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The reliability of multiple sequence alignment (MSA) results directly determines
the credibility of the conclusions drawn from biological research. However, MSA
is inherently an NP-hard problem,making it theoretically impossible to guarantee
a globally optimal solution. Consequently, in addition to developing more
efficient alignment algorithms, improving the quality of initial alignments
through post-processing optimization has become an important strategy for
enhancing the overall alignment accuracy. Although post-processing methods
have shown potential in improving alignment accuracy, currently, there is a lack
of systematic reviews and summaries. In this review, we provide a systematic
overview of the development and key research ideas of MSA post-processing
methods over the past 3 decades and outline potential directions for future
research.
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1 Introduction

Multiple sequence alignment (MSA) is a fundamental technique in bioinformatics.
Its primary objective is to compare and align multiple biological sequences—such as
DNA, RNA, or proteins—to reveal similarities and differences between them (Chao
et al., 2022). The resulting alignments provide valuable insights into sequence
homology and evolutionary relationships (Wang et al., 2024), and they also
facilitate the identification of functional elements, conserved domains, and gene
family members. These applications form the basis for a deeper understanding of
the complexity and diversity of living systems. Therefore, the accuracy of MSA results is
crucial for all downstream biological analyses.

Despite substantial progress, the quality of MSA results remains limited because of both
intrinsic and extrinsic factors. On the objective side, the explosive growth of sequencing data
(Wei Y. et al., 2022; Zhang et al., 2024), coupled with extensive sequence variability and
experimental errors—such as base-calling inaccuracies and insertion–deletion
biases—greatly increases the complexity of alignment and reduces its overall robustness
(Chen et al., 2023; Edgar, 2022). On the algorithmic side, MSA is inherently an NP-hard
problem; as a result, most existing tools rely on heuristic strategies that balance efficiency
and accuracy, often at the expense of achieving a truly global optimum. Furthermore,
current algorithms still face challenges in effectively modeling structural features and
evolutionary divergence, which further constrains alignment precision.

Against this backdrop, post-processing methods for MSA have gained growing
attention. The practical goal of these approaches is to directly enhance alignment
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accuracy and improve the reliability of downstream analyses. At the
same time, the underlying algorithms of certain tools offer valuable
insights and novel directions for advancing MSA technology. As
biological data continue to expand in both scale and complexity,
research in this area has become essential for improving the
efficiency and robustness of bioinformatics analyses, thereby
fostering scientific discovery and technological innovation in the
field. In this review, we summarize the current MSA post-processing
methods, highlighting their core principles, existing challenges, and
potential future developments.

2 Methods

Traditional MSA tools typically rely on heuristic algorithms
based on the principle of “once a gap, always a gap.” In other words,
once an incorrect gap is introduced early in the alignment process, it
tends to persist and continue to degrade the overall alignment
quality. Various post-processing methods have been developed to
address this issue, aiming to further enhance the accuracy and
reliability of alignment results.

Currently, mainstream post-processing strategies for MSA can
be classified into two categories:

1. Meta-alignment methods, which integrate multiple
independent MSA results to produce more consistent and
accurate alignments.

2. Realigner methods, which refine existing alignments by locally
adjusting or re-evaluating regions with potential insertion or
mismatch errors.

2.1 Meta-alignment

Meta-alignment tools take multiple MSA results, which are
typically generated from the same unaligned sequence dataset
using different alignment programs or parameter settings, as the
input. The core idea is to fuse and optimize these initial alignments,
integrating their respective strengths to construct a more consistent
and accurate combined alignment. The resulting alignment not only
preserves key information from each input result but may also reveal
novel alignment patterns that are not captured by any single tool.
The following section introduces several representative meta-
alignment tools and their distinguishing features.

ComAlign (Bucka-Lassen et al., 1999) is one of the earliest meta-
alignment methods proposed. Its core idea is that different MSA
tools tend to produce distinct errors or approximations across
various regions of the alignment. ComAlign addresses this by
integrating the best performing segments from multiple
alignments to generate a more accurate and robust consensus
alignment. This method is built upon an extended dynamic
programming framework: in an alignment matrix defined by m
input sequences and n initial alignments, the paths corresponding to
each initial alignment are annotated. The algorithm then identifies
intersections and regions of agreement among these paths and
iteratively integrates high-scoring segments to progressively
construct the final consensus alignment. However, this process

involves complex path searches and combinations in a high-
dimensional dynamic programming space, resulting in high
computational and memory demands. The original study
validated the method only on nucleic acid datasets containing
relatively short sequences and small sequence sets, and ComAlign
struggles to scale effectively as the sequence length or number
increases. Furthermore, due to its early publication, the source
code of ComAlign is no longer available.

M-Coffee (Wallace et al., 2006) is currently the most widely
used meta-alignment method for aligning both nucleic acid and
protein sequences. Starting from multiple initial alignments, the
method first constructs a consistency library. In this step,
M-Coffee matches all pairs of characters (bases or amino
acids) in each initial alignment with corresponding character
pairs in other alignments. These character pairs are then
weighted according to their consistency across the different
alignments, thereby strengthening pairing signals that are
supported by most initial alignments. Next, M-Coffee invokes
the T-Coffee algorithm (Notredame et al., 2000) to generate the
final MSA based on the consensus library. T-Coffee evaluates
pairwise alignments to maximize the overall support of the
matching character pairs within the library, thus producing a
global alignment that best reflects the consensus among various
alignment tools. However, this inclusive strategy also has
potential drawbacks: if incorrect alignments are common
across multiple initial results, they may be assigned higher
weights as well. Consequently, M-Coffee’s overall accuracy
depends strongly on the quality of its input
alignments—typically approximating the average quality of the
initial alignments and rarely surpassing the best among them.

AQUA (Muller et al., 2010) is a tool that encapsulates the meta-
alignment workflow. Its input consists of the original, unaligned
protein sequences. AQUA first automatically invokes MUSCLE3
(Edgar, 2004) and MAFFT (Katoh and Standley, 2013) to generate
two initial alignments. It then employs the realigner RASCAL to
refine these alignments, producing two corresponding realigned
versions. Finally, the meta-alignment stage selects the most
accurate alignment among the four candidate alignments (the
two initial alignments and their realignments) based on the
NorMD score (Thompson et al., 2001). As AQUA determines
the best alignment from the outputs of multiple aligners, it can
be regarded as a meta-alignment method. However, because the tool
encapsulates the entire meta-alignment process, users cannot
customize the initial inputs, and the range of candidate
alignments is limited, which constrains its flexibility and
adaptability to a certain extent.

MergeAlign (Colling et al., 2012) is designed to integrate
multiple initial protein alignments. The method first represents
these alignments as a weighted directed acyclic graph (DAG), in
which nodes correspond to combinations of column positions and
edges denote transitions between adjacent columns. Each edge is
weighted by the number of initial alignments that contain the
corresponding transition. The algorithm then identifies the path
with the highest cumulative weight, and the nodes along this path
form the merged alignment. Similar to M-Coffee, consensus regions
supported by most initial alignments receive higher weights,
enabling the final alignment to be synthesized from the collective
input information. However, if alignment errors are commonly
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present across multiple initial results, they too may receive higher
weights, potentially reducing the accuracy of the final alignment.

TPMA (Zhai et al., 2024a) is a state-of-the-art meta-alignment
tool capable of integrating any number of nucleic acid MSAs. The
method first ranks the input alignments in a descending order of
their sum-of-pairs (SP) scores and then integrates them sequentially.
Using a two-pointer algorithm, TPMA divides the two initial
alignments into blocks containing identical sequence segments
and merges those with higher SP scores into the final alignment.
Owing to its simple algorithmic design and low computational and
memory requirements, TPMA performs efficiently on large datasets.
However, its performance remains highly dependent on the quality
of the input alignments, and its relatively simple objective function
imposes certain limitations in specific scenarios.

2.2 Realigner

Another category of the post-processing method for MSAs is to
construct a realigner. Operating as standalone modules, realigners
directly optimize and refine existing alignments without the need to
re-run the entire alignment process. This approach can substantially
improve the alignment accuracy while maintaining computational
efficiency. Depending on the partitioning strategy adopted during
the initial alignment, realigners are generally classified into three
types: horizontal partitioning, vertical partitioning, and hybrid
partitioning.

2.2.1 Horizontal partitioning
A realigner that adopts a horizontal partitioning strategy

typically operates through an iterative optimization process: in
each iteration, the input alignment set is divided into two parts,
which are then realigned to improve the alignment accuracy of the
local area. Horizontal partitioning methods generally fall into three
restrictive categories: single-type partitioning, double-type
partitioning, and tree-dependent partitioning (Figure 1).

1. Single-type partitioning: one sequence is extracted from the
initial alignment, whereas the remaining sequences form a
profile. After removing the gaps from the extracted sequence, it
is realigned against the profile in a sequence-to-profile manner.

2. Double-type partitioning: two sequences are extracted from the
initial alignment to form one profile, whereas the remaining
sequences form another. The two profiles are then aligned to
each other in a profile-to-profile manner.

3. Tree-dependent partitioning: the initial alignment is divided
into two subtree profiles based on the guide tree, and the
profile-to-profile alignment is performed between the
two subtrees.

The following section describes several typical realigners that use
horizontal partitioning strategies.

ReAligner (Anson and Myers, 1997) is one of the earlier
realigner tools, and it was primarily designed for DNA and RNA
sequence data. It adopts a single-type partitioning strategy, in which

FIGURE 1
Schematic illustration of the three partitioning strategies used in horizontal partitioning methods. (A) Single-type partitioning. (B) Double-type
partitioning, and (C) Tree-dependent partitioning.
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each sequence is iteratively traversed and realigned. If a realignment
improves the quality of the current alignment, the updated result
replaces the original and serves as the input for the next iteration.
This process continues until the alignment scores converge
or stabilize.

The remove first (RF) method (Wallace and Higgins, 2005) is a
realigner developed specifically for protein data and also employs a
single-type partitioning strategy. Its iterative process and
termination criteria are essentially the same as those of
ReAligner. The main difference is that the RF method optimizes
only one sequence per iteration, whereas ReAligner traverses all
sequences in each iteration. In addition, its study also evaluated and
compared double-type and tree-dependent partitioning strategies.

REFINER (Chakrabarti et al., 2006) is another realigner
designed for protein sequences that use the single-type
partitioning strategy. Its iterative process and termination criteria
are similar to those of the RF method, but its optimization objective
is more specific: REFINER aligns sequences to a family block model
that represents conserved sequence or structural regions. Moreover,
in each iteration, REFINER randomly selects a sequence and aligns it
to a position-specific score matrix (PSSM) (Jones, 1999) generated
from the remaining sequences rather than to a general profile.

ReformAlign (Lyras and Metzler, 2014) is a realigner for DNA
and RNA data that does not follow any of the three partitioning
strategies. The method first constructs a summarized profile based
on the initial alignment. During each iteration, all sequences are
realigned to this profile. If gaps are introduced in the process, the
profile is fine-tuned accordingly, and all sequences are then
realigned to the updated version. The iteration process continues
until the alignment results remain unchanged for two consecutive
rounds or a predefined maximum number of iterations is reached.

TreeRefiner (Manohar and Batzoglou, 2005) is another realigner
designed for DNA and RNA data. Unlike the methods described
above, it does not rely on the three partitioning strategies or an
iterative optimization process. Instead, it performs realignment
directly using a three-dimensional dynamic
programming algorithm.

2.2.2 Vertical partitioning
Realigners based on the vertical partitioning strategy are a

relatively recent development, emerging within the past 5 years,
later than tools using horizontal partitioning. These methods divide
an initial alignment into contiguous blocks according to alignment

columns and perform realignment within each block, thereby
specifically correcting local low-quality regions and improving
the overall alignment accuracy. Representative tools include
Refin-Align, SpliVert, RPfam, and ReAlign-P, all of which are
designed for protein sequences data.

Refin-Align (Mokaddem et al., 2019) is the first realigner to use
the vertical partitioning strategy, and it operates through an iterative
optimization process. In each iteration, the method first divides the
alignment into blocks according to columns that share identical
amino acid compositions in the initial alignment. It then removes all
gaps within these blocks and realigns each one using the Promalign
(Mokaddem et al., 2018) tool. The program calculates the SP score
for both the original and updated versions of each block; if the new
block achieves a higher score, it replaces the original (Figure 2). Once
all the blocks have been updated, the next iteration begins. This
process continues until the results converge or a predefined iteration
limit is reached.

SpliVert (Zhan et al., 2020) does not use an iterative
optimization strategy but instead performs a single vertical
partitioning realignment. This method first divides the initial
alignment into three sections along the column axis: the head,
middle, and tail. The authors note that protein sequences often
exhibit complex structural characteristics, with the middle region
generally being more conserved and the terminal regions being more
variable. Based on this observation, SpliVert realigns only themiddle
region to minimize the influence of unstable flanking regions on the
overall alignment, thereby enhancing the alignment quality.
Specifically, the method removes gaps within the middle
segment, realigns this portion independently, and then
concatenates it with the original head and tail to generate the
final optimized alignment.

RPfam (Wei et al., 2022b) uses a simulated annealing algorithm
as its optimization strategy. In each iteration, the algorithm scans the
current alignment to identify regions of low alignment quality and
calculates their corresponding scores. It then randomly selects one of
these low-quality blocks, locates the most poorly aligned segment
within it, and realigns that segment using dynamic programming. If
the new alignment outperforms the original, it replaces the previous
version in the current alignment. The iterative process continues
until the annealing temperature gradually decreases to a
predefined threshold.

ReAlign-P (Zhai et al., 2025a), inspired by SpliVert, also focuses
on realigning only the middle region of the alignment. Its key

FIGURE 2
Schematic diagram of vertical partitioning method.
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innovation lies in introducing a vertical iteration strategy. In each
iteration, the algorithm first removes all gaps from the current
alignment and then realigns the sequences using MAFFT. By
comparing the new and original alignments, it identifies regions
of complete identity and regions with discrepancies. Identical
regions are preserved without further modification, whereas for
discrepant regions, the SP score is calculated and the higher-scoring
blocks are retained for the next iteration. The iteration terminates
when the current alignment and the realignment result are
completely identical.

2.2.3 Hybrid partitioning
Hybrid partitioning combines horizontal and vertical

partitioning techniques to synergistically improve the consistency
and overall accuracy of alignment results by optimizing both the
sequence and column levels.

RASCAL (Thompson et al., 2003) is the first realigner to adopt
the hybrid partitioning strategy specifically aimed at re-optimizing
protein MSAs. The method first uses the Secator tool (Wicker et al.,
2001) to horizontally divide the initial alignment into sequence
subfamilies. It then applies the NorMD objective function to
compute the average column distance scores, thereby vertically
identifying “core blocks”—regions that exhibit consistent and
reliable alignments across most sequences. RASCAL constructs
statistical models for these reliable regions and uses them to
detect low-quality segments, which are subsequently realigned
with a ClustalW-like algorithm (Larkin et al., 2007) to enhance
the overall alignment quality.

Crumble and Prune (Roskin et al., 2011) is a realigner applicable to
various types of biological sequences, and it uses a hybrid partitioning
strategy to enhance both alignment efficiency and accuracy. The
approach consists of two independent yet collaborative modules:
Crumble, a vertical partitioning module, which addresses long
sequence alignments by dividing them into shorter sub-problems,
thereby reducing computational complexity, and Prune, a horizontal
partitioning module, which targets large-scale alignments by splitting
them into smaller subsets to improve computational efficiency. These
two modules can be integrated within a job-tree framework, allowing
the method to optimize the overall performance when processing
complex, long, and deep alignments.

ReAlign-N (Zhai et al., 2024b) is a realigner designed for
multiple nucleic acid sequence alignments, and it uses a hybrid
partitioning strategy. The method consists of two modules: global
realignment and local realignment. The global module uses a
horizontal partitioning strategy, incorporating K-band technology
and innovative memory-optimization schemes within a dynamic
programming framework. In each iteration, all sequences are aligned
against a summarized sequence profile, similar to that used by
ReformAlign. The local module adopts a vertical partitioning
strategy, identifying low-quality regions through exact match
detection and entropy scoring, and it subsequently realigns and
corrects these regions using MAFFT.

ReAlign-Star (Zhai et al., 2025b) is a realigner developed
specifically for the star alignment tool (Tang et al., 2022; Zhou
et al., 2024) and currently supports only nucleic acid sequences. The
method uses a hybrid partitioning strategy. In the horizontal
partitioning phase, a filtering mechanism identifies and removes
low-quality “junk sequences” from the initial alignment while also

eliminating gaps within these sequences for subsequent processing.
During the vertical partitioning phase, a partial realignment is
performed on the profile that excludes the low-quality sequences.
Finally, the previously removed “junk sequences” are reintegrated
with the updated profile using a sequence-to-profile approach to
produce the final alignment.

3 Future direction

Several MSA tools already incorporate built-in iterative
refinement mechanisms to enhance the alignment quality after
the initial alignment stage. However, the improvements achieved
by these mechanisms are often limited, particularly when the initial
alignment contains systematic biases or when the input sequences
differ substantially, resulting in suboptimal optimization outcomes.
In contrast, dedicated post-processing approaches offer a more
flexible and scalable framework for improving alignment
accuracy. Nonetheless, compared with the extensive development
of MSA algorithms themselves, research on post-processing
methods remains relatively underexplored. Future efforts in this
area could pursue breakthroughs in the following directions:

1. Efficient post-processing algorithms for ultra-large-
scale datasets.

With the rapid advancement of technologies such as single-cell
sequencing and metagenomics, the volume of biological sequence data
is increasing exponentially. In this context, traditional MSA tools often
struggle to deliver reliable results within practical time constraints,
whereas newer tools tend to compromise the accuracy in favor of
computational efficiency. This highlights an urgent need for post-
processing algorithms capable of handling ultra-large-scale datasets.
Existing post-processing tools still offer considerable room for
improvement in computational efficiency and memory management.
In particular, when aligning whole-genome alignments comprising
millions of sequences, computational resources remain a critical
bottleneck. Future research can explore the integration of high-
performance computing and parallelization technologies, such as
distributed computing frameworks, GPU acceleration, and emerging
hardware architectures, to further reduce time and memory
consumption, thereby enabling efficient alignment of datasets at the
million-sequence scale and beyond.

2. Explore the extended application of vertical and hybrid
partitioning strategies.

Future realigner designs are likely to prioritize vertical or hybrid
partitioning strategies, as iterative optimization based solely on
horizontal partitioning has shown limited potential for
substantial improvement. At present, vertical partitioning
approaches are primarily applied to protein sequence alignments,
and their effectiveness for other data types, such as RNA sequences,
coding regions, or noncoding regions, has yet to be systematically
evaluated. Given the inherent advantage of vertical partitioning in
refining local regions, future research could focus on extending these
methods to genomic-scale datasets and developing specialized
optimization algorithms tailored to specific functional regions.
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3. Intelligent post-processing frameworks that integrate deep
learning and pretrained models.

Current post-processing algorithms for MSA remain largely
grounded in traditional heuristics and dynamic programming
frameworks, with limited integration of deep learning or large-
scale pretrained biological language models. In recent years, such
models have shown remarkable potential in tasks including
sequence feature extraction, structure prediction, and functional
annotation. Integrating deep learning techniques with MSA post-
processing algorithms could enable a deeper understanding of latent
sequence features, paving the way for significant advances in
alignment accuracy, robustness, and generalization.

4 Discussion

The accuracy of MSAs plays a decisive role in determining the
reliability of downstream bioinformatics analyses. Post-
processing methods have gained increasing research interest in
recent years as a complementary approach to improving the
alignment quality. In this review, we have systematically traced
the evolution of MSA post-processing tools over the past
3 decades, providing a comprehensive overview of their
conceptual foundations and methodological advances. Existing
approaches can be broadly categorized into two major
classes—meta-alignment and realigner methods—each with
distinct design philosophies and optimization strategies.
Finally, we have discussed the emerging challenges and future
research directions in this field, highlighting opportunities for
innovation at the intersection of algorithm design, large-scale
data processing, and intelligent computational frameworks.
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