and
proportions of PTPRC, CD163, CCL4, CXCL8, and LAPTMS5.
We next explored the expression patterns of DPCDI genes in
these 5 cell populations. Additionally, we used the CellChat
package (Jin et al., 2021) to quantitatively infer and analyze cell-
cell communication, thereby understanding the intricate cell atlas in
the context of HF.

Regarding the DPCDI genes-enriched cell population (CM and
EC), we subsequently annotated their sub-populations. Next, we
investigated the expression patterns of DPCDI genes in these defined
sub-populations of CM and EC. Using the monocle3 package (Cao
et al., 2019), we proposed a pseudo-time analysis to infer the
transition trajectory across the CM or EC sub-populations, so as
to expound the dynamics of DPCDI genes. The inferred trajectory
was then projected to a UMAP plot for visualization. To gain insight
into a comprehensive molecular program underlying the transition,
we analyzed the Differential Expressed Genes (DEGs) that
significantly changed among the pseudo-time under the threshold
of Moran’s I > 0.05 and Q-value <0.05. The ClusterGVis package
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(Zhang, 2022) was used to divide these DEGs into distinct patterns
using K-means clustering. GO and KEGG enrichment analyses were
implemented for each pattern using the clusterProfiler package (Yu
et al,, 2012), and the enriched terms with P < 0.05 were regarded as
significant.

2.7 Mendelian randomization of the causal-
effect between DPCDI expression and
HF risk

Two-sample Mendelian randomization (2SMR) analysis (Hemani
et al., 2018) was used to assess the causal association between the
genetic predisposition of three DPCDI genes (CXCL12, JAK2, STAT3)
and HF. This data was retrieved from the IEU Open GWAS (https://
gwas.mrcien.ac.uk/) and deCODE  (https://www.decode.com/
summarydata/) (Ferkingstad et al., 2021; Elsworth et al., 2020). The
population source of the database is Europe, with samples derived
from peripheral blood. The exposure IDs were summarized as follows:
JAK2-eQTL (eqtl-a-ENSG00000096968 in IEU Open GWAS);
STAT3-eQTL (eqtl-a-ENSG00000168610 in IEU Open GWAS);
CXCL12-pQTL (3516_60_CXCL12_SDF in deCODE); JAK2-pQTL
(11816_84_JAK2_JAK2 in deCODE); STAT3-pQTL (10346_5_
STAT3_STAT3 in deCODE); HF (ebi-a-GCST009541 in IEU Open
GWAS). Following the 2SMR assumption, the Single Nucleotide
Polymorphisms  (SNPs) closely related to DPCID genes
(P-value <5 x 10-8) but not with HF (P-value >0.05) were
obtained. To avoid linkage disequilibrium (LD), we excluded the
SNPs with LD-R2 greater than 0.01 within a cropping range of
5,000 Kb. Eventually, the assumption-compliant SNPs, with an
F-statistic greater than 100, were retained as strong Instrumental
Variables (IVs) for MR analysis. The inverse variance weighted
(IVW) method, with the highest statistical power in 2SMR, was
used to expound the causality between DPCDI genes and HF risk.
Additionally, the Bayesian weighted Mendelian randomization
(BWMR) (Zhao et al, 2020) was used to validate the results of
2SMR. To further explore the biological significance of these three
DPCDI genes, the Mouse Genome Informatics (MGI) database
(https://www.informaticsjax.org/) was accessed to show the
cardiovascular phenotypes of CXCL12-, JAK2-, and STAT3-
knockout mouses.

2.8 Heart failure mouse model and
echocardiographic assessment

The animal experiments were approved by the Institutional
Animal Ethics Committee of Shanghai Jiao Tong University
2025-0821), and complied with NIH
guidelines. Male and female C57BL/6 mice (8 weeks old) were
housed under standardized conditions (24 °C + 2 °C, 40% + 5%
humidity, 12-h light/dark cycle). HF was induced by Transverse

(Approval number:

Aortic Constriction (TAC). Sham-operated mice underwent
identical procedures without aortic ligation. Ejection fraction
(EF) (FS)  were
echocardiography 24 h after surgery. Heart tissues were harvested

and fractional shortening assessed by

at 1 month post-surgery for analysis. Biometric data (EF, FS, body
weight, and heart weight) are presented in Supplementary Table S3.
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2.9 Hematoxylin and eosin (H&E) and
masson staining

Heart tissues were fixed, paraffin-embedded, and cut into
sections. Tissue morphology and fibrosis were assessed by
hematoxylin and eosin (H&E) and Masson’s trichrome staining
according to standard protocols. The infarct size and fibrosis area
were quantified using ImageJ software.

2.10 RNA isolation and quantitative real-
time PCR (qPCR) analysis

Total RNA from mouse heart tissue was isolated via an EZ-
press RNA Purification Kit (EZBioscience). Reverse transcription
to cDNA was performed with an RT Kit (EZBioscience).
Quantitative PCR was performed via a Roche480 LightCycler®
96 real-time PCR system with 2xSYBR Green qPCR Master Mix
(EZBioscience). The
Supplementary Table S4. An unpaired t-test was applied to

primer sequences are listed in
assess the differences in gene expression between the control
and HF groups. Pearson’s correlation analysis was used to
examine the relationship between gene expression levels and

echocardiographic indicators (EF and FS).

2.11 Drug prediction and molecular docking
of DPCDI

The L1000 fireworks display (L1000FWD) database (https://
maayanlab.cloud/11000fwd/) (Wang et al., 2018) was queried to
identify the small-molecule drugs targeting CXCL12 and STAT3,
which displayed an opposite relationship with the expressions of
CXCLI12 and STAT3 in HF. According to the information on
toxicity and availability of predicted drugs, we selected pifithrin
and strophanthidin as the candidate drugs with potential utility in
treating HF. Next, we conducted molecular docking to validate
the reliability of the drug-target interaction based on the binding
affinity and pattern (Yu et al., 2024a). We first downloaded the
three-dimensional structures of pifithrin (PubChem CID: 4817)
and strophanthidin (PubChem CID: 6185) from the PubChem
website  (https://pubchem.ncbi.nlm.nih.gov/),  which  was
subjected to energy minizine using the ChemBio3 software.
Next, we gained the three-dimensional structures of CXCL12
(ID: 3HP3) and STAT3 (ID: 6N]JS) from the Protein Data Bank
(https://www.rcsb.org/). The source of these protein structures
was all X-ray crystal detection and derived from Homo sapiens.
PyMOL software was used to preprocess the protein structures,
including the removal of solvents, ligands, and hydrogens. To
determine the active pockets of CXCL12 and STAT3 for docking
drugs, we employed the AutoDock Vina software to perform polar
hydrogenation and optimize the docking site. AutoDock Vina
software was then utilized to dock the target proteins and drugs,
including the interactions of CXCLI12-pifithrin, CXCLI2-
strophanthidin, STAT3-pifithrin, and STAT3-strophanthidin.
Subsequently, the affinity was computed to appraise the
binding efficiency for each drug-target interaction, with an
affinity lower than 5.0 kcal/mol indicating a superior bind
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efficiency. We visualized the binding pattern of each drug-
target interaction using the PyMOL software.

3 Results

3.1 DPCDI derived from an integrative ML
framework in multi-cohorts enables an
accurate HF diagnosis

A flowchart outlining our study is delineated in Figure 1. SOM
was initially performed in the training cohort, revealing a total of
251 DPCD-related genes that were actively expressed in HF
(Figure 2A). DPCD-related genes assigned in each SOM-
identified cluster were summarized in Supplementary Table S5.
Subsequently, the expression profile of 251 DPCD-related genes
from the training cohort was subjected to an integrative ML
framework to develop a DPCDI, which was depicted in
Figure 2B. In this computational framework, we established
113 kinds of algorithmic combinations under the ten-fold cross-
validation and calculated the AUC score of each combination in all
cohorts to assess their predictive performances. As shown in these
113 combinations, we noted that the best-performing combination,
consisting of Lasso and RF algorithms, achieved the highest mean
AUC (0.9815) across the training and five independent testing
cohorts (Figure 2C). The AUC performances of all combinations
can be found in Supplementary Data 2. Lasso identified the most
valuable 36 DPCD-related genes with non-zero coefficients via the
optimal lambda (Figure 2D), with a regression binominal deviation
reaching minimum (Figure 2E). These 36 DPCD genes were then
subjected to an RF algorithm using 1,000 trees (Figure 2F), and a
final set of 15 genes to build DPCDI was identified, including
CALCOCO2, VPS13D, CLU, STAT3, OPTN, UBB, CXCLI12,
PPP1R15A, ATF4, IVNS1ABP, HMGB2, JAK2, EXOC7, ENOI,
and TPCN1 (Figure 2G). Moreover, we displayed the case
distribution and confusion matrix of DPCDI in each cohort
(Figure 2H). Four indicators for evaluating DPCDI prediction
(accuracy, sensitivity, specificity, and F1l score) were then
calculated in each cohort. Remarkably, we observed a relatively
higher sensitivity of DPCD], above 0.9 in all cohorts, suggesting a
potential capability of DPCDI to accurately recognize HF. We also
verified the robust predictive power of DPCDI in four external
cohorts (GSE79962, GSE21610, GSE42955, and GSE52601), as
demonstrated in Supplementary Figure S1. Overall, we provided
a 15 gene signature, termed DPCDI fitted by Lasso and RF, as an
attractive panel to predict HF occurrence.

3.2 Comparison of diagnostic performance
of DPCDI and published HF-predictive
signatures

We analyzed the expression landscape of altered DPCDI genes
in each cohort, as displayed in Figure 3A. Expression changes in
these genes were consistent in all cohorts, in which ATF4, ENOI,
CALCOCO2, OPTN, VPS13D, and STAT3 were downregulated in
HF. The log,fold change (log,FC), p-value and False Discovery Rate
(FDR) of these genes between control and HF cases across cohorts
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FIGURE 1

DPCDI Expression

Pseudotime

HF progression

Overview of this study. (A) DPCDI modeling. (B) Biological mechanisms underlying DPCDI. (C) Pathogenic potential of DPCDI. (D) Therapeutic

applications of DPCDI.

were summarized in Supplementary Table S6. Whereas, CXCL12,
HMGB2, IVNS1ABP, PPP1R15A, UBB, EXOC7, TPCN1, CLU, and
JAK2 showed up-regulations in HF. These DPCDI genes were
largely related to apoptosis or autophagy. Interestingly, these
genes are expressed differently in HF, suggesting their intricate
regulation in apoptosis and autophagy. To enable an equitable
comparison of our DPCDI and other HF-predictive signatures,
we systemically incorporated 51 gene signatures published within
the past 5 years (see Methods). We filtered out signatures with larger
than 30% missing genes in our enrolled cohorts, and a final set of
35 signatures was retained for comparison. These signatures were
different functional gene panels, such as cellular senescence,
immune microenvironment, and N7-methylguanosine. Notably,
our DPCDI demonstrated better AUC performance than almost
most signatures in the training (GSE141910), three testing
(GSE116250,  GSE135055, GSE57388),
(Figure 3B). Regarding the other two testing cohorts
(GSE16499 and GSE5406), the AUC performance of DPCDI
remained relatively robust (larger than 0.85) even though it was
not the top-ranked model. Also worthy of note is that some

and meta-cohort

signatures possessed better performance in their discovery cohort
but were weak in other cohorts, which may arise from an over-fitting
troublesome. For instance, the AUC of model three ranked second
in the GSE16499 cohort, but relatively weakened within GSE116250
(ranked 27/35) and GSE5406 (ranked 21/35). In sum, our DPCDI
showed a superior predictive performance than almost most
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published signatures, suggesting its extrapolation possibility with
better generalization.

3.3 Partitioning of DPCDI-derived molecular
subtypes for HF

To identify the HF molecular subtypes with different degrees, we
performed NMF clustering to explore the molecular features of these
DPCDI genes in HF. Based on the NMF metrics of cophenetic,
residuals, RSS, and silhouette (Figure 4A), the suitable cluster
number (rank = 2) was determined to subtyping. Accordingly,
the HF cases merged in meta-cohort (N = 657) were successfully
classified into two distinct clusters (Figure 4B), and this apparent
dispersion was also demonstrated in the PCA plot (Figure 4C). As
shown in Figure 4D, we also measured the expression landscape of
DPCDI genes and HF markers among the C1 (N = 297) and
C2 clusters (N = 360). Among the DPCDI genes, the significant
downregulation of HMGB2, IVNS1ABP, CALCOCO2, and STAT3
(P-value <0.001) were observed in C2, while PPPIR15A and
JAK2 showed the elevated pattern (P-value <0.001). We also
found that TNINT2 and EGFR were significantly upregulated in C2.

To delve into the different molecular characteristics of
DPCDI between these two clusters, we initially implemented
the GO and KEGG enrichment analyses on the DPCDI genes.
Detailed information on these analyses can be found in
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FIGURE 2
Establishment of an HF-predictive DPCDI using an integrative ML framework. (A) SOM identification of three sets of HF-susceptible genes in the
training cohort. (B) Design of the integrative ML framework. (C) The AUC performance of 113 ML combinations for distinguishing HF from control across
the training and five independent testing cohorts was sorted, and top 30 combinations was visualized as a heatmap. The best combination (Lasso and RF)
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FIGURE 2 (Continued)

36 genes with non-zero coefficients were retained (labeling on the right panel). (E) The minimum deviance was reached under the 36 Lasso-selected
genes. (F) Changes in error rates using different tree numbers in RF. (G) Feature importances of 15 DPCD-related genes screened from 36 Las-so-selected
genes via RF. (H) Confusion matrix and diagnostic assessment of DPCDI within the training and five independent testing cohorts. Each cohort was
displayed respectively.
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FIGURE 3

Superior predictive capability of DPCDI. (A) Heatmap displaying the expressions of DPCDI genes between control and HF cases within the training
and five independent testing cohorts. (B) Comparison of diagnostic performance of DPCDI and other 50 published signatures. The AUC performance of
DPCDI in each cohort was marked in a red bracket respectively. *, P < 0.05; **, P < 0.01; ***, P < 0.001; **** P < 0.001.
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Supplementary Table S7. We showed that the intrinsic apoptotic
signaling pathway, regulation of apoptotic signaling pathway,
and regulation of autophagy represent the GO functional terms
(Figure 4E). Additionally, we found that mitophagy, autophagy,
and chemokine signaling pathway were the significant KEGG
pathway terms, of which mitophagy integrates ATF4, UBB,
CALCOCO?2, and OPTN, and chemokine signaling pathway
links CXCL12, JAK2, and STAT3. GSEA was then performed
to measure the enrichment distribution of these functional and
pathway terms between the C1 and C2 clusters. As shown in
Figure 4F, we noticed that the intrinsic apoptotic signaling
pathway, regulation of apoptotic signaling pathway,
mitophagy, autophagy, and chemokine signaling pathway
were highly enriched in C2 (NES >1; Supplementary Table
S8), but regulation of autophagy was lowly enrichment
(NES <1; Supplementary Table S8). Using the ssGSEA
approach, we also observed the same tendencies in these
DPCDI-enrichment terms between Cl1 and C2 (Figure 4G).
Consequently, we observed that patients in C2 exhibited
enhanced activity in apoptosis and autophagy-related
pathways, specifically intrinsic apoptosis and mitophagy,
while demonstrating reduced regulation of autophagy
initiation (Figure 4H). We next investigated the interplays
between the DPCDI genes in these biological processes, as
depicted in Supplementary Figure S2. A pathway overview of
crosstalk between the DPCDI genes and their regulators was
summarized in Figure 4I. Interestingly, we noted that
CALCOCO2 and TPCNI,

autophagy cargo recognition, were decreased in C2, which

two important regulators of
partly explained the inhibited autophagy regulation in C2.
More intriguingly, we found that the downstream STAT3 in
the chemokine signaling pathway, which is supposed to be
activated by CXCL12 JAK2,

downregulated in C2 patients. This data suggests that the

and was  significantly
C2 subtype exhibits more active apoptotic and autophagic
processes, but the regulation of autophagy is impeded.
Notably, the Cl1 and C2 subtypes were identified using
transcriptomic data, in the absence of correlated clinical
parameters such as baseline cardiac function or comorbidity
profiles. Consequently, this observed differences between
and

subtypes must be

validation through future studies.

interpreted cautiously require

3.4 Expression patterns of DPCDI in HF cell
atlas at single-cell resolution

We next questioned whether the expression patterns of DPCDI
genes differ by the cellular diversity of LV. We applied scRNA-seq
analysis of individual cells isolated from LV tissues of four HF
patients. The workflow was shown in Figure 5A. A total of
1,668 high-quality cells were gained after data trimming and
S3). Then,
unsupervised clustering to partition 1,668 cells that were

filtering (Supplementary Figure we performed
identified as five distinct clusters using UMAP. Five main cell
populations, including cardiomyocyte (CM), endothelial cell
(EC), fibroblast (FB), (SMC), and
macrophage (MP), were subsequently annotated based on their

smooth muscle cell
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respective markers (Figures 5B,C). Next, we visualized the global
expression of DPCDI genes among these 5 cell populations
(Figure 5D). Worthy of noting is that the IVNSIABP
(Figure 5E), JAK2 (Figure 5F), and OPTN (Figure 5G) were
highly expressed in the CM population. Nonetheless, STAT3 was
almost absent in CM compared to other populations, suggesting its
dysfunction despite JAK2 being actively expressed. Moreover, we
noticed that CXCL12 expression was enriched in EC and SMC
populations (Figure 5H). Interestingly, the CM population was only
enriched for JAK2 activation but lacked CXCL12 and STATS3, yet the
close relationship of the CXCL12-JAK2-STAT3 axis in chemokine
signaling was reported. Thus, it is believed that CM and NCM
populations interact dynamically in the context of HF. Given this
specific DPCDI gene expression in CM and EC, we selected these
cell types for further investigation.

CellChat, based on the information on ligands, receptors, and
cofactors from scRNA-seq data, was implemented to quantitatively
infer and analyze intercellular communication. The cell-to-cell
interaction among CM, EC, FB, SMC, and MP was respectively
visualized as circular plots by interaction number (Figure 5I) and
interaction strength (Figure 5]). The cell-to-cell interaction for each
population was respectively exhibited by interaction number
(Figure 5K) and interaction strength (Figure 5L). Using cell
centrality analysis, we next extrapolated the roles of cell
populations in signaling pathways. Figure 5M shows the inferred
intercellular communication network for CXCL12 signaling. Of
note, EC and SMC are dominant senders, and MP is the receiver
of CXCLI12 signaling. Specifically in the most important
contribution for ligand-receptor, EC and SMC highly expressed
CXCL12 ligand, which acts as a sender to active CXCR4 receptor in
MP (Supplementary Figure S4A). We also showcased an inferred
intercellular communication network for VISFATIN signaling
(Figure 5N), consisting of MP as a sender and CM as a receiver.
Interestingly, both MPs and CMs are predicted to be influencers,
suggesting their roles as interactive controls in VISFATIN signaling.
Given that MPs are activated via CXCL signaling, we speculated that
these pro-inflammatory MPs show the activity of the NAMPT ligand
and subsequently activate the INSR ligand of CMs (Supplementary
Figure S$4B), which may drive the regulation of JAK2 in CMs.

3.5 Dynamics of DPCDI was observed during
the transition of sub-populations of CM
and EC

To elucidate the dynamics of DPCDI genes, we defined the sub-
populations of CM and EC (Supplementary Figure S5; Supplementary
Figure S6), representing two major DPCDI-enriched groups in the LV
landscape of HF. The Two sub-populations of CM were identified
(Figure 6A), including CM1 and CM2. The expressions of three CM-
enriched DPCDI genes (IVNS1ABP, JAK2, and OPTN) were depicted
in Figure 6B, showing that CM2 expressed higher levels of IVNSIABP
and JAK2. Notably, CM1 expressed increased levels of mitochondrial
oxidative stress-related genes (Figure 6C), such as NDUFA4 and
C140RF2; and CM2 demonstrated greater expressions of HF cardiac
genes (Figure 6C), such as NPPA and NPPB. Therefore, CM2 may
represent an end-stage CM population, suggesting a vibrant activity of
apoptosis. We further performed pseudo-time analysis and the
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FIGURE 4

GSEA enrichment plot of DPCDI-related terms. (G) ssGSEA enrichment plot of DPCDI-related terms. (H) Schematic chart illustrating the differences
in enrichment of DPCDI-related terms between HF and control cases. (I) Overview depicting the cross-talk between DPCDI genes and regulators.
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Construction of a DPCDI-derived HF subtype and biological peculiarities of DPCDI. (A) The distribution of cophenetic, residuals, RSS, and silhouette
through ranks from 2 to 10. (B) Consensus map of NMF clustering when rank equals 2. (C) The three-dimensional PCA plot shows the distinct distribution
of two clusters. (D) The expressions of DPCDI genes and HF biomarkers between control and HF. (E) Enriched GO and KEGG terms of DPCDI genes. (F)
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trajectory of two CM sub-populations was constructed (Figure 6D).
Interestingly, we found that CM1 was expressed at a relatively earlier
pseudo-time, with two branches significantly differentiating from nodes
across the pseudo-time. Early branch was largely dominated by CM1,
whereas the late branch was mainly composed of CM2. Next, we

examined the dynamics of cardiac genes and DPCDI genes along
the pseudo-time. Considering these cardiac genes, we showed that
MYL4, MYL9, NPPA NPPB, and TNNT1 progressively increased
(Figure 6E), representing a shift towards CM1 to CM2. As shown in
Figure 6F, IVNSIABP and JAK2 were gradually decreased along the
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FIGURE 5

Exploration of DPCDI expression in HF patients at single-cell resolution. (A) Schematic illustration of this flow. (B) UMAP visualization and numbers of

five annotated cell populations isolated from LV of HF patients. (C) Heatmap displaying marker genes for annotating each cell population. (D) Expression of
DPCDI genes among the cell populations. Expression distribution of IVNS1ABP (E), JAK2 (F), OPTN (G), and CXCL12 (H) among the cell populations. (I) The
number of interactions of the five populations. (J) The number of interactions of each cell population. (K) The interaction weights/strength of the

5 cell populations. (L) The interaction weights/strength of each cell population. The line color and width represent cell type and interaction pairs,
respectively. (M) Identification of CXCL signaling pathway network between EC, SMC, and MP. Left and right portions show the interactions and signaling
roles in CXCL signaling pathway, respectively. (N) Identification of VISFATIN signaling pathway network between MP and CM. The left and right portions
show the interactions and signaling roles in the VISFATIN signaling pathway, respectively.

pseudo-time, suggesting their potential in mediating CM differentiation.
Additionally, STAT3 expressed relatively lower expression in CM2 and
almost absent in CM1. Next, we partitioned genes that were significantly
expressed along the pseudo-time trajectory into four different clusters
(Figure 6G). During the CM differentiation, genes in cluster 4 (C4), such
as IVNSIABP and JAK2, were progressively decreased from an
intermate state to an end state, and significantly enriched in terms
related to the cytoskeleton. Additionally, cluster 1 (C1) including HF
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cardiac genes, were progressively elevated, and mostly enriched for
terms related to muscle contraction and cytoskeleton. We also identified
two sub-populations of EC (Figure 6H), including EC1 and EC2. As
shown in Figures 6L], CXCLI2 (an EC-enriched DPCID gene) was
mostly expressed in the EC2 sub-population. Notably, EC1 exhibited an
increased expression of Ca2+ ATPase-related genes (Figure 6K), such as
CSRP3, PLN, and ATP2A2. EC1 also highly expressed ANKRD1, an EC
activation factor contributing to repressing cardiac gene expression,
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In-depth exploration of DPCDI dynamics in sub-populations of CM and EC during HF progression. (A) UMAP visualization and numbers of CM

population. (B) Global expression of JAK2, OPTN, and IVNS1ABP among the CM population. (C) Heatmap displaying marker genes for CM1 and CM2 sub-
populations. (D) Inference of pseudo-time trajectories of CM population. The left and right portions represent the branch trajectories with cells colored by
pseudo-time and branch trajectories with cells colored by sub-population, respectively. (E) Expression dynamic of marker genes (MYL4, MYL9, NPPA,

NPPB, TNNI1, TNNT1) across the pseudo-time. (F) Expression dynamic of IVNS1ABP, JAK2, OPTN, and STAT3 across the pseudo-time. (G) Gene dynamic
analysis of CM population transition. The left part was a heatmap displaying the expression dynamics of DEGs with distinct patterns along the pseudo-
time. The right part was GO and KEGG enrichment terms of each cluster. (H) UMAP visualization and numbers of EC population. (I) Global expression of
CXCL12 among the EC population. (J) Expression distribution of CXCL12 between EC1 and EC2 sub-populations. (K) Heatmap displaying marker genes for
ECland EC2 sub-populations. (L) Inference of pseudo-time trajectories of EC population. The left and right portions represent the branch trajectories with
cells colored by pseudo-time and branch trajectories with cells colored by sub-population, respectively. (M) Expression dynamic of EC1-marker genes
(ANKRD1, ATP2A2, CSRP3, PLN) across the pseudo-time. (N) Expression dynamic of EC2-marker genes (COL14A1, CX3CL1, CXCL12, NR2F2) across the
pseudo-time. (O) Gene dynamic analysis of EC population transition. The left part was a heatmap displaying the expression dynamics of DEGs with distinct

patterns along the pseudo-time. The right part was GO and KEGG enrichment terms of each cluster.

which promotes cardiac modeling. As depicted in Figure 6K, EC2 was
characterized by cell migration-related genes (CX3CL1 and CXCLI12)
and vessel morphogenesis-related genes (COL4Al and NR2EF2).
Pseudo-time analysis was then performed to construct the trajectory
of two EC sub-populations (Figure 6L). Notably, the early branch with
lower pseudo-time was largely dominated by EC2, whereas the late
branch was mainly composed of EC1. We next examined the dynamics
of EC1 and EC2 marker genes along the pseudo-time, as depicted in
Figures 6M,N. We showed that EC2 marker genes, especially CXCL12,
progressively decreased during the state transformation. Next, the
differential expressed genes across the pseudo-time were partitioned
into four distinct clusters, as shown in Figure 60. EC2 maker genes were
allocated to C2, demonstrating a stronger involvement in ribosome-
related functions. EC1 marker genes were clustered to C4 that were
progressively elevated, which displayed an enrichment in muscle
contraction-related terms.
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3.6 Genetic predisposition towards CXCL12,
JAK2, and STAT3 were found to casually
associated with HF

To investigate the causal relationship between genetically
proxied DPCDI expression and HF risk, we systematically
applied 2SMR and BWMR. Among the DPCDI genes, the results
of CXCLI12 (pQTL), JAK2 (eQTL and pQTL), and STAT3 (eQTL
and pQTL) were demonstrated to be statistically significant,
suggesting high-support evidence for a genetic association linked
to HF. Using 2SMR, the effect sizes of the SNP characteristics of
eQTL expressions (JAK2, STAT3) and HF risk were negatively
related, which were depicted in Figures 7A,D. The forest plot,
leave-one-out plot, and funnel plot of SNP characteristics can be
found in Supplementary Figure S7 and Supplementary Figure S8.
The negative relationship was also demonstrated using the BWMR
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Mendelian randomization assessing the causal relationship between DPCDI genes and HF. (A—C) MR analysis of JAK2 (eQTL), in which A and B
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summarizing the OR effects and P-values of 2SMR and BWMR on the causal relation-ship between JAK2-eQTL and HF. (D—F) MR analysis of STAT3
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Animal Validation of Cxcl12, Jak2, and Stat3 expressions in the HF context. (A) Study flow. (B,C) Echocardiography of the sham and HF mouse models.

(D) HE staining of the sham and HF mouse models. (E) Masso staining of the sham and HF mouse models. (F) Expressions of Cxcl12, Jak2, and Stat3 in the
sham and HF mouse models. (G) Correlations between gene expressions and echocardiography indicators. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

method (Figures 7B,E). Using the IVW approach, with the highest
statistical power, we found that genetic predisposition toward
mRNA expressions of JAK2 and STAT3 significantly decreased
the risk of HF (Figures 7C,F; OR <1, P < 0.05). Additionally, the
direction of effect estimate through IVW was consistent with the
other five approaches. Horizontal heterogeneity and pleiotropy were
not observed (Supplementary Table S9; Supplementary Table S10),
which guarantees the analytic reliability.

With regard to the pQTL data on CXCL12, JAK2, and STATS3,
we found that the effect size of the SNP characteristics of
CXCL12 was positively associated with HF (Figure 7G), whereas
the SNPs of JAK2 (Figure 7]) and STAT3 (Figure 7M) were
negatively correlated to HF. The forest plot, leave-one-out plot,
and funnel plot of these SNP characteristics can be found in
Supplementary Figure S9 (pQTL of CXCLI12), Supplementary
Figure S10 (pQTL of JAK2), and Supplementary Figure SI1
(pQTL of STAT3). Consentient with 2SMR, the relationships of
CXCL12, JAK2, and STAT3 were observed in BWMR, which were
respectively shown in Figures 7H,K,N. Using the IVW approach, we
found that genetic predisposition toward protein expressions of
CXCL12 significantly increased the HF risk (Figure 7I; OR > 1, P <
0.05). Though the estimated direction of JAK2-pQTL was consistent
with the eQTL data, no statistical significance was shown (Figure 7L;
OR < 1, P > 0.05). Interestingly, we showed that genetically proxied
higher protein expression of STAT3 also significantly decreased the
HF risk (Figure 70; OR < 1, P < 0.05), which was corroborate with
the eQTL data. Also, we did not note heterogeneity and pleiotropy in
the analyses of pQTL data on CXCL12, JAK2, and STAT3
S11; S12
Supplementary Table S13). in

(Supplementary ~ Table Supplementary ~ Table

The workflow was shown
Figure 7P. Furthermore, the MGI database was queried to
identify the cardiovascular phenotypes relevant to the knock-out

of CXCL12, JAK2, and STAT3 genes in mouse models (Figure 7Q).
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Abnormal angiogenesis and poor arterial differentiation were
induced after the knockout of CXCL12 and JAK2. More
important traits, such as dilated heart and cardiomyopathy,
occurs in STAT3-knockout mice, suggesting its crucial role in
HF  progression.  Altogether, our data indicates that
CXCLI12 plays a risk factor contributing to HF, but JAK2 and
STATS3 act protective factors against HF.

3.7 Mouse model validation of Cxcl12, Jak?2,
and Stat3 expression

To investigate the expression profile of DPCDI-core genes
(CXCL12, JAK2, STAT3) in HF, we established TAC-induced HF
mouse models. The experimental flow is outlined in Figure 8A.
Echocardiography confirmed significantly impaired cardiac
function in the TAC group compared to sham-operated
controls, as evidenced by reduced ejection fraction (EF) and
(FS) (Figures 8B,C; P < 0.05).

revealed marked cardiomyocyte
hypertrophy and inflammatory cell infiltration by H&E staining

fractional shortening

Histological ~ analysis
(Figure 8D), while Masson’s trichrome staining demonstrated
extensive interstitial fibrosis (Figure 8E). Furthermore, qPCR
analysis of cardiac tissue showed significant upregulation of
Jak2 and Cxcll2 mRNA levels and downregulation of
Stat3 mRNA levels (Figure 8F; all P < 0.001). As depicted in
Figure 8G, correlation analysis revealed negative correlations
between the expression levels of Jak2 and Cxcll2 and cardiac
function parameters (EF and FS), whereas a positive correlation
was observed between Stat3 expression and cardiac function (EF
and FS). Taken together, these findings suggest that elevated
Jak2 and Cxcll2 expression may promote HF progression,
whereas Stat3 expression may exert a protective effect against HF.
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Therapeutic value of DPCDI genes using small-molecule drug prediction and molecular docking. (A) The top 20 most significant small-molecule
drugs with signature similarity of STAT3 upregulation and CXCL12 downregulation by the L1000fwd database. Pifithrin and strophanthidin were selected.
(B) Chemical structure of pifithrin. (C) Chemical structure of strophanthidin. (D) Molecular docking between pifithrin and CXCL12. (E) Molecular docking
between pifithrin and STAT3. (F) Molecular docking between strophanthidin and CXCL12. (G) Molecular docking between strophanthidin and STAT3.

3.8 Therapeutic implications of CXCL12 and
STAT3 in mitigating HF

Given the risk role of CXCL12 and the protective role of
STAT3 against HF, we next sought to explore their therapeutic
values for HF treatment. The L1000 FWD database was employed
to predict the potential small-molecule drugs with opposite
patterns to reverse the upregulation of CXCL12 and
downregulation of STAT3 in HF (Figure 9A). The detailed
information on the top 20 predicted drugs, including the
similarity score, P-value, Q-value, Z-score, and combined
S14.
Considering the toxicity and availability of these drugs, we

score, was summarized in Supplementary Table
selected pifithrin and strophanthidin as the candidate drugs.
The two-dimensional structures of pifithrin and strophanthidin
can be found in Figures 9B,C, respectively. Next, we performed
molecular docking to validate the predicted drug-gene
interactions. The binding patterns of pifithrin-CXCL12
(Figure 9D, left panel), pifithrin-STAT3 (Figure 9E, left panel),
strophanthidin-CXCL12  (Figure 9F, left panel),

strophanthidin-STAT3 (Figure 9G, left panel) were visualized

and

through molecular docking. Importantly, the binding affinities
of these dockings were all lower than -5 kcal/mol, indicating
reliable interactions. Specifically, pifithrin formed two hydrogen
bonds with CXCLI12 (Figure 9D, right panel): with ARG-41 and
ASN-46 residues at the distance of 2.7 A and 3.3 A. Pifithrin
formed two hydrogen bonds with STAT3 (Figure 9E, right panel):
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with ALA-250 and GLN-326 residues at the distance of 2.0 A and
3.3 A. Moreover, strophanthidin only formed one hydrogen bond
with CXCLI12 (Figure 9F, right panel): with GLU-63 residue at a
distance of 3.1 A. Lastly, strophanthidin formed two hydrogen
bonds with STAT3 (Figure 9G, right panel): with ILE-258 and
GLN-326 residues at the distance of 2.4 A and 3.0 A. Thus,
pifithrin and strophanthidin may serve as a potential
therapeutic candidate for further investigation, repressing the

CXCLI12 elevation and STAT3 decrease in HF.

4 Discussion

HF,
proportions, poses a significant health burden due to its high

a complex clinical syndrome of global epidemic
prevalence and heterogeneous etiology. While management
strategies have advanced considerably in recent decades (Bozkurt,
2024), our understanding of its molecular mechanisms remains
limited by cardiac complexity (Zhang et al., 2024), hindering precise
diagnosis and effective treatment. This underscores the urgent need
for novel predictive and therapeutic targets.

Advances in sequencing and bioinformatics have enabled the
identification of molecular signatures for disease prediction from
omics data (Pilarczyk et al., 2022). Consequently, numerous mRNA
signatures derived from transcriptomic assays have been proposed
for HF prediction. However, signatures derived from disparate
specimen types (such as LV tissues and myocytes isolated from
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LV (Fan and Hu, 2022)) may lack diagnostic specificity due to
cellular heterogeneity during disease progression, limiting their
reliability. To address this, we exclusively curated LV-derived
gene expression profiles.

Given the established role of programmed cell death (PCD)
in cardiovascular disorders (Del Re et al., 2019) and its potential
significance in HF, we hypothesized that PCD-related genes
could aid in HF identification, stratification, and therapy. We
focused on four druggable PCD forms: apoptosis, necrosis,
ferroptosis, and autophagy. Ten independent HF cohorts
(429 controls, 694 HF cases) from GEO were designated as
training, testing, and external validation sets to develop a
DPCDI. In the existing studies, the modeling of signature
mostly depended on personal preferences (Wang et al., 2022).
To avoid this bias, we collected 12 prevalent ML algorithms to
construct a predictive

signature. Upon packing and

benchmarking 12 ML approaches into 113 algorithmic

combinations, we successfully designed an integrative
computational framework, as our previous studies of building
signatures to identifying patients with acute myocardial
2024).

combination of Lasso and RF algorithms achieved the highest

infarction (Zhu et al, Ultimately, the optimal
average AUC score (=0.9815) across the training and testing
cohorts, and also performed excellent external validation
cohorts. We termed this optimal combination DPCDI, which
was fitted on the expressions of 15 DPCD-related genes
(CALCOCO2, VPS13D, CLU, STAT3, OPTN, UBB, CXCL12,
PPP1R15A, ATF4, IVNS1ABP, HMGB?2, JAK2, EXOC7, ENOI,
and TPCN1). Interestingly, we found these 15 DPCDI genes
were differentially expressed in HF, and largely associated with
apoptosis and autophagy. This data underscores the intricate
plays between these DPCDI genes in apoptosis and autophagy
that contribute to HF.

Overfitting often occurs when establishing predictive
signatures, reflected in the high predictive accuracy of the
discovery cohort but generalized poor encountering external
data (Deo, 2015). Using an integration of Lasso and RF, we
minimize the abundant information and identify the most
significant genes to generate DPCDI. Benchmarking against
50 published HF signatures revealed DPCDI’s superior
generalizability (AUC >0.85 across all cohorts). Notably,
while model four model 4 (a 14-aging gene signature by Yu
et al.) (Yu et al.,, 2024b) and model 7 (a 17-gene signature by
Portokallidou et al.) (Portokallidou et al., 2023) ranked highly,
their external validation performance was suboptimal, likely
due to overfitting. In contrast, our DPCID also presents a good
predictive performance regarding the external validation.
DPCDTI’s robustness stems from Lasso’s L1 regularization
(reducing dimensionality, preventing overfitting) (Li et al.,
2022) and RF’s handling of unbalanced cohorts (Biau and
Scornet, 2016). The combined approach outperformed either
algorithm alone (Lasso with AUC = 0.9299; RF with
AUC = 0.9599).

The molecular subtype of HF remains incompletely explored.
We investigated whether DPCDI contributes to HF molecular
subtyping. NMF partitioned 657 HF patients into two divergent
subtypes (Cl, N = 297; C2, N = 360). DPCDI genes were

differentially expressed between subtypes, with two HF
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markers (NINT2 and EGFR) significantly elevated in C2 versus
Cl. Given DPCDTI’s role in apoptosis and autophagy, we used
GSEA and ssGSEA to compare molecular characteristics between
DPCDI-derived subtypes. C2 showed greater enrichment in
apoptosis, autophagy, mitophagy, and chemokine signaling, but
less enrichment in autophagy regulation. Conversely,
C1 exhibited the opposite pattern. Studies have showed that
apoptosis and autophagy cooperate or antagonize, controlling
the cell fate (Noguchi et al., 2020; Nikoletopoulou et al., 2013).
Mitophagy, central to mitochondria quality control (Wanderoy
et al., 2020), balances apoptosis and autophagy. Based on this
evidence, we speculated that the dysregulated mitophagy in
C2 exacerbates apoptosis.

Integrating KEGG and literature evidence, we outlined a
mechanistic overview of DPCDI gene crosstalk with enriched
HMGB2, IVNSIABP, ATF4, and PPPIRI5A
contribute to intrinsic apoptosis. Downregulated ATF4 relieves
BCL2L1 inhibition of pro-apoptotic factors BAX and BAK,
stimulating mitochondrial outer membrane permeabilization
(MOMP) (Yamazaki and Galluzzi, 2022). The upregulation of
HMGB2 and PPPIR15A aggravates intrinsic apoptosis through
stimulating RELA and BID (Yagi et al, 2003), respectively.
INVSIABP has been found to stabilize actin to inhibit intrinsic
apoptosis (Hotter et al., 2020). In C2 patients, the decreasing of
INVSIABP may lose its protective function, and upregulated
PPPIRI5A may induce apoptosis. Also, we depicted the
CXCLI12-JAK2-STAT3 axis in the chemokine signaling activates
intrinsic apoptosis. Intriguingly, despite activation of CXCL12 and

pathways.

JAK2, STAT3 was inhibited, suggesting a dysphosphorylation of
STAT3. STAT3 exerts cytoprotective effects through anti-apoptosis,
but its dysregulation induces dilated cardiomyopathy and adverse
remodeling post-myocardial infarction (Haghikia et al, 2011;
Haghikia et al., 2014). We speculated PTPN2 and SOCS3 inhibit
the JAK2-STAT3 activities (Zhang et al, 2018; Carow and
Rottenberg, 2014). Regarding C2 patients, we found that
CXCL12 and JAK2 increase significantly compared to CI, but
STAT3 is downregulated. In this regard, a lower level of
STAT3 thus
exacerbates apoptosis.

Additionally, we demonstrated that ENOI1, CLU, and UBB,
which belong to the SUPER family as apoptotic cell surface
in HF to
(Diaz-Ramos et al,

attenuates its inhibition of apoptosis and

induce
2012).
Particularly, UBB was significantly elevated in HF, suggesting a

markers, were differentially expressed

ubiquitination and apoptosis
higher ubiquitination. VPS13D, a ubiquitin-binding gene in
mitochondrial clearance (Anding et al., 2018), was decreased in
HE. EXO7 serves as a key component of the mitophagy scaffold
(Farré and Subramani, 2011), and was found to be upregulated in
HF. Except for the decrease in ENOI1, there were no significant
changes regarding the mitophagy-upstream regulators (CLU, UBB,
VPS13D, and EXO7) in C2 compared to Cl. Furthermore, we
showed that two cargo receptors for mitophagosome recognition,
CALCOCO2 and OPTN (Adriaenssens et al., 2024), were decreased
in HF. Despite the activation of ubiquitination to mitophagosome
formation, the inhibition of two cargo receptors (CALCOCO2 and
OPTN) suggests that the impairment cargo of mitophagosome.
TPCN1, which controls Ca®" channels to regulate autophagy,
shows an upregulation pattern in HF (Xiong and Zhu, 2016).
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More importantly, we noted that CALCOCO2 and TPCN1 were
significantly decreased in C2. Therefore, we concluded that the
recruitment and ubiquitination of mitophagosomes continue in
C2 patients. However, the cargo regulation is chaotic because of
the impaired expressions of CALCOCO?2 and TPCNI. Also, the
impeded mitophagy regulation might enhance apoptosis
(Noguchi et al., 2020). This may explain the low enrichment
of mitophagy but the high enrichment of mitophagy and
apoptosis in C2.

We next explored DPCDI expression patterns at single-cell
resolution to investigate detailed molecular mechanism. Using
scRNA-seq, we plotted the LV cell atlas from four HF patients,
including CM, EC, FB, SMC, and MP populations. Among DPCDI
genes, JAK2, IVNS1ABP, and OPTN showed higher expression in
CM, while CXCL12 was enriched in EC and SMC. JAK2 was highly
expressed in CM, but its upstream CXCL12 and downstream
STAT3
investigation

were not correspondingly enriched,
the CXCLI2-JAK2-STAT3

populations. JAK-STAT signaling contributes to HF progression

prompting
into axis  across
(Pang et al., 2023), but cell-to-cell mechanisms are poorly explained.
Using CellChat, we analyzed cell interactions. CXCL12-expressing
ECs and SMCs bind CXCR4 receptors on MPs, leading to CXCL
signaling that promotes MP pro-inflammation (Kim et al., 2014).
Pro-inflammatory MPs exhibit NAMPT activity and bind INSR
ligands on CMs. INSR activation promotes JAK2-STAT3 signaling
(Salminen et al., 2021). We propose that CXCL12-expressing ECs/
SMCs stimulate MP pro-inflammation via CXCL12-CXCR4; pro-
inflammatory MPs then interact with CMs via NAMPT-INSR to
activate JAK2-STAT3 signaling. Pseudo-time analysis inferred
trajectories for CM and EC populations. Two CM-expressed
DPCDI genes (IVNSIABP and JAK2) decreased dynamically
during CM transition from oxidative stress to failure. CXCL12,
an EC-expressed DPCDI gene, declined during EC transformation
from migration and vessel morphogenesis. This indicates roles for
IVNS1ABP and JAK2 in CM differentiation, and CXCLI12 in EC
differentiation.

To assess DPCDI druggability, we performed two large
population-based MR studies at mRNA and protein levels.
Using eQTL datasets, we identified negative causal associations
between JAK2/STAT3 mRNA expression and HF risk. pQTL
datasets validated protective roles of JAK2/STAT3 proteins
against HF. CXCL12 protein level positively correlated with HF
prevalence. Knockout of CXCL12, JAK2, and STAT3 in mice
caused cardiovascular phenotypes like abnormal angiogenesis,
poor arterial differentiation, and dilated heart, underscoring
their pivotal development
validating our MR results. CXCLI12 level associates with
increased MACEs in CAD patients (Zhang et al., 2022),
indicating high risk. HF patients show JAK2 activation but
severe  STAT3  reduction (Cambi et al,  2012).
STAT3 downregulation relates to end-stage HF (Hilfiker-
Kleiner et al., 2005; Harhous et al., 2019), highlighting its
protective role. Our findings support CXCLI12 as a high-risk

roles in cardiovascular and

factor and JAK2/STAT3 as protective factors, suggesting
therapeutic targets.

We predicted 20 small-molecule drugs reversing
CXCL12 upregulation and STAT3 downregulation in HF.
Pifithrin and strophanthidin were promising candidates,
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showing close affinities with CXCL12 and STAT3 through

molecular docking. Pifithrin, a p53 inhibitor, protects

against doxorubicin-induced apoptosis and attenuates
myocardial ultrastructural alterations (Liu et al., 2004).
Strophanthidin, a Na+/K+-ATPase inhibitor, exerts positive
inotropic effects on failing human myocardium concentration-
dependently (von Lewinski et al., 2007) and enhances anti-
tumor activity via STAT3 in HepG2 cells (Reddy et al., 2019).
Although predicted and validated in silico to interact with

CXCL12 and STAT3, their cardio-protective mechanisms

through reversing CXCL12/STAT3 expression remain
unclear. Detailed investigations into pifithrin and
strophanthidin  effects on CXCL12 inhibition and

STATS3 activation for HF alleviation are needed.

Our study has limitations. First, cohorts were retrospective.
Further DPCDI investigation requires larger, multi-ethnic
Second, DPCDI gene
crosstalk in HF is incompletely explored, and more functional

cohorts and clinical correlation.
experiments are needed. Third, the therapeutic significance of
CXCL12 and STATS3, particularly interactions with pifithrin and

strophanthidin, requires detailed pharmacological study.

5 Conclusion

In summary, an optimal combination of Lasso and RF that
contribute to a 15-gene signature (CALCOCO2, VPS13D, CLU,
STAT3, OPTN, UBB, CXCL12, PPP1R15A, ATF4, IVNS1ABP,
HMGB2, JAK2, EXOC7, ENO1, and TPCN1) was developed and
validated to accurately predict HF, termed as DPCDI. We next
leveraged DPCDI to partition HF into two subtypes, in which
C2 presents a higher degree of apoptosis and mitophagy, while
C1 shows the opposite. At the single-cell resolution, we found
the dynamic expression of JAK2 and OPTN among the CM
transition to failure status; and CXCL12 in EC transition to
vessel morphogenesis. Moreover, we used the MR analysis on the
large-scale eQTL and pQTL to elaborate on the causality between
DPCDI and HF, with JAK2 and STATS3 as protective factors and
CXCL12 as a high-risk factor. Using molecular docking, two
agents including pifithrin and strophanthidin were predicted to
closely interact with CXCL12 and STAT3. Repressing
CXCL12 and stimulating STAT3 through the medication of
pifithrin or strophanthidin may represent new therapeutic
strategies for HF. Collectively, DPCDI provides a translatable
framework for HF diagnosis, molecular subtyping, and precision
therapeutics.
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