
Identifying gene-environment
interactions across
genome-wide, twin, and
polygenic risk score approaches

Brad Verhulst*

Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, United
States

Introduction: Until recently, many researchers have been hesitant to conduct
genome-wide gene-environment interaction (GxE) research due to perceptions
of low rates of statistical power and skepticism from controversial findings from
the existing literature. Nevertheless, twin and polygenic risk score (PRS) studies
suggest that GxE is pervasive and may have a large impact on complex genetic
traits. Our goal in this paper is to demonstrate that consistent findings emerge
from twin, PRS, and genome-wide approaches to identify GxE, subject to the
known limitations for each method.
Method:We conducted a series of simulation studies, generating dataset that can
be used in twin, PRS and GWAS analyses.
Results:We highlight a high degree of consistency across approaches, with each
method detecting GxE. Specifically, genome-wide approaches identify individual
variants that interact with an environmental moderator, but struggle with low
statistical power when a trait is highly polygenic. Alternatively, aggregating
genome-wide effects from a discovery sample into a PRS in the target sample
increases the ability to detect broad genetic effects. However, if the statistical
power in the discovery sample is low, the associations with the PRS tend to
underestimate the genetic signal. This is true for both genetic main and
interaction effects. Finally, twin studies are generally robust to differences in
polygenicity as well as the underlying distributions of the genetic main and
interaction effects. The ability of all three methods to robustly identify
genomic moderation emphasizes the fact that multiple valid ways to detect
GxE exist that stem from the same basic assumptions about the genetic
architecture of complex traits.
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1 Introduction

Genetic associations often depend on contextual factors that amplify or suppress the
relationships between genotypes and phenotypes. These interactions are broadly referred to
as gene-environment interaction (or GxE). Genome-wide association study (GWAS)
findings emphasize the incredible complexity of the relationships between genetic
factors and almost every aspect of human behavior and disease. However, traditional
GWAS approaches ignore GxE and the mechanisms through which contextual factors
potentially regulate phenotypic outcomes (Verhulst et al., 2021). Identifying the genetic
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variants that respond to contextual variation may provide critical
insights into behavior modification. The majority of GxE evidence
comes from twin studies, polygenic risk score (PRS) by environment
interaction (PRSxE) studies, and candidate gene-environment
interaction studies (which we do not discuss in detail; see
Duncan and Keller, 2011). Genome-wide GxE approaches remain
relatively unexplored, creating the artificial perception of
methodological barriers for understanding genomic sensitivity to
contextual differences. While each method has unique strengths and
limitations, our overarching premise is that if GxE exists, we should
be able to detect it with multiple methods, ceteris paribus. In this
study, we present a series of simulation studies to illustrate the
interconnected analytical underpinnings between twin, PRS, and
genome-wide GxE models. The simulation ensures that the same
data, or portions thereof, can be used for all analyses. The
accompanying R script can be found on GitHub (https://github.
com/bradverhulst/GxESimulation/), where readers can reproduce
the analyses and extend them to explore nuanced variations of GxE
in different scenarios.

The simulation studies we present steadily increase in
complexity, from a single variant with no moderation to a highly
polygenic system with extensive moderation. Despite the complexity
of these simulations, real world analyses are substantially more
complex. Accordingly, the simulation studies highlight potential
mathematical and biological processes that could affect the statistical
decisionmaking in GxE studies, as well as problems that may arise in
the interpretation of the results. The major benefit of simulation
studies is that we know what the results should look like, and
therefore, are able to identify how each methodological approach is
affected by the data generating process.

1.1 Defining “genes” and “environments”

Biologically, a gene is a sequence of nucleotides that contain the
necessary information for making a protein that contributes to the
expression of one or more physical characteristics or traits (Gerstein
et al., 2007). However different methods operationalize “genes” as a
variety of interrelated constructs focusing on inherited biological
differences. For example, in twin and family models, genes imply a
latent biological predisposition for a behavior (Neale and Cardon,
1992). PRS analyses, by contrast, conceptualize genes as an
aggregated or weighted sum of the relevant risk alleles for a
behavior across the genome (Cross et al., 2022). Alternatively,
GWASs focus on single nucleotide polymorphisms (SNPs), or
small insertions or deletions (indels), and have a tendency of
blurring the distinction between SNPs/indels and genes. Each of
these conceptualizations of genes can interact with environmental
factors to amplify or suppress the likelihood of a behavior. The
implications of these distinct definitions of genes for GxE is
heterogeneous, as different operationalizations of genes constrain
how environments may moderate their association with
a phenotype.

Defining the environment is a similarly amorphous task. In the
broadest sense, an environment is anything that is not a gene. The
extreme breadth of this definition may include literal environments
such as the proximity to parks and greenspaces (Reed et al., 2022),
inferred environments such as socioeconomic status (Abdellaoui

et al., 2025), adverse events like physical assault or maltreatment
(Morrison et al., 2021), or even Petri dishes with different types of
agars. More restrictive definitions require that environments are not
heritable or influenced by genetic factors. However, such narrow
definitions are complicated by the fact that genetic factors often
cryptically contribute to variables that are typically considered
environments (Kendler and Baker, 2007; McAdams et al., 2013),
such as where a person lives, their social networks, and other social
determinants of health and behavior. Accordingly, almost no
environment satisfies the strict definition. From a GxE
perspective, the fact that moderators may have a genetic
component complicates the interpretation of any findings,
making it difficult, if not impossible, to disaggregate pure gene-
environment interactions from gene-gene interactions, or gene-
moderator interactions. To circumvent this potential quagmire,
when we refer to GxE, we focus on gene-moderator interactions,
accepting any potential interpretational ambiguity that may
be implied.

2 Methods

A series of simulation studies were conducted to examine the
ability of GWAS, PRS and twin models to detect GxE. All
simulations were conducted in R (v4.5.1; R Core Team, 2025)
using MASS 7.3 (Venables and Ripley, 2002) for generating data.
Twin analyses were conducted with OpenMx 2.22.7 (Boker et al.,
2011; Neale et al., 2016). All other analyses were conducted using
available functions within R. Several functions were defined to
simplify the analyses, which can be found on GitHub (https://
github.com/bradverhulst/GxESimulation/). All the code to
simulate data, conduct the analyses, and plot the results are also
available on GitHub. A schematic overview of the data simulation
and analysis procedures is presented in Figure 1.

2.1 Data simulation procedures

Data were generated so that the same data could be
simultaneously used to conduct twin, PRS and GWAS analyses.
In the data simulation, we generated genotypes for 100,000 DZ
mothers and fathers (and 100,000 MZ parental dyads) by randomly
sampling each allele from a binomial distribution: two alleles
(A1 and A2) for each parent. The maternal and paternal alleles
were then summed to obtain the respective genotypes. Random
normal variables were then generated to approximate the residual
environmental variance for each parent. To generate the DZ
genotypes, we randomly sampled one maternal and one paternal
allele for each twin, which produces a correlation of r = 0.50 between
the genotypes across the DZ twin pairs. For the MZ genotypes, we
sampled one maternal and one paternal allele for both twins, which
produces a correlation of r = 1 between the MZ genotypes. For each
twin type, values for the moderators and residual variances were
sampled from a normal distribution.

Continuous, quantitative phenotypes for each twin were
constructed based on the algebra for the moderated regression
formula (Equation 1). Regression coefficients for the direct effect
of the genotypes on the phenotypes and the interaction effects were
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generated under two conditions. For Studies 1-3, regression
coefficients had a constant effect where the sum of the squared
genetic effects was 1. In Studies 2 and 3, the sum of the squared
moderated effects was also 1. For Study 4, regression coefficients
were drawn from a normal distribution with a mean of zero and a
variance of (1/nSNPs)2. Interested users can use the data generating
functions from GitHub to specify the magnitude of the direct effects
of the moderator and the intercept, but this is not discussed.

2.2 Twin models

Twin GxE models were fit using structural equation modeling in
OpenMx (Neale et al., 2016). In standard twin models, phenotypic
variance is decomposed into additive genetic variance (Va or a2),

common environmental variance (Vc or c2), and unique
environmental variance (Ve or e2). Twin GxE models extend this
framework by adding a moderation parameter to each variance
component that allows for the amplification or suppression of that
specific source of variance: i.e., (a + βa mod)2, (c + βc mod)2, and
(e + βe mod)2. The twin GxE models conducted here rely on the van
der Sluis specification (Van Der Sluis et al., 2012). A path diagram of
the van der Sluis GxE twin model is presented in Figure 2. In the van
der Sluis GxE model, in addition to adding moderation to the A, C
and E paths, both twin’s phenotypes are regressed on their
moderating environment as well as their co-twin’s moderator to
reduce the influence of gene-environment correlation on the
moderation parameters. This model is more robust to parameter
bias in situations where gene-environment correlation is present
than comparable models. To ensure that the same data was used in

FIGURE 1
A schematic overview of the data simulation and analysis procedures.
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all analyses, we simulated data for 100,000 MZ and 100,000 DZ twin
pairs. For a twin model, this sample size is beyond ridiculous.
Extremely large twin registries have between 6,000 and
8,000 twin families (Lake et al., 2000; Truett et al., 1994), but
other twin studies use data from about 1,000 twin families. Thus,
to ensure our results are broadly consistent with the
existing literature, rather than using the entire simulated sample,
for all twin analyses we selected the first 2000 MZ and 2000 DZ
twin pairs.

2.3 GWAS models

The GxE GWAS analyses uses the simulated data from DZ twin
1 in a standard moderated regression framework to sequentially
regress the phenotype on each SNP in the genome, a moderator, and
the interaction between each SNP and the moderator, as presented
in Equation 1.

Yi � β̂0j + β̂1jSNPij + β̂2jEnvi + β̂3jSNPijEnvi + εij (1)

where Yi is a continuous phenotype and Envi is a binary
environmental moderator for the ith person, and SNPij is the jth
SNP for the ith person. Accordingly, for the jth SNP, β̂0j intercept,
β̂1j is the main or additive SNP effect, β̂2j is the environmental
moderator effect, and β̂3j is the interaction effect. The εij parameter
captures residual variation for the jth SNP.

In addition to being of interest in their own rights, the β̂1j and
β̂3j summary statistics from the GxE GWAS of DZ twin 1 are used as
the input for the PRSxE analyses (described below).

For standard (unmoderated) GWASs, the outcome was
regressed on the intercept, the environmental moderator, and
each SNP in the simulated genome sequentially, as presented in
Equation 2.

Yi � β̂0j + β̂1jSNPij + β̂2jEnvi + εij (2)

where Yi, Envi, SNPij, and εij are defined as above, and β̂0j is the
intercept, β̂1j is the main or additive SNP effect and β̂2j is the
environmental moderator effect estimated without the
interaction effect.

FIGURE 2
Path diagram of the Van Der Sluis et al. (2012) GxE model. Note: The phenotypic variance in the phenotypes for twins 1 and 2 is decomposed into
additive genetic (A), shared environmental (C) and unique environmental E variances. Consistent with standard structural equationmodeling conventions,
circles indicate latent variables, squares indicate observed variables and triangles indicate means or constants. Double headed arrows indicate
covariances while single headed arrows indicate regression paths. Paths with numbers (such as the variances of the latent variance components)
indicate that the parameter is fixed to that value during optimization. Paths with equations or parameters indicate the estimated associations between
the variables.
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All GWAS significance tests were assessed using Wald tests
(Z � β/se). Multiple testing corrections were based on genome-wide
significance (p < 5e-8) and Bonferroni corrections
(α � 0.05/nSNPs). As we used simulated data, ancestry principal
components and other stanard covariates were not generated but
should undoubtedly be included in any analyses of real data. GWASs
are inherently low powered analyses, with myriad SNPs affecting the
phenotype, each with a small effect size (Visscher et al., 2014). As
such, the most effective and uncontroversial way of boosting power
is to increase sample size. In simulation studies, this is trivially
simple, limited primarily by computer memory constraints.
Accordingly, we simulated GWAS data from 100,000 MZ and
DZ twin families, but to simplify the statistical assumptions
(specifically the independence of observations assumption), we
only analyze GWAS data for DZ twin 1. These analyses become
the discovery analyses for the PRSxE analyses.

2.4 PRSxE models

As PRSs require that individuals in the discovery sample are
unrelated to those in the target sample, we use GWAS analyses for
DZ twin 1 as the discovery dataset, and the data for the first 5,000 MZ
twin 1s as the target dataset. Because statistical power in PRSs studies
comes disproportionately from the sample size of the discovery sample
rather than the sample size of the target sample, using
5,000 observations in the target dataset is more appropriate than the
full 100,000 observation sample. Intuitively, if the regressionweights are
estimated more accurately in the discovery sample, the PRS values in
the target sample will be more reliable and precise (Dudbridge, 2013;
Palla and Dudbridge, 2015). This enhanced reliability often
corresponds with larger PRS effect sizes, smaller p-values, and larger
r2 values. While these observations have been made in the context of
linear PRS analyses, they should equally apply to PRSxE analyses.

Across all the simulation studies, we conducted two separate
PRSxE analyses using 1) the GxE GWAS and 2) the standard
(unmoderated) GWAS summary statistics as the discovery
analyses. These analyses closely follow Jayasinghe et al. (2024),
Werme et al. (2021), and (Choi et al., 2020). Specifically, for the
PRS analyses using the GxE GWAS summary statistics as the
discovery sample, we constructed PRSmain from the main effect
parameters (β̂1Dj) and PRSint the interaction effect parameters
(β̂3Dj). Specifically:

PRSmain � ∑ β̂1DjSNPij (3)
PRSint � mod∑ β̂3DjSNPij (4)

Where β̂1Dj and β̂1Dj are the regression weights for the jth SNP
in the GxE GWAS discovery analysis, and SNPij is the
corresponding variant in the target sample.

The PRS analyses in the target dataset, regress the outcome (Yi)
on PRSmain, the environmental moderator, and PRSint:

Yi � β̂0 + β̂1PRSmain + β̂2Envi + β̂3PRSint (5)

For the PRS analyses using the unmoderated GWAS summary
statistics as the discovery sample, we constructed PRSstand from the
main effect parameters (β̂1). Specifically:

PRSstand � ∑ β̂1DjSNPij (6)

Where β̂1Dj is the regression weight for the jth SNP in the
standard GWAS discovery analysis. The interaction effect, then, is
the product between PRSstand and the environmental moderator.
The standard PRSxE analyses are conducted using the model:

Yi � β̂0 + β̂1PRSstand + β̂2Envi + β̂3PRSstandEnvi (7)

2.5 Simulation study parameters

Four simulations studies were conducted to examine how
different levels of polygenicity, as well as the magnitude and
distribution of the effect sizes influence the ability to identify
GxE. To establish baseline expectations, study 1 examines a
single variant with no interaction, where a one-allele increase in
a single variant increases the phenotype by 1 unit, with a residual
variance of 0.50. Study 2 extends the simulation to include GxE by
adding a binary (yes/no) moderator that amplifies the effect of the
single variant on the phenotype by an additional 1 unit for each
additional allele if the moderator is “yes”, keeping the rest of the
simulated parameters the same. Study 3 further expands the
simulation, generating 1,000 independent SNPs that predict the
phenotype, with a uniform effect size of β =

������
1/1000

√
= 0.0316 for

each SNP. Further, we assume these SNPs interact with a binary
environment at the same magnitude as the main effects. Under these
conditions, the total genetic variation and moderation of the
polygenic simulation mirror those of the single gene interaction
analyses presented in study 2. Finally, in study 4 we conduct a more
realistic simulation by simulating the distribution of the main effect
and interaction coefficients from a normal distribution, allowing all
variants to have a potential main effect and/or interaction effect. To
maintain consistency with the previous simulations, the standard
deviation of the normal distribution for the main and interaction
effects was also set to

������
1/1000

√
so that the total genetic and

interaction variance was approximately 1.

3 Results

3.1 Study 1: single variant without an
interaction

To begin, we generated genotypes for 100,000 MZ and DZ twin
families (Ntotal = 800,000). As a proof of principle for the consistency
across twin and genomic methods, we regressed each person’s
genotype on their phenotype. Consistent with the data simulation
procedures, the regression coefficient for the genetic association with
the phenotype is approximately 1 and the r2 is approximately 0.5
(Table 1). While there is only one variant in this analysis, it
nevertheless relies on the standard GWAS framework. If we fit a
standard ACE twin model to data from 2000 MZ and 2000 MZ
twins, we get estimates of a2 = 0.5, c2 = 0, and e2 = 0.5, as shown in
Figure 3a. As predicted from the biometrical model, the r2 from the
regression analyses is approximately the same as the a2 from the
twin model.
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The PRS results for this data are presented in the left panels of
Table 2. Because data was simulated without an interaction, in the
PRSxE analyses using summary statistics from the GxE GWAS
discovery models, PRSmain has the expected impact on the outcome
and PRSint has no effect. The PRSxE analyses from the standard
GWAS discovery models recapitulate these findings: PRSstand
captures the genetic effects and the interaction effect is negligible.
Furthermore, in both the GxE GWAS and standard GWAS
discovery analyses, the r2 is approximately 0.5 for both models.
These results demonstrate that in the absence of GxE standard
GWAS, PRS, and twin methods converge on the conclusion that
genetic factors (in this case a single variant) account for ½ of the
phenotypic variance.

3.2 Study 2: single variant with an interaction

We present the moderated regression analyses for a single
variant and an interaction for 400,000 twins (separated into MZ
and DZ twins 1 and 2). These analyses are analogous to a GxE
GWAS for a single variant. As can be seen in Table 3, the regression
coefficients for each twin are recovered accurately, with the main
and interaction effects both having regression coefficients of
approximately 1, and the intercepts and moderator effects having
virtually no effect. Interestingly, the interpretation of the r2 values for

the full model diverge from the variance accounted for in the
moderator stratified analyses. Specifically, while the r2 for the full
model is approximately 0.75, when the environment is “no” the r2 is
0.50, while the r2 when the environment is “yes” is 0.80. Thus, the r2

for the full model does not reflect the r2 for either the yes or the no
conditions. This is an important theme in moderation analyses, as r2

may not be as instructive as it is in other linear regression, GWAS, or
standard PRS analyses. The twin analyses, focusing on the first
2000 MZ and DZ twins, reiterate these observations. Plotting the
variance components from the twin GxE model (Figure 3b)
illustrates that the additive genetic variance component (Va)
accounts for approximately half of the phenotypic variance (Va
≈ 0.5, Total variance or Vt ≈ 1) in the absence of the moderator, but
around 80% of the phenotypic variance (Va ≈ 2, Vt ≈ 2.5) in the
presence of the moderator.

We present the results of the PRSxE analyses from the GxE
discovery model and the standard GWAS discovery model in the
second panels of Table 2. In this simplified case, the standard GWAS
discovery sample results mirror the GxE GWAS discovery analyses
results, with the parameter estimates being virtually identical in both
models. As with the moderated regression analyses, the main and
moderation effects are approximately 1, and the intercept and the
moderator effects are approximately 0. The only subtle difference
between the models is that the r2 is larger in the standard GWAS
discovery sample.

TABLE 1 Estimated regression coefficients and r2 statistics for parents and twins with data simulated with a single variant and no interaction.

DZ twins MZ twins

Twin 1 Twin 2 Mom Dad Twin 1 Twin 2 Mom Dad

Intercept 0.00 0.00 0.00 −0.01 0.00 0.00 0.00 0.00

BetaSNP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

r2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

The results present estimates for a simulated quantitative phenotype regressed on a simulated genetic variant for 100,000 parents and twins fromMZ, and DZ, families (i.e., 800,000 individuals).

Data were simulated so that a one-allele increase in a single genomic variant increased the phenotype by 1 unit, with a residual variance of 0.50 for everyone. Statistical significancemeasures were

omitted from the table as the intercepts were all non-significant (p > 0.05) and the SNP, regression coefficients were all highly significant (p < 1e-16).

FIGURE 3
Graphical depiction of the twin GxE variance decomposition as a function of a moderating variable across 4 simulation studies. Note: Panels (a–d)
present the variance decomposition results for simulations studies 1-4, respectively. Va is the variance accounted for by additive genetic factors and
depicted by the blue dotted line; Vc is the variance accounted for by shared environmental factors and depicted by the green dotted line; Ve is the
variance accounted for by unique environmental factors and depicted by the red dotted line; and Vt is the total variance (i.e., Va + Vc + Ve) depicted
by the black line.
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3.3 Study 3: polygenic model with constant
main effects and interactions

As complex traits are the function of myriad genetic variants, it
is necessary to extend the simulation to a polygenic system with
relatively small effect sizes. When examining the GxE GWAS
results, it becomes immediately clear that, even with 1,000 SNPs
and 100,000 observations (from the DZ twins), statistical power is
an issue. Specifically, despite simulating a main effect and
interaction for every SNP (β1 = β3 =

������
1/1000

√
= 0.0316), only

12 SNPs had genome-wide significant main effects and 4 SNPs had

genome-wide significant interaction effects at the genome-wide
threshold (p < 5e-8). At a more relaxed multiple testing threshold
(p < 0.05/1,000) the numbers jumped to 329 significant main effects
and 88 significant interaction effects. A scatterplot of the estimates
for the main and interaction effects (Figure 4a) emphasizes that the
significant main effects simultaneously overestimate the simulated
main effect and underestimate the simulated interaction effect,
and vice versa for the interaction effects. This is consistent with
both a winner’s curse (Xiao and Boehnke, 2009) and a
compensatory estimation trade-off between main and interaction
effects. While it may seem strange that simulated

TABLE 2 Results for the PRSxE analyses across the four simulation studies.

Study 1 Study 2 Study 3 Study 4

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

GxE GWAS
Discovery Sample

Intercept −0.046 (0.018)* −0.021(0.024) −1.004 (0.598) −0.100 (0.016)***

PRSmain 1.031 (0.014)*** 1.030 (0.020)** 1.048 (0.019)*** 0.988 (0.014)***

Moderator −0.023 (0.018) 0.017 (0.035) 3.733 (0.805)*** 0.077 (0.022)***

PRSint −2.307 (2.000) 0.974 (0.028)*** 0.87 (0.025)*** 0.964 (0.019)***

r2 0.505 0.703 0.998 0.722

Standard GWAS
Discovery Sample

Intercept −0.046 (0.018)* −0.021 (0.024) 1.387 (0.666) −0.105 (0.021)***

PRSstand 1.031 (0.014)*** 1.030 (0.020)*** 0.972 (0.021)*** 0.978 (0.025)***

Moderator −0.023 (0.018) 0.017 (0.035) 0.794 (0.944) 0.449 (0.030)***

PRSstand x moderator 0.017 (0.014) 0.976 (0.029)*** 0.991 (0.030)*** −0.022 (0.035)

r2 0.505 0.743 0.998 0.400

Study 1 consisted of a single variant with no GxE. Study 2 had a single variant with GxE. Study 3 had 1,000 variants all with GxE. Study 4 sampled main effects and interaction effects from

independent normal distributions (with a mean effect size of zero). In the GxE GWAS discovery models, PRSmain refers to the PRSs derived from the β̂1 coefficient and PRSint refers to the PRSs

derived from the β̂3 from the moderated regression model presented in Equations 1, 3 and 4. The regression model for PRSs derived from the GxE discovery analyses is presented in Equation 5.

For the Standard GWAS discoverymodel, PRSstand refers to the PRSs derived from β̂1 from the standard GWAS presented in Equations 2 and 6, and evaluated via the regressionmodel presented

in Equation 7.

*p < .05.

**p < .01.

***p < .001.

TABLE 3 Moderated regression estimates and r2 statistics for each twin in the simulation study for a single variant with an interaction.

DZ twins MZ twins

Twin 1 Twin 2 Twin 1 Twin 2

Intercept 0.00 0.00 0.01 0.00

SNP 1.00 1.00 1.00 1.00

Moderator −0.01 0.00 −0.01 0.00

SNP x Moderator 1.00 1.00 1.01 1.00

r2 (Full model) 0.75 0.75 0.75 0.75

r2 (Mod = No) 0.50 0.50 0.50 0.50

r2 (Mod = Yes) 0.80 0.80 0.80 0.80

The results present moderated regression estimates for simulated quantitative phenotypes on a simulated genetic variant for 100,000 MZ, and DZ, twins (i.e., 400,000 individuals across

4 analyses). Data were simulated so that a one-allele increase in a single genomic variant increased the phenotype by 1 unit if the moderator was 0 (“No”), and by an additional 1 unit when the

moderator is 1 (“Yes”), with a residual variance of 0.50 for everyone. Statistical significance indices were omitted as the intercepts and moderator main effects were all non-significant (p > 0.05)

and the SNP, regression and interaction coefficients were all highly significant (p < 1e-16).
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parameters are not significant, it reflects the reality of genetic
associations.

Using only the first 2000 MZ and 2000 DZ twin pairs, the twin
analysis easily identifies GxE in the polygenic GxE simulation.
Interestingly, the pattern of results is almost identical to the
single variant GxE simulation (Figure 3c). Like the single variant
simulation, in the polygenic simulation Va accounts for
approximately half of the phenotypic variance (Va ≈ 0.5, Vt ≈ 1)
in the absence of the moderator and approximately 80% of the
phenotypic variance (Va ≈ 2, Vt ≈ 2.5) in the presence of
the moderator.

Like the twin model, the PRSxE analyses for the polygenic GxE
simulation are consistent with the single variant GxE simulation,
with a few notable differences (third panel of Table 2). Both PRSmain

and PRSint are highly significant when the scores are generated from
the GxE discovery model, but the interaction effect PRS is somewhat
underestimated. When scores are derived from the standard GWAS
summary statistics, we detect significant associations for both the
PRSstand as well as the interaction between the PRSstand and
the moderator.

3.4 Study 4: polygenic model with random
normal main effects and interactions

Up to this point, the simulations focused onmodels where all the
variants are associated with the phenotype with the same main and
interaction effects. These simulations illustrate the link between

GWAS, PRS and twin GxE models by holding the total genetic and
interaction variance constant. They also lay the foundation for more
complex models of polygenic moderation. In this simulation, the
effect sizes for the main and interaction effects are drawn from a
normal distribution with a mean of zero and a sd of

������
1/1000

√
.

Accordingly, while many main and/or interaction effects are
effectively null, some are positive, others negative with possible
effect sizes substantially larger than in study 3.

Starting with the GxE GWAS analyses for 100,000 DZ twin
1 observations, we now see 218 main effects and 106 interaction
effects that are genome-wide significant, and an additional
158 main effects and 132 interaction effects that survive a
multiple testing correction of α< 0.05/1000. While these values
may be larger than common effect sizes when compared to some
complex polygenic traits, the results highlight the fact that when
the GxE GWAS effect sizes are large, they can be easily identified
(Figure 4b). As is true for moderated regression more broadly,
main effects are more likely to be detected than interaction effects.
This simple power discrepancy contributes to the underestimation
of the prevalence of GxE and the importance of GxE for
complex traits.

As with the previous simulations, the twin analysis of 2000 MZ
and 2000 DZ twin families easily detects significant GxE (Figure 3d).
Further, because the distributions of the main and interaction effects
are independent, moderation can amplify or suppress the main
effects. Nevertheless, the increase in the total variance in the
simulated phenotype in the presence of the moderator is almost
entirely due to the increase in genetic variation.

FIGURE 4
Scatterplot of the estimatedmain effect (β1) and interaction effect (β3) parameters from Studies 3 and 4. Note: The results for Study 3 are presented in
panel (a). For Study 3, the simulated values for all variants for both β1 and β3 were set to = 0.0316 to ensure that the total expected main and interaction
effect were 1. The results for Study 4 are presented in panel (b). For Study 4, the simulated values for β1 and β3 were drawn from two independent normal
distributions with a standard deviation of = 0.0316, so that the total expected main and interaction effect variances were approximately 1.For both
panels, the red and blue dots indicate variants that were genome-wide significant (p < 5e-8) for β1 and β3. Respectively, with the black dots indicating
both parameters were genome-wide significant. The pink and light blue dots indicate variants that were significant after correcting for 1000 tests
(p < .05/1000, or p < 5e-5) for either β1 and β3. respectively. The purple dots indicate variants where both β1 and β3 were significant after the multiple
testing correction. Finally, the grey dots indication variants with p-values that failed to meet the multiple testing threshold.
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In study 4, the PRSxE analyses using the GxE GWAS vs. the
standard GWAS as the discovery samples diverge notably (right
panels of Table 2). Specifically, in analyses based on the GxE
discovery sample both PRSmain and PRSint predict the outcome at
the simulated levels. For the PRSxEmodel using the standard GWAS
as the discovery sample, PRSstand is highly predictive of the outcome,
but the interaction between PRSstand and the moderator is trivial and
not statistically significant. As there are a reasonably large number of
variants with genome-wide significant GxE, the lack of an
interaction signal when using the standard GWAS model as the
discovery sample is unlikely. Instead, the approximately equal
mixture of positive and negative interaction effects cancel out
when standard PRS methods are used in the PRSxE model.

3.5 Ad hoc exploration of the
underestimation of the PRS effects

In developing the simulations studies, particularly when smaller
sample sizes were used, an interesting pattern emerged where we
observed a consistent underestimation of the PRS effect sizes as
polygenicity increased. This effect was particularly pronounced for
the analyses based on the GxE GWAS discovery analyses, as can be
seen in Study 3. Specifically, the PRS effect sizes in all the simulations
were generated to be approximately 1. However, when relatively
small sample sizes were used, the estimated PRS effects were
substantially smaller than 1. As statistical power in PRS analyses
depends on the precision of the discovery sample estimates
(Dudbridge, 2013; Palla and Dudbridge, 2015), both the
magnitude of the effects and the size of the discovery sample
play a pivotal role in generating accurate PRS in the target
sample. Accordingly, it is likely that the underestimated PRS
effects stem from the lack of precision in the estimation of the
respective coefficients in the discovery analyses, with the interaction
parameters being less precise than main effects. Interestingly, the
downward biased PRS effect resulted in inflated intercept and the
moderator coefficients (that deviate from the simulated values of 0).

Essentially, the overestimation of these effects allowed the models to
compensate for the underestimation of the PRSs.

To investigate the cause of the underestimated PRS effects, we
conducted a follow-up analysis where we varied the number of
simulated SNPs (Nsnps = 1, 10, 100, 1,000), repeating the simulation
1,000 times for each condition with a sample size at 20,000. Thus, the
1 and 10 SNP conditions will be overpowered, but the 100 and
1,000 SNP conditions will be underpowered. As the analyses become
increasingly underpowered, we should observe an increasing
downward bias in the PRS estimates. As the twin parameters are
sufficiently powered across all these conditions, the twin model
serves as a positive control. Specifically, the additive genetic main
and interaction parameters in the twin model should be
approximately 0.71, and the PRSxE main and interaction
parameters for both discovery samples should be 1. As shown in
the left panel of Figure 5, the twin model estimates are close to the
simulated parameters, with a very slight but consistent
underestimation of the interaction parameter due to the inclusion
of common and unique environmental moderation (see Verhulst
et al., 2019 for a more complete explanation of this bias). In both
PRSxE models, as the polygenicity increased, so did the
underestimation. However, in models using the GxE GWAS as
the discovery sample, PRSint is substantially more affected than
PRSmain. Alternatively, when using the standard GWAS as the
discovery sample, because there is only PRSstand, the main effect
and interaction effect underestimation is symmetrical. These results
suggest that PRSs derived from underpowered discovery samples
will underestimate the polygenic effect.

3.6 Statistical power comparisons for GWAS
main and interaction effects

Since statistical power is a constant concern in GWAS, and
particularly GxE GWAS, Monte Carlo power calculations were
conducted to identify the approximate sample size necessary to
achieve 80% power to detect genetic associations at the genome-

FIGURE 5
Violin plots of the distributions of the respectivemain effect and interaction effect parameters from the Twin GxEmodel, PRSs derived from the GxE
GWAS discovery analyses, and a PRS derived from standard GWAS methods. Note: Panel (a) presents the distribution of additive genetic main effect (a) in
blue and interaction effects (βa) in red as described in Figure 2. Panel (b) presents the distribution of the coefficients for PRSmain in red and PRSint in blue as
described in Equations 3–5. Panel (c) presents the distribution of the coefficients for PRSstand in red and the interaction between PRSstand and the
moderator in blue as described in Equations 6, 7. The solid purple line indicates the simulated values for the relevant parameters.
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wide significance level for four main and interaction effect sizes (β1 =
β3 = {1.0, 0.316, 0.1, 0.0316}; Table 4). The power analyses highlight
the extreme discrepancy in power between the β1 and β3 coefficients.
Specifically, when the values of β1 and β3, are equal, it takes more
than twice as many observations to achieve 80% power for β3 as
compared with β1, even though both parameters are estimated in the
samemodel. Put another way, if the interaction effect size is the same
as the main effect size, if an analysis has 80% power to detect the
main effect, it likely has around 15% power to detect the interaction
effect. Alternatively, if an analysis has 80% power to detect the
interaction effect, it has almost perfect power to detect the main
effect. Importantly, while β values greater than 0.1 are unrealistic for
most complex traits, effect sizes in the 0.05 range are reasonable.
Thus, it may take approximately 500,000 observations to achieve
80% power to detect significant β3 coefficients for many complex
traits. Importantly, when the sample size in the discovery sample has
80% power to detect the association, the underestimation of both the
main and interaction effects are ameliorated.

4 Discussion

The simulation studies demonstrate substantial consistency in
the ability to detect GxE across analytical approaches. The twin
analyses identified increasing phenotypic heritability at riskier levels
of the moderating environment. The PRSxE analyses identified both
genetic main and interaction effects. The GxE GWASs identified
interactions with individual genetic variants. Unsurprisingly, as we
increased the polygenicity of the main and interaction effects
(thereby shrinking their effect sizes), the power to detect
genome-wide associations and interactions for individual variants
declines. Nevertheless, both twin and PRS analyses were able to
identify robust main and moderated effects with reasonably small
sample sizes (i.e., 2,000 MZ and DZ twin pairs and 5,000 individuals
in the PRS target sample). Therefore, twin and PRSxE analyses can
be used to supplement investigations by focusing attention on (or
eliminating) phenotype-moderator combinations that likely
exhibit GxE.

Interestingly, while twin methods have struggled to remain
relevant in the genomic era, standard twin GxE methods were
extremely robust to variation in polygenicity and the direction of
the interactions at the individual variant levels. For simulation
studies 2 and 3, the pattern of GxE in the twin models was the

same regardless of the number of SNPs included in the data
generating process. Further, the twin model effectively identified
GxE even when the PRSxE models underestimated the effects or
failed to identify moderation. Accordingly, twin GxE methods
remain robust to many of the limitations that affect genome-wide
approaches.

Across the simulation studies, it is possible to broadly conclude
that the PRSxE models accurately recover the simulated values for
both the main and interaction effects. However, there are three
notable caveats to this conclusion. First, the pattern of individual
variant GxE has a substantial impact on the PRSxE moderation
effects. If the sign of the moderation was consistent across variants
(e.g., the interaction effects consistently amplified the genetic
associations), the PRS derived from standard GWAS summary
statistics performed slightly better than PRSs derived from GxE
GWAS summary statistics. However, if some interaction coefficients
were positive and others negative, constructing the PRSs from
standard GWAS regression weights led to the conclusion that
GxE did not exist. When using PRSs derived from the GxE
GWAS discovery analysis, we identified significant moderation.
Effectively, using standard GWAS summary statistics to construct
PRSs in a PRSxE models assumes that every SNP interacts with the
environment proportional to the magnitude and direction of the
discovery GWAS. If GxE amplifies the associations for some loci and
suppresses others, aggregating genetic effects using standard PRS
methods will effectively cancel out any moderation. Because
standard GWASs do not include moderation, it is possible that
using standard GWAS summary statistics to generate PRSs may lead
to the conclusion that GxE does not exist, when, in fact, it does.

Second, as we demonstrate in the post hoc analyses, the sample
size of the discovery analysis plays a critical role for identifying
polygenic signatures. While this has been pointed out for linear
GWASs (Dudbridge, 2013; Palla and Dudbridge, 2015), it is worth
repeating in the context of GxE. If the discovery analyses are not
sufficiently powered to detect the genetic associations, the regression
weights will contain substantial levels of stochastic noise, and the
PRSxE analyses will underestimate the genetic signal for both main
and interaction effects. As interaction effects require larger samples
to achieve the same level of statistical power, the underestimation of
the interaction PRSs was more pronounced. Across the simulation
studies, the genetic variance was held constant to enhance the
comparability of the results. In real analyses every effect size is
different. Therefore, in real analyses PRSs will necessarily be

TABLE 4 Power analysis results comparing the sample size and statistical power to detect main effects and interaction effects in moderated regression
analyses.

Number of
SNPs

Effect
size

Sample size for
80% power for
the main effect

Power to detect the
interaction effect from
the main effect power
analysis

Sample size for 80%
power for the
interaction effect

Power to detect the main
effect based on the
interaction effect sample
size

1 1.0 84 0.23 159 1.00

10 0.316 2,340 0.14 4,950 1.00

100 0.10 24,744 0.13 52,529 1.00

1,000 0.0316 251,674 0.13 528,683 1.00

The effect size was determined as
�������
1/NSNPs

√
to remain consistent with the simulation studies. The sample size for 80% power for the main and interaction effects was identified via Monte Carlo

simulations and should be considered approximate. The power to detect the interaction effect (or the main effect) was based on the sample size required to achieve 80% power from the main

effect (interaction effect) analysis.
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constructed from discovery GWASs that have a mixture of effect
sizes, with some associations being sufficiently powered and others
underpowered. Accordingly, to the extent to which underpowered
variants are included in a PRS, the results likely underestimate the
importance of the genetic factors for the phenotype.

Finally, the accuracy of the r2 statistic, which indexes the
proportion of variation accounted for by the predictors in the
full model, does not reflect the r2 for specific levels of the
moderator. In the single variant GxE model, the model r2 was
substantially overestimated when the moderator was absent and
underestimated when it was present. In polygenic models,
aggregating r2 across a mixture of over- and underestimation in
real samples may leave PRSs disconnected from any specific level of
the moderator. Thus, while r2 may be an effective metric for standard
PRS analyses, its usefulness for PRSxE analyses may be limited.

Importantly, with the proliferation of high-quality, publicly
accessible GWAS summary statistics, PRS and PRSxE methods
are entering a phase of rapid methodological development (Ni
et al., 2021). For example, methods such as PRS-CSx (Ruan
et al., 2022), MegaPRS (Zhang et al., 2021), LDPred2 (Privé
et al., 2021), and SBayesR (Lloyd-Jones et al., 2019) extend PRS
analyses to diverse ancestry groups, re-weight the finding by
including functional genomic information, and utilize powerful
Bayesian methods. While we do not use these advanced PRS
methods in our simulation studies, our results nevertheless can
inform analyses that do. Furthermore, while our simulations do not
include covariates, Type 1 Error rates can be better controlled by
including higher order polynomials of the covariates (Jayasinghe
et al., 2024). Thus, our findings add to the broader perspective on the
accuracy of PRSs for complex traits.

The GxE GWAS simulations generally confirmed the existing
knowledge regarding the low levels of statistical power and the
corresponding need to have very large sample sizes to identify GxE
for individual variants. However, connecting GWAS data on GxE
for individual variants to twin and PRS data challenges the
perception that the underlying genomic mechanisms for twin
and molecular methods are categorically distinct. While twin,

PRS, and GWAS methods use different data types, rely on
different statistical assumptions, and conceptualize “genes” in
different ways, they can all be reduced to the same basic
biological principals. Individual variant analyses, like GxE
GWASs, promise extremely precise levels of biological specificity,
which informs the etiology of complex traits and can be leveraged to
advance personalized, genomic medicine. It will take an enormous
amount of time, money, and effort to collect hundreds of thousands
(and likely millions) of high-quality genotypes and phenotypes, not
to mention numerous potential moderators for each phenotype.
Accordingly, it is essential to use data andmethods, that only require
a few thousand observations, to prioritize the phenotype-moderator
combinations with the highest chances of illuminating GxE for
individual variants.

One of the strengths of our simulation studies is the flexibility to
generate data that simultaneously satisfies the requirements of twin,
GWAS and PRS analyses. However, such data is only realistically
obtained within a simulation setting, as each method has
substantially different requirements. Moreover, despite being able
to detect GxE with each method, the research questions that can be
answered with each analytical approach vary substantially. We
discuss the key considerations for each method below and
summarize them in Table 5.

Twin studies focus on howmeasured environmental moderators
amplify or suppress the additive genetic, common and unique
environmental variance components. Focusing on the additive
genetic variance component, twin GxE models treat “genes” as a
latent biological predisposition for a behavior that can be regulated
by the environment. The latent biological factor effectively
aggregates genome-wide genetic associations into a single variable
that does not require DNA collection, instead leveraging the
differences between the variances and covariances of MZ and DZ
twins (Neale and Cardon, 1992; Purcell, 2002). Because latent
variables cannot be measured directly and thus must be inferred
from the existence of other measurable variables, twin methods
cannot be used to identify actionable biological interventions.
Nevertheless, twin models require substantially smaller sample

TABLE 5 Summary of the hypotheses, strengths and limitations of GxE analyses using twin, PRS and GWAS methods.

GxE
method

Sample
requirements

GxE
Hypothesis

Strengths Limitations

Twin MZ and DZ Twins Does the proportion of genetic
variance differ based on the level of
the moderator?

• Robust to most differences in the genetic
architecture of the phenotype and the
pattern of GxE for individual variants

• Well-validated and accepted methods with
known strengths and limitations

• Twins are a relatively rare populations
and require have unique recruitment
barriers

• Latent variables have for low levels of
biological specificity making
translation difficult

PRS Discovery Sample and
Target Sample

Does the PRS have different effects
based on the level of the moderator?

• Data can be contributed to future GWASs
and GxE GWAS meta-analyses

• It is possible to stratify individual risk in
ways that could be used in clinical settings
(for some phenotypes)

• If an appropriate discovery sample is
identified, PRS target samples can be
relatively small

• Requires two samples
• Phenotypic and moderator

heterogeneity across samples may not
be assumed

• Sensitive to the pattern of GxE for
individual variants

• GxE GWASs are rare and may not be
available for the phenotype-
moderator combinations of interest

GWAS Single Sample Do individual variants have
different effects based on the level
of the moderator?

• Very high levels of biological specificity
• Direct extensions drug development and

treatment

• Sample size or statistical power
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sizes to detect GxE, making them extremely valuable for identifying
phenotype-moderator combinations with the potential for
clinical relevance.

PRS analyses, and PRSxE studies by extension, aggregate the
effect of relevant alleles for a phenotype across the genome (Cross
et al., 2022). PRS analyses can effectively test whether genetic factors
play a role in a behavior by projecting estimated genetic associations
from the GWAS of a large discovery sample into a smaller
genetically assayed target sample. PRSxE analyses refine the
potential research question by asking whether environmental
factors increase or decrease the importance of the genetic signal.
As with twin studies, PRS and PRSxE methods cannot directly
identify actionable genetic interventions, as they aggregate signals
from across the genome. However, PRSs can be used to stratify a
person’s genetic risk of developing a disease or other phenotype. By
extension, it is possible that PRSxE methods can be used to further
personalize the prediction by integrating the genetic signal with an
environmental moderator. If conducted appropriately, this
integration can be instrumental for enhancing personalized
medicine (Verhulst and Benstock, 2023). As most current PRS
and PRSxE analyses utilize published GWAS summary statistics
as the discovery sample, collecting or identifying data for a target
sample is of critical importance. Importantly, sample sizes for these
target samples can be substantially smaller than the discovery
GWAS. While we used 5,000 observations in our target datasets,
with sufficiently powered discovery GWAS it is possible to detect
genetic signals with sample sizes in the hundreds (Chang
et al., 2019).

Finally, GxE GWAS analyses provide the most biological
specificity, by identifying specific SNPs that interact with an
environmental moderator. However, the statistical power to
detect moderated associations for individual SNPs is low.
Accordingly, GxE GWASs with currently available data
(including those from biobanks) may only be able to identify
GxE with large moderation effects. One method of addressing
power concerns in GWAS has been to develop consortia that
share data and results, thereby increasing sample sizes (Adams
et al., 2025; International Schizophrenia Consortium et al., 2009).
Within these consortia, phenotypic heterogeneity has been a major
concern for GWAS meta-analyses. Differential assessment and
ascertainment strategies can obscure the interpretation of any
potential associations (Cai et al., 2025). In GxE meta-analyses,
not only is phenotypic heterogeneity a concern, but moderator
heterogeneity will introduce additional challenges. For example,
many conceptualizations of adverse life events aggregate stressors
from numerous categories. While aggregated scales can increase
statistical power in many situations, if individual stressors have
divergent moderating effects, such effects may inhibit the
detection of GxE.

Many of the lessons learned from GWASs extend to genome-
wide GxE analyses, but due to the increased complexity of
moderated regression over linear regression, slight extensions are
required. For example, one of the central lessons from GWASs is the
extreme polygenicity of complex traits: hundreds or thousands of
independent loci are associated with each behavioral outcome, with
individual associations exerting very small effects and thus requiring
extremely large sample sizes to detect. Moderated genetic
associations will likely be equally polygenic, but as interactions

are inherently less powerful, they will require even larger
samples. Substantial reductions in genotyping costs over the past
2 decades have allowed for multiple historic efforts aimed at
recruiting hundreds of thousands of participants assessed on a
wide range of outcomes and moderators (Sudlow et al., 2015;
The All of Us Research Program Investigators, 2019). Thus, the
justification for eschewing genome-wide GxE due to power concerns
is decreasing.

5 Conclusion

While GxE plays a critical role in the etiology of many complex
traits, as demonstrated by the plethora of GxE research in twins,
genome-wide GxE research has fallen behind other genomic
investigations. In part, the hesitation to conduct genome-wide
GxE research is a function of perceptions of low rates of
statistical power and skepticism from controversial findings from
the candidate gene-environment interaction literature (Culverhouse
et al., 2018; Duncan and Keller, 2011). While reasonable, such
perceptions have delayed genome-wide GxE investigations. The
methodological consistency demonstrated by the current
simulations highlight the importance of leveraging multiple
methods for identifying GxE. Thus, the robust twin GxE
literature should give researchers a sense of hope that
corresponding findings can be identified in genome-wide data.
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