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Introduction: Coronary atherosclerotic heart disease (CHD) is a leading cause of 
morbidity and mortality worldwide, making timely identification critical for 
improving patient prognosis. However, traditional imaging examinations are 
limited by high costs and patient selection bias, while existing prediction 
models often lack interpretability and generalization ability. This study aimed 
to develop a robust, interpretable machine learning approach to address these 
challenges.
Methods: This retrospective study analyzed hospitalized patients at Quzhou 
People’s Hospital from July 2021 to March 2025. Patients diagnosed with 
CHD were categorized as positive samples, while those without cardiovascular 
disease served as negative controls. The dataset integrated demographic data, 
blood biomarkers, and vital signs. A Generative Adversarial Imputation Network 
(GAIN) was utilized to handle missing values, and multiple machine learning 
models were constructed and compared for prediction performance.
Results: Among the evaluated algorithms, the XGBoost model achieved superior 
performance on the test set with an Area Under the Curve (AUC) of 0.9053. To 
enhance clinical utility, the integration of SHAP (SHapley Additive exPlanations) 
values enabled both global and local interpretation of model decisions. Key 
predictive factors identified included mean respiratory rate during hospitalization, 
age, high-sensitivity troponin I (hs-cTnI), and hypertension.
Discussion: The developed model demonstrates robust prediction performance 
combined with high clinical interpretability. Unlike traditional “black box” models, 
this approach clarifies the contribution of specific risk factors. Crucially, the tool is 
well-suited for dual deployment: serving as an automated screening tool 
integrated into hospital electronic health records (EHRs) and as a self- 
monitoring aid for individuals with underlying health conditions via mobile 
health applications.
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1 Introduction

Coronary atherosclerotic heart disease (CHD) is one of the most 
prevalent and deadliest diseases worldwide (Yang et al., 2023). It is 
characterized by the narrowing or occlusion of the coronary artery 
lumen. The deleterious effects of CHD are progressive and 
potentially lethal, manifesting as a spectrum from arrhythmias 
and angina pectoris to myocardial infarction and heart failure. 
CHD significantly compromises patients’ life expectancy and 
quality of life while imposing a substantial economic burden on 
families and society (Colantonio et al., 2017; Ladak et al., 2020; 
Pickles and Keller, 2025).

Beyond therapeutic management, effective risk prediction is 
crucial, enabling timely intervention and preventative measures. 
Disease prediction is a continuous spectrum that includes both 
anticipation of future patients and screening of patients who are 
currently ill but have not been detected. For chronic and often 
insidious conditions like CHD, the latter is particularly important 
(Koloi et al., 2024). In hospitalized populations, undetected occult 
CHD significantly elevates perioperative risks—especially during 
non-cardiac surgeries—thereby severely impacting prognosis and 
exacerbating medical burdens. Additionally, for the general 
population with underlying conditions such as hypertension and 
diabetes, the occult nature of CHD makes it difficult to detect 
through routine self-examinations, often leading to delayed 
diagnosis until severe cardiovascular events occur, causing 
patients to miss the critical window for early intervention (Sawaf 
et al., 2024; Zaninotto et al., 2024).

Although imaging techniques such as computed tomography 
angiography (CTA) and invasive coronary angiography (ICA) can 
assess the degree of coronary artery stenosis and plaque burden, 
their widespread clinical application is constrained by high costs, 
operator dependency, and selection bias (Min et al., 2022; Xiong 
et al., 2024). Usually, only patients with a high clinical suspicion of 
disease undergo these expensive or radiation-intensive procedures. 
This means that there is a severe lack of healthy but slightly 
abnormal samples and atypical symptoms cases in the imaging 
patient dataset. Conversely, biomarkers derived from routine 
blood tests offer a non-invasive, cost-effective, and scalable 
evaluation method accessible at all levels of healthcare (Sanchez- 
Morillo et al., 2024). Combining personal basic information (gender, 
age, etc.) with easily accessible vital sign information (blood 
pressure, blood oxygen saturation SpO2, body temperature, etc.) 
of smart wearable devices can identify high-risk individuals for 
diseases earlier and more widely (Kundrick et al., 2025; Nenova and 
Shang, 2022).

Although machine learning or deep learning driven models can 
improve prediction performance, they often lack interpretability due 
to their “black box” nature, which cannot clearly reveal the 
correlation mechanism between risk factors and disease 
probability (Topranin et al., 2025; Li et al., 2021; Liu et al., 2019), 
limiting clinical doctors’ trust in prediction results and the 
development of personalized intervention strategies. Although 
traditional models such as Framingham risk score have some 
interpretability, they have problems such as insufficient 
prediction accuracy and weak generalization ability, making it 
difficult to meet the current needs of precision medicine 
(Rehman et al., 2025).

Therefore, this research constructed a specific group of non- 
cardiovascular disease hospitalized patients as negative samples, 
combined with their personal basic information, blood 
biomarkers, and vital sign information, to construct an 
efficient and stable interpretable model for predicting CHD 
risk. This model not only predicted the probability of 
individual disease risk, but also clearly explained the specific 
contributions of various risk factors to the prediction results. 
The framework flowchart shown in Figure 1 illustrates the 
comprehensive process from data collection to clinical 
interpretation. This approach aims to provide intuitive basis 
for clinical doctors to understand the mechanism of disease 
association and formulate personalized intervention strategies, 
and to provide low-cost and easy to promote practical tools for 
independent heart health monitoring in populations with 
underlying conditions.

2 Methods

2.1 Research population design

We retrospectively enrolled hospitalized patients at Quzhou 
People’s Hospital from July 2021 to March 2025. The condition 
for positive sample collection is based on patients diagnosed as 
coronary atherosclerotic heart disease after discharge and whose 
length of stay is ≥ 2, excluding patients with cancer/tumor. A total 
of 19,690 eligible patients with CHD were included. The negative 
sample set comprised patients without a discharge diagnosis of 
cardiovascular-related diseases, hospitalized for ≥ 2 days, 
excluding patients with cancer/tumors. Ultimately, 
17,765 eligible non-cardiovascular disease (non-CHD) patients 
were included.

Utilizing a healthy population as a control often causes the 
model to learn merely the generalized differences between ill 
patients and healthy individuals, rather than the specific 
pathological features that distinguish CHD from other diseases. 
Consequently, applying such a model to patients with existing 
comorbidities often results in unacceptable false positive rates, 
diminishing the clinical utility of the predicted results. To 
achieve the goal of disease screening within medical institutions 
and self-screening among individuals with underlying conditions, 
this research innovatively used other hospitalized patients with non- 
cardiovascular diseases as negative controls.

2.2 Data variables and preprocessing

The dataset comprises three variable categories: demographic 
characteristics, blood biomarkers, and vital signs, all extracted from 
electronic health records (EHR). The basic personal information 
includes the patient’s gender, blood type, and age; lifestyle factors 
included smoking and drinking status; and comorbidities included 
diabetes and hypertension. Age was recorded at the time of 
treatment; smoking and drinking status were obtained from 
medical history records; and diabetes and hypertension status 
were derived from discharge diagnoses. Blood biomarkers, 
derived from initial admission tests, included complete blood 
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counts (CBC), biochemical indicators (e.g., liver and kidney 
function), and D-dimer levels, among others. The vital sign 
information included the patient’s initial admission temperature, 
heart rate, respiratory rate, systolic blood pressure (SBP), and 
diastolic blood pressure (DBP), and SpO2. Additionally, the 
maximum, minimum, and mean values of SBP, DBP, body 
temperature, respiratory rate and SpO2 measured during 
hospitalization were recorded.

In laboratory testing, sample quality issues caused by hemolysis, 
instrument errors, or other factors can produce extreme outliers. As 
these outliers do not reflect true physiological or pathological states, 
rigorous detection and cleaning were performed on the blood 
biomarker data. We adopted a modified Z-score method to 
identify outliers, which is more robust to outliers (Kuo et al., 2024). 

MAD � median Xi−Xm| |( )

Z− score � 0.6745 × Xi−Xm( ) 􏼎MAD

Among them, Xi is the sample feature value, Xm is the median of 
the sample feature value, and MAD is the median absolute deviation. 
Values with a Z-score > 3.5 were identified as outliers and replaced 
with null values (NaN). Further screening was conducted on 
samples with missing values below 40%, while retaining samples 
with more valid data. Consequently, 12 CHD and 7 non-CHD 
samples were removed.

The partial continuous value feature names, abbreviations, units, 
distribution descriptions (mean, standard deviation), and missing 
rates on the positive and negative sample sets are shown in the 
Table 1. Given the high dimensionality of the dataset, the complete 
feature table is included in the Supplementary Material.

2.3 GAIN architecture

Generative adversarial imputation Nets (GAIN) represent a data 
imputation method based on generative adversarial networks 
(GANs) (Xu et al., 2025; Nayak et al., 2024). By leveraging 
adversarial training between a generator and a discriminator, 
GAIN learns the underlying data distribution to generate 
plausible imputed values. The architecture is illustrated in 
Figure 1. The generator, which serves as the core component for 
imputation, utilizes a three-layer fully connected neural network 
structure. The input consists of the original data tensor Xdata

containing missing values and the mask tensor Mdata, where 
1 denotes observed data and 0 denotes missing data. The 
discriminator is tasked with distinguishing between observed true 
values and imputed values produced by the generator; its network 
structure mirrors that of the generator. The discriminator input 
comprises a concatenated tensor of the imputed data Ximputed and 

FIGURE 1 
The schematic workflow of the model design.
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the hint vector Hdata. The hint vector, derived from a randomly 
generated probability matrix and a mask tensor, provides auxiliary 
information to assist the discriminator in identifying missingness 
patterns. The generator loss is composed of a weighted adversarial 
loss Gloss 1 and an MSE loss Gloss 2, where the adversarial loss is 
achieved by minimizing the discriminator’s recognition accuracy of the 
generated values, and the MSE loss constrains the generator to not 

destroy the original information at known data positions. Optimize 
the discriminative ability of the discriminator by calculating the 
classification loss Dloss between the original real data and 
the generated imputed data. The entire model gradually learns the 
inherent distribution pattern of the data through a continuous 
adversarial game between the generator and discriminator, ultimately 
generating missing values that are close to the true distribution.

TABLE 1 Description of partial features.

Feature Abbreviation Unit CHD Non-CHD

Mean std Missing_rate (%) Mean std Missing_rate (%)

Age Age years 70.81 10.95 0 60.96 14.33 0

D-dimer D-D mg/L FEU 0.5 0.38 17.42 0.47 0.37 20.37

High-sensitivity troponin I Hs-cTnI µg/L 0.005 0.0045 38.88 0.003 0.0037 9.32

Hemoglobin HB g/L 120.73 21.76 0.09 122.07 21.27 0.24

White blood cell count WBC *10̂9/L 6.25 2.1 3.38 6.25 2.22 4.01

Lymphocyte percentage LYM% % 22.2 9.64 0.38 23.63 10.89 0.46

Monocyte percentage MO% % 8.22 2.63 2.09 7.84 2.64 1.4

Neutrophil percentage NE% % 66.57 11.46 0.5 65.77 12.78 0.57

Eosinophil percentage EO% % 1.99 1.6 3.73 1.8 1.56 3.1

Basophil percentage BA% % 0.41 0.26 0.8 0.4 0.27 0.61

Neutrophil count NE *10̂9/L 4.12 1.72 4.79 4.06 1.86 5.61

Lymphocyte count LYM *10̂9/L 1.32 0.57 0.9 1.4 0.6 1.11

Monocyte count MO *10̂9/L 0.51 0.2 2.69 0.48 0.2 2.44

Eosinophil count EO *10̂9/L 0.11 0.09 4.76 0.1 0.09 3.73

Basophil count BA *10̂9/L 0.02 0.02 2.08 0.02 0.02 1.73

FIGURE 2 
t-SNE visualization scatter plot and density profile plot of CHD and non-CHD samples.
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FIGURE 3 
Heatmap of missing feature rates for CHD and non-CHD samples.
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2.4 Evaluation metrics

To comprehensively evaluate the model’s predictive capability 
and clinical utility, we employed multiple complementary metrics, 
including accuracy, precision, recall, F1-score and Area Under the 
Receiver Operating Characteristic Curve (AUC) (Chen et al., 2025a; 
Kumar et al., 2024; Rimal and Sharma, 2023; Chen et al., 2025b; Qiao 
et al., 2024). These are the core metrics for evaluating the 
performance of binary classification models, calculated based on 
four fundamental values in the confusion matrix: true positive cases 
(TP), false positive cases (FP), true negative cases (TN), and false 
negative cases (FN) (Zeng et al., 2025; Zulfiqar et al., 2024; Qiao 
et al., 2025; Xie et al., 2025; Wang et al., 2025; Wang et al., 2024). 

ACC � TP + TN( ) 􏼎 TP + TN + FP + FN( )

Precision � TP 􏼎 TP + FP( )

Recall � TP 􏼎 TP + FN( )

F1 � 2 × Precision × Recall( ) 􏼎 Precision + Recall( )

3 Discussion and results

3.1 Analysis of data distribution and 
feature missing

Figure 2 showed the visualization results of positive and negative 
samples using t-distributed stochastic neighbor embedding (t-SNE), 
which was used to display the distribution patterns of CHD and 
non-CHD samples in a high-dimensional feature space, intuitively 
presenting the feature differences and clustering patterns of the two 
groups (Nollmann et al., 2024).

In the scatter plot, blue (non-CHD) samples form a core cluster 
and two independent small clusters, indicating that the characteristics 
of the non-CHD population have strong concentration. The red 
(CHD) samples are interspersed in the form of scattered dots 
within and at the edges of the blue clusters, with only mild 
clustering in local areas and a relatively scattered overall 
distribution. In the density contour map, the density contour of 
non-CHD samples covers most of the areas in the map, and the core 
area has a high density, further verifying the concentration of non- 
CHD population characteristics and the stability of subgroup 
structure. The density profile of CHD samples highly overlaps with 
non-CHD, with only weak independent trends in local areas, 
indicating that the characteristic boundaries between CHD and 
non-CHD are blurred and overlap is high. At the same time, the 
heterogeneity of CHD features, such as different disease courses, 
subtypes, and comorbidities leads to their scattered distribution.

Figure 3 showed the heatmap of feature missing rates for the 
CHD and non-CHD groups. The missing rates for most variables 
were similar in both groups, but significant differences existed in key 
clinical indicators. The CHD group had significantly higher missing 
rates for hs-cTnI (38.88%) and HbA1c (33.12%) than the non-CHD 
group (9.32% and 5.53%, respectively). This difference may reflect 
insufficient detection of these important diagnostic and monitoring 
indicators in patients with CHD in clinical practice. In contrast, the 
non-CHD group had slightly higher missing rates for indicators 
such as D-dimer (20.37%) and hs-CRP (26.16%). The missing rates 

for most routine laboratory indicators and vital signs remained 
below 10% in both groups, indicating relatively complete basic 
clinical data collection. However, key indicators with high 
missing rates require appropriate missing data processing 
strategies in subsequent analyses.

3.2 Performance analysis of 
imputation models

Although incomplete recorded data may be reasonable in 
clinical practice, the performance of machine learning algorithms 
is often affected by biased and incomplete data. Medical record data 
is extremely valuable for disease research. If partially missing 
samples are directly removed and models are constructed using 
non missing samples, although this approach is simple, it wastes a lot 
of available information.

This research comprehensively compared and analyzed the 
performance of traditional imputation algorithms (KNN, MICE) 
(Varol et al., 2025), deep learning autoencoder series (AE, DAE, 
VAE) (Gautier et al., 2024; Shi et al., 2024), and GAIN in medical 
record data. Due to the lack of real data references, the performance 
of the downstream tasks is generally taken as the standard. Table 2
compared the 5-fold cross validation (5-cv) performance of the 
imputation algorithms, and Table 3 compared its performance on 
the independent test set. The performance metrics of traditional 
imputation algorithms were significantly lower than those of deep 
learning methods, and they were limited to being unable to adapt to 
the complex nonlinear correlations between features in the data, 
resulting in insufficient expression ability in high-dimensional 
medical data scenarios.

TABLE 2 Comparison of 5-cv performance of imputation algorithms.

Method Accuracy Precision Recall F1 AUC

KNN 0.8208 0.8206 0.8198 0.8201 0.9016

MICE 0.8265 0.8263 0.8256 0.8259 0.9078

AE 0.8322 0.8321 0.8313 0.8316 0.9146

DAE 0.8350 0.8349 0.8339 0.8343 0.9157

VAE 0.8388 0.8385 0.8382 0.8383 0.9196

GAIN 0.8343 0.8342 0.8333 0.8336 0.9154

TABLE 3 Comparison of independent testing performance of imputation 
algorithms.

Method Accuracy Precision Recall F1 AUC

KNN 0.8096 0.8145 0.8261 0.8202 0.8946

MICE 0.8234 0.8256 0.8420 0.8337 0.9043

AE 0.8285 0.8281 0.8503 0.8390 0.9095

DAE 0.8317 0.8342 0.8486 0.8413 0.9135

VAE 0.8350 0.8381 0.8504 0.8442 0.9165

GAIN 0.8354 0.8405 0.8477 0.8441 0.9156
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As a basic autoencoder, AE achieved a 5-cv AUC of 0.9146 and an 
independent test AUC of 0.9095, which preliminarily demonstrated 
the modeling ability of deep learning for complex data. DAE 
enhanced robustness through noise reduction mechanism, further 
improving performance (5-cv AUC 0.9157, independent test AUC 
0.9135), and had a higher tolerance for data noise. After introducing 
variational inference, VAE had better flexibility in distribution 
modeling, with a 5-cv AUC 0.9196 and independent testing AUC 
0.9165, ranking among the top in multiple performance metrics. As a 
generative model, GAIN not only considered the distribution 
of individual features in adversarial learning, but also 

comprehensively considers the complex correlations between all 
other features. Its 5-cv AUC 0.9154 and independent test AUC 
0.9156 were slightly lower than VAE.

The primary goal of imputation in medical research is to 
faithfully preserve the original data distribution and minimize 
bias. We further observed the fitting degree of each imputation 
algorithm on the data distribution, and selected hs-cTnI and Jaun 
features with high missing rates. The feature density curves before 
and after imputation were shown in Figures 4, 5. Compared to VAE, 
the data distribution after GAIN imputation has a higher degree of 
fit with the original data in terms of morphology, which can avoid 

FIGURE 4 
Density curve of feature hs-cTnI distribution before and after imputation.

FIGURE 5 
Density curve of feature Jaun distribution before and after imputation.
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additional bias caused by distribution offset due to imputation 
and ensure the authenticity and effectiveness of feature 
information in subsequent analysis. To strictly quantify this 
observation, we used Kullback-Leibler (KL) divergence and 
Kolmogorov-Smirnov (KS) test statistics for the imputed data 

of VAE and GAIN on independent test sets. A lower KL or KS 
value indicates a distribution closer to the ground truth., GAIN 
achieved the lowest mean KL divergence (0.158) and mean KS 
statistic (0.067) outperforming VAE (KL: 0.210; KS: 0.068). This 
statistical evidence demonstrates that GAIN is superior in 
capturing the complex underlying probability distribution of 
the real data, avoiding the distributional shifts often introduced 
by variational inference in VAEs. Consequently, considering both 
the robust downstream performance and the superior data 
fidelity, GAIN was selected as the optimal imputation 
algorithm for this research.

3.3 Comparison of prediction algorithm 
performance

In this section, we conducted a performance comparison 
analysis of XGBoost, random forest, logistic regression, SVM, 
KNN, AdaBoost, and ANN algorithms. The prediction metrics 
of training set in Table 4 showed that XGBoost (AUC = 0.9184, 
Accuracy = 0.8345) and ANN (AUC = 0.9182, Accuracy = 
0.8381) have the most outstanding comprehensive 
performance. In the test set prediction performance in 
Table 5, XGBoost exhibited excellent generalization stability, 
while ANN’s generalization ability is significantly insufficient. 
Figure 6 showed the comparison of ROC curves of different 
prediction algorithms on the training and testing sets, which 
intuitively proves that the XGBoost model had the strongest 
ability to distinguish positive and negative samples and excellent 
generalization.

3.4 Feature combination analysis

In many research, derived indicators based on blood 
biomarkers have shown excellent performance. We have 
established 8 derived indicators according to the obtained blood 

TABLE 4 Comparison of performance metrics of different prediction 
algorithms on the training set.

Model Accuracy Precision Recall F1 AUC

XGBoost 0.8345 0.8346 0.8345 0.8344 0.9184

Random forest 0.7999 0.8019 0.7999 0.7989 0.8874

Logistic 
regression

0.7789 0.7788 0.7789 0.7787 0.8582

SVM 0.8108 0.8113 0.8108 0.8104 0.8923

KNN 0.7963 0.8004 0.7963 0.7963 0.8844

AdaBoost 0.8079 0.8078 0.8079 0.8078 0.8911

ANN 0.8381 0.8382 0.8381 0.8379 0.9182

TABLE 5 Comparison of performance metrics of different prediction 
algorithms on the test set.

Model Accuracy Precision Recall F1 AUC

XGBoost 0.8246 0.8247 0.8246 0.8246 0.9053

Random forest 0.7868 0.7888 0.7868 0.7868 0.8732

Logistic 
regression

0.7750 0.7749 0.7750 0.7750 0.8517

SVM 0.7919 0.7922 0.7919 0.7919 0.8744

KNN 0.7356 0.7411 0.7356 0.7356 0.8177

AdaBoost 0.7976 0.7976 0.7976 0.7976 0.8811

ANN 0.8035 0.8034 0.8035 0.8035 0.8854

FIGURE 6 
Comparison of ROC curves of different prediction algorithms on the training and testing sets.
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markers, namely, plasma atherogenic index (AIP = log10 [TG/ 
HDL]), uric acid/high-density lipoprotein ratio (UHR = UA/(18 
* HDL)), neutrophil/lymphocyte ratio (NLR = NE/LYM), platelet/ 
lymphocyte ratio (PLR = PLT/LYM), monocyte/lymphocyte ratio 
(MLR = MO/LYM), and systemic immune inflammation index 
(SII = PLT × NE/LYM), systemic inflammatory response index 
(SIRI = NE × MO/LYM), and systemic inflammatory composite 
index (AISI = NE × MO × PLT/LYM) (Wu et al., 2023; E 
et al., 2025).

In this section, we focused on different types of features, such as 
basic information (BI), blood biomarkers (BB), vital signs 
information (VSI), derivative indicators (DI). Feature 
combinations analysis was conducted, and its performance on 
the test set is shown in Table 6. From the view of single category 
features, blood biomarkers (BB) demonstrated core prediction 
value, reflecting the direct correlation of blood biomarkers in the 
pathological mechanisms of CHD such as lipid metabolism and 
inflammatory response. In multi class feature combinations, the 
performance of three class feature fusion (BI+BB+VSI) reached its 
peak, with accuracy 0.8218 and AUC 0.9047 being the best among all 
combinations. The integration of basic information, blood 
biomarkers, and vital signs has constructed a complete CHD risk 
profile from three dimensions, clinical phenotype, biochemical 
mechanisms, and physiological status, maximizing the 
complementarity between features. Although the feature 
combination performance of DI is theoretically guaranteed, it 
does not exceed BI+BB+VSI. This may be because DI introduced 
redundant information, which slightly interferes with the model’s 
generalization. This also proved the prediction algorithm’s ability to 
mine the cross-complementarity of feature.

3.5 SHAP based model interpretation and 
key feature correlation analysis

The highest mean absolute SHAP value of mean-RR in 
Figure 6 indicated that it has the most significant global 
influence on CHD prediction in the model, followed by age, 
hs-cTnI, and hypertension, which collectively constitute the 
core drivers of model decision-making. We further analyzed 
the SHAP dependency plots for key features in Figure 7. The 
mean-RR dependency plot showed that a low respiratory rate is 
weighted as a positive contributor to CHD risk. In hospitalized 
patients or underlying disease populations, shortness of breath 
is an extremely common non-specific symptom with various 
causes, such as pain, anemia, anxiety, etc. Through data-driven 
analysis, the model identified high RR as strongly correlated 
with non-CHD hospitalization causes. Consequently, a 
relatively lower RR served as a distinguishing signal for 
occult CHD within this specific patient population. 
Regarding age, SHAP values increased monotonically, 
confirming age as a robust risk factor. The observed 
plateauing effect in the elderly suggested a deceleration in 
risk accumulation, consistent with established clinical 
knowledge regarding the progression of coronary 
atherosclerosis. For hs-cTnI, when hs-cTnI exceeded 0.0024, 
the SHAP value rapidly turned positive and remained at a high 
level, even within the clinical normal reference range, indicating 
that an increase in hs-cTnI has significantly increased the risk of 
CHD. This highlighted the sensitivity of high-sensitivity 
troponin in early myocardial injury and risk prediction. The 
role of SHAP analysis is limited to reflecting specific behavioral 
patterns of the model and cannot be used to infer causal 
relationships. At the same time, the numerical values of its 
results will also vary with the distribution of data and the 
structure of the model.

However, the control group may include individuals with 
acute respiratory conditions, potentially introducing a 
confounding bias where elevated respiratory rates reflect the 
pathology of the control group rather than a direct risk factor 
for CHD. To address this concern and verify the model’s 
robustness, we conducted a sensitivity analysis by excluding all 
respiratory-related features (mean-RR, max-RR, min-RR, and 1st- 
RR) and retraining the XGBoost model. The results showed that 
while the AUC on the test set experienced a moderate decline 
from 0.9053 to 0.8693, it remained within a clinically excellent 
range. This performance retention confirmed that although 
respiratory rate significantly contributes to discrimination, the 
model’s prediction power is fundamentally driven by the 
comprehensive integration of multiparametric features, rather 
than solely relying on distinguishing respiratory-related 
anomalies in the control group.

To further explore feature interactions, we calculated the 
Spearman rank correlation coefficients for the top 20 features 
ranked by SHAP importance, as visualized in Figure 8. The 
absolute value of the correlation coefficient was represented by 
the radius of a circle. The larger the radius, the stronger the 
correlation. The color represented the direction of correlation, 
with red indicating positive correlation and blue indicating 
negative correlation. The “X” in the upper triangle indicated that 

TABLE 6 Performance comparison of different feature combinations on the 
test set.

Feature 
set

Accuracy Precision Recall F1 AUC

BI 0.7078 0.7081 0.7078 0.7065 0.7776

BB 0.7510 0.7510 0.7510 0.7505 0.8312

VSI 0.6988 0.7008 0.6988 0.6990 0.7786

DI 0.5922 0.5922 0.5922 0.5844 0.6212

BI+BB 0.7823 0.7829 0.7823 0.7817 0.8634

BI+VSI 0.7868 0.7869 0.7868 0.7865 0.8704

BI+DI 0.7160 0.7168 0.716 0.7144 0.7849

BB+VSI 0.7979 0.7978 0.7979 0.7979 0.8812

BB+DI 0.7532 0.7532 0.7532 0.7527 0.8308

VSI+DI 0.7105 0.7116 0.7105 0.7107 0.7945

BI+BB+VSI 0.8218 0.8219 0.8218 0.8216 0.9047

BI+BB+DI 0.7786 0.7792 0.7786 0.7780 0.8607

BI+VSI+DI 0.7866 0.7865 0.7866 0.7863 0.8709

BB+VSI+DI 0.7984 0.7984 0.7984 0.7984 0.8813

BI+BB+VSI+DI 0.8208 0.8208 0.8208 0.8205 0.9044

Bold text denoted the best performance among different feature combinations.
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the feature pair is not statistically significant, while the specific 
correlation coefficient values were labeled in the lower triangle. 
The diagonal represented the autocorrelation of the feature. In 
addition to RR series features, the correlation coefficients of lipid 
metabolism features Ch, ApoB, and LDL are 0.79, 0.77, and 0.76, 
respectively, reflecting their synergistic effects in the process of 
lipid transport and atherosclerosis. This type of strong correlation 
prompt required attention to the joint effect of feature groups 
when interpreting model decisions, rather than the independent 
contribution of a single feature. However, features without 
statistically significant associations, such as age and some 
metabolic indicators, smoke and LDL, had no statistically 
significant association at the SHAP level (P > 0.05), indicating 
that the weight allocation of these features by the model was 
relatively independent and can reduce the interference of 
multicollinearity on model stability.

3.6 Clinical implementation and limitations

To facilitate the clinical translation of this low-cost screening 
tool, a dual approach can be implemented: integration into in- 
hospital EHR systems to generate automated risk alerts for non- 
cardiology departments, and the development of mobile health 
applications to enable self-monitoring for individuals with 
underlying conditions. However, widespread deployment 
necessitates addressing critical barriers, including strict adherence 
to data privacy regulations, the necessity of dynamic model updating 
to counter concept drift, and the challenge of fostering clinician 
trust—which is partially mitigated by the SHAP interpretability 
framework employed in this research. Furthermore, the 
interpretation of findings must be tempered by the limitations of 
a retrospective, single-center design. While the current model 
incorporates age and comorbidities as features, rigorous 

FIGURE 7 
The left sub figure: the top 20 features with mean absolute SHAP values. The right three sub figures: SHAP dependency plots for the top 3 key features 
including SHAP value fitting curves and feature boundary values when SHAP = 0.
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validation in future multi-center prospective studies is required to 
ensure fairness, robustness, and equitable healthcare outcomes 
across diverse subpopulations.

4 Conclusion

This research successfully developed a machine learning based 
CHD risk prediction model, effectively improving its 
generalization ability and practicality in complex clinical 
backgrounds. By using GAIN imputation method to process 
missing data, combined with XGBoost algorithm to achieve 
high-precision prediction, and utilizing SHAP method to reveal 
the contribution of key features to the prediction results, the 
interpretability of the model is enhanced. The research results 
indicate that the model has significant potential in identifying 
hidden CHD, which can assist clinical doctors in early 
intervention and personalized management, and provide a low- 
cost and easy to promote self-monitoring method for the 
population with underlying diseases. Although the model 
cannot replace the gold-standard diagnosis, it has important 
practical value in the connection between public health 

prevention and clinical diagnosis and treatment, which helps to 
reduce medical burden.

This approach aims to provide intuitive basis for clinical doctors 
to understand the mechanism of disease association and formulate 
personalized intervention strategies, and to provide low-cost and 
easy to promote practical tools for independent heart health 
monitoring in populations with underlying conditions.
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