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Introduction: Coronary atherosclerotic heart disease (CHD) is a leading cause of
morbidity and mortality worldwide, making timely identification critical for
improving patient prognosis. However, traditional imaging examinations are
limited by high costs and patient selection bias, while existing prediction
models often lack interpretability and generalization ability. This study aimed
to develop a robust, interpretable machine learning approach to address these
challenges.

Methods: This retrospective study analyzed hospitalized patients at Quzhou
People's Hospital from July 2021 to March 2025. Patients diagnosed with
CHD were categorized as positive samples, while those without cardiovascular
disease served as negative controls. The dataset integrated demographic data,
blood biomarkers, and vital signs. A Generative Adversarial Imputation Network
(GAIN) was utilized to handle missing values, and multiple machine learning
models were constructed and compared for prediction performance.

Results: Among the evaluated algorithms, the XGBoost model achieved superior
performance on the test set with an Area Under the Curve (AUC) of 0.9053. To
enhance clinical utility, the integration of SHAP (SHapley Additive exPlanations)
values enabled both global and local interpretation of model decisions. Key
predictive factors identified included mean respiratory rate during hospitalization,
age, high-sensitivity troponin | (hs-cTnl), and hypertension.

Discussion: The developed model demonstrates robust prediction performance
combined with high clinical interpretability. Unlike traditional “black box” models,
this approach clarifies the contribution of specific risk factors. Crucially, the toolis
well-suited for dual deployment: serving as an automated screening tool
integrated into hospital electronic health records (EHRs) and as a self-
monitoring aid for individuals with underlying health conditions via mobile
health applications.

coronary heart disease, disease prediction, explainable machine learning, feature
fusion, GAIN
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1 Introduction

Coronary atherosclerotic heart disease (CHD) is one of the most
prevalent and deadliest diseases worldwide (Yang et al., 2023). It is
characterized by the narrowing or occlusion of the coronary artery
lumen. The deleterious effects of CHD are progressive and
potentially lethal, manifesting as a spectrum from arrhythmias
and angina pectoris to myocardial infarction and heart failure.
CHD significantly compromises patients’ life expectancy and
quality of life while imposing a substantial economic burden on
families and society (Colantonio et al., 2017; Ladak et al., 2020;
Pickles and Keller, 2025).

Beyond therapeutic management, effective risk prediction is
crucial, enabling timely intervention and preventative measures.
Disease prediction is a continuous spectrum that includes both
anticipation of future patients and screening of patients who are
currently ill but have not been detected. For chronic and often
insidious conditions like CHD, the latter is particularly important
(Koloi et al., 2024). In hospitalized populations, undetected occult
CHD significantly elevates perioperative risks—especially during
non-cardiac surgeries—thereby severely impacting prognosis and
exacerbating medical burdens. Additionally, for the general
population with underlying conditions such as hypertension and
diabetes, the occult nature of CHD makes it difficult to detect
through routine self-examinations, often leading to delayed
diagnosis until severe cardiovascular events occur, causing
patients to miss the critical window for early intervention (Sawaf
et al., 2024; Zaninotto et al., 2024).

Although imaging techniques such as computed tomography
angiography (CTA) and invasive coronary angiography (ICA) can
assess the degree of coronary artery stenosis and plaque burden,
their widespread clinical application is constrained by high costs,
operator dependency, and selection bias (Min et al., 2022; Xiong
et al,, 2024). Usually, only patients with a high clinical suspicion of
disease undergo these expensive or radiation-intensive procedures.
This means that there is a severe lack of healthy but slightly
abnormal samples and atypical symptoms cases in the imaging
patient dataset. Conversely, biomarkers derived from routine
blood tests offer a non-invasive, cost-effective, and scalable
evaluation method accessible at all levels of healthcare (Sanchez-
Morillo et al., 2024). Combining personal basic information (gender,
age, etc.) with easily accessible vital sign information (blood
pressure, blood oxygen saturation SpO,, body temperature, etc.)
of smart wearable devices can identify high-risk individuals for
diseases earlier and more widely (Kundrick et al., 2025; Nenova and
Shang, 2022).

Although machine learning or deep learning driven models can
improve prediction performance, they often lack interpretability due
to their “black box” nature, which cannot clearly reveal the
correlation mechanism between risk factors and disease
probability (Topranin et al., 2025; Li et al., 2021; Liu et al., 2019),
limiting clinical doctors’ trust in prediction results and the
development of personalized intervention strategies. Although
traditional models such as Framingham risk score have some
interpretability, they have problems such as insufficient
prediction accuracy and weak generalization ability, making it
difficult to meet the current needs of precision medicine
(Rehman et al., 2025).
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Therefore, this research constructed a specific group of non-
cardiovascular disease hospitalized patients as negative samples,
their blood

biomarkers, and vital sign information, to construct an

combined with personal basic information,
efficient and stable interpretable model for predicting CHD
risk. This model not only predicted the probability of
individual disease risk, but also clearly explained the specific
contributions of various risk factors to the prediction results.
The framework flowchart shown in Figure 1 illustrates the
comprehensive process from data collection to clinical
interpretation. This approach aims to provide intuitive basis
for clinical doctors to understand the mechanism of disease
association and formulate personalized intervention strategies,
and to provide low-cost and easy to promote practical tools for
independent heart health monitoring in populations with

underlying conditions.

2 Methods
2.1 Research population design

We retrospectively enrolled hospitalized patients at Quzhou
People’s Hospital from July 2021 to March 2025. The condition
for positive sample collection is based on patients diagnosed as
coronary atherosclerotic heart disease after discharge and whose
length of stay is > 2, excluding patients with cancer/tumor. A total
of 19,690 eligible patients with CHD were included. The negative
sample set comprised patients without a discharge diagnosis of
cardiovascular-related diseases, hospitalized for > 2 days,
excluding  patients  with  cancer/tumors.  Ultimately,
17,765 eligible non-cardiovascular disease (non-CHD) patients
were included.

Utilizing a healthy population as a control often causes the
model to learn merely the generalized differences between ill
patients and healthy individuals, rather than the specific
pathological features that distinguish CHD from other diseases.
Consequently, applying such a model to patients with existing
comorbidities often results in unacceptable false positive rates,
diminishing the clinical utility of the predicted results. To
achieve the goal of disease screening within medical institutions
and self-screening among individuals with underlying conditions,
this research innovatively used other hospitalized patients with non-
cardiovascular diseases as negative controls.

2.2 Data variables and preprocessing

The dataset comprises three variable categories: demographic
characteristics, blood biomarkers, and vital signs, all extracted from
electronic health records (EHR). The basic personal information
includes the patient’s gender, blood type, and age; lifestyle factors
included smoking and drinking status; and comorbidities included
diabetes and hypertension. Age was recorded at the time of
treatment; smoking and drinking status were obtained from
medical history records; and diabetes and hypertension status
were derived from discharge diagnoses. Blood biomarkers,
derived from initial admission tests, included complete blood

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1752811

Zhao et al.

10.3389/fgene.2025.1752811

(2021.7 - 2025.3 from EHR)

CHD I non-CHD \

17,765

19,690

1
Combination | |
Analysis !

SHAP
Interpretation
Analysis

--- Random Guess

—— XGBoost (AUC=0.905)

~—— Random Forest (AUC=0.873)
—— Logistic Regression (AUC=0.852)
— SVM (AUC=0.874)

—— KNN (AUC=0.818)

—— AdaBoost (AUC=0.881)

—— ANN (AUC=0.885)

Key Feature

Basic Personal
Information

Vital Sign
Information

Outlier Handling
Remove samples with a '
_ missing rate exceeding 40% -’

FIGURE 1
The schematic workflow of the model design.

counts (CBC), biochemical indicators (e.g., liver and kidney
function), and D-dimer levels, among others. The vital sign
information included the patient’s initial admission temperature,
heart rate, respiratory rate, systolic blood pressure (SBP), and
diastolic blood pressure (DBP), and SpO,. Additionally, the
maximum, minimum, and mean values of SBP, DBP, body
respiratory rate and SpO,
hospitalization were recorded.

temperature, measured during

In laboratory testing, sample quality issues caused by hemolysis,
instrument errors, or other factors can produce extreme outliers. As
these outliers do not reflect true physiological or pathological states,
rigorous detection and cleaning were performed on the blood
biomarker data. We adopted a modified Z-score method to
identify outliers, which is more robust to outliers (Kuo et al., 2024).

MAD = median (| X;=X,n|)
Z - score = 0.6745 x (X;—-X,,) | MAD

Among them, X; is the sample feature value, X, is the median of
the sample feature value, and MAD is the median absolute deviation.
Values with a Z-score > 3.5 were identified as outliers and replaced
with null values (NaN). Further screening was conducted on
samples with missing values below 40%, while retaining samples
with more valid data. Consequently, 12 CHD and 7 non-CHD
samples were removed.
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The partial continuous value feature names, abbreviations, units,
distribution descriptions (mean, standard deviation), and missing
rates on the positive and negative sample sets are shown in the
Table 1. Given the high dimensionality of the dataset, the complete
feature table is included in the Supplementary Material.

2.3 GAIN architecture

Generative adversarial imputation Nets (GAIN) represent a data
imputation method based on generative adversarial networks
(GANs) (Xu et al, 2025; Nayak et al, 2024). By leveraging
adversarial training between a generator and a discriminator,
GAIN learns the underlying data distribution to generate
plausible imputed values. The architecture is illustrated in
Figure 1. The generator, which serves as the core component for
imputation, utilizes a three-layer fully connected neural network
structure. The input consists of the original data tensor X,
containing missing values and the mask tensor Mgy,,, where
1 denotes observed data and 0 denotes missing data. The
discriminator is tasked with distinguishing between observed true
values and imputed values produced by the generator; its network
structure mirrors that of the generator. The discriminator input
comprises a concatenated tensor of the imputed data Xipureq and
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TABLE 1 Description of partial features.

Feature Abbreviation Non-CHD
Missing_rate (%) Mean  std Missing_rate (%)
Age Age years 70.81 10.95 0 60.96 14.33 0
D-dimer D-D mg/L FEU 0.5 0.38 17.42 0.47 0.37 20.37
High-sensitivity troponin I Hs-cTnl ug/L 0.005 0.0045 38.88 0.003 0.0037 9.32
Hemoglobin HB g/L 120.73 21.76 0.09 122.07 21.27 0.24
White blood cell count WBC *109/L 6.25 21 3.38 6.25 222 4.01
Lymphocyte percentage LYM% % 222 9.64 0.38 23.63 10.89 0.46
Monocyte percentage MO% % 8.22 2.63 2.09 7.84 2.64 1.4
Neutrophil percentage NE% % 66.57 11.46 0.5 65.77 12.78 0.57
Eosinophil percentage EO% % 1.99 1.6 3.73 1.8 1.56 31
Basophil percentage BA% % 0.41 0.26 0.8 0.4 0.27 0.61
Neutrophil count NE *109/L 4.12 1.72 4.79 4.06 1.86 5.61
Lymphocyte count LYM *109/L 1.32 0.57 0.9 14 0.6 111
Monocyte count MO *109/L 0.51 0.2 2.69 0.48 0.2 2.44
Eosinophil count EO *109/L 0.11 0.09 4.76 0.1 0.09 3.73
Basophil count BA *109/L 0.02 0.02 2.08 0.02 0.02 1.73
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FIGURE 2

t-SNE visualization scatter plot and density profile plot of CHD and non-CHD samples.

destroy the original information at known data positions. Optimize
the discriminative ability of the discriminator by calculating the

the hint vector Hga,. The hint vector, derived from a randomly
generated probability matrix and a mask tensor, provides auxiliary
classification loss Do

information to assist the discriminator in identifying missingness
patterns. The generator loss is composed of a weighted adversarial
loss Gios 1 and an MSE loss Gioss 2, Where the adversarial loss is
achieved by minimizing the discriminator’s recognition accuracy of the
generated values, and the MSE loss constrains the generator to not
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between the original real data and
the generated imputed data. The entire model gradually learns the
inherent distribution pattern of the data through a continuous
adversarial game between the generator and discriminator, ultimately
generating missing values that are close to the true distribution.
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FIGURE 3
Heatmap of missing feature rates for CHD and non-CHD samples
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2.4 Evaluation metrics

To comprehensively evaluate the model’s predictive capability
and clinical utility, we employed multiple complementary metrics,
including accuracy, precision, recall, F1-score and Area Under the
Receiver Operating Characteristic Curve (AUC) (Chen et al., 2025a;
Kumar et al., 2024; Rimal and Sharma, 2023; Chen et al., 2025b; Qiao
et al, 2024). These are the core metrics for evaluating the
performance of binary classification models, calculated based on
four fundamental values in the confusion matrix: true positive cases
(TP), false positive cases (FP), true negative cases (TN), and false
negative cases (FN) (Zeng et al., 2025; Zulfigar et al., 2024; Qiao
et al., 2025; Xie et al., 2025; Wang et al.,, 2025; Wang et al., 2024).

ACC=(TP+TN)/ (TP+TN + FP + FN)
Precision=TP | (TP + FP)
Recall =TP [ (TP + FN)

F1 =2 x (Precision x Recall) | (Precision + Recall)

3 Discussion and results

3.1 Analysis of data distribution and
feature missing

Figure 2 showed the visualization results of positive and negative
samples using t-distributed stochastic neighbor embedding (t-SNE),
which was used to display the distribution patterns of CHD and
non-CHD samples in a high-dimensional feature space, intuitively
presenting the feature differences and clustering patterns of the two
groups (Nollmann et al., 2024).

In the scatter plot, blue (non-CHD) samples form a core cluster
and two independent small clusters, indicating that the characteristics
of the non-CHD population have strong concentration. The red
(CHD) samples are interspersed in the form of scattered dots
within and at the edges of the blue clusters, with only mild
clustering in local areas and a relatively scattered overall
distribution. In the density contour map, the density contour of
non-CHD samples covers most of the areas in the map, and the core
area has a high density, further verifying the concentration of non-
CHD population characteristics and the stability of subgroup
structure. The density profile of CHD samples highly overlaps with
non-CHD, with only weak independent trends in local areas,
indicating that the characteristic boundaries between CHD and
non-CHD are blurred and overlap is high. At the same time, the
heterogeneity of CHD features, such as different disease courses,
subtypes, and comorbidities leads to their scattered distribution.

Figure 3 showed the heatmap of feature missing rates for the
CHD and non-CHD groups. The missing rates for most variables
were similar in both groups, but significant differences existed in key
clinical indicators. The CHD group had significantly higher missing
rates for hs-cTnl (38.88%) and HbA1c (33.12%) than the non-CHD
group (9.32% and 5.53%, respectively). This difference may reflect
insufficient detection of these important diagnostic and monitoring
indicators in patients with CHD in clinical practice. In contrast, the
non-CHD group had slightly higher missing rates for indicators
such as D-dimer (20.37%) and hs-CRP (26.16%). The missing rates

Frontiers in Genetics

10.3389/fgene.2025.1752811

TABLE 2 Comparison of 5-cv performance of imputation algorithms.

Method Accuracy Precision Recall F1 AUC
KNN 0.8208 0.8206 0.8198 0.8201 0.9016
MICE 0.8265 0.8263 0.8256  0.8259 | 0.9078
AE 0.8322 0.8321 08313 08316 = 09146
DAE 0.8350 0.8349 08339  0.8343 | 09157
VAE 0.8388 0.8385 08382 0.8383 09196
GAIN 0.8343 0.8342 0.8333  0.8336 = 09154

TABLE 3 Comparison of independent testing performance of imputation
algorithms.

Method  Accuracy Precision Recall F1  AUC
KNN 0.8096 0.8145 0.8261 = 0.8202 | 0.8946
MICE 0.8234 0.8256 0.8420  0.8337 | 0.9043

AE 0.8285 0.8281 0.8503  0.8390 | 0.9095
DAE 0.8317 0.8342 0.8486  0.8413 | 09135
VAE 0.8350 0.8381 0.8504  0.8442 | 09165
GAIN 0.8354 0.8405 0.8477  0.8441 | 09156

for most routine laboratory indicators and vital signs remained
below 10% in both groups, indicating relatively complete basic
clinical data collection. However, key indicators with high
missing rates require appropriate missing data processing
strategies in subsequent analyses.

3.2 Performance analysis of
imputation models

Although incomplete recorded data may be reasonable in
clinical practice, the performance of machine learning algorithms
is often affected by biased and incomplete data. Medical record data
is extremely valuable for disease research. If partially missing
samples are directly removed and models are constructed using
non missing samples, although this approach is simple, it wastes a lot
of available information.

This research comprehensively compared and analyzed the
performance of traditional imputation algorithms (KNN, MICE)
(Varol et al., 2025), deep learning autoencoder series (AE, DAE,
VAE) (Gautier et al., 2024; Shi et al., 2024), and GAIN in medical
record data. Due to the lack of real data references, the performance
of the downstream tasks is generally taken as the standard. Table 2
compared the 5-fold cross validation (5-cv) performance of the
imputation algorithms, and Table 3 compared its performance on
the independent test set. The performance metrics of traditional
imputation algorithms were significantly lower than those of deep
learning methods, and they were limited to being unable to adapt to
the complex nonlinear correlations between features in the data,
resulting in insufficient expression ability in high-dimensional
medical data scenarios.
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FIGURE 5
Density curve of feature Jaun distribution before and after imputation.

As a basic autoencoder, AE achieved a 5-cv AUC 0of 0.9146 and an
independent test AUC of 0.9095, which preliminarily demonstrated
the modeling ability of deep learning for complex data. DAE
enhanced robustness through noise reduction mechanism, further
improving performance (5-cv AUC 0.9157, independent test AUC
0.9135), and had a higher tolerance for data noise. After introducing
variational inference, VAE had better flexibility in distribution
modeling, with a 5-cv AUC 0.9196 and independent testing AUC
0.9165, ranking among the top in multiple performance metrics. As a
generative model, GAIN not only considered the distribution
features in adversarial also

of individual learning, but

Frontiers in Genetics

comprehensively considers the complex correlations between all
other features. Its 5-cv AUC 0.9154 and independent test AUC
0.9156 were slightly lower than VAE.

The primary goal of imputation in medical research is to
faithfully preserve the original data distribution and minimize
bias. We further observed the fitting degree of each imputation
algorithm on the data distribution, and selected hs-cTnI and Jaun
features with high missing rates. The feature density curves before
and after imputation were shown in Figures 4, 5. Compared to VAE,
the data distribution after GAIN imputation has a higher degree of
fit with the original data in terms of morphology, which can avoid
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TABLE 4 Comparison of performance metrics of different prediction
algorithms on the training set.

of VAE and GAIN on independent test sets. A lower KL or KS
value indicates a distribution closer to the ground truth., GAIN

Model Accuracy Precision Recall F1 AUC achieved the lowest mean KL divergence (0.158) and mean KS
statistic (0.067) outperforming VAE (KL: 0.210; KS: 0.068). This
XGBoost 0.8345 0.8346 0.8345  0.8344 | 09184 . . . L
statistical evidence demonstrates that GAIN is superior in
Random forest 0.7999 0.8019 07999 07989  0.8874 capturing the complex underlying probability distribution of
Logistic 07789 07788 07789 | 0.7787 | 0.8582 the real data, avoiding the distributional shifts often introduced
regression by variational inference in VAEs. Consequently, considering both
the robust downstream performance and the superior data
SVM 0.8108 0.8113 08108  0.8104 | 0.8923 . . . .
fidelity, GAIN was selected as the optimal imputation
KNN 0.7963 0.8004 0.7963 0.7963 | 0.8844 algorithm for this research.
AdaBoost 0.8079 0.8078 0.8079 | 0.8078 = 0.8911
ANN 048381 08382 08381 08379 1 09182 3 3 Comparison of prediction algorithm

performance

TABLE 5 Comparison of performance metrics of different prediction In this section, we conducted a performance comparison

algorithms on the test set. analysis of XGBoost, random forest, logistic regression, SVM,

Model Accuracy Precision Recall F1 AUC KNN, AdaBoost, and ANN algorithms. The prediction metrics
of training set in Table 4 showed that XGBoost (AUC = 0.9184,
XGBoost 0.8246 0.8247 0.8246  0.8246 09053 Accuracy = 0.8345) and ANN (AUC = 0.9182, Accuracy =
Random forest 0.7868 0.7888 0.7868 | 0.7868 = 0.8732 0.8381) have the most outstanding comprehensive
. performance. In the test set prediction performance in
Logistic 0.7750 0.7749 07750 07750 = 0.8517 o o .
regression Table 5, XGBoost exhibited excellent generalization stability,
while ANN’s generalization ability is significantly insufficient.
SVM 07919 07922 07515 | 07515 | 08744 Figure 6 showed the comparison of ROC curves of different
KNN 0.7356 0.7411 07356 0.7356 | 0.8177 prediction algorithms on the training and testing sets, which
intuitively proves that the XGBoost model had the strongest
AdaBoost 0.7976 0.7976 07976  0.7976 = 0.8811
ability to distinguish positive and negative samples and excellent
ANN 0.8035 0.8034 0.8035  0.8035 0.8854 generalization.

additional bias caused by distribution offset due to imputation 3.4 Feature combination analysis
and ensure the authenticity and effectiveness of feature
information in subsequent analysis. To strictly quantify this In many research, derived indicators based on blood
biomarkers have shown excellent performance. We have

established 8 derived indicators according to the obtained blood

observation, we used Kullback-Leibler (KL) divergence and
Kolmogorov-Smirnov (KS) test statistics for the imputed data
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FIGURE 6

Comparison of ROC curves of different prediction algorithms on the training and testing sets.
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TABLE 6 Performance comparison of different feature combinations on the
test set.

Feature Accuracy Precision Recall F1 AUC
set

BI 0.7078 0.7081 07078 07065 = 0.7776

BB 0.7510 0.7510 07510 | 0.7505 = 0.8312

Vsl 0.6988 0.7008 06988 | 0.6990 = 0.7786

DI 0.5922 0.5922 0.5922 0.5844 0.6212

BI+BB 0.7823 0.7829 0.7823 0.7817 0.8634

BI+VSI 0.7868 0.7869 0.7868 0.7865 0.8704

BI+DI 0.7160 0.7168 0716 07144  0.7849

BB+VSI 0.7979 0.7978 07979 | 07979 0.8812

BB+DI 0.7532 0.7532 07532 07527  0.8308

VSI+DI 0.7105 07116 07105 | 07107 = 0.7945

BI+BB+VSI 0.8218 0.8219 0.8218 | 0.8216 = 0.9047

BI+BB+DI 0.7786 0.7792 0.7786 0.7780 0.8607

BI+VSI+DI 0.7866 0.7865 0.7866 0.7863 0.8709

BB+VSI+DI 0.7984 0.7984 0.7984 0.7984 0.8813

BI+BB+VSI+DI 0.8208 0.8208 0.8208 0.8205 0.9044

Bold text denoted the best performance among different feature combinations.

markers, namely, plasma atherogenic index (AIP = log;, [TG/
HDL]), uric acid/high-density lipoprotein ratio (UHR = UA/(18
* HDL)), neutrophil/lymphocyte ratio (NLR = NE/LYM), platelet/
lymphocyte ratio (PLR = PLT/LYM), monocyte/lymphocyte ratio
(MLR = MO/LYM), and systemic immune inflammation index
(SII = PLT x NE/LYM), systemic inflammatory response index
(SIRI = NE x MO/LYM), and systemic inflammatory composite
index (AISI = NE x MO x PLT/LYM) (Wu et al, 2023; E
et al., 2025).

In this section, we focused on different types of features, such as
basic information (BI), blood biomarkers (BB), vital signs
(VSI), (DI).
combinations analysis was conducted, and its performance on

information derivative  indicators Feature
the test set is shown in Table 6. From the view of single category
features, blood biomarkers (BB) demonstrated core prediction
value, reflecting the direct correlation of blood biomarkers in the
pathological mechanisms of CHD such as lipid metabolism and
inflammatory response. In multi class feature combinations, the
performance of three class feature fusion (BI+BB+VSI) reached its
peak, with accuracy 0.8218 and AUC 0.9047 being the best among all
combinations. The integration of basic information, blood
biomarkers, and vital signs has constructed a complete CHD risk
profile from three dimensions, clinical phenotype, biochemical
status, maximizing the

Although the
combination performance of DI is theoretically guaranteed, it
does not exceed BI+BB+VSI. This may be because DI introduced
redundant information, which slightly interferes with the model’s
generalization. This also proved the prediction algorithm’s ability to

mechanisms, and  physiological

complementarity between features. feature

mine the cross-complementarity of feature.
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3.5 SHAP based model interpretation and
key feature correlation analysis

The highest mean absolute SHAP value of mean-RR in
Figure 6 indicated that it has the most significant global
influence on CHD prediction in the model, followed by age,
hs-cTnl, and hypertension, which collectively constitute the
core drivers of model decision-making. We further analyzed
the SHAP dependency plots for key features in Figure 7. The
mean-RR dependency plot showed that a low respiratory rate is
weighted as a positive contributor to CHD risk. In hospitalized
patients or underlying disease populations, shortness of breath
is an extremely common non-specific symptom with various
causes, such as pain, anemia, anxiety, etc. Through data-driven
analysis, the model identified high RR as strongly correlated
with non-CHD hospitalization causes. Consequently, a
relatively lower RR served as a distinguishing signal for
CHD within this specific
SHAP values

confirming age as a robust risk factor.

occult patient population.

Regarding age, increased monotonically,
The observed
plateauing effect in the elderly suggested a deceleration in
with established
knowledge regarding the progression of coronary
atherosclerosis. For hs-cTnl, when hs-cTnl exceeded 0.0024,

the SHAP value rapidly turned positive and remained at a high

risk accumulation, consistent clinical

level, even within the clinical normal reference range, indicating
that an increase in hs-cTnl has significantly increased the risk of
CHD. This highlighted the sensitivity of high-sensitivity
troponin in early myocardial injury and risk prediction. The
role of SHAP analysis is limited to reflecting specific behavioral
patterns of the model and cannot be used to infer causal
relationships. At the same time, the numerical values of its
results will also vary with the distribution of data and the
structure of the model.

However, the control group may include individuals with
acute

respiratory  conditions, potentially

confounding bias where elevated respiratory rates reflect the

introducing a

pathology of the control group rather than a direct risk factor
for CHD. To address this concern and verify the model’s
robustness, we conducted a sensitivity analysis by excluding all
respiratory-related features (mean-RR, max-RR, min-RR, and Ist-
RR) and retraining the XGBoost model. The results showed that
while the AUC on the test set experienced a moderate decline
from 0.9053 to 0.8693, it remained within a clinically excellent
range. This performance retention confirmed that although
respiratory rate significantly contributes to discrimination, the
model’s prediction power is fundamentally driven by the
comprehensive integration of multiparametric features, rather
than
anomalies in the control group.

solely relying on distinguishing respiratory-related

To further explore feature interactions, we calculated the
Spearman rank correlation coefficients for the top 20 features
ranked by SHAP importance, as visualized in Figure 8. The
absolute value of the correlation coefficient was represented by
the radius of a circle. The larger the radius, the stronger the
correlation. The color represented the direction of correlation,
with red indicating positive correlation and blue indicating
negative correlation. The “X” in the upper triangle indicated that
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FIGURE 7

The left sub figure: the top 20 features with mean absolute SHAP values. The right three sub figures: SHAP dependency plots for the top 3 key features
including SHAP value fitting curves and feature boundary values when SHAP = 0.

the feature pair is not statistically significant, while the specific
correlation coefficient values were labeled in the lower triangle.
The diagonal represented the autocorrelation of the feature. In
addition to RR series features, the correlation coefficients of lipid
metabolism features Ch, ApoB, and LDL are 0.79, 0.77, and 0.76,
respectively, reflecting their synergistic effects in the process of
lipid transport and atherosclerosis. This type of strong correlation
prompt required attention to the joint effect of feature groups
when interpreting model decisions, rather than the independent
contribution of a single feature. However, features without
statistically significant associations, such as age and some
metabolic indicators, smoke and LDL, had no statistically
significant association at the SHAP level (P > 0.05), indicating
that the weight allocation of these features by the model was
relatively independent and can reduce the interference of
multicollinearity on model stability.

Frontiers in Genetics

3.6 Clinical implementation and limitations

To facilitate the clinical translation of this low-cost screening
tool, a dual approach can be implemented: integration into in-
hospital EHR systems to generate automated risk alerts for non-
cardiology departments, and the development of mobile health
applications to enable self-monitoring for individuals with
underlying However, widespread deployment
necessitates addressing critical barriers, including strict adherence
to data privacy regulations, the necessity of dynamic model updating
to counter concept drift, and the challenge of fostering clinician
trust—which is partially mitigated by the SHAP interpretability
framework employed in this research. Furthermore, the
interpretation of findings must be tempered by the limitations of
a retrospective, single-center design. While the current model
features, rigorous

conditions.

incorporates age and comorbidities as
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Spearman correlation of TOP20 features.
validation in future multi-center prospective studies is required to  prevention and clinical diagnosis and treatment, which helps to
ensure fairness, robustness, and equitable healthcare outcomes  reduce medical burden.
across diverse subpopulations. This approach aims to provide intuitive basis for clinical doctors
to understand the mechanism of disease association and formulate
personalized intervention strategies, and to provide low-cost and
4 Conclusion easy to promote practical tools for independent heart health
monitoring in populations with underlying conditions.
This research successfully developed a machine learning based
CHD risk prediction model, effectively improving its
generalization ability and practicality in complex clinical Data avallablllty statement
backgrounds. By using GAIN imputation method to process
missing data, combined with XGBoost algorithm to achieve The original contributions presented in the study are included in
high-precision prediction, and utilizing SHAP method to reveal  the article/Supplementary Material, further inquiries can be directed
the contribution of key features to the prediction results, the  to the corresponding author.
interpretability of the model is enhanced. The research results
indicate that the model has significant potential in identifying
hidden CHD, which can assist clinical doctors in early Ethics statement
intervention and personalized management, and provide a low-
cost and easy to promote self-monitoring method for the The studies involving humans were approved by Ethics
population with underlying diseases. Although the model = Committee of Quzhou People’s Hospital. The studies were
cannot replace the gold-standard diagnosis, it has important  conducted in accordance with the local legislation and
practical value in the connection between public health  institutional requirements.
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