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RNA sequencing (RNA-Seq) is a high-throughput sequencing approach that
enables comprehensive quantification of transcriptomes at a genome-wide
scale. As a result, RNA-Seq has become a routine component of molecular
biology research, and more researchers are now expected to analyze RNA-Seq
data as part of their projects. However, unlike the largely experimental nature of
benchwork, RNA-Seq analysis demands proficiency with computational and
statistical approaches to manage technical issues and large data sizes.
Although numerous manuals and reviews on RNA-Seq data analysis are
available, many are either highly specialized, fragmented, or overly superficial,
leaving beginners to use tools without understanding the underlying principles.
To address this gap, we provide a decision-oriented guide tailored for molecular
biologists encountering RNA-Seq analysis for the first time. This review is
designed for readers to enable to decide which tools and statistical
approaches to use based on their data, goals, and constraints. We aim to
equip beginners with the knowledge required to perform RNA-Seq analysis
rigorously and with confidence.
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1 Introduction

RNA-Seq is a powerful high-throughput technology that has revolutionized the study of
transcriptomics by enabling genome-wide quantification of RNA abundance. Compared to
earlier methods (e.g., microarrays), it offers more comprehensive coverage of the
transcriptome, finer resolution of dynamic expression changes, and improved signal
accuracy with lower background noise, making it the preferred approach for gene
expression analysis in modern molecular biology and medicine (Hrdlickova et al., 2017;
Koch et al., 2018; Kukurba and Montgomery, 2015). It enables researchers to address a
diverse array of biological questions, spanning from disease biomarker discovery and drug
identification to advancing the understanding of developmental biology, host-pathogen
dynamics, and responses to environmental stimuli (Berger et al., 2010; Navin, 2014). RNA-
Seq technologies are expected to continue advancing, with their application expanding even
further in the future.

RNA-Seq works by first isolating the RNA molecules from cells or tissues and then
converting them into complementary DNA (cDNA), because DNA is more stable and easier
to handle in downstream workflows (Figure 1). These cDNA fragments are then sequenced
using high-throughput sequencers, which read out millions of short sequences (reads) at
once. Thus, each read represents a fragment of an RNA molecule that was present in the
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sample at the time of sequencing. Collectively, these reads capture
the transcriptome, reflecting both the identity and abundance of
expressed genes.

Since RNA-Seq data consists of sequenced reads, its data
structure poses significant challenges for beginners. For example,
RNA-Seq data is typically stored in text-based formats such as
FASTQ (raw reads with quality scores), SAM/BAM (aligned reads),
or count matrices (summarized expression levels). As a result,
novices often struggle both with handling RNA-Seq data stored
in specialized formats and with understanding the unique
characteristics of RNA-Seq data when making biological
inferences (Conesa et al., 2016; Love et al., 2014; Trapnell
et al., 2012).

With varying audiences and objectives, several foundational
reviews and guides on RNA-Seq analysis have made significant
contributions to the field. For example, Conesa et al. (2016) provide
comprehensive coverage of best practices across diverse
applications, which is especially valuable for readers seeking
detailed methodological insights. The tool-oriented review of
differential gene expression (DGE) analysis by Costa-Silva et al.
(2017) helps readers identify suitable software options. Likewise, the
Bioconductor guide by Love et al. (2015) offers detailed instructions
for statistical testing and visualization in R, while Koch et al. (2018)
present broad checkpoints to support researchers in evaluating their
workflows. Collectively, these resources establish a strong
foundation for RNA-Seq analysis.

Our review goes beyond listing tools or workflows. We provide a
decision-oriented guide that organizes available methods around the
key choices researchers must make, such as computational tools and
statistical techniques. By clarifying the assumptions behind
statistical models and illustrating common pitfalls, we aim to fill
a gap between descriptive reviews and practical decision-making.
This perspective actively guides researchers particularly newcomers
toward their DGE analyses with confidence.

2 Preprocessing RNA-Seq data

Figure 2 shows steps in RNA-Seq data analysis. The analysis
begins with cleaning sequenced data and counting how many
sequencing reads are mapped to each gene or transcript (Conesa
et al., 2016). The detailed protocol and usages of required
computational tools for this preprocessing step are summarized
in Shouib et al. (2025).

Briefly, the first quality control (QC) step identifies potential
technical errors, such as leftover adapter sequences, unusual base
composition (technical sequences), or duplicated reads (Figure 3A).
Tools like FastQC or multiQC are commonly used (Ewels et al.,
2016;Wingett and Andrews, 2018). It is critical to review QC reports
(Figure 2B) and to ensure that errors are removed without cutting
too many good reads during trimming, as over-trimming reduces
data and weakens analysis.

FIGURE 1
Overview of RNA sequencing workflow. RNA molecules are first extracted from cells or tissues, then converted into complementary DNA (cDNA)
using reverse transcriptase. The resulting cDNA fragments are sequenced using high-throughput sequencing platforms, and the data are
computationally analyzed.
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FIGURE 2
Flowchart illustrating an RNA-Seq analysis pipeline, from raw FASTQ files to functional interpretation. (A) Steps and tools. Each step includes key
steps shown on the left and commonly used tools (in blue) and corresponding outputs (files, tables, or figures) displayed on the right next to the analysis.
(B) Example of low-quality data using FastQC. The red and blue line is the median and mean of quality score at a given position of a read. The yellow box
represents the inter-quartile range (25%–75%), and the upper and lower whiskers represent the 10% and 90% points. The higher the quality score is
the better the base call. The background of the graph (green, orange, and red) indicates very good, reasonable, and poor quality calls, respectively. (C)
Volcano plot. (D) Heatmap. (E) MA plot.
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After QC is passed, the next step is read trimming, which cleans
the data by removing low-quality parts of the reads and leftover
adapter sequences that can interfere with accurate mapping
(Figure 3B) (Bolger et al., 2014). Tools like Trimmomatic,
Cutadapt, or fastp are commonly used for this step (Chen et al.,
2018; Martin, 2011).

Once the reads are cleaned, they are aligned (mapped) to a
reference transcriptome using software such as STAR, HISAT2, or
TopHat2 (Figure 3C) (Dobin et al., 2013; D. Kim et al., 2015;
Trapnell et al., 2009). This step identifies which genes or
transcripts are being expressed in the samples (Engström et al.,
2013). An alternative is pseudo-alignment with Kallisto or Salmon,
which estimate transcript abundances without full base-by-base
alignment (Bray et al., 2016). These methods are faster and use
less memory, making them well suited for large datasets. Both
Kallisto and Salmon incorporate statistical models
(bootstrapping) to improve accuracy.

After alignment, post-alignment QC is performed by removing
reads that are poorly aligned or mapped to multiple locations, using
tools like SAMtools, Qualimap, or Picard (Figure 3D) (Li et al., 2009;
Okonechnikov et al., 2016). This step is essential because incorrectly
mapped reads can artificially inflate read counts. As a result, gene
expression levels may appear higher than they truly are, which can
distort comparisons of expression between genes in
downstream analyses.

The final step is read quantification, where the number of reads
mapped to each gene is counted (Figure 3E) (Liao et al., 2014). Tools
like feature Counts or HTSeq-count perform this counting,

producing a raw count matrix. This matrix summarizes how
many reads were observed for each gene in each sample, where a
larger number of reads indicates higher gene expression (Anders
et al., 2015).

3 Experimental design and
normalization techniques

A popular usage of RNA-Seq is the identification of differentially
expressed genes between conditions, such as treated versus control
groups (Figure 3F). The reliability of DGE analysis depends strongly
on thoughtful experimental design, particularly with respect to
biological replicates and sequencing depth.

With only two replicates, DGE analysis is technically possible,
but the ability to estimate variability and control false discovery rates
is greatly reduced. A single replicate per condition, although
occasionally used in exploratory work, does not allow for robust
statistical inference and should be avoided for hypothesis-driven
experiments. While three replicates per condition is often
considered the minimum standard in RNA-seq studies, this
number is not universally sufficient. In general, increasing the
number of replicates improves power to detect true differences in
gene expression, especially when biological variability within groups
is high (Liu et al., 2014; Schurch et al., 2016).

Sequencing depth is another critical parameter. Deeper
sequencing captures more reads per gene, increasing sensitivity to
detect lowly expressed transcripts. For standard DGE analysis,

FIGURE 3
Quality control (QC) of RNA-Seq data. Sequencing reads undergo QC to identify adapter contamination, GC bias, and duplicate sequences (A),
followed by trimming to remove artifacts (B). Reads are then mapped to reference transcripts (Ref) (C), and post-alignment QC is performed to detect
mismatches and ambiguous mappings (D). After post-alignment filtration, high-confidence reads are retained for quantification (E), generating gene-
level counts across experimental conditions for downstream analysis (F,G). In the experimental design for differential expression analysis. each of the
example groups (healthy, primary tumor, and metastatic tumor) has three replicates (R1, R2, R3).
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~20–30 million reads per sample is often sufficient (Conesa et al.,
2016; The Encode Project Consortium, 2011). Estimating depth
requirements prior to sequencing can be guided by pilot

experiments, existing datasets in similar systems, or tools that
model detection power as a function of read count and
expression distribution, e.g., Scotty (Busby et al., 2013).

FIGURE 4
Schematic overview of normalization in RNA-Seq. (A) Normalization across experiments. Raw read counts for the same gene (Gene A) differ due to
sequencing depth or technical variation between experiments. Normalization adjusts these differences to reflect true expression levels. (B)Normalization
across genes. Genes of different lengths (Gene A vs. Gene B) yield different read counts even at similar expression levels. Normalization corrects for gene
length bias, enabling fair comparison across genes.
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The raw counts in the gene expression matrix generated in the
previous section (Figure 3G) cannot be directly comparable between
samples because the number of reads mapped to a gene depends not
only on its expression level but also on the total number of
sequencing reads obtained for that sample, called the sequencing
depth (Han and Men, 2018; Risso et al., 2014). Samples with more
total reads will naturally have higher counts, even if the genes are
expressed at the same level (Figure 4A). “Normalization” adjusts
these counts mathematically to remove such biases (Zyprych-
Walczak et al., 2015).

There are various normalization techniques (Table 1). A simple
normalization method is Counts per Million (CPM), where raw read
counts for each gene are divided by the total number of reads in the
library (sequencing depth), then multiplied by one million. Thus,
CPM assumes that all samples are comparable if they were
sequenced to the same depth. However, this assumption often
fails in real experiments. For example, if a few genes are
extremely highly expressed in one sample, they consume a large
fraction of the total reads. This creates a misleading picture when
comparing across samples.

More advanced methods are implemented in DGE analysis tools
(e.g., DESeq2 and edgeR), which can correct for differences in library
composition. For example, DESeq2 uses median-of-ratios
normalization, which uses a size factor to adjust for sequencing
depth. It first calculates a reference expression level for each gene, i.
e., average across all samples. Each sample’s gene expression is then
compared to this reference to get ratios, and the median ratio is
defined as the “size factor.” Raw counts are divided by this factor to
make samples comparable (Hafemeister and Satija, 2019; Love
et al., 2014).

A potential issue of this median-of-ratios normalization is the
assumption that most genes have similar expression across samples.
Thus, when a large number of genes have different expression levels
between samples, the normalized values may be misleading (Dillies
et al., 2013).

The edgeR employs another method, Trimmed Mean of
M-values (TMM), where genes that are extremely highly or lowly
expressed, or strongly differentially expressed, are excluded (this is

the “trimming” step). The remaining set of genes is used to calculate
an average log-fold change (the “mean of M-values”), which is used
as a scaling factor (Robinson et al., 2010; Singh et al., 2024).

TMM assumes that the remaining genes reflect true depth
differences (Robinson and Oshlack, 2010). Thus, a pitfall is that
it may over-trim, leading to incorrect scaling.

The code below demonstrates how to set up and perform
normalization using DESeq2, a popular R package for DGE
analysis. The first line installs the package, and the second line
loads it into the R session so its functions can be used. The next line
creates a variable called “biopsy_site,” which records the
experimental groups for each sample (here: “N” = normal, “P” =
primary tumor, “M” = metastatic tumor). These labels tell
DESeq2 how the samples are organized. The
DESeqDataSetFromMatrix function then combines the raw count
data (counts) with the sample information to create a special object
(dds) that DESeq2 can work with. After this, estimateSizeFactors
calculates scaling factors to account for differences in sequencing
depth across samples. Finally, the counts function with normalized =
TRUE produces a table of normalized counts.

BiocManager::install (“DESeq2”) #install the package
library (DESeq2) #load the package
#Format data
biopsy_site < - factor (c (“N”, “N”, “N”, “P”, “P”, “P”, “M”,
“M”, “M”))
dds < - DESeqDataSetFromMatrix (counts, DataFrame (biopsy_
site), ~ biopsy_site)
dds < -estimateSizeFactors (dds) #Add the scaling factor into dds
dds_normalized < - counts (dds, normalized = TRUE) #Generate
normalized counts

These sequencing depth adjustments attempt to ensure that read
counts are comparable across samples, but they do not account for
differences in gene length. Longer genes naturally generate more
reads than shorter genes, even if both are expressed at the same level
per base (Figure 4B). Methods such as RPKM (reads per kilobase of
transcript, per million mapped reads) additionally normalize the

TABLE 1 Summary of normalization techniques.

Methods Sequencing
depth
correction

Gene length
correction

Library
composition
correction

Suitable for
DE analysis

Notes

CPM (Counts per Million) Yes No No No Simple scaling by total reads; affected
by highly expressed genes

RPKM / FPKM (Reads/
fragments per Kilobase of
Transcript, per Million Mapped
Reads)

Yes Yes No No Adjusts for gene length; still affected
by library composition

TPM (Transcripts per Million) Yes Yes Partial No Scales sample to constant total (1M),
reducing composition bias; good for
visualization and cross-sample
comparison

median-of-ratios Yes No Yes Yes Implemented in DESeq2; affected by
expression shifts

TMM (Trimmed Mean of
M-values)

Yes No Yes Yes Implemented in edgeR; affected by
over-trimming genes
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read counts by gene length. Thus, these methods allow comparisons
of expression levels between genes within a single sample. However,
RPKM is not recommendable to use for between-sample
comparisons, because they do not fully correct for the
composition bias (just like CPM).

Transcripts per Million (TPM) quantifies gene expression in a
way that allows comparisons both between genes within a sample
and for the same gene across samples. TPM first adjusts raw read
counts for gene length. The length-adjusted counts are then scaled so
that the total expression across all genes in a sample sums to a
constant (one million). However, TPM does not model biological or
technical variability (Pachter, 2011). TPM is therefore primarily
used for visualization, reporting, and exploratory cross-sample
comparisons rather than for rigorous statistical testing.

4 Data validation and scaling
techniques

Before identifying differentially expressed genes, it is important
to first validate the data. In an experiment, we expect that biological

replicates within the same group will show similar gene expression
patterns, while samples from different groups should be more
distinct. Checking whether this expectation holds true is a key
step in quality assessment.

To do this, we often compare overall gene expression patterns
between samples. However, using normalized counts directly can be
misleading. This is because variance in normalized read count
depends strongly on expression level, where highly expressed
genes naturally show more variability than lowly expressed ones
(Figure 5A). This variability does not reflect true biology. At the
same time, differences between lowly expressed genes tend to be
compressed compared to those of highly expressed genes
(Figure 5B). If we treat all genes equally without accounting for
this, the similarity between samples will be disproportionately
driven by a small set of highly expressed genes, while the
variable variance across expression levels can distort the
overall picture.

To address this, the data are further transformed, or “scaled,” so
that differences between genes are placed on a more comparable
footing. The most straightforward way to reduce differences in
variance across genes is a log transformation, typically log2

FIGURE 5
Scaling data. (A)Mean and variance of gene expression level. Variance is larger for largermean in a count data. To compare expression variability, five
genes with low RNA counts and five genes with high RNA counts were randomly selected from the “Normal” biological sample. (B–D)Heatmaps without
scaling gene expression levels (B), with z-score (C), and with VST (Variance Stabilizing Transformation) (D). The top 20 detected genes with the best
adjusted p-values in the differential expression gene analysis were used. (E) Principal component analysis (PCA). The top 1,000 most variable genes
were used. The x-axis represents PC1, accounting for 50% of the variance, while the y-axis represents PC2, accounting for 23% of the variance. Data
points are color-coded: red for normal tissue, blue for primary tumor, and green for metastatic tumor.
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(counts +1) or log2 (counts per million +1). This compresses large
values and stretches out small ones, which helps make genes with
different expression levels more comparable. For example, a gene
with 1,000 counts and another with 10 counts become closer in scale
after the log is applied.

The underlying assumption is that a log scale can stabilize
variance well enough for exploratory analyses. However, this
approach has important limitations. Very low counts can be
unstable because a difference of just one read leads to a large
change after logging, while very high counts may still dominate
overall patterns. This means log transformation alone may
exaggerate noise in lowly expressed genes and not fully correct
the dependence of variance on mean expression. Despite these
issues, log transformation remains useful in situations when a
quick, computationally simple method is needed for exploratory
visualization.

A more sophisticated method is z-score scaling (Eisen et al.,
1998). Here, each gene’s expression values are centered around its
mean and scaled by its variability across samples. In practical terms,
this shows whether a gene is expressed higher or lower than its
average in a given sample, rather than focusing on its absolute
expression level (Figure 5C). The assumption behind z-scoring is
that each gene’s variability is meaningful and comparable across the
dataset. However, this can also be a limitation: if a gene has very low
counts or unreliable measurements, the z-score may exaggerate
noise. Additionally, it is important to note that z-scores remove
information about absolute expression levels, which may be
biologically important in some contexts.

Another method is the variance stabilizing transformation
(VST), implemented in DESeq2. VST uses a mathematical model
with a smooth relationship between variance and mean expression
estimated using all genes (Figure 5D). The main assumption of VST
is that most genes are not strongly differentially expressed, which
allows the method to model a smooth relationship between mean
expression and variance across the transcriptome. However, this
assumption can be violated, in experiments where a large fraction of
genes are globally up- or downregulated (such as strong
perturbations, cross-tissue comparisons, or conditions that trigger
widespread transcriptional reprogramming). In such cases, the
variance trend may be biased, and VST can over- or under-
correct variability for some genes, leading to noisier
exploratory plots.

Another strategy is the regularized log transformation
(rlog), which is also available in DESeq2. In rlog, low-count
genes are adjusted more strongly to reduce the noise that comes
from sampling variation, while high-count genes are treated
more like a standard log transformation. Thus, a limitation is
that if a dataset has many genes with true biological variability
at low counts, rlog might shrink too aggressively, dampening
real biological differences. Also, it requires a higher
computational cost, i.e., rlog is slower and more memory-
intensive than VST.

The code below transforms (scales) the normalized counts using
DESeq2. The functions vst (dds) perform Variance Stabilizing
Transformation and store the counts in the objects (vsd).

vsd < - vst (dds, blind = FALSE)
norm_counts < - assay (vsd)

These scaling techniques are summarized in Table 2. Overall,
these scaled values allow overall gene expression patterns to be
compared more fairly between samples, making it easier to identify
consistent replicates, detect outliers, assess group separation, and
reveal potential technical artifacts. Principal Component Analysis
(PCA) is a widely used method for this purpose. PCA reduces the
complexity of large datasets by summarizing overall gene expression
patterns into a few “principal components,” which capture the most
variation between samples (Maćkiewicz and Ratajczak, 1993). In a
resulting PCA plot, the x-axis (PC1) and y-axis (PC2) represent the
main patterns of variation in the dataset (Holland, 2008). For
example, in Figure 5E, PC1 captures 50% of the differences
between samples, meaning it reflects the largest source of
variation, while PC2 captures 23% of the differences, representing
the second most important source. Together, these two axes
summarize 73% of the overall variation, providing a clear picture
of how samples relate to each other based on their gene
expression profiles.

In a PCA plot, each point represents a sample, and the distance
between points reflects how similar or different their overall gene
expression profiles are. Samples that cluster closely together indicate
consistent replicates, while points that are distant from their group
may indicate outliers or technical issues.

PCA is typically performed using a subset of genes, i.e., highly
variable genes. However, including too many low-variance genes
may add noise, while selecting only high-variance genes may bias the
principal components toward specific features. Another limitation is
that PCA is a linear method that captures the largest sources of
variation, providing a global overview of sample relationships, but it
may miss subtle local patterns.

The R function below produces a PCA plot using the VST object
(see above code). The argument ntop = 1,000 tells DESeq2 to use the
1,000 most variable genes when calculating the PCA.

pcaData < - plotPCA(vsd, intgroup = “biopsy_site”, ntop = 1,000,
returnData = TRUE)

5 Differential gene expression
(DGE) analysis

After the data is validated, differentially expressed genes between
defined groups can be identified. The goal is to compare gene
expression patterns between the samples and determine whether
observed differences in normalized read counts between groups
reflect true biological changes or simply random noise.

Specialized statistics are necessary because normalized read
counts vary widely across genes: some genes are highly expressed
and may have thousands of reads, while others are lowly expressed
and may have only a few (Figure 5A). Importantly, the variance of
counts is not constant, i.e., highly expressed genes tend to show
greater variability across samples than lowly expressed genes. This
violates the assumptions of simple statistical tests, such as t-tests,
which assume normally distributed data with roughly equal variance
across all observations.

There are various statistical methods to consider this difference
in the variability of read counts (Table 3). For example,
DESeq2 assumes that most genes are not strongly differentially
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expressed and models raw read counts with a negative binomial
distribution (Love et al., 2014). To stabilize variance estimates, it
borrows information across all genes, which is particularly useful for
genes with low read counts where variability is high. This makes
DESeq2 robust for experiments with a moderate number of
replicates. However, if a large proportion of genes shift in the
same direction—such as in global transcriptional changes—this
assumption may break down, leading to biased variance estimates
and potentially inflated false positives.

edgeR also uses a negative binomial framework, but it differs in
how it estimates gene-specific dispersion. By applying an empirical
Bayes approach, edgeR shrinks gene-wise dispersions toward a
common trend, allowing more stable inference even with very
few replicates (Robinson and Oshlack, 2010). This makes it
powerful in small-sample studies. However, its main limitation is
sensitivity to extreme outliers and very low-count genes, which can
distort dispersion estimates.

Note that DESeq2 and edgeR do not use normalized read counts
directly in their statistical models. Instead, they incorporate
normalization factors (size factors in DESeq2, scaling factors in
edgeR) into the model as offsets. Thus, the DE testing itself is
performed on the raw counts with normalization applied internally.

On the other hand, limma-voom adopts a fundamentally
different strategy: rather than modeling counts directly, it
transforms them to log-CPM values and estimates the
mean–variance relationship to assign precision weights (Law
et al., 2014). This allows limma’s linear modeling framework,
originally developed for microarray data, to be applied efficiently
to RNA-Seq. The method is fast and performs well with large sample

sizes. Its limitation lies in handling very low-count genes, where log-
transformation can exaggerate noise.

Lastly, these approaches analyze gene expression patterns for
each gene to identify which genes are expressed differently between
the groups being studied. However, because RNA-Seq experiments
often test thousands of genes at once, some genes will appear to be
“significant” just by random chance, even if they are not truly
different. To correct for this problem, the raw p-values from the
statistical tests are adjusted using methods such as the
Benjamini–Hochberg’s approach using the false discovery rate
(FDR) (Benjamini and Hochberg, 1995). The resulting adjusted
p-values (often called q-values) provide a more reliable measure of
significance, which is used for deriving biological inferences.

The code below is part of the DESeq2 workflow. The first
command, “dds < - DESeq (dds),” takes the dataset object
created earlier (see above code) and tests whether expression
differences between experimental groups are statistically
significant. The next command, “res < - results (dds),” extracts
the results table from the analysis (Figure 6A).

dds < - DESeq (dds)
res < - results (dds)

6 Exploration of inferences

A DESeq2’s output reports fold changes in gene expression
between sample groups along with q-values for all genes tested
(Figure 6A). We next demonstrate how these results can be visually

TABLE 2 Summary of scaling (transformation) techniques.

Transformation Assumption Strengths Limitations Best use case

Log (e.g., log₂(counts+1)) Variance can be stabilized by
simple compression of large values

Simple and intuitive Unstable for very low counts; high-
expression genes may still dominate

Quick exploratory plots

Z-score Each gene’s variability is
meaningful across samples

Highlights relative
differences within genes

Removes absolute expression scale;
exaggerates noise

Quick exploratory plots

VST (Variance Stabilizing
Transformation, DESeq2)

Most genes are not strongly
differentially expressed

Handles low counts
better than simple log

Assumption may break if most genes shift Clustering

rlog (Regularized log, DESeq2) Variation in low-counts is noise Reduces noise from low-
count genes

Dampen real biological differences for
lowly-expressed genes; Computationally
intensive

Small datasets with
strong expression
differences

TABLE 3 Summary of differential expression analysis techniques.

Method Normalization Assumption Statistical
approach

Strengths Weaknesses Best use case

DESeq2 (median-of-ratios) Most genes are not strongly
differentially expressed;
counts follow negative
binomial

Robust variance
estimation by borrowing
information across genes

Handles low-count
genes well

Sensitive to global
shifts

Moderate replicates;
when stable variance
estimation is
important

edgeR (TMM) dispersions vary across genes;
counts follow negative
binomial

Empirical Bayes
shrinkage for dispersion

Effective for small
sample sizes

Sensitive to outliers
and very low-count
genes

Small experiments;
accurate dispersion
estimation needed

limma-voom log-CPM Variance depends on mean Models with
mean–variance
relationship

Computationally
efficient

Less accurate for very
low-count genes

Large datasets
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FIGURE 6
Exploration of inferences of differential expression analysis. (A) Output of DESeq2’s differential expression analysis. Each row represents a gene. In
this case, Ensembl Gene ID is used. The baseMean column shows the average normalized expression level of the gene across all samples, which helps
indicate if the gene tends to be highly or lowly expressed overall. The log2FoldChange valuemeasures the expression difference between two conditions
such as tumor versus normal tissue with a positive number signifying upregulation in the comparison group while a negative number indicates
downregulation: for instance +1 means a twofold increase and −1 means a twofold decrease. The lfcSE provides the standard error of the
log2FoldChange estimate indicating the reliability and precision of that measurement. The stat column displays the test statistic usually from a Wald test

(Continued )
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explored to better interpret patterns of differentially expressed genes
using a case study with three normal colon samples, three colorectal
tumor samples, and three liver metastatic samples originally
generated by Kim et al. (2014).

6.1 MA plots

Figures 6B,C present MA plots, which visualizes the relationship
between the average expression level of each gene (A) and its log fold
change (M). This type of plot is useful for spotting systematic biases,
e.g., whether genes with very low or very high expression levels
appear to be detected to change more frequently than others (Love
et al., 2014; Robinson and Oshlack, 2010). In an expected plot, most
genes cluster tightly around the horizontal zero line, reflecting no
major change in expression between groups. If these densely
clustered points form a curve or drift away from zero across the
range of expression levels, it suggests a potential bias in the data that
may require further correction.

The command below creates an MA plot from the results object
(res) generated by DESeq2.

plotMA (res)

6.2 Volcano plots

While MA plots are useful to assess the dependency of gene
expression levels on detected genes, volcano plots examine the
relationship between statistical significance and estimated fold
change of gene expression (McDermaid et al., 2019; Ritchie et al.,
2015). Figures 6D,E show example volcano plots. In each plot, the
horizontal dashed line marks the significance threshold (p-value =
0.05). Genes below this line are not statistically significant, and they
typically also have small fold changes between groups. The vertical
dashed lines mark the threshold for biologically meaningful fold
changes—genes that fall close to the center (near zero on the x-axis)
represent small expression differences, while those farther away
represent larger changes. On the left side of the plot, negative fold-
change values indicate downregulated genes (lower expression in
tumor or metastasis compared to normal), whereas on the right side,
positive values indicate upregulated genes (higher expression in
tumor or metastasis). Genes that are neither significant nor strongly
changing are shown in grey. Together, this creates a “volcano” shape:
many genes cluster near the center with small changes, while fewer
genes stand out at the top left or top right as highly significant and
strongly differentiated. If the volcano plot does not show this general

pattern, it may signal issues with the data or analysis that need
further investigation.

The code below uses the ggplot2 package and creates a volcano
plot. The second line sets up the plot using the results table (res)
from DESeq2, where values for x- and y-axis are assigned through
“aes (x = log2FoldChange, y = -log10 (padj)).”

library (ggplot2) #load ggplot2
ggplot (res, aes (x = log2FoldChange, y = -log10 (padj)))

6.3 Heatmap

While volcano plots and MA plots are useful for visualizing
individual differentially expressed genes detected, they do not show
overall expression patterns across samples. A heatmap complements
these plots by displaying the expression levels of selected genes
across all samples at once (Figures 5C,D). In a heatmap, genes and
samples are clustered based on similarities in their expression
patterns (McDermaid et al., 2019). This reveals groups of co-
expressed genes and separates samples with distinct expression
profiles, such as healthy and tumor tissues.

The accompanying dendrogram illustrates how items are
grouped according to similarity of gene expression patterns, so
that closely related samples or genes cluster together (Doyle,
2018). The grid colors represent scaled expression levels, with a
smooth gradient ranging from low to high (Zhao et al., 2014). This
allows researchers to see biological patterns and relationships that
are missed when only looking at individual gene statistics (Figure 6).

The command, “pheatmap (VST_selected),” generates a
heatmap using VST counts for a subset of genes of interest
(VST_selected), which are selected from the full VST table
described above.

library (pheatmap) #load pheatmap
pheatmap (VST_selected)

7 Experimental validation after
data analysis

DGE analysis allows researchers to generate biological
hypotheses about how genes behave under different conditions.
For example, in a cancer study comparing tumor tissue with
adjacent normal tissue, DGE might reveal that several oncogenes
(e.g., MYC or KRAS) are upregulated, while tumor suppressor genes
(e.g., TP53 or RB1) are downregulated. From this, one could infer

FIGURE 6 (Continued)

computed as the log2FoldChange divided by its standard error where higher absolute values point to stronger evidence of differential expression.
The p-value reflects the likelihood that the observed expression change happened randomly assuming no actual difference exists. Given that many genes
are analyzed at once, the adjusted p-value (padj or FDR) accounts for multiple comparisons to minimize false positives. A padj below 0.05 is generally
viewed as statistically significant suggesting the gene is differentially expressed with strong confidence. (B–E) MA plot and volcano plot. (B,C) MA
Plot comparing gene expression between primary tumor and normal (B) and liver metastasis and normal tissue samples (C). The x-axis represents the
mean of normalized counts, while the y-axis shows the log fold change. Blue and grey points indicate individual genes, with significantly differentially
expressed genes and those do not, respectively. Volcano plots (D,E) illustrating differential gene expression between Primary Tumor and normal tissue
(D), and Liver metastasis and normal tissue samples (D). The x-axis shows the log2 fold change, while the y-axis represents the −log10 adjusted P-value.
Red dots indicate downregulated genes, green dots indicate upregulated genes, and gray dots represent non-significant (NS) genes.
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that tumor cells have reprogrammed their transcriptional
landscape to promote cancer initiation and progression.
However, these findings are initial statistical inferences and do
not confirm causation or even guarantee that the changes are
biologically real.

Validation is, therefore, a critical next step. At the molecular
level, RNA-Seq gives you a global snapshot of gene expression, but
technical noise, sequencing depth, alignment biases, and statistical
modeling can all influence the results (Alwine et al., 1977).
Therefore, validation is necessary for detected genes using a
more precise method. For example, quantitative PCR (qPCR) is
suitable for validation because it amplifies and quantifies the
expression of each gene (Bustin et al., 2009). Similarly,
Northern blotting can be used, which measures RNA quantity
and assesses its size and integrity by separating samples via gel
electrophoresis, transferring them to a membrane, and probing
with labeled sequences. Also, Western blotting and
immunohistochemistry are appropriate if protein-level changes
are relevant. Alternatively, results can also be tested in additional
biological replicates or independent datasets to rule out sample-
specific effects.

For functional validation, one might manipulate the expression
of candidate genes to directly test their role in disease. For instance, if
RNA-Seq analysis suggests that the oncogene MYC is upregulated in
tumors compared to normal tissue, functional experiments could
involve silencing MYC using siRNA or CRISPR-based approaches.
If reduced MYC expression slows cell proliferation in tumor cells,
this would support the inference that MYC overexpression
contributes to tumor growth.

Together, these steps transform RNA-Seq results from statistical
observations into validated biological knowledge. In this sense, DGE
analysis acts as a powerful discovery tool that points researchers
toward promising targets, but rigorous validation ensures that the
conclusions are robust and reproducible.

8 Conclusion

RNA-Seq has become an indispensable tool for exploring the
transcriptome, allowing researchers to scan the entire landscape of
gene expression and generate new biological hypotheses. As the
integration of RNA-Seq into molecular biology research continues
to expand, it is increasingly important for molecular biologists to
understand the foundations of RNA-Seq analysis. This includes not
only the basic workflow but also the statistical principles that ensure
scientific rigor. This review aims to serve as a fundamental guide
for beginners.

In addition to synthesizing current knowledge, this review
paper can be used as a teaching resource for advanced
undergraduate and graduate-level education in genomics,
bioinformatics, and molecular biology. To facilitate active
learning, we developed a lesson plan that integrates this review
as pre-class reading, a quiz to assess comprehension and reinforce
key concepts, and a hands-on R scripting lab for applying DGE
analysis in practice. These materials (lesson plan, example quiz
questions with answers, and R scripts) are made available for
others to use (Supplementary Material and https://github.com/
dprabin25/BegineersRNA-Seq).
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