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Circular RNAs (circRNAs) are a unique class of non-coding RNAs with stable
covalently closed structures that play key regulatory roles in gene expression
and drug response. However, experimental identification of circRNA-drug
sensitivity remains labor-intensive. To overcome these limitations, we
introduce DMAGCL, a Dual-Masked Graph Contrastive Learning framework,
whose core innovations include: (1) a synergistic dual-masking strategy (path-
and edge-level) that forces the model to learn robust representations against
both macro-level path disruptions and micro-level edge noise; (2) an adaptive
contrastive loss with a scheduled temperature parameter (t) to dynamically
balance exploration and exploitation during training; and (3) an attention-
based fusion classifier (AFC) that explicitly models complex cross-modal
interactions between circRNA sequences and drug molecular graphs for
adaptive multi-source information fusion. Comprehensive evaluations
demonstrate that DMAGCL achieves state-of-the-art performance, attaining
an average AUC of 0.8940 and AUPR of 0.9006 under five-fold cross-
validation, and a slightly higher average AUC of 0.8982 under the more
stringent ten-fold cross-validation, consistently surpassing strong baselines
including GATECDA and MNGACDA. This performance advantage stems from
our core design choices, as evidenced by systematic ablation studies
confirming the indispensable and complementary roles of the dual-masking
strategy and the effectiveness of the adaptive loss and fusion classifier. Case
studies on four representative anticancer drugs (doxorubicin, gefitinib,
sorafenib, and paclitaxel) achieved an average experimental validation rate
of 80%, highlighting the framework’s predictive reliability and biological
relevance. In conclusion, this study makes three primary contributions: (1) it
introduces the novel DMAGCL framework, establishing a new paradigm for
circRNA-drug association prediction via its synergistic dual-masking, adaptive
learning, and attentive fusion components; (2) it delivers a highly robust and
interpretable model with validated predictive reliability through extensive
experiments and case studies (80% average validation rate); and (3) it
provides a scalable computational tool that offers valuable insights for
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discovering novel circRNA-drug associations, understanding drug resistance
mechanisms, and informing precision therapy design, with clear pathways for
extension to other biological interaction tasks.

KEYWORDS

attention fusion classifier, circRNA, drug sensitivity prediction, dual-masked graph
contrastive, multi-source feature integration

1 Introduction

Circular RNAs (circRNAs) exist stably through their covalently
closed structure and have been proven to be key regulatory factors
for tumor drug resistance (Chen and Yang, 2015; Suzuki and
Tsukahara, 2014). As competitive endogenous RNAs, they can
“sponge” miRNAs through miRNA response elements and
thereby interfere with post-transcriptional silencing of mRNAs
(Min et al., 2019). However, the complete molecular network of
circRNA-drug sensitivity (CDS) remains to be elucidated. For
instance, miRNAs can mediate post-transcriptional silencing by
binding to the 3′-untranslated region of target mRNAs, while
circRNAs can antagonize this process through molecular sponge
effects (Bartel, 2004). circRNAs are pivotal regulators of tumor drug
resistance (Min et al., 2019), yet computational elucidation of their
interactions with drug sensitivity remains challenging (Bartel, 2004).
Multiple studies have indicated that circHIPK3, Circ_0006528, etc.
participate in tumor occurrence by regulating apoptosis and
proliferation pathways (Hanahan and Weinberg, 2000), and can
serve as diagnostic or prognostic markers (Li et al., 2018). At the
level of drug resistance, circ_0076305 is upregulated by miR-186-5p
to induce ABCC1 expression, thereby enabling non-small cell lung
cancer to tolerate cisplatin (Liu et al., 2018); while circ_
0072083 enhances the resistance of glioma to temozolomide
through the miR-1252-5p/ALKBH5/NANOG axis (Wang et al.,
2023). Although functional evidence is constantly emerging,
experimental identification of CDS associations remains time-
consuming and labor-intensive, and there is an urgent need for
efficient computational frameworks to systematically analyze their
network patterns. Additionally, in bladder cancer, CircNR3C1 can
bind to BRD4 and interfere with the formation of the oncogenic
complex between C-myc, thereby inhibiting tumor progression
(Ding et al., 2021); studies have also shown that the ectopic
expression of C-myc can partially reverse the tumor suppressive
effect of this circRNA in vivo (Xie et al., 2020). These findings
systematically reveal the important regulatory functions of
circRNAs in tumor resistance. However, the complete molecular
network of their interaction with drug sensitivity still needs to be
further elucidatedExtensive experiments demonstrate that DMCL
achieves state-of-the-art performance. Case studies on four anti-
cancer drugs show an average experimental validation rate of 80%,
underscoring its predictive reliability and biological relevance. This
work provides a powerful computational tool and offers new insights
into non-coding RNA mechanisms in drug resistance.

In the circRNA and drug sensitivity studies, the statistical
models based on correlations play a crucial role. The core of
these models lies in using computational methods to predict and
uncover potential circRNA-drug sensitivity correlations, thereby
effectively avoiding the time-consuming and labor-intensive
drawbacks of traditional biological experiments. Computational

models offer an efficient approach for large-scale identification of
such associations. Existing methods primarily rely on strategies such
as graph neural networks (GNNs), multi-source feature integration,
or random walks. Multi-source biological information integration
and machine learning algorithms have become the mainstream
approach for predicting drug sensitivity of circRNAs(Wei et al.,
2023a). By introducing graph regularization into protein language
models, it has been verified that graph constraints can improve the
prediction of TCR-epitope binding specificity (Fu et al., 2025b);
Zhou et al. proposed a global-local dual perspective to achieve multi-
scale feature fusion of drug-protein interactions (Zhou et al., 2024b).
The multi-source feature framework emphasizes the crucial
regulatory role of circular RNAs in drug sensitivity and efficacy
(Yin et al., 2024), while MNCLCDA reveals the association between
circular RNAs and drug resistance and tumor progression through
mixed neighborhood contrast learning (Li et al., 2023). Given the
natural advantages of graph neural networks in complex biological
networks, studies usually combine attention mechanisms to
strengthen key features (Ru et al., 2022): MNGACDA uses graph
autoencoders to construct multimodal networks (Yang and Chen,
2023), DeepWalk-GAT combines convolutional neural networks to
extract topological sequence information (Li et al., 2023), Graph
Attention Autoencoder (Deng et al., 2022), HETACDA (Xiao et al.,
2023), Double-Layer Multi-Core Attention Network (Lu et al.,
2023), and multimodal graph representation framework (Liu Z.
et al., 2025) all effectively predict circular RNA-drug sensitivity
through computational means, compensating for the lack of
experimental throughput (Ru et al., 2021a). However, these
methods have inherent limitations: GNN models are susceptible
to information redundancy and noise within networks, and their
decision-making process often lacks transparency. Similarity-based
methods, on the other hand, struggle to capture complex non-linear
biological relationships. To address these challenges, we propose a
double-mask contrastive learning framework. The core innovation
involves the simultaneous application of a path mask and an edge
mask. The path mask is designed to deconstruct high-order
semantic information in heterogeneous circRNA-drug
relationships, while the edge mask enhances the model’s
robustness to local critical interactions. This dual design
effectively suppresses information redundancy and noise in
biological networks through contrastive learning. Furthermore,
we introduce a dynamic temperature parameter strategy that
adaptively optimizes the learning process based on the training
state. Random walks and similarity measures are intertwined,
forming a network that, through topological propagation, triggers
potential correlations: an asymmetric dual-walk strategy re-
evaluates the connection between circular RNAs and diseases,
providing algorithmic support for rapid target identification
(Toprak, 2024). The multi-head attention mechanism is used to
convert the potential vocabulary between non-coding RNAs and
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proteins into interaction codes (Zhou et al., 2023). Graph
collaborative filtering and multi-view contrastive learning are
combined, enabling miRNAs to confront their own sensitivity to
drugs in the generated embedding space (Wei et al., 2023b). Pairwise
learning guides dual graph convolution to shape a clearer interface
representation of ncRNA-protein pairs (Zhuo et al., 2022), while the
head-tail sampling protocol extracts key nodes from the sparse
interaction wasteland, providing replenishment for downstream
GNNs(Wei et al., 2023a). Benchmarking and framework parallel
development: an evaluation standard for circular RNA-disease
prediction was established and quietly expanded to the field of
drug sensitivity (Lan et al., 2023); through the method of extracting
graph skeletons and fusing attention, researchers gradually revealed
the progressive process of non-coding RNA-mediated drug
resistance (Zhang et al., 2023); a comprehensive study revealed
how deep learners locate binding sites of RNA-binding proteins on
circular RNAs and how this binding implicitly regulates drug
responses (Wang Z. et al., 2025). Multidimensional data
convergence, complex algorithms take off, the statistical-graph
hybrid now charts a high-throughput, low-cost route for drug
sensitivity based on circular RNAs, accelerating the
transformation of potential biomarkers and therapeutic targets
from the realm of stars to clinical reality (Ru et al., 2021b).

Network models have emerged as a pivotal tool in
bioinformatics and systems biology for modeling complex
biological processes and diseases. For instance, Peng et al.
developed an explainable multi-scale framework for circRNA-
miRNA interaction prediction, highlighting the utility of multi-
scale feature engineering in circRNA research (Peng et al., 2025b). In
another study, Peng et al. introduced metaCDA, a meta-learning
framework for circRNA-driven drug discovery, showcasing the
potential of adaptive aggregation and meta-knowledge in
circRNA studies (Peng et al., 2025a). By modeling biological
entities and their interactions as graphs, network science has
been widely applied in protein-protein interaction networks, gene
regulatory networks, and brain connectomes. For instance, Milan
and Canataro applied network inference to the research of cancer
and neurodegenerative diseases (Milano and Cannataro, 2023);
through the heterogeneous GCN combined with pseudo-path
bidirectional attention (Niu et al., 2025), NSL2CD’s adaptive
subspace embedding (Xiao et al., 2021b), AAECDA’s MSCNN-
adversarial autoencoder pipeline (Wang Y. et al., 2025), and
Xiao’s propagation, path, matrix and depth-based classification
framework (Xiao et al., 2021a), as well as the cross-modal ternary
attention in ET-PROTACs (Cai et al., 2025), Kolmogorov-Arnold
drug KANs (Fu et al., 2025a), and masked path GAM-MDR (Zhou
et al., 2024a), they jointly advanced the frontier of topological
research. These studies have jointly promoted the development of
circRNA-drug sensitivity association prediction based on network
topological structures, providing new perspectives and methods for
biomarker identification and drug development in complex diseases.

Machine learning is playing an increasingly important role in
drug discovery and prediction, especially in drug sensitivity
prediction. In the field of predicting drug sensitivity for cancer
cell lines, even when the training samples are limited, traditional
molecular fingerprints have been surpassed or even equalled by end-
to-end TextCNN (Baptista et al., 2022). Breakthroughs have also
been frequently observed in the circRNA domain, such as

LSNSCDA, which overcomes the limitations of fixed step size
and negative sample noise through a local smoothing graph
neural network and reliable negative sampling (Fan et al., 2024);
MAGSDMF framework, which precisely captures the potential
circRNA-drug sensitivity associations through multiple attention,
graph learning, and deep matrix decomposition (Ai et al., 2024);
DCDA uses a feedforward-self-encoding hybrid to integrate multi-
source data to shape circRNA-disease features and performs
exceptionally well (Turgut et al., 2023); SNFTPGd-CDA achieves
high AUC in nonlinear fusion of multi-source information through
similar network fusion-tensor product graph diffusion parallel
cascaded forest (Liu et al., 2024); JLCRB multi-view collaborative
representation network enhances cross-view consistency to locate
circRNA binding sites, and the average AUC has reached a new high
(Du and Xue, 2022). Looking at the entire process of drug
development, ModDRDSP uses deep bidirectional GRU and
message passing networks to jointly depict multimodal drug
information, and then integrates cell line multi-omics data, and
is completed by a deep forest for sensitivity prediction, with the
model’s performance comprehensively leading existing methods
(Song et al., 2024).

In the research on the association between circRNAs and drug
sensitivity prediction, statistical models based on correlations, models
based on graph neural networks (GNN) and attentionmechanisms, as
well as models based on random walks and similarity measures each
have their own advantages and limitations. The statistical model based
on 155-dimensional correlation coefficients integrates multi-source
biological data and employs machine learning algorithms to construct
a prediction framework. It can simultaneously capture correlation
signals in multiple dimensions such as expression profiles, drug
structures, and clinical phenotypes, thereby enhancing prediction
coverage and accuracy (Chen et al., 2022). Due to its high
dependence on data quality and completeness, this method is
prone to overfitting when the training samples are insufficient or
the feature dimensions are excessive, resulting in a decline in
generalization performance. In contrast, the combination of graph
neural networks and attention mechanisms utilizes topological
structure information for embedding learning of circRNAs and
drugs, highlighting key node features through dynamic weights,
demonstrating strong association mining capabilities in large-scale
network scenarios (Li X. et al., 2025). However, this strategy has high
computational costs, high memory usage, and a large number of
hyperparameters, resulting in significant tuning costs. With the
random walk and similarity measurement methods constructing a
similarity network of biological entities and performing information
propagation on it, potential associations can be rapidly scanned with
linear complexity, suitable for initial screening tasks of large datasets
(Li M. et al., 2025). Its performance is highly dependent on the
accuracy of similarity measurement, and because the model is
essentially a linear method, it is difficult to depict the nonlinear
interactions within the biological system, resulting in insufficient
performance in complex association prediction scenarios.
Moreover, during the process of dimensionality reduction or
network embedding, important biological details may be lost,
affecting the precision of the prediction.

In summary, these three types of methods have distinct
characteristics and complement each other in the prediction of
the association between circRNA and drug sensitivity. Future
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research can integrate the advantages of these methods, such as
combining the interpretability enhancement technology of GNN
and the integration of multi-source features, to improve the
prediction accuracy and biological relevance (Ma et al., 2024). At
the same time, introducing data augmentation techniques,
interpretability tools, and establishing standardized benchmark
test datasets and evaluation indicators will help further optimize
themodel performance and promote the progress of this field (Liu T.
et al., 2025). Moreover, exploring the application of these methods in
other biomedical fields, such as gene regulatory networks and
protein interaction networks, will further verify their universality
and effectiveness.

2 Methods

We put forward a novel framework entitled DMAGCL. This
framework is specifically designed to concurrently tackle three
crucial challenges during the process of graph representation
learning: information redundancy, negative sample noise, and
class imbalance issues. Through an innovative architectural
design, our method integrates graph encoding, masked
reconstruction, dynamic negative sampling, ensemble learning,
and ranking optimization into a unified end-to-end learning
objective. This integration allows for the coordinated evolution of
pseudo-label generation, sampling distribution adjustment, model
ensemble, and evaluation metric optimization throughout the
training process. The overall process is shown in Figure 1.

2.1 Multi-source feature extraction

To comprehensively characterize the characteristics of nodes in
the network, we systematically extracted multi-source features from
two dimensions: circRNAs and drugs.We then constructed a unified
feature representation through an effective fusion strategy,
providing high-quality feature inputs for subsequent graph
representation learning. For circRNA nodes, we integrated two
complementary feature sources. Based on the nucleic acid
sequence information of circular RNA host genes, we used the
edit distance algorithm to calculate the similarity between sequences,
and constructed a circRNA sequence similarity matrix
Rseq ∈ RM×M. The elements of this matrix are defined as:

Rseq i, j( ) � 1 − Dedit Seqi, Seqj( )
max |Seqi|, |Seqj|( ), (1)

Here, Dedit represents the minimum number of editing
operations required to transform one sequence into another, and
Seqi denotes the host gene sequence of the i-th circRNA.
Additionally, based on the known circRNA-drug sensitivity
correlation matrix A ∈ RM×N, we constructed the Gaussian
interaction spectral kernel similarity matrix Rgip ∈ RM×M.

Rgip i, j( ) � exp −ηc A i,:( ) − A j,:( )���� ����2( ), (2)

The nuclear bandwidth parameter ηc is determined by the
following formula.

ηc �
1
M

∑M
k�1

A k,:( )‖ ‖2⎛⎝ ⎞⎠−1

. (3)

Ultimately, we obtained the comprehensive feature matrix
Xc ∈ RM×M of the circular RNA through conditional weighted
fusion: when sequence similarity is available, the average value of
the two similarities is taken; otherwise, only the Gaussian interaction
spectral similarity is retained. In terms of the construction of drug
characteristics, we adopted a similar dual-source feature fusion
strategy. Based on the chemical structure information of the
drugs, we used topological fingerprints and Tanimoto coefficients
to calculate the structural similarity between drugs, forming a drug
structure similarity matrix Dstru ∈ RN×N.

Dstru i, j( ) � F di( ) ∩ F dj( )∣∣∣∣∣ ∣∣∣∣∣
F di( ) ∪ F dj( )∣∣∣∣∣ ∣∣∣∣∣, (4)

Here,F(di) represents the topological fingerprint feature vector
of drug di. Meanwhile, based on the same circRNA-drug sensitivity
association matrix A, we constructed the Gaussian interaction
spectral kernel similarity matrix Dgip ∈ RN×N,

Dgip i, j( ) � exp −ηd A :, i( ) − A :, j( )���� ����2( ) (5)

The parameter ηd is determined by the following formula:

ηd �
1
N

∑N
k�1

A :, k( )‖ ‖2 (6)

The similarity features of the two drugs are fused through the
same weighted strategy under the same conditions, resulting in a
comprehensive feature matrix Xd ∈ RN×N for the drugs. Based on
the above feature matrix and the known correlation between
circRNAs and drug sensitivity, we constructed a heterogeneous
network H � (V, E), where the node set V � C ∪ D includes all
circRNA and drug nodes, and the edge set E integrates three types of
connection relationships: circRNA - circRNA similarity edges, drug
- drug similarity edges, and circRNA - drug association edges.

2.2 Dual masked graph views

While graph structure is vital for representation learning,
standard GNNs can be limited in capturing complex topological
dependencies. To address this, we propose a self-supervised
contrastive learning framework with a dual-masking strategy to
enhance the robustness and quality of graph representations. This
method constructs two masking views with different structural
perturbation intensities, capturing local structural patterns at the
path level and edge level respectively, and leveraging the contrastive
learning mechanism to improve the model’s perception of graph
structure information.

Specifically, we designed two complementary masking modules:
the Path Masking Module (MaskPath) and the Edge Masking
Module (MaskEdge). The Path Masking Module randomly
samples the node paths in the graph and performs overall
masking on the nodes and their associated edges within the path,
thereby generating the first perturbed view G1. This operation can
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simulate the absence of local connectivity patterns in the graph,
forcing the model to still infer the dependencies between nodes even
when the paths are incomplete. The Edge Masking Module is more

granular, randomly selecting some edges in the graph for masking,
generating the second perturbed view G2. This operation aims to
weaken the local direct connections, enabling the model to pay more

FIGURE 1
The computational flowchart of DMAGCL. (A) CircRNA and drug feature extraction (B) Dual view masking graph learning, (C) Adaptive contrastive
learning (D) circRNA-drug graph resonstration.
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attention to other structural cues within the neighborhood. We
introduce two complementary masking modules: MaskPath and
MaskEdge. MaskPath samples andmasks entire node paths, creating
view G1and compelling the model to recover missing connectivity
patterns. MaskEdge operates at a finer granularity by randomly
dropping individual edges to form view G2, forcing the model to rely
on broader neighborhood cues. This dual approach ensures that the
model learns robust representations against both macro-level path
disruptions and micro-level edge noise. The two masking operations
can be formally represented as:

G1 � MaskPath G, α( ) (7)
G2 � MaskEdge G, β( ) (8)

Among them, α and β are the intensity control parameters for
the path mask and edge mask, respectively. They are used to adjust
the range and degree of the masks, thereby controlling the
disturbance intensity and diversity of the view.

We employ a shared-weight graph encoder E to map both
masked views to a unified representation space. The encoder
processes each view independently, generating corresponding
graph-level representations Z1) and Z2:

Z1 � E G1( ) (9)
Z2 � E G2( ) (10)

The encoder E can be implemented by combining a graph
convolutional network (GCN) and a graph attention network
(GAT). After obtaining the view representations, we use the
adaptive contrastive loss as the contrastive target. By maximizing the
mutual information between the representations of the same graph
under different masking strategies, the model is guided to learn
representations that are robust to structural perturbations. During
the model training process, the input graph G is first subjected to
path masking and edge masking to generate two complementary
perturbed views G1 and G2. Subsequently, the shared graph encoder
extracts the graph-level representations Z1 and Z2 of the two. Next, the
similarity of the representations is calculated, and a contrastive learning
task is constructed based on the loss. Finally, the encoder parameters are
optimized through the backpropagation mechanism to minimize the
contrastive loss. This training strategy enables the model to extract
common structural information from different masking perspectives,
thereby effectively enhancing the modeling ability of local
neighborhood dependencies and improving the quality and
generalization of graph structure representations.

2.3 Multi-view graph encoder

In the field of graph neural networks, the effective modeling and
feature extraction of multi-view graph data has always been a key
and challenging research direction. Since multi-view graph data
typically contains heterogeneous structural information from
different sources or different feature spaces, how to fully
integrate the effective features from each view and retain their
inherent topological relationships is an important issue for
improving the representational learning ability of graphs. To
effectively integrate heterogeneous information from our
constructed multi-view graph (e.g., sequence similarity, GIP

similarity), we propose a Multi-View Graph Encoder. This
encoder combines GCN for intra-view feature extraction and
GAT for inter-view fusion, ensuring a balanced and
comprehensive representation. The core design of this method
consists of two main stages: local structure modeling within
views and global feature fusion between views. Firstly, for the
structural characteristics within each view, GCN is used to
aggregate the neighborhood of nodes to capture the specific local
topological patterns of the view. Specifically, for the v-th view, the
node feature matrix is X(v) and the adjacency matrix is A(v). To
enhance training stability and retain the node’s own features,
self-loops are introduced to construct an augmented adjacency
matrix ~A

(v) � A(v) + I, and the corresponding degree matrix ~D is
calculated. The node feature update formula in the GCN layer is:

H v( ) � σ ~D
−1/2 ~A

v( ) ~D
−1/2

X v( )W v( )( ), (11)

Here,W(v) represents the trainable weight matrix specific to the
view, and σ is the nonlinear activation function. Through this step,
the smooth propagation of node features within each view and the
structured-aware representation learning can be achieved.

After obtaining the node representations of each view, in order
to further integrate the information from multiple views, this paper
introduces the GAT mechanism to adaptively learn the contribution
weights of different views to the current view. Specifically, for the
target view v, its output representation after integrating the features
of other views is:

H v( )
attn � σ ∑V

u�1
αvuH

u( )⎛⎝ ⎞⎠ (12)

Here, αvu represents the attention weight from view u to view v,
reflecting the significance of view u in supplementing the features of
view v. The calculation of this weight employs the following
attention mechanism:

αvu � exp LeakyReLU aT H v( )‖H u( )[ ]( )( )∑V
u�1 exp LeakyReLU aT H v( )‖H u( )[ ]( )( ) (13)

Here, a represents a learnable attention parameter vector, and
the symbol ‖ denotes the feature concatenation operation. Through
this mechanism, the model can automatically identify the
complementarity among different views and endow the
information fusion process with greater interpretability.

Finally, the feature representations of each view, weighted by
attention, are integrated and input into a fully connected layer or a
specific downstream task module to generate the final graph
representation or node representation. The integrated output can
be expressed as:

Z � σ W H 1( )
attn,H

2( )
attn, . . . ,H

V( )
attn[ ]( ) (14)

Here,W represents the globally trainable weight matrix, and σ is
the activation function of the output layer. This integration strategy
can integrate the advantages of each view, enhancing the model’s
ability to model complex graph structures and multi-source
information.

In conclusion, the multi-view graph encoder proposed in this
paper combines the advantages of GCN in modeling the internal
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structure of views with the flexibility of GAT in integrating views,
which not only effectively extracts the local features of each view, but
also captures the global correlations between views. Thus, it achieves
more comprehensive and robust feature learning in multi-view
graph data processing.

2.4 Adaptive contrastive loss

As a robust and effective alternative, we introduce a Scheduled
Contrastive Loss featuring a dynamic temperature parameter (t) that
follows a predefined linear decay schedule. Specifically, this
mechanism sets a higher temperature value in the early training
stage to encourage the model to conduct more extensive exploration
and avoid prematurely settling into suboptimal solutions; while
gradually reducing the temperature value in the later training
stage to enhance the model’s ability to distinguish between
positive and negative samples, thereby improving its
generalization performance.

The mathematical definition of the adaptive contrastive loss
function is as follows. Let the input feature vectors be zi and zj,
where i and j represent the positive sample pairs, and the other
samples k (where k ≠ i, j) are regarded as negative samples. The loss
function can be expressed as:

Ladaptive � −log exp zi ·zj
τ t( )( )

∑K
k�1 exp

zi ·zk
τ t( )( ) (15)

Here, zi · zj represents the dot product similarity between the
feature vectors,K is the total number of negative samples, and τ(t) is
a dynamic temperature parameter that adjusts according to the
change in the training iteration number t. The definition of the
dynamic temperature parameter τ(t) is:

τ t( ) � τmax − t

T
τmax − τmin( ) (16)

Here, τmax (initial temperature) encourages broad exploration
early in training by smoothing the loss landscape. τmin(final
temperature) sharpens the focus on hard negatives later for
better discrimination. T is the total number of iterations,
governing the cooling schedule. This linearly decreasing
temperature strategy simulates an ‘annealing’ process. It provides
a structured learning curriculum for the model: starting with robust,
noise-tolerant learning and progressively transitioning to high-
precision discrimination. In the initial stage of training, a higher
temperature enables the smooth handling of the similarity difference
between positive and negative samples, thereby reducing themodel’s
sensitivity to noise and encouraging more diverse feature learning;
as training progresses, the temperature gradually decreases, and the
model gradually focuses on precisely distinguishing positive and
negative samples, which helps to improve the discriminative power
of features.

During the training process, we first initialize the key
parameters, including τmax, τmin and the total number of
iterations T. These parameters can be adjusted according to the
data distribution of the specific task and the complexity of the
model, for example, through cross-validation to optimize the
selection. In each training iteration t, the temperature parameter

τ(t) is updated in real time using the formula
τ(t) � τmax − t

T (τmax − τmin). Then, for each positive sample pair
(zi, zj), the similarity matrix between it and all other samples
(including positive and negative samples) is calculated, and the
contrastive loss Ladaptive is computed using the current dynamic
temperature τ(t). The model parameters are updated using the
backpropagation algorithm to minimize the loss function, while
monitoring the training loss and validation set performance to avoid
overfitting. This dynamic temperature adjustment mechanism not
only effectively alleviates the problems of premature convergence
and overfitting caused by fixed temperature parameters, but also
adaptively balances the exploration and exploitation phases of the
model, thereby improving the training efficiency while enhancing
the generalization ability of the model on unseen data. Moreover, the
flexibility of this method makes it easy to integrate into various
contrastive learning frameworks, providing a scalable foundation for
subsequent research.

2.5 Attention fusion classifier

Simple feature fusion (e.g., concatenation) fails to capture
complex cross-modal interactions between circRNA sequences
and drug molecular graphs. We therefore propose an Attention-
based Fusion Classifier (AFC) to dynamically model these
correlations and adaptively fuse multi-source information.
Compared with traditional feature concatenation methods, AFC
incorporates a multi-head attention structure, which can extract and
fuse the interaction information between the circRNA sequence
mode and the drug molecule graph mode from multiple subspaces,
effectively enhancing the discriminative ability of the feature
representation. Additionally, to further improve the robustness
and generalization ability of the model, the classification layer
adopts a hierarchical multi-layer perceptron (MLP) structure and
combines batch normalization (BatchNorm) for regularization
processing. Experiments have shown that AFC exhibits superior
performance in multiple multimodal classification tasks.

Specifically, the core component of AFC is the multi-head
attention mechanism. This mechanism can dynamically adjust
the fusion weights based on the correlation between the input
features of the circRNA sequence mode and the drug molecule
graph mode, thereby focusing on the cross-modal information that
is more helpful for the current task. Assuming the input is the feature
embeddings of the circRNA sequence mode and the drug molecule
graph mode, which are Fcirc ∈ Rn×dcirc and Fdrug ∈ Rn×ddrug , where n is
the number of samples and dcirc and ddrug are the feature dimensions
of the corresponding modes. First, the features of the circRNA
sequence mode and the drug molecule graph mode are linearly
transformed to a unified latent space dimension d:

U � FcircPU ∈ Rn×d, S � FdrugPS ∈ Rn×d, T � FdrugPT ∈ Rn×d

(17)
Among them, PU ∈ Rdcirc×d, PS ∈ Rddrug×d, and PT ∈ Rddrug×d are

learnable parameter matrices. Next, the query matrix U, key matrix
S, and value matrix T are uniformly divided into h heads according
to the feature dimension, with each head having a dimension of
dh � d

h. For each attention head i, the attention weight matrixGi and
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the corresponding fused feature Oi of this head are calculated
separately:

Gi � softmax
Ui Si( )T��

dh

√⎛⎝ ⎞⎠ ∈ Rn×n, Oi � GiTi ∈ Rn×dh (18)

The attention weight Gi reflects the strength of the correlation
between the circRNA sequence mode and the drug molecule graph
mode across different samples, whileOi is the weighted combination
of the drug molecule graph mode features guided by correlation.
Subsequently, the outputs of all attention heads are concatenated
along the feature dimension, and integrated through a linear
mapping matrix PO ∈ Rd×d to obtain the final fused representation:

C � Concat O0,O1, . . . ,Oh−1( )PO ∈ Rn×d (19)

Through the multi-head attention mechanism, AFC can jointly
capture the complex dependencies between the circRNA sequence
mode and the drug molecule graph mode from multiple
representation subspaces, thereby more comprehensively
integrating cross-modal information. In the classification module,
AFC employs a hierarchical MLP structure to conduct deep
semantic encoding of the fused features, and combines
BatchNorm technology to enhance the training stability and
generalization ability of the model. Specifically, the fused features
C are first input into a two-layer MLP:

L1 � ReLU CA1 + c1( ) ∈ Rn×d′, L2 � ReLU L1A2 + c2( ) ∈ Rn×d″

(20)
Among them, A1 ∈ Rd×d′ and A2 ∈ Rd′×d″ are weight matrices,

and c1 ∈ Rd′ and c2 ∈ Rd″ are bias terms. To alleviate the problem of
gradient vanishing or internal covariate shift in deep networks, we
apply batch normalization after the activation output of each layer of
the MLP:

L1′ � BatchNorm L1( ), L2′ � BatchNorm L2( ) (21)
Ultimately, the normalized high-level features L2′ pass through a

fully connected layer followed by a softmax activation function,
resulting in the probability distributions corresponding to each class:

Y � softmax L2′A3 + c3( ) ∈ Rn×C (22)

Among them, A3 ∈ Rd″×C and c3 ∈ RC are the parameters of the
classification layer, and C represents the number of categories. AFC
combines the multi-head attention mechanism with the hierarchical
regularization MLP structure, which not only enables dynamic and

adaptive fusion of circRNA sequence modalities and drug molecule
graph modalities, but also maintains good expression ability and
generalization performance in complex tasks.

3 Experiment

3.1 Experimental setup and
parameter settings

To ensure the reproducibility of our experimental results, we
provide a comprehensive description of our implementation details
and hyperparameter settings. All experiments were conducted under
the same computational environment, and the following key
parameters were utilized throughout the study: Network
Architecture: The number of layers for both the GCN and GAT
in our multi-view graph encoder was set to 3. The hidden dimension
of this encoder was configured to 32. Training Strategy: The model
was trained for 300 epochs. The Adam optimizer was employed with
a learning rate of 0.001. Regularization: A Dropout rate of 0.3 was
applied to mitigate overfitting. Reproducibility: A fixed random seed
of 42 was used to guarantee the stability of all experimental
outcomes and to facilitate replication. The rationale behind the
selection of these hyperparameters, including the learning rate and
model depth, is further supported by the sensitivity and ablation
studies presented in subsequent sections.

3.2 Performance comparison

The five-fold cross-validation results, detailed in Table 1,
demonstrate the remarkable stability of our model across
different data partitions. The AUC values across all five folds
exhibited minimal fluctuation, ranging narrowly from 0.8918 to
0.8962, yielding a high average AUC of 0.8940. This consistency,
mirrored in other metrics such as AUPR, F1-score, Accuracy, and
Recall, indicates that the model’s performance is not dependent on a
particular split of the data and reliably reproduces the performance
of the complete model. This low variance is a strong indicator of the
model’s robustness. Other indicators, including AUPR, F1-score,
Accuracy, and Recall, also showed similar consistency. This
indicates that the model has good adaptability to different
training-test data partitions. To further stress-test the model’s
robustness, we conducted a more stringent ten-fold cross-
validation. The results, presented in Table 2, reveal an even

TABLE 1 The results of 5-fold cross-validation.

Metrics/Fold AUC AUPR F1-score Accuracy Recall

1 0.8962 0.9028 0.8371 0.8332 0.8556

2 0.8923 0.8991 0.8330 0.8287 0.8502

3 0.8951 0.9015 0.8358 0.8319 0.8537

4 0.8918 0.8983 0.8319 0.8276 0.8489

5 0.8946 0.9013 0.8357 0.8311 0.8527

Average 0.8940 0.9006 0.8347 0.8305 0.8523
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higher level of consistency across ten different data splits. The
average AUC improved slightly to 0.8982, with values ranging
from 0.8962 to 0.9001. This minor performance improvement
under a more granular data division suggests that the model can
effectively leverage larger training subsets. The consistently high
performance and low standard deviations across all key metrics
(AUPR, F1-score, etc.) in this setting provide compelling statistical
evidence for the model’s generalizability and stability. The AUC
values ranged from 0.8962 to 0.9001, with an average of 0.8982, and
this result was even slightly higher than that of the five-fold cross-

validation. Other key indicators such as AUPR (average 0.8973), F1-
score (average 0.8354), Accuracy (average 0.8329), and Recall
(average 0.8517) also remained at a high level, and the
standard deviations between each fold were all within a relatively
small range.

Figure 2 can more intuitively show the comparison of the
results of DMAGCL with the baseline model 5-fold and 10-fold
cross-validation. The results of cross-validation fully
demonstrate from a statistical perspective that the model has
excellent generalization ability and stability. Under different data
divisions, the model can maintain excellent performance,
indicating that our method not only has a good fitting ability
for the training data, but also has reliable predictive performance
for unknown data.

We evaluated our dual-mask graph contrastive learning
framework against several representative methods for circRNA-
drug sensitivity association prediction. The baselines included
traditional machine learning models (SVM, RF, KNN, AdaBoost)
and recent graph neural networks (VGAE, VGAMF, GCNMDA,
GATECDA, MNGACDA). All experiments were conducted under
the same experimental environment and dataset, using five-fold and
ten-fold cross-validation to ensure the statistical reliability of
the results.

A comprehensive performance comparison against various
baseline methods under five-fold cross-validation is summarized
in Table 3. Our proposed method consistently outperforms all
competitors, achieving the top scores across all five evaluation
metrics. Notably, it attains an AUC of 0.8940 and an AUPR of
0.9006, representing a clear margin over the strongest baselines.
The results reveal a key trend: graph neural network-based methods

FIGURE 2
Performance comparison with the baseline under the 5-fold and 10-fold cross-validation.

TABLE 2 The results of 10-fold cross-validation.

Fold AUC AUPR F1-score Accuracy Recall

1 0.9001 0.8994 0.8385 0.8359 0.8551

2 0.8968 0.8953 0.8332 0.8302 0.8493

3 0.8974 0.8961 0.8341 0.8313 0.8504

4 0.8992 0.8986 0.8376 0.8352 0.8542

5 0.8962 0.8949 0.8324 0.8294 0.8486

6 0.8986 0.8979 0.8363 0.8339 0.8527

7 0.8978 0.8966 0.8350 0.8321 0.8515

8 0.8990 0.8982 0.8369 0.8346 0.8534

9 0.8965 0.8943 0.8321 0.8290 0.8481

10 0.8984 0.8970 0.8363 0.8333 0.8524

Average 0.8982 0.8973 0.8354 0.8329 0.8517
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(e.g., GATECDA, MNGACDA) generally surpass traditional
machine learning models (e.g., RF, SVM), underscoring the
critical importance of explicitly modeling the graph structure for
this prediction task. However, even among these advanced graph
methods, our dual-mask framework establishes a new state-of-the-
art. Including AUC, AUPR, F1-score, accuracy, and recall rate. The
AUC reached 0.8940, and AUPR reached 0.9006, significantly
outperforming other comparison methods. Traditional methods
like RF and AdaBoost showed competitive results but were
limited in capturing complex graph topology. Graph-based
methods generally outperformed them, underscoring the
importance of graph structure modeling. Notably, even attention-
based methods like GATECDA and MNGACDA were
outperformed by our framework, suggesting that our dual-mask
strategy and contrastive learning paradigm better capture the
intricate circRNA-drug associations than attention
mechanisms alone.

The superiority of our method is further confirmed under the
more granular ten-fold cross-validation, as detailed in Table 4. Here,
our model maintains its leading advantage with an average AUC of
0.8982 and AUPR of 0.8973. It is worth noting that while some
baselines like GATECDA also showed improved performance with
more folds, the performance gap between our method and these
strong competitors persists. This consistent outperformance across
both five-fold and ten-fold validations strongly suggests that the
gains from our dual-mask contrastive learning framework are robust
and not merely an artifact of a specific evaluation setup. Other
indicators also show a similar trend. Compared with the five-fold
cross-validation, the performance fluctuations of each method
under the ten-fold validation are smaller, indicating that the
method proposed in this paper has better adaptability to different
data divisions. It is worth noting that in the ten-fold validation, the
performance of the GATECDA method has improved compared to
the five-fold validation, but its AUC (0.8876) and AUPR (0.8893) are
still lower than that of the method proposed in this paper, thereby
further demonstrating the superiority of the dual-mask contrastive
learning framework we proposed in capturing complex biological
association patterns.

3.3 Ablation experiment

To dissect the contribution of each core component in our
framework, we conducted a systematic ablation study, with results
detailed in Table 5; Figure 3. We evaluated five ablated variants:
removing the path mask (w/o MP), removing the edge mask (w/o
ME), replacing the attention fusion classifier with an MLP (w/o FC),
and removing either the GAT (w/o GAT) or GCN (w/o GCN)
component from the encoder. The complete model achieves the best
performance (AUC: 0.8940), confirming the synergistic design. The
removal of either masking strategy (w/o MP or w/o ME) caused a
substantial and nearly equivalent performance drop (AUC0̃.884).
This indicates that both path-level and edge-level masking are
indispensable and complementary, each forcing the model to
learn robust representations from different structural perspectives.

The complete model achieved the best performance (AUC:
0.8940), demonstrating the synergy among its components.
Removing either the path mask (w/o MP) or edge mask (w/o
ME) caused a noticeable performance drop (AUC: 0.884). This
indicates that both masking strategies contribute uniquely to
learning robust representations: path masking helps capture
higher-order dependencies, while edge masking forces the model
to rely on broader neighborhood structures. When the path masking
module was removed, it was observed that all indicators showed
significant declines, especially the AUC value dropping to
0.8839 and the recall rate dropping to 0.8453. This phenomenon
indicates that the path-level structural information plays an
important role in capturing the complex association patterns
between circRNAs and drugs. The path masking effectively
enhances the model’s reasoning ability for graph structure
dependencies by simulating the absence of local connectivity
patterns. Similarly, the removal of the edge masking module also
led to a significant performance reduction, with AUC dropping to
0.8846 and recall rate dropping to 0.8412. Edge masking weakens the
direct connections between nodes at a finer granularity, prompting
the model to pay more attention to other structural cues within the
neighborhood. This strategy is crucial for learning robust graph
representations. Notably, the performance decline of the path

TABLE 3 Performance comparisonwith the baseline under the 5-fold cross-
validation.

Methods AUC AUPR F1-
score

Accuracy Recall

SVM 0.8648 0.8547 0.8049 0.7928 0.8550

RF 0.8881 0.8885 0.8204 0.8165 0.8383

KNN 0.8642 0.8760 0.7926 0.7901 0.8020

AdaBoost 0.8852 0.8888 0.8207 0.8155 0.8443

VGAE 0.8628 0.8730 0.7988 0.7892 0.8227

VGAMF 0.8740 0.8662 0.8176 0.8104 0.8437

GCNMDA 0.8778 0.8762 0.8198 0.8119 0.8428

GATECDA 0.8846 0.8929 0.8194 0.8168 0.8316

MNGACDA 0.8826 0.8940 0.8178 0.8178 0.8326

Ours 0.8940 0.9006 0.8347 0.8305 0.8523

TABLE 4 Performance comparison with the baseline under the 10-fold
cross-validation.

Methods AUC AUPR F1-
score

Accuracy Recall

SVM 0.8623 0.8533 0.8052 0.7977 0.8361

RF 0.8903 0.8906 0.8213 0.8176 0.8385

KNN 0.8700 0.8834 0.7970 0.7961 0.8005

AdaBoost 0.8836 0.8839 0.8240 0.8198 0.8439

VGAE 0.8634 0.8725 0.7987 0.7865 0.8314

VGAMF 0.8729 0.8682 0.8113 0.8030 0.8471

GCNMDA 0.8834 0.8864 0.8225 0.8183 0.8420

GATECDA 0.8876 0.8893 0.8237 0.8204 0.8442

MNGACDA 0.8901 0.8904 0.8210 0.8174 0.8383

Ours 0.8982 0.8973 0.8354 0.8329 0.8517
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masking and edge masking modules was similar but with different
focuses, indicating that the two masking strategies capture graph
structure information at different levels, and their combined use can
produce a complementary effect, jointly enhancing the model’s
representation learning ability.

In terms of the feature fusion mechanism, when we replaced the
attention-based feature fusion classifier with a simple multi-layer
perceptron, the performance showed a slight but consistent decline,
with AUC dropping to 0.8902. This result indicates that the
attention mechanism can effectively allocate the importance
weights of different features when integrating multi-view features,
thereby improving the effect of feature fusion. However, the
relatively small decline in performance also suggests that the
MLP can still capture the interaction relationships between
features to a certain extent, but lacks the ability to focus on
important features prominently. The ablation experiments on the
graph neural network components further revealed the
complementary characteristics of GCN and GAT. When only
using GCN and removing GAT, AUC dropped to 0.8855; while

only using GAT and removing GCN, AUC dropped to 0.8859. GCN
captures the local topological patterns of the graph through the
aggregation of neighbor node features, while GAT dynamically
emphasizes important structural features through attention
weights. The combination of the two enables the model to fully
utilize the regular structure of the graph and adaptively focus on key
information.

3.4 Case experiment

In this study, representative anticancer drugs (Doxorubicin,
Gefitinib, Sorafenib, and Paclitaxel) from the CTRP (Cancer
Therapeutics Response Portal) database were selected as an
independent validation set to test the model’s generalization
capability and biological interpretability in real biological
scenarios. Numerous existing works have utilized public drug
response databases (such as CTRP, GDSC, CCLE) to validate the
extrapolation performance of drug–gene or drug–RNA prediction

TABLE 5 Comparison of ablation experiment results.

Methods/Metrics AUC AUPR F1-score Accuracy Recall

ALL 0.8940 0.9006 0.8347 0.8305 0.8523

W/o MP 0.8839 0.8949 0.8326 0.8267 0.8453

W/o ME 0.8846 0.8908 0.8306 0.8249 0.8412

W/o FC 0.8902 0.8982 0.8338 0.8285 0.8467

W/o GAT 0.8855 0.8920 0.8322 0.8253 0.8431

W/o GCN 0.8859 0.8889 0.8302 0.8237 0.8407

Bold values indicate the best performance in each metric.

FIGURE 3
Ablation experiment results.
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models. Compared to these studies, the differences of this work lie
in: (1) We predict circRNA–drug sensitivity associations, which
represent a structured yet relatively sparse and noisy biological
network problem; (2) The model employs multi-view encoding
and various self-supervised enhancement strategies to improve
the representation learning capability for complex graph
structures, thereby aiming to maintain prediction accuracy even
for unseen drugs/samples. By testing the model’s top 20 candidate
circRNAs predicted on CTRP and comparing them with known
experimental or literature-validated results in the database, we can
directly compare our method with existing sequence/network-based
or single GNN-based methods: if the validation rate on the
independent database is significantly higher than random or
baseline models, it indicates that our method holds an advantage
in capturing biologically relevant signals, thereby establishing a
connection with and surpassing relevant prior works. These
drugs include doxorubicin, gefitinib, sorafenib, and paclitaxel,
which represent different mechanisms of action of chemotherapy
drugs and have good clinical representativeness and biological
diversity. The experiment sorted the circRNA-drug sensitivity

associations by prediction scores, selected the top 20 high-
confidence associations in the CTRP database for independent
external validation, and used the validation rate as the main
evaluation indicator.

In the validation results of doxorubicin (Table 6), 15 out of the
top 20 predicted circRNAs were validated, with a validation rate of
75%. It is noteworthy that the top 4 circRNAs, including
HNRNPA2B1, CALD1, VIM, and COL3A1, were all validated as
significantly associated, indicating that the model has a good ability
to identify highly confident associations. Doxorubicin, as an
anthracycline broad-spectrum anti-tumor drug, induces DNA
damage by integrating into the DNA double helix and activates
the apoptosis signaling pathway. These validated circRNAsmay play
an important regulatory role in its mechanism of action.

Gefitinib, as a selective EGFR tyrosine kinase inhibitor, is mainly
used for the treatment of EGFR-mutated non-small cell lung cancer.
According to the verification results (Table 7), 15 out of the top
20 predicted associations were verified, with a verification rate of
75%. It is worth noting that EFEMP2 ranked 10th was not verified,
while HNRNPA2B1 ranked 18th was verified. This phenomenon

TABLE 6 The top 20 circRNA-drug sensitivity association prediction results of doxorubicin.

Ranking circRNA Verification Ranking circRNA Verification

1 HNRNPA2B1 ✓ 11 COL4A2 ✓

2 CALD1 ✓ 12 FBLN1 ×

3 VIM ✓ 13 LTBP3 ✓

4 COL3A1 ✓ 14 KRT7 ✓

5 LINC01089 × 15 CTTN ✓

6 DCN × 16 COL6A2 ✓

7 HMGA2 ✓ 17 TGFBI ✓

8 ANXA2 ✓ 18 PKM ×

9 FN1 ✓ 19 MGAT4B ✓

10 EFEMP1 ✓ 20 COL8A1 ×

TABLE 7 The top 20 circRNA-drug sensitivity association prediction results of gefitinib.

Ranking circRNA Verification Ranking circRNA Verification

1 VIM ✓ 11 FBLN1 ✓

2 CALD1 ✓ 12 LINC01089 ×

3 COL6A2 ✓ 13 KRT7 ✓

4 HSP90B1 ✓ 14 CTTN ✓

5 FN1 ✓ 15 TGFBI ✓

6 COL4A1 ✓ 16 DCN ×

7 ANXA2 ✓ 17 COL8A1 ×

8 PKM ✓ 18 HNRNPA2B1 ✓

9 MGAT4B ✓ 19 LTBP3 ✓

10 EFEMP2 × 20 HMGA2 ×
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indicates that the model still has room for optimization in the
discrimination of certain moderate confidence associations, possibly
related to the expression heterogeneity of circRNA in specific
cell lines.

In the validation analysis of sorafenib (Table 8), the model
demonstrated superior predictive performance, with 16 out of
20 predicted associations confirmed, yielding a validation rate of
80%. As a multi-target tyrosine kinase inhibitor, sorafenib is
widely used in the treatment of hepatocellular carcinoma and
renal cell carcinoma. Notably, all of the top six ranked
circRNAs—including COL3A1, VIM, and ANXA2—were
experimentally validated, indicating high prediction accuracy
for top-ranking associations. These circRNAs may modulate
tumor cell sensitivity to sorafenib through the regulation of
multiple signaling pathways.

The most encouraging result comes from the validation analysis
of paclitaxel (Table 9). Among the first 20 predicted correlations,
18 were validated, with a validation rate of up to 90%. Paclitaxel, as a
microtubule stabilizer, inhibits microtubule depolymerization to
block the cell cycle and is widely used in the treatment of breast

cancer and ovarian cancer. This excellent predictive performance
indicates that the dual-mask graph contrastive learning framework
proposed in this paper has a special advantage for the prediction of
sensitivity correlations of microtubule-targeted drugs. From the
validation results, it can be seen that multiple cytoskeleton-
related circRNAs including ANXA2, CALD1, and VIM have
been validated, which is highly consistent with the mechanism of
paclitaxel. Through the comprehensive analysis of the validation
results of the four drugs (Table 10), the average validation rate of this
model reached 80%, demonstrating good generalization ability.
Further analysis revealed that some circRNAs were predicted to
have high-ranking correlations in multiple drugs and were validated,
such as VIM, CALD1, ANXA2, and FN1, etc. These circRNAs may
be involved in the universal drug resistance mechanism of tumor
cells, and their molecular functions are worthy of in-depth study
through subsequent experiments. Additionally, the model’s
predictions for some circRNAs (such as LINC01089, COL8A1)
showed deviations, which may be related to the incomplete
annotation or low expression level of these circRNAs in the
CTRP database.

TABLE 8 The top 20 circRNA-drug sensitivity association prediction results of sorafenib.

Ranking circRNA Verification Ranking circRNA Verification

1 COL3A1 ✓ 11 HSP90B1 ✓

2 VIM ✓ 12 FN1 ✓

3 ANXA2 ✓ 13 KRT7 ✓

4 CALD1 ✓ 14 LTBP3 ✓

5 COL6A2 ✓ 15 CTTN ✓

6 FBLN1 ✓ 16 DCBLD2 ✓

7 PKM ✓ 17 HMGA2 ×

8 LINC01089 × 18 MGAT4B ✓

9 HNRNPA2B1 ✓ 19 COL8A1 ×

10 EFEMP1 ✓ 20 COL4A2 ×

TABLE 9 The top 20 circRNA-drug sensitivity association prediction results of paclitaxel.

Ranking circRNA Verification Ranking circRNA Verification

1 ANXA2 ✓ 11 FBLN1 ✓

2 CALD1 ✓ 12 KRT7 ✓

3 VIM ✓ 13 COL6A2 ✓

4 FN1 ✓ 14 PKM ✓

5 HSP90B1 ✓ 15 LINC01089 ×

6 DCN × 16 CTTN ✓

7 HMGA2 ✓ 17 LTBP3 ✓

8 COL3A1 ✓ 18 MGAT4B ✓

9 EFEMP1 ✓ 19 TGFBI ✓

10 COL4A2 ✓ 20 HNRNPA2B1 ✓
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3.5 Parameter experiment

To determine the optimal parameter configuration of the model
and to deeply understand the influence mechanism of each
hyperparameter on the model’s performance, we conducted
further parameter experiments on three key parameters: the
number of GCN and GAT layers, the hidden layer dimension of
the multi-view graph encoder, and the Dropout rate. These
parameters respectively affect the model’s expression ability and
generalization performance from three different dimensions: model
depth, representation ability, and regularization strength. All
experiments were conducted under the setting of five-fold cross-
validation, with AUC and AUPR as the main evaluation indicators
to ensure the statistical reliability of the results. Table 11 shows the
impact of the number of GCN and GAT layers on the model’s
performance. As the number of network layers increased from
1 layer to 3 layers, the model’s AUC improved from 0.8911 to
0.8940, and AUPR improved from 0.8957 to 0.9006. This indicates
that appropriately increasing the network depth helps the model
capture more complex graph structure features. However, when the
number of layers continued to increase to 4 layers and 5 layers, the
performance slightly decreased, with AUC dropping to 0.8914 and
0.8897 respectively. This might be due to the overfitting or gradient
vanishing problem caused by an overly deep network. This
phenomenon is consistent with the theoretical analysis of graph
neural networks, that is, an excessively deep GNN layer may lead to
the oversmoothing of node features, thereby reducing the model’s
discriminative ability. Finally, 3 layers were selected as the optimal
configuration for GCN and GAT, achieving a good balance between
model expression ability and training stability.

To determine the optimal learning rate for model training, we
conducted a sensitivity analysis by evaluating a spectrum of values
ranging from 0.1 to 0.00001. The performance, measured by AUC

and AUPR, is summarized in Table 12. The results demonstrate that
the learning rate significantly impacts model efficacy. A relatively
high learning rate of 0.1 led to suboptimal performance (AUC =
0.8765, AUPR = 0.8691), suggesting potential instability during the
gradient descent process. As the learning rate decreased to 0.01, the
performance improved notably. The best performance was achieved
with a learning rate of 0.001, yielding the highest AUC (0.8940) and
AUPR (0.9006). Further decreasing the learning rate to 0.0001 and
0.00001 resulted in a slight but consistent performance degradation,
indicating that overly small learning rates might hinder the model’s
convergence to an optimal solution. Consequently, a learning rate of
0.001 was selected as the optimal configuration for all subsequent
experiments, striking a balance between training efficiency and
model performance.

In terms of the selection of the hidden layer dimensions in the
multi-view graph encoder, we compared different dimension
settings ranging from 16 to 256. The experimental results are
shown in Table 13. When the hidden layer dimension was set to
32, the model achieved the best performance, with an AUC of
0.8940 and an AUPR of 0.9006. Smaller dimension settings (such as
16) might limit the model’s representational ability, resulting in an
AUC of only 0.8882; while overly large dimensions (such as 64, 128,
256) might introduce too many parameters, increasing the risk of
overfitting and causing performance to decline to varying degrees.
This result indicates that an appropriate hidden layer dimension can
achieve the best balance between model capacity and generalization
ability, ensuring sufficient feature representation space while
avoiding optimization difficulties caused by parameter redundancy.

The Dropout rate, as a key parameter for controlling the
regularization intensity of the model, has an impact as shown in
Table 14. When the Dropout rate is set to 0.3, the model exhibits the
best performance, with an AUC of 0.8940 and an AUPR of 0.9006. A
lower Dropout rate (0.1) may lead to insufficient regularization,

TABLE 10 Summary of the validation rates of the top 20 predicted associations for the four drugs.

Drug Verified association count Total number of associations Verification rate

Doxorubicin 15 20 75%

Gefitinib 15 20 75%

Sorafenib 16 20 80%

Paclitaxel 18 20 90%

Average 16 20 80%

TABLE 12 Comparison of model performance metrics.

Learning rate AUC AUPR

0.1 0.8765 0.8691

0.01 0.8864 0.8882

0.001 0.8940 0.9006

0.0001 0.8875 0.8927

0.00001 0.8868 0.8915

TABLE 11 The impact of the number of GCN and GAT layers on
performance.

GCN and GAT layers AUC AUPR

1 0.8911 0.8957

2 0.8922 0.8963

3 0.8940 0.9006

4 0.8914 0.8953

5 0.8897 0.8944
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causing the model to overfit the training data; while a higher
Dropout rate (0.5 and 0.7) may overly suppress the neuron
activation, resulting in underfitting of the model, especially when
the Dropout rate reaches 0.7, the performance significantly drops to
an AUC of 0.8671 and an AUPR of 0.8783. This trend clearly
demonstrates the dual role of the Dropout mechanism in deep
learning models: an appropriate Dropout rate can effectively prevent
overfitting and enhance the model’s generalization ability; but an
overly strong Dropout rate will damage the model’s learning ability
and lead to performance degradation.

Based on the results of the parameter experiments, the optimal
parameter configuration of the model was determined: the number
of layers for GCN and GAT is 3, the hidden layer dimension is 32,
and the Dropout rate is 0.3. This configuration achieved the best
performance in all three key parameters. Through this experiment,
not only did it provide a reliable parameter basis for the method in
this paper, but it also offered valuable references for other
bioinformatics tasks based on graph neural networks.

4 Conclusion

This study introduces a dual-mask graph contrastive learning
(DMAGCL) framework for predicting circRNA-drug sensitivity
associations. The core innovation lies in its synergistic use of path-
and edge-level masking to learn robust node representations, an
adaptive contrastive loss to dynamically balance exploration and
exploitation during training, and an attention fusion classifier to
effectively integrate multi-modal features. Extensive evaluations
confirmed that DMAGCL achieves state-of-the-art performance,
with case studies on anti-cancer drugs demonstrating its biological
relevance and an average verification rate of 80 Looking forward, this
work opens several promising directions: First, the framework could be
applied to related tasks like miRNA-disease association prediction,

specifically to model the complex interactions in competing
endogenous RNA (ceRNA) networks. Second, integrating multi-
omics data (e.g., transcriptomics from specific cell lines) could help
address the heterogeneity observed in some predictions and improve
cell context-specific modeling. Finally, exploring the integration of large
language models for biological sequence encoding could further enrich
feature representations. This study thus establishes a robust and
extensible computational paradigm with significant potential for
biomarker discovery and drug sensitivity analysis in precision oncology.
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TABLE 13 The impact of hidden layers in multi-view graph encoders on
performance.

Hidden layers AUC AUPR

16 0.8882 0.8943

32 0.8940 0.9006

64 0.8864 0.8938

128 0.8907 0.8983

256 0.8857 0.8924

Bold values indicate the best performance in each metric.

TABLE 14 The impact of dropout rate on performance.

Dropout rate AUC AUPR

0.1 0.8907 0.8989

0.3 0.8940 0.9006

0.5 0.8859 0.8936

0.7 0.8671 0.8783

Bold values indicate the best performance in each metric.
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