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Genomic predictions provide more accurate estimated breeding values (EBV) in
younger animals. However, sheep reference populations are still small and if the
animals included in the reference populations are not chosen carefully, genomic
predictions may be biased. In this context, we compared genotyping strategies
varying in the proportion of animals genotyped (using a 50K SNP panel) and the
extent of pedigree errors (misidentified sires or missing information) on accuracy,
bias, and dispersion of genomically-enhanced EBV (GEBV). We simulated a
composite sheep population mimicking the formation and flock structure of
the Katahdin breed using the AlphaSimR package. Sixteen flocks with an effective
population size of 103 were simulated for two traits with heritabilities of 0.35 and
0.10. Breeding values were predictedwith Best Linear Unbiased Prediction (BLUP)
and Single-step Genomic BLUP (ssGBLUP). Scenarios included combinations of
0%–100% males or females genotyped, 0%–20% pedigree errors, and three
genotyping strategies (random, highest EBV, or highest phenotypic values).
The final population (18,717 animals) was divided into training and validation
sets for calculating validation statistics of GEBV. Genomic prediction accuracy
significantly improved with random genotyping, outperforming phenotype and
EBV-based strategies by up to 19%. Pedigree errors reducedGEBV accuracywhile
increasing bias and dispersion. Missing pedigree information impacted results
more than misidentified sires. Increasing the proportion of animals genotyped
improved GEBV prediction metrics, with random genotyping yielding higher
accuracies, lower biases, and dispersion closer to 1 (desirable). Prioritizing the
genotyping of males up to 10% of the population before incorporating females
enhanced the accuracy of GEBV. Genomic information mitigated some pedigree
error effects. However, selective genotyping increased GEBV bias and dispersion,
and reduced prediction accuracy. Compared to random genotyping, selective
genotyping captured less genomic diversity, limiting the effectiveness of the
reference population. Similar conclusions were obtained for both trait heritability
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levels. These findings highlight the importance of genotyping strategies when
implementing genomic selection in sheep and the usefulness of genomic
information for minimizing the impact of pedigree errors.
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prediction, ssGBLUP

1 Introduction

Sheep production plays a vital role in ensuring a reliable and
diversified supply of food and fiber in North America. In more
recent decades, there has been a growing emphasis toward meat
production, with structured breeding programs contributing to
improvements in productivity. For instance, the National Sheep
Improvement Program (NSIP), established in the late 1980s, has
provided across-flock genetic evaluations for growth, reproduction,
and carcass traits using the Best Linear Unbiased Predictions
(BLUP) methodology. These efforts have demonstrated
measurable genetic gains and updated genetic parameters, such
as those reported in Polypay, Suffolk and Katahdin sheep for
growth, reproduction, wool, carcass, and longevity traits (Notter,
1998; Pinto et al., 2025a; Saleem et al., 2025). Such achievements
underscore the effectiveness of pedigree-based selection and provide
a strong foundation for further advances through genomic selection.

Genomic selection (Meuwissen et al., 2001) is now commonly
used in sheep breeding programs around the world, including
Australia and New Zealand (Daetwyler et al., 2010; Woolley
et al., 2023), France (Baloche et al., 2014), United Kingdom
(Kaseja et al., 2023), and, more recently, in other countries such
as the U.S. (McMillan et al., 2022; Rocha et al., 2023). Genomic
selection enables more accurate prediction of breeding values than
pedigree-based methods. This improvement is particularly evident
in species with larger reference populations (Meuwissen et al., 2001;
Brito et al., 2017; Guarini et al., 2018). However, in small ruminants
such as sheep, the effectiveness of genomic selection on realized
genetic gain depends strongly on factors such as the size of the
reference population and the intensity of selection, and may not
surpass traditional selection strategies when these are limited
(Ibañez-Escriche and Gonzalez-Recio, 2011; Brito et al., 2017).
When incorporating genomic information, the pedigree
relationship matrix used to obtain estimated breeding values
(EBV) from BLUP is replaced or, more often, combined with the
genomic relationship matrix to predict genomically-enhanced EBV
(GEBV) with the Single-step Genomic BLUP (ssGBLUP) method
(Legarra et al., 2009; Aguilar et al., 2010; Christensen and Lund,
2010). However, before implementing genomic selection, validation
studies are generally conducted, to assess the quality of the genomic
predictions (Legarra and Reverter, 2018).

The incremental increase in the accuracy of GEBV is particularly
important for traits that are measured late in life, sex-limited, traits
with low heritability, and for animals lacking their own phenotypic
records (Meuwissen et al., 2001; Daetwyler et al., 2012; Brown et al.,
2018; Brito et al., 2020). The performance of genomic predictions is
highly dependent on the size and composition of the reference
population, including the number of genotyped animals, number of
phenotypes available for genotyped animals, the genetic relationship
of reference individuals with the selection candidates, and how

genetically representative these reference animals are of the target
population (Lund et al., 2016; van den Berg et al., 2019). Genomic
prediction offers clear benefits by improving accuracy, particularly
in sheep populations where pedigree-based EBV often have low
initial accuracy. For example, in U.S. Rambouillet sheep, 41% and
62% improvement in GEBV accuracies were reported for
postweaning body weight and yearling body weight when
compared to EBV (Araujo et al., 2023). For composite sheep
populations, the gains in GEBV accuracy might be lower due to
their higher effective population size and lower connectedness
structure compared to other sheep breeds or other species (Rupp
et al., 2016; Araujo et al., 2021; Nilson et al., 2024). Furthermore, the
cost of genotyping, small flock sizes, limited use of artificial
insemination, and relatively higher proportions of misidentified
animals or missing information in the pedigree records compared
to other livestock species make the implementation of genomic
selection in sheep more challenging (van der Werf et al., 2014; Nel
et al., 2023).

Up to a certain level, the larger the reference population, the
higher the GEBV prediction accuracy. However, due to limited
economic resources for genotyping in most sheep breeding
programs, it is not feasible to genotype all or even most selection
candidates. Depending on the genotyping strategy used, the
prediction bias might increase and the GEBV accuracy might not
improve as expected (Schöpke and Swalve, 2016). Several studies
based on real and simulated data have evaluated strategies to design
reference populations to find an optimum scenario that maximizes
the GEBV prediction accuracy while minimizing the source of
biases, but none have been conducted in U.S. sheep (van der
Werf et al., 2014; Cesarani et al., 2019; Granado-Tajada et al.,
2021; Liu et al., 2023). U.S. flocks are typically smaller, more
dispersed across diverse production environments, and involve a
wider range of breeds and composite populations compared tomany
intensively selected or nucleus-based breeding schemes
found elsewhere.

Unknown parentage and misidentified animals in the pedigree
are challenges in any genetic improvement program, particularly
affecting pedigree-based BLUP, where errors may remain
uncorrected. These issues can lead to lower genetic progress and
reduced EBV theoretical accuracy (Nwogwugwu et al., 2020). While
genomic information can mitigate some of these effects, pedigree
errors may still impact the effectiveness of genomic prediction
models. In U.S. dairy cattle populations, up to 14% of genotyped
females had misidentified sires in 2012 (Wiggans et al., 2012). Up to
6% of pedigree errors were reported for UK Texel sheep (Kaseja
et al., 2022). These errors can cause a mismatch between the
pedigree (A) and genomic (G) relationship matrices, leading to a
reduction in the correlation between their off-diagonal elements.
This weakened alignment between pedigree-based and genomic
relationships can result in more biased genomic predictions
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FIGURE 1
Simulation design to obtain a composite sheep population (popUSA) with flock and cluster structures. Blue-colored B = phenotypic selection to
increase the simulated trait; Red-colored L = phenotypic selection to decrease the simulated trait; Orange-colored R = random mating; Dark blue
colored B2 = phenotypic selection to increase the secondary simulated trait; Blue colored Bebv = selection based on increased estimated breeding
values of the simulated trait. Number on the right side of each population identification are the population sizes.
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(Bradford et al., 2019; Pimentel et al., 2022). Despite the possibility
of correcting pedigree errors when genomic information is available,
this becomes more challenging in U.S. sheep populations. For
example, in the largest available dataset, which is comprised of
Katahdin sheep, only 10% of the 127,535 animals in the pedigree
were genotyped (Pinto et al., 2025b). This limited availability of
genotypes restricts the capacity to detect and correct parentage
errors, especially in flocks with incomplete or inconsistent
pedigree recording.

In this context, the primary objectives of this study were (i) to
investigate the effects of pedigree errors, genotyping strategies, and
trait heritability on ssGBLUP evaluations of simulated sheep
populations, and (ii) identify scenarios that maximize GEBV
accuracies and minimize the bias of GEBV prediction. The
findings of this study provide guidelines for breeders considering
strategies to begin implementing genomic selection in populations
with limited or no prior genotyping. Once a sufficiently large and
diverse reference population is established, alternative strategies may
be more appropriate, particularly those focused on maximizing
genetic gain.

2 Materials and methods

2.1 Population structure

The simulation mimicked a U.S. composite sheep population
(e.g., Katahdin), including its flock connectedness structure
(Vargas Jurado et al., 2021; Wilson et al., 2022). This complex
design was chosen to reflect the real-world characteristics of the
population being simulated. In doing so, it enabled us to provide
targeted recommendations for genomic selection strategies that are
relevant and applicable to U.S. composite sheep breeds. The R
software version 3.4.2 (R. C. Team, 2020) and AlphaSimR package
(Gaynor et al., 2021) were used to simulate the founder haplotypes,
the formation of a composite breed, and their breeding program.
The simulation design is shown in Figure 1. All simulated scenarios
were replicated five times with the same structure to form the
composite population and its breeding program. Initially,
1,020 generations were simulated to create multiple founder
breeds with 300 males (M) and 300 females (F). Although
sheep were domesticated more than 10,000 years ago (Deng
et al., 2020), the present simulation assumed a sheep population
from northern Europe (less than 2000 years ago) as a starting point
(Araujo et al., 2021). The first historical haplotypes (generation 0)
were simulated with an effective population size (Ne) of 100. A
continuous population expansion then occurred leading to Ne of
500 in generation 100 and Ne of 2,000 in generation 1,000,
mimicking the demographic expansion observed in European
sheep populations over time. After that, a population bottleneck
effect was simulated, reducing the historical Ne to 500 in
generation 1,020, creating the final historical haplotypes (FHH).
The bottleneck, mutation, and genetic drift were the bases for the
initial linkage disequilibrium (LD) pattern created. The entire
FHH formation was also done under the assumptions of
random mating, equal mating opportunity for M and F, and
discrete generations, using the backward-in-time simulation
process implemented in the Markovian Coalescent Simulator

software (MaCS) (Chen et al., 2009) accessed by the function
“runMacs2” on AlphaSimR (Gaynor et al., 2021).

Each founder breed had the same initial number of animals
(300 M and 300 F with a Ne of 500 from the FHH) and are referred
to as breeds A, B, C, and D (Figure 1). From this point forward, all
reported values refer to the number of individuals, not the Ne and
overlapping generations were assumed. The initial animals for these
breeds were generated using the “newPop” internal function from
the AlphaSimR package, based on the FHH. Mating took place
within breed (i.e., no migration) and replacement animals were
selected for ten reproductive cycles (RC). The number of offspring
per ewe lambing was set to two lambs, except for the intermediate
crosses (F1). Offspring sex was randomly assigned with equal
probability for the entire simulation. Two heritability levels,
0.35 and 0.10, were used in the formation of breeds A, B, C, and
D. Each heritability level was evaluated separately, and the entire
simulation was replicated, applying the same selection and mating
strategy described below. The traits were assumed to be normally
distributed, with an average of 50 and a standard deviation of 1.23,
mimicking an early body weight trait commonly observed once in
life in both M and F animals. Only additive genetic effects were
simulated as part of the total genetic variance. Different M:F mating
ratios and selection criteria were applied to create genetic divergence
among the four breeds (Table 1). Breeds A, B, and C were evaluated
for the primary trait (trait 1). Breed D, however, was selected based
on higher phenotypic values of a different trait. This second trait was
used for selection in breed D to further broaden genetic differences
among breeds and it had a heritability of 0.18; it was normally
distributed with an average of 2.31 and standard deviation of 2.09,
and it had a genetic correlation of −0.20 with the primary simulated
trait. This secondary trait was used in all scenarios for the RC of
breed D only. The final number of animals in each pure breed is
shown in Figure 1, reflecting the different demographic and
selection parameters applied to each breed to mimic variation in
real populations.

After establishing divergent pure breeds, a crossbreeding scheme
was applied to obtain a composite breed (e.g., Katahdin). The final
composite breed had three populations as the starting point: A, B,
and CD (e.g., Wiltshire, St. Croix, and Suffolk, respectively). The
initial composite CD F1 was generated by random crossing females
from breed C and males from breed D (e.g., Norfolk Horn and
Southdown, respectively), as shown in Figure 1. After generating a
base CD F1 population, ten RC of selection for trait 1 were simulated
to establish a new composite breed, as suggested by Rasali et al.
(2006). Table 1 and Figure 1 show the details of selection in CD RC
and the number of individuals, respectively. Females from this CD
population were randomly crossed with males from breed B to
generate the B(CD) F1 individuals. The B(CD) F1 females were
randomly crossed with males from breed A to generate A (B(CD))
F1 in RC 1042. For each F1 cross, the number of offspring born per
ewe was initially set to three to reflect the expected positive impact of
hybrid vigor on reproduction compared to the pure and final
composite breeds (set at two). To mimic natural variation in
litter size, a subset of ewes was then randomly assigned to lose
one offspring. Only one F1 population was generated per cross type.

After generating the A (B(CD)) F1, a random selection period
was conducted for five RC. Thereafter, this A (B(CD)) composite
breed was selected for five additional RC to increase the phenotypic
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values, as shown in Table 1. This process established the final
composite breed with multiple RC and 59,210 animals. Animals
from the last three RC of the final composite breed population were
used to mimic the structure of the U.S. Katahdin flock. These
animals were randomly assigned to one of four clusters and one
of four flocks within a cluster (i.e., 16 flocks in total). Figure 1 shows
a summary of the cluster level of the four simulated RC in which the
number of ewes in each cluster was kept similar: 607, 650, 608, and

697 for clusters 1, 2, 3, and 4, respectively. The selection criteria were
also different among clusters. Clusters 1 and 3 selected their animals
based on phenotypic values for the simulated trait. Clusters 2 and
4 animals were selected based on EBV for the simulated trait
predicted using BLUP. Animals within all clusters were selected
to increase phenotypic values or EBV for the same simulated trait.

Variance components, heritabilities, and EBV were re-estimated
after each RC for the 16 flocks (4 clusters) because of the selection

TABLE 1 Overall simulated pure (A,B,C,D), composite (CD, A (B(CD))) breeds, and intermediate crosses (F1) information.

Simulation parameters Pure breeds Intermediate crosses Composite breeds

A B C D CD F1 B(CD) F1 A (B(CD)) F1 CD A (B(CD))

Selection criteriaa H L R H R R R H R and H

Selected trait 1 1 1 2 1 1 1 1 1

Number of reproductive cycles 10 10 10 10 1 1 1 10 10

Male: Female ratio 1:18 1:20 1:22 1:15 1:20 1:18 1:20 1:20 1:14

Proportion of males selected 1.6% 1.3% 3.3% 2% 8% 3.4% 3.5% 0.9% 2.8%

Proportion of females selected 30% 37% 73.3% 30% 100% 100% 100% 17.7% 39.2%

aH, higher phenotypic values; L, lower phenotypic values; R, random.

TABLE 2 Overall simulated flock information per reproductive cycle.

Flock number Number of breeding
ewes

Number of breeding
rams

Male: Female
ratio

Cluster
number

Selection
criteriaa

Flock 01 42 3 1:14 1 Phenotype

Flock 02 170 10 1:17 1 Phenotype

Flock 03 70 5 1:14 1 Phenotype

Flock 04 325 13 1:25 1 Phenotype

Flock 05 45 3 1:15 2 EBV

Flock 06 190 10 1:19 2 EBV

Flock 07 65 5 1:13 2 EBV

Flock 08 350 25 1:14 2 EBV

Flock 09 48 3 1:16 3 Phenotype

Flock 10 200 10 1:20 3 Phenotype

Flock 11 60 4 1:15 3 Phenotype

Flock 12 300 20 1:15 3 Phenotype

Flock 13 51 3 1:17 4 EBV

Flock 14 216 12 1:18 4 EBV

Flock 15 55 5 1:11 4 EBV

Flock 16 375 25 1:15 4 EBV

Totala/Averagec 2562b 156b 1:16.12c

aSelection criteria EBV: estimated breeding values.
bValues with these superscripts are total values of the population.
cValues with these superscripts are average values of the population.
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TABLE 3 Overall simulated flock connectedness among reproductive cycles.

Flock
number

Number of breeding
ewes

Selection
decision

Flocks in which the sires were used
(origin of the males)

Purchase of sires
strategy

Flock 01 42 1 02 and 09 Fixed

2 02 and 09

3 02 and 09

Flock 02 170 1 01, 02, and 06 Fixed

2 01, 02, and 06

3 01, 02, and 06

Flock 03 70 1 03, 04, and 13 Fixed

2 03, 04, and 13

3 03, 04, and 13

Flock 04 325 1 03, 04, and 17 Fixed

2 03, 04, and 17

3 03, 04, and 17

Flock 05 45 1 06 and 11 Fixed

2 06 and 11

3 06 and 11

Flock 06 190 1 06, 08, and 15 Fixed

2 06, 08, and 15

3 06, 08, and 15

Flock 07 65 1 02, 07, and 16 Fixed

2 02, 07, and 16

3 02, 07, and 16

Flock 08 350 1 03, 08, and 17 Fixed

2 03, 08, and 17

3 03, 08, and 17

Flock 09 48 1 09 and 14 Not fixed

2 09 and 16

3 09 and 11

Flock 10 200 1 10, 12, and 16 Not fixed

2 04, 08, and 10

3 03, 10 and 13

Flock 11 60 1 10, 11, and 14 Not fixed

2 11, 12, and 13

3 09, 11, and 15

Flock 12 300 1 10, 08, and 12 Not fixed

2 11, 12, and 14

3 07, 09, and 12

Flock 13 51 1 10, 13, and 14 Not fixed

2 09, 13, and 15

3 11, 13, and 15

(Continued on following page)
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done in clusters 2 and 4. This process is referred to as the “general
evaluation” throughout the paper. We used a pedigree without
errors and phenotype information in the BLUPF90+ software
(Misztal et al., 2022) for all general evaluations. The true
variance components were also obtained using the AlphaSimR
package to better compare the variance components pattern
among the four RC and the general evaluations (Supplementary
Table S1). Three general evaluations were conducted to obtain EBV
and apply the cluster-specific selection criteria in the simulated
breeding program. An additional (fourth) general evaluation,
excluding genomic information, was performed in scenarios
where genotyping was based on the highest EBV.

A flock level was also added to each cluster. Each cluster had four
flocks of different sizes (number of ewes). Table 2 shows the
structure of flocks and clusters. Flocks varied in size from 42 to
375 breeding ewes. By design, the distribution of the flock sizes was
skewed toward smaller flocks. The number of breeding sires varied
according to the flock size from 3 to 25 and theM:F ratio varied from
1:11 to 1:25 with an average across the entire population of 1:16. A
5% mortality rate was applied at random to breeding ewes within
each RC. The ewe culling rate was 15%, and the culling criteria
differed based on the cluster to which the flock was assigned. Flocks
1 to 4 (cluster 1) and 9 to 12 (cluster 3) culled their animals based on
the lowest phenotypic values. Flocks 5 to 8 (cluster 2) and 13 to 16
(cluster 4) culled their animals based on the lowest EBV for the
simulated trait. To simulate a flock effect, a unique constant value
was added to each flock’s mean phenotype. These values, randomly
drawn from a uniform distribution within the range of 0.10–0.25,
ensured variation among the 16 flocks. The same values were added
for each flock across all scenarios and replicates. Ewes were kept
within a flock for a maximum of 5 RC, while no age-based culling
criteria were applied for rams.

Amortality rate of 10% was applied randomly to the offspring in
every RC before selecting M and F replacements. The replacement
rate was 20% to keep the flock sizes constant across RC, and the
selection criteria were like the culling criteria. Flocks 1 to 4 (cluster 1)
and 9 to 12 (cluster 3) selected replacement animals based on the

highest phenotypes. Flocks 5 to 8 (cluster 2) and 13 to 16 (cluster 4)
selected replacement animals based on the highest EBV for trait 1.
To simulate an RC effect, a small unique constant value (noise) was
added to the mean phenotype of each RC, introducing
differentiation other than the expected due to selection. These
values ranged from 0.01 to 0.05 and were sampled from a
uniform distribution.

The genetic connections across flocks mimicked composite
sheep populations participating in the U.S. national sheep genetic
evaluation (NSIP). Two strategies were used to mimic that structure,
one at the cluster level and the other at the flock level. Animals in
clusters 1 and 2 selected sires from the same outside flocks in each of
the four RC. Animals in clusters 3 and 4 instead selected their
outside sires from varying flocks each RC (Table 3). These clusters
were designed to represent groups of flocks with similar selection
practices and genetic exchange patterns.

Table 3 shows the strategies for acquiring sires (sire selection
decision) for each flock in all RC. Three categories of flock size were
defined: small flocks with up to 50 reproductive ewes, medium flocks
with 51–100 ewes, and large flocks with more than 100 ewes per RC.
Small flocks acquired 50% of breeding sires from flocks within the
same cluster and 50% from flocks in different clusters. Medium
flocks acquired 33% of their breeding sires from flocks within the
same cluster, another 33% from flocks outside their cluster, and the
last 33% from within the flock. Larger flocks acquired 25% of their
sires from flocks within the same cluster, another 25% from flocks
outside their cluster, and the last 50% from within the flock.

In cases where the number of breeding sires was not evenly
divisible for the adopted strategy, the remainder were acquired from
outside the flock’s cluster. Another assumption was that some
clusters were selected for superior EBV and others for superior
phenotypic value. If a flock that selected for superior phenotype
acquired a sire from a flock that selected for superior EBV, it would
consider only the phenotype, not the EBV, in its selection. Female
selection was done only within the flock. These strategies were
designed to represent groups of flocks with different sire selection
practices and genetic exchange patterns, mimicking the variation in

TABLE 3 (Continued) Overall simulated flock connectedness among reproductive cycles.

Flock
number

Number of breeding
ewes

Selection
decision

Flocks in which the sires were used
(origin of the males)

Purchase of sires
strategy

Flock 14 216 1 04, 14, and 16 Not fixed

2 04, 12, and 14

3 04, 13, and 14

Flock 15 55 1 04, 14, and 15 Not fixed

2 08, 13, and 15

3 01, 15, and 16

Flock 16 375 1 08, 14, and 16 Not fixed

2 02, 15, and 16

3 06, 12, and 16

Selection decision (1, 2, and 3) represents different sire selection strategies used in the simulation. Strategy 1 involved selecting sires after the first general evaluation, strategy 2 after the second

general evaluation, and strategy 3 after the third general evaluation.
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connectedness observed among producer groups (i.e., producers in
nearby states) in U.S. composite sheep populations enrolled in NSIP.

The final population used for the genetic prediction analyses was
called popUSA (Figure 1), which contained 18,747 animals
(2,718 animals for RC 0, plus 3 RC with 5,124 offspring). The
Ne of popUSA was simulated to approach 103.7 ± 23.5, which was
recently estimated using pedigree information in U.S. Katahdin
sheep enrolled in the NSIP (Nilson et al., 2024). All previously
determined parameters of the simulations, such as M:F ratios, flock
sizes, replacement rates, mortality rates, F1 litter sizes, and
connectedness, were adjusted until the targeted Ne was achieved
for popUSA. The Ne of the simulated popUSA was calculated based
on the increase of realized pedigree inbreeding as proposed by
Falconer and Mackay (1996). The average inbreeding used by
Falconer and Mackay (1996) formula was calculated based on the
outputs from the RENUMF90 software (Misztal et al., 2022).

The average kinship between flocks in the popUSAwas calculated
using the R package “optiSel” (Wellmann, 2019), based on the
pedigree-derived kinship matrix. Pairwise average kinship values
were computed between all 16 flocks. Out of all pairwise
comparisons, 34 flock pairs had kinship values < 0.002, 62 ranged
from 0.002 to 0.005, 19 ranged from 0.005 to 0.01, and 5 exceeded
0.01. These results indicate that the simulated flocks captured a range
of genetic connectedness, with most flocks falling in the middle
ranges, some being closely related, and others being largely
unrelated, mimicking real U.S. sheep populations (Kuehn et al., 2009).

2.2 Simulated genome and SNP data

The simulated sheep genome had 26 autosomal chromosomes
varying in size from 42,034,648 to 275,406,953 base pairs (total
genome length: 2,449,943,362 base pairs) based on the ARS-UI_
Ramb_v2.0 reference genome (Davenport et al., 2022). The genome
simulation was done simultaneously with the historical haplotype
formation using the function “runMACS2” and the software MACS
mentioned above. The simulatedmutation rate of 2.5 x 10–7 was applied
equally across the genome. The number of segregating sites differed for
each chromosome, following the same proportion of quantitative trait
loci (QTL) relative to chromosome length, plus the number of markers
multiplied by a constant (1.2). This strategy mimics a more realistic
population genome with more segregating sites than the number of QTL
and SNPmarkers, which is often called an opaque simulator type (Vargas
Jurado et al., 2021; Amini et al., 2021). Simulating additional segregating
sites yields a more accurate representation of linkage disequilibrium
patterns and background variation fromneutral and non-causal loci. This
enables genomic selection strategies to be evaluated under conditions that
closely mimic the polygenic architecture of the simulated traits, thereby
making the resulting recommendations more directly applicable to real
sheep populations. The total segregation sites were 125,829, varying from
14,145 on chromosome 1 to 2,159 on chromosome 24
(Supplementary Table S2).

A total of 6,800 QTL were simulated along the entire genome.
The number of QTL per chromosome varied proportionally to the
chromosome size (118 for chromosome 24 to 771 for chromosome
1). The QTL additive genetic effects were sampled from a standard
normal distribution and rescaled to match the simulated trait
parameters. The number of QTL was based on the

AnimalQTLdb release 53 (Hu et al., 2022). To achieve the
desired number of SNP after quality control (close to 30,000),
and assuming that some QTL were not yet annotated, we
increased the number of QTL to 6,800 as mentioned above. In
addition, as body weight is a highly polygenic trait, we assumed that
many causal variants remain undetected in sheep populations and,
therefore, modeled a larger number of QTL to better approximate
the trait’s underlying genetic architecture. The number of markers
(bi-allelic SNP) was also proportional to the chromosome length.
The number of SNP ranged from 1,681 (chromosome 24) to 11,016
(chromosome 1), totaling 97,998 SNP (Supplementary Table S2).
Quality control methods were applied using the default parameters
of the BLUPF90+ software (Misztal et al., 2022). Specifically, SNP
with a minor allele frequency (MAF) < 0.05 were removed. A total of
34,246 ± 947 SNP were available for the analyses, which is
comparable to the number of SNP in real U.S. sheep genomic
evaluations (Araujo et al., 2023).

2.3 Prediction of (G)EBV and dataset
partitioning

The genetic and genomic predictions in popUSA were
performed in the BLUPF90+ software (Misztal et al., 2022). The
AI-REML algorithm was used for all scenarios and replicates to
estimate variance components. The model used in both
methods was:

y � Xb + Zu + e

where y is the vector of phenotypic records, b is the vector of fixed
effects (flock-cluster, RC, and sex), u is the vector of direct additive
genetic effects with u ~ N(0,Hσ2g) in the ssGBLUP approach and
u ~ N(0,Aσ2g) in the pedigree-based BLUP approach, e is the
vector of random errors with e ~ N(0, Iσ2e), and X and Z are
the incidence matrices for the fixed and additive genetic effects,
respectively. The inverse ofH was computed as described by Aguilar
et al. (2010) and the default values for weighting parameters from
the BLUPF90+ software (Misztal et al., 2022).

The popUSA was divided into training and validation sets to
assess the observed and accuracy, bias, and dispersion of GEBV
predictions. The training sets were composed of individuals from
the first to third RC, and the validation set included animals from the
fourth RC. The number of genotyped individuals in the training and
validation sets varied according to the evaluated scenarios, which will
be explained in the following sections. In a scenario with 100% of
animals being genotyped, 13,623 animals in the training set had
phenotypic, pedigree, and genomic information and 5,124 animals in
the validation set had only genomic and pedigree information. The
number of animals in the pedigree data for all scenarios and replicates
was 21,027, which includes the 18,747 animals in the popUSA plus the
parents of sampled individuals, who were included as founders.

2.4 Evaluated scenarios

A total of 6,144 unique scenarios were evaluated, with the
popUSA divided into training and validation sets (Supplementary
Figure S1). As previously mentioned, two trait heritability levels
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(0.35 and 0.10) were simulated. Furthermore, three genotyping
strategies were evaluated: choosing the animals to be genotyped
based on the highest phenotypes (Phenotype), highest BLUP EBV
(EBV), or at random (Random).

Different proportions of misidentified sires were simulated, 0, 5,
10, and 20%, to evaluate the impact of pedigree errors (misidentified
sires and missing pedigree). To simulate misidentified sires, we
randomly replaced sire IDs in the pedigree while ensuring that a
given sire ID could be assigned to multiple offspring. This mimics
real-world errors in which all lambs in a litter can possibly share the
same incorrect sire, with the assigned sire possible drawn from
within the flock. The algorithm maintained realistic pedigree
structures by preventing impossible sire-offspring relationships.
After applying the proportion of misidentified sires, different
proportions of missing pedigree information were also simulated:
0, 5, 10, and 20% (Supplementary Figure S1). The total proportion of
missing pedigree was equally split between sires and dams. Overlap
between both pedigree error types was not allowed. No correction
was applied to restore the true parentage after introducing pedigree
errors. That is, misidentified sires remained uncorrected throughout
all scenarios to reflect the impact of unrecognized errors in practice.

Different proportions of genotyped animals for each sex were
also evaluated. All possible combinations of 0, 5, 10, 15, 20, 40, 80,
and 100% of genotyped females or males were compared
(Supplementary Figure S1). All proportions of genotyped animals
were applied considering sex and RC levels (1, 2, and 3) to avoid
misrepresenting certain RC in the training dataset. For example, if a
scenario included 20% of males and 40% of females genotyped, these
proportions were applied separately within each RC level
(Supplementary Table S3).

2.5 Scenario comparison

The (G)EBV were estimated in each validation set for all
scenarios. The true accuracy, bias, and dispersion (acc, bias, and
disp, respectively) were then estimated on the validation set for each
scenario using the true breeding values (TBV). The validation
statistics obtained using the TBV were calculated as:

acc � cov u, û( )������������
var u( )var û( )√

bias � �u − û

disp � cov u, û( )/var û( )
where cov(u, û) is the covariance between TBV (u) and (G)EBV (û),
var(u) and var(û) are the variance of TBV and (G)EBV,
respectively, �u and û are the averages of TBV and (G)EBV,
respectively, all from the validation sets.

Following Bermann et al. (2024), deviations from 1 (regression
slope only) were considered as the dispersion values. Dispersion
closer to 1 is desirable because it indicates GEBV variance matches
TBV variance, with no inflation or deflation. All statistics were
compared to their respective scenario without genomic information
yet with a perfect pedigree to assess the impact of including genomic
information and pedigree errors in the analyses. In other words, the
percentage change or difference was calculated for each parameter,
comparing the average value of the evaluated ssGBLUP scenarios

against the BLUP with a perfect pedigree (BLUPPP or baseline)
(Vickers, 2001). For instance, the acc percentage change was
calculated as:

acc percentage change � accssGBLUP − accBLUPPP
accBLUPPP

× 100

where accssGBLUP is the average acc value for the evaluated scenario,
accBLUPPP is the acc value for BLUPPP respective scenario.

The same percentage change, was applied to all statistics,
totaling six parameters for each scenario comparison (for a more
detailed description, see Supplementary Table S4). Pearson
correlation coefficients were calculated between acc, bias, and
disp to evaluate the average association of these metrics among
all scenarios. A linear model was used to estimate the effect of each
predictor (scenarios) on each response variable (acc, bias, disp, and
percentage change for each). Each response variable were analyzed
using linear models that included fixed effects of heritability (0.10 or
0.35), proportion of misidentified sires (0, 5, 10, or 20%), proportion
of missing pedigree (0, 5, 10, or 20%), genotyping strategy
(Phenotype, EBV, or Random), proportion of males genotyped
(0, 5, 10, 15, 20, 40, 80, or 100%), and proportion of females
genotyped (0, 5, 10, 15, 20, 40, 80, or 100). The model accounted
for all two-way through six-way interactions among these factors, as
their combined effects were of interest. The random residual error
term was assumed to be normally distributed with mean zero and
homogeneous, independent variances. Pairwise comparisons of
means for fixed effect levels were made when the analyses of
variance indicated a significant effect (P < 0.05), with Tukey’s
test at a 5% significance level. The “emmeans” (Lenth et al.,
2021) and “agricolae” (De Mendiburu and Simon, 2015) R
packages were used for the comparison of the means (R. C.
Team, 2020).

3 Results

3.1 Accuracy, bias, and dispersion of
genomic predictions

The estimated variance components closely matched the true
values across replicates and scenarios for both simulated heritability
levels. Both additive genetic and residual variances followed patterns
consistent with the true values, showing only minor fluctuations
across general evaluations. Heritability estimates initially deviated
from the true values, slightly overestimated for the moderately
heritable trait and underestimated for the lowly heritable trait,
but gradually converged as evaluations progressed. From the
third general evaluation onward, estimates stabilized and
remained consistent, even with the addition of genomic
information. It is important to note that these results relate
specifically to the fourth RC of the popUSA.

The main effect of all evaluated scenarios impacted (P < 0.005)
all parameters. For acc and its percentage change, up to 4-way
interactions were significant. All other parameters exhibited
significant interactions up to 5-way interaction levels. These
results indicate that the accuracy, bias, and dispersion of genomic
predictions are influenced by complex combinations of factors
rather than any single factor alone, highlighting the need for
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integrated strategies when designing genomic selection programs.
The following sections focus on the most important interaction
levels, presented using least squares means (marginal means). While
higher-order interactions were significant, they did not invalidate
inferences drawn from lower-order interactions. This approach
facilitated a clearer understanding of complex interactions by
emphasizing combinations with the most practical implications
for sheep breeding programs and genomic predictions, thereby
aiding the interpretation and application of the findings.

Correlation coefficients between different parameters were
similar for both simulated heritabilities (Table 4). When accuracy
increased, bias decreased, and dispersion either decreased, going
towards 1 (less overdispersion), or increased, going towards greater
than 1 (under-dispersion). When bias increased, (G)EBV became
more over-dispersed.

3.2 Genotyping strategies scenarios

Prediction accuracies were higher with the random genotyping
strategy for both moderate and low heritability traits. Table 5 shows

the accuracy metrics and their percentage change by genotyping
strategy for the simulated heritability level of 0.35. On average, the
Random strategy had greater acc by 5.58% ± 0.31% when compared
to the BLUPPP scenario (baseline is 0.52). However, on average, the
acc decreased by 2.97% ± 0.36% in the Phenotype genotyping
strategy and by 4.74% ± 0.39% in the EBV genotyping strategy.
With few exceptions, the trends observed for accuracy for the lowly
heritable trait were like the moderately heritable trait although, as
expected, with smaller values (Table 5).

Similar trends were also observed between the moderate and
lowly heritable traits for the bias results. For a heritability of 0.35, the
bias values were smaller when compared to the BLUPPP (baseline of
1.358), varying from −73.55% ± 0.28% for the Random strategy
to −7.44% ± 0.80% for the Phenotype strategy (Table 5). However,
for the lowly heritable trait, bias values were greater than their
respective baselines (1.041 for the bias) for the EBV
strategy (Table 5).

On average, the scenarios were over-dispersed across both
heritability levels. The percent disp changes were negative across
both heritability levels and all genotyping scenarios (Table 5). This
indicates even greater overdispersion compared to the BLUPPP
scenario (baseline). The baseline disp values were 0.94 for a
heritability of 0.35 and 0.95 for a heritability of 0.10.

3.3 Pedigree scenarios

The impacts of pedigree errors on parameters were similar for
both heritability levels. Generally, as the pedigree errors—both
misidentified sires (MS) and missing information (MI)—
increased, the average accuracy decreased, bias increased, and
dispersion either increased towards under-dispersion (greater

TABLE 4 Pearson correlation coefficients (SE) between true parameters for
heritability level of 0.35 (above diagonal elements) and 0.10 (below
diagonal elements).

Parameter acc bias disp

acc 1 −0.25 (0.005) 0.85 (0.007)

bias −0.32 (0.005) 1 −0.28 (0.007)

disp 0.76 (0.006) −0.37 (0.006) 1

Parameter: acc, prediction accuracy; bias, prediction bias; disp, prediction dispersion.

TABLE 5 Average true accurary, bias, and, dispersion of genomic prediction with their respective percent change (%) for a trait with a heritability level of
0.35 and 0.10 by genotyping strategy.

Parameter Baseline value Heritability Genotyping strategy

Random Phenotype EBV

acc — 0.35 0.55a ± 0.001 0.50b ± 0.001 0.49c ± 0.002

0.10 0.48a ± 0.001 0.42b ± 0.001 0.41c ± 0.001

bias — 0.35 0.36c ± 0.003 1.26a ± 0.011 1.10 b ± 0.009

0.10 0.21c ± 0.002 1.21a ± 0.014 1.09 b ± 0.012

disp — 0.35 0.85a ± 0.001 0.73c ± 0.002 0.74b ± 0.002

0.10 0.91a ± 0.001 0.70b ± 0.003 0.71b ± 0.004

acc change 0.518 0.35 5.58a ± 0.31 −2.97b ± 0.36 −4.74c ± 0.39

0.441 0.10 8.58a ± 0.28 −5.28b ± 0.38 −8.22c ± 0.42

bias change 1.358 0.35 −73.55c ± 0.28 −7.44a ± 0.80 −18.73b ± 0.67

1.041 0.10 −79.23c ± 0.23 −16.48a ± 1.34 6.04b ± 1.15

disp change 0.941 0.35 −9.81a ± 0.15 −22.89c ± 0.23 −21.55b ± 0.24

0.953 0.10 −4.84a ± 0.15 −26.27b ± 0.33 −25.82b ± 0.36

Parameter: acc, prediction accuracy; bias, prediction bias; disp, prediction dispersion.

Random, randomly genotyping; Phenotype, genotyping superior phenotypes, and EBV, genotyping superior EBV., within each row, genotyping strategies with no common suberscript are

different (P < 0.05).
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than 1) or decreased towards more overdispersion (lower than 1).
Therefore, for simplicity, only the results for the 0.35 heritability
level are presented.

Prediction accuracies were greatest (P < 0.05) in the scenarios
with no MS and MI. Figure 2 shows the accuracy metrics and their
percentage change by pedigree error scenario for the heritability
level of 0.35. The only scenario where the acc achieved values greater
than 0.60 was without errors (Figure 2A). Also, as the proportions of
MS and MI increased, the acc decreased, with the MI having a
greater impact on reducing the acc. In all scenarios where the
proportion of MI and MS were opposite (e.g., 5% of MS and 0%
of MI versus 0% of MS and 5% of MI), the MI effect had a greater
numerical (P > 0.05) impact on reducing the acc. As pedigree errors
increased, accuracy decreased.

On average, genomic information increased acc in a scenario
without pedigree errors by 17% compared to their BLUPPP scenario
(the baseline acc was 0.518), as shown in Figure 2B. Scenarios where
one or both MI and MS was 5% or less, and the scenario with 10% of
MS and 0% of MI, had an average acc greater than the baseline. All
other scenarios could not overcome the losses due to pedigree errors
by including genomic information.

For all scenarios the predictions of breeding value were biased
downwards (greater than 0). The smallest bias (±SE) value (0.39 ±
0.09) was in the scenario with 0% MS and 0% MI (Supplementary
Figure S2a). As with the results on accuracy, MI had a greater impact
on bias thanMS. In all scenarios where the proportion of MI andMS
were opposite (e.g., 5% of MS and 0% of MI versus 0% of MS and 5%
of MI) the MI effect had a greater impact in increasing (P < 0.05) the
bias. When 20% of both pedigree error types were evaluated, the bias
was greatest at 1.70 ± 0.15.

Except for two pedigree scenarios (10% MS and 20% MI; 20%
MS and 20% MI), incorporating genomic information was able to
reduce the bias compared to the baseline (1.358), on average. The
greatest reduction (P < 0.05) from the others (±SE) was −71.28% ±
0.97 in the scenario without pedigree errors, and the smallest
reduction was −9.87% ± 1.29 in 20% MS and 10% MI scenarios
(Supplementary Figure S2b).

Overall, all values of the disp were over dispersed (lower than 1),
and the extent of overdispersion increased as the proportions of
pedigree errors increased. In the scenario without pedigree errors,
inclusion of genomic information did not affect the statistic for
dispersion compared to the baseline (0.941 for disp in the BLUPPP
(Supplementary Figure S3b). Additionally, as the proportion of
pedigree errors increased, the reduction in the parameter values
clearly showed greater overdispersion.

3.4 Genotyping proportion scenarios

As in the pedigree error scenarios, both trait heritabilities show
similar trends. Additionally, the Phenotype-based genotyping
strategy had similar results as the EBV strategy. Generally, as the
proportion of genotyped animals increased, average accuracy
increased, bias decreased, and dispersion approached 1.
Additionally, with more pedigree errors accuracy decreased while
bias and dispersion increased. Therefore, for simplicity, only results
for the trait with moderate heritability, and the Random and EBV
genotyping strategies are presented. These results will be shown
without pedigree errors or with 20% MI and 20% MS, which
represent the extreme scenarios for all statistics.

Across all male and female genotyping proportions, acc
increased as the proportion of genotyped animals increased
(Figure 3). In both the EBV and Random genotyping strategies,
accuracies were highest when all animals were genotyped and lowest
when no animals were genotyped. Pedigree errors reduced accuracy
across all scenarios, but the overall ranking of the evaluated
strategies remained the same. Notably, accuracy under the
Random genotyping strategy was generally higher than under the
EBV strategy, even when pedigree errors were present.

Unlike accuracy, bias trends differed between the selective and
Random genotyping strategies (Supplementary Figure S4). In
selective genotyping, bias increased until 40% of both sexes were
genotyped before decreasing when at least 80% of one sex was
genotyped. The highest biases occurred in selective genotyping,

FIGURE 2
Average true accuracy of genomic prediction with their respective percentage change for a trait with a heritability level of 0.35 by pedigree error
scenarios. Misidentified sire (MS) andmissing information (MI) were each evaluated at proportions of 0, 0.05, 0.10, and 0.20. (A,B) Show the true accuracy
results and the percentage change compared to the baseline (BLUPPP) scenario for the true accuracy, respectively. Baseline value is 0.518 in (B). Within
each panel, genotyping strategies with no common superscript are different (P < 0.05).

Frontiers in Genetics frontiersin.org11

Rocha et al. 10.3389/fgene.2025.1697103

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1697103


particularly with pedigree errors. In contrast, bias under Random
genotyping steadily declined as more animals were genotyped,
though pedigree errors led to slightly higher bias.

The disp results followed a similar trend in all scenarios. As the
proportion of genotyped animals increased, the dispersion value
increased towards 1, meaning less overdispersion (Supplementary
Figure S5). Furthermore, when all animals were genotyped, the
dispersion values were closest to 1 in all scenarios. For the scenario
with Random genotyping without pedigree errors, dispersion
values showed no clear pattern up to 20% genotyped, after
which the various scenarios behaved similarly. In all scenarios
other than Random genotyping without pedigree errors,
dispersion values diverged (P < 0.05) when at least 40% of one
sex was genotyped. In the scenario with a Random genotyping
strategy and no pedigree errors (Supplementary Figure S5c) the

dispersion values were closer to 1 as compared to the
other scenarios.

3.5 Genotyping proportion, pedigree, and
sex scenarios

In the genotyping proportion scenarios described above, the
extent of pedigree errors evaluated was 20% MS and 20% MI. To
better understand the impact of each type of pedigree error, we
tested 20% MS and 20% MI separately, along with the sexes and
proportions of the animals genotyped. Generally, the average
accuracy increased as the proportion of genotyped animals
increased. MI had a greater impact in reducing the prediction
accuracies than MS. Genotyping the same proportion of animals

FIGURE 3
The average true accuracy of genomic predictions in simulations for a trait with a heritability level of 0.35 for increasing proportions of male and
female animals genotyped. Interaction between proportions of males and females genotyped, all possible combinations of 0, 5, 10, 15, 20, 40, 80, and
100% in both factors are shown. (A) Shows the true accuracy results for the EBV genotyping criteria without pedigree errors. (B) Shows the true accuracy
results for the EBV genotyping criteria with 20% of misidentified sires and 20% of missing information. (C) Shows the true accuracy results for the
Random genotyping criteria without pedigree errors. (D) Shows the true accuracy results for the random genotyping criteria, with 20%misidentified sires
and 20% missing information.
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from each sex yielded significantly higher accuracies than
genotyping only males or only females. When only a small
proportion (up to 10%) of animals was genotyped, prioritizing
genotyping males resulted in slightly greater accuracies. However,
when a higher proportion of animals were genotyped, genotyping
females resulted in greater accuracies. When comparing the

Random (Figure 4A) with the EBV (Figure 4B) genotyping
strategy in a pairwise way for the same scenario, the Random
strategy had on average accuracies that were 0.05 higher. Also, as
the proportion of genotyped animals increased, the impact of both
pedigree error types decreased, resulting in accuracy values closer to
their respective scenarios without pedigree errors.

FIGURE 4
The average true accuracy of genomic predictions in simulations for a trait with a heritability level of 0.35 by Genotyping Proportions and Pedigree
Scenarios. Interaction between proportions of males (M), females (F), and males and females (M_F) genotyped, with scenarios without pedigree errors,
with 20% of misidentified sires (MS) or with 20% of missing information (MI). Combinations of 5, 10, 20, 40, 80, and 100% of both males and females were
genotyped, and the same proportions were applied for each sex separately. (A) Shows the true accuracy results for the Random genotyping criteria,
and (B) Shows the true accuracy results for the EBV genotyping criteria.
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Average bias decreased as the proportion of genotyped animals
increased (Supplementary Figure S6). When randomly genotyping
only males with or without pedigree errors, the bias values were
higher than other interaction levels within and across genotyping
proportions. As the proportion of genotyped animals increased, bias
decreased in most scenarios, especially in those with missing
pedigree information, emphasizing the greater impact of missing
pedigree information on bias. In all scenarios, regardless of pedigree
error type and whether both sexes or only males or females were
genotyped, the bias of prediction increased as the proportion of
genotyped animals rose to 40%. Bias began to decrease when high
proportions of animals (80%) were genotyped.

The average dispersion levels were lower than 1, demonstrating
inflation of GEBV (Supplementary Figure S7). When the random
genotyping strategy was used, dispersion values were statistically
closer to 1 compared to their respective scenarios under the EBV-
based genotyping strategy. Also, when no pedigree errors were
introduced, and M and F were genotyped, the dispersion values
were no lower than 0.9 in the Random genotyping strategy and no
lower than 0.76 in the EBV strategy. However, when any proportion
of pedigree error was considered, the dispersion value dropped
substantially, achieving values closer to 0.52 when fewer animals
of one sex were genotyped in the EBV strategy. A similar but smaller
drop was also observed in the Random strategy.

4 Discussion

Across all RC, the genetic parameters and their respective
estimates remained relatively consistent. In agreement with
theoretical expectations for populations under selection, the
popUSA achieved a certain Bulmer equilibrium. This equilibrium
was reflected in the stabilization of the additive genetic variance
during the third general evaluation. This genetic evaluation
incorporated information from exactly four RC of the breeding
program and a genetic background spanning the previous RC of the
composite breed [A (B(CD))]. These findings align with the
theoretical work of Bulmer (1971), Dekkers (1992), Bijma and
Van Arendonk (1998), and Gorjanc et al. (2015), meaning that
the gametic-phase disequilibrium caused by selection was stabilized.
General evaluations and variance component estimation were
performed using a perfect pedigree and phenotypic records. At
the third general evaluation, a pedigree depth of up to six
generations (calculated with the R package ’optiSel’ [Wellmann,
2019]) was sufficient for estimating the variance components of the
popUSA founders. Slight changes in variance component estimates
in the “Fourth (G)” general evaluation were caused by incorporating
genomic information and pedigree errors in the analyses. The values
of this final general evaluation were used in the predictions, and their
slight differences are reflected in the validation statistics and
accounted for in the five replicates.

4.1 Accuracy, bias, and dispersion of
genomic predictions

While direct cause-and-effect relationship cannot be inferred,
the correlation results between metrics revealed an interesting trend.

As the accuracies increased, the dispersion values of GEBV tended to
deflate, moving closer to 1. In a study investigating the inflation of
GEBV in Holstein cows, Misztal (2017) also found decreased
inflation and increased accuracy as the numerator relationship
matrix became more complete, like what Westell et al. (1988)
found. In Misztal (2017) analyses, they accounted for inbreeding
and unknown parent groups. Another way of reducing inflation, if
inbreeding is not accounted for, is by testing different values for τ
and ω while building the H−1 matrix, as Harris et al. (2012) and
Tsuruta et al. (2013) suggested. However, more recently,
Nilforooshan (2022) concluded that altering these τ and ω is not
recommended due to recent ssGBLUP improvements, such as
accounting for inbreeding. Consequently, the present study did
not evaluate the impact of changing values of τ and ω since
accounting for inbreeding is a default procedure in recent
BLUPF90+ software (Misztal et al., 2022). A value of 1 was
assumed for both τ and ω while α and β values were 0.95 and
0.05, respectively, in all scenarios.

This study focused on validation statistics rather than long-term
measures such as genetic gain. The aim was to assess the immediate
impact of incorporating genomic information into evaluations, not
the cumulative response over successive reproductive cycles. Genetic
gain is a downstream outcome of prediction quality, while accuracy,
bias, and dispersion provide direct and cycle-specific (validation
animals) measures of how well genomic information improves
evaluation (Boichard et al., 2016; Bermann et al., 2021). These
metrics are also the established standard in genomic validation
studies prior to adoption of genomic selection in new
populations (Legarra and Reverter, 2018), ensuring our results
remain directly interpretable and broadly comparable across
studies. This focus is also consistent with the objectives of our
study, which considered strategies for establishing a new reference
population in otherwise ungenotyped flocks. Once a sufficiently
large and diverse reference population is established, realized genetic
gain becomes a more relevant criterion for comparing strategies.

4.2 Genotyping strategies scenarios

For both simulated trait heritability levels, the Random
genotyping strategy yielded greater accuracy, less biased
predictions, and less inflated GEBV than any selective genotyping
strategy. Similar results have been reported in simulation studies
comparing genotyping strategies for building reference populations
in a ssGBLUP framework in beef cattle (Esrafili Taze Kand
Mohammaddiyeh et al., 2023), pigs (Liu et al., 2023), and a
general species that was not litter bearing (Boligon et al., 2012).
Not choosing animals to be genotyped based on pre-determined
criteria results in a more informative (diverse) and unbiased
reference population, which can improve the accuracy of
genomic predictions. The advantage of randomly genotyping
animals is even more pronounced in composite sheep
populations, which have relatively higher Ne compared to
purebred sheep and other livestock species (Nilson et al., 2024;
Oliveira et al., 2020). Populations with higher Ne need larger
reference populations to achieve similar GEBV prediction
accuracies for a given trait heritability (Daetwyler et al., 2012).
By randomly choosing animals for genotyping, the number of
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animals needed to achieve the same prediction accuracy was
reduced, which would lead to a significant reduction in
genotyping costs over time (more details in the following
discussion sections). This is substantiated by evaluating
percentage changes from baseline, where only the random
genotyping achieved higher accuracy and reduced bias.

These findings have particular relevance for sheep breeding
programs, which typically operate with smaller flock sizes, lower
use of artificial insemination, and reduced pedigree connectedness
compared to cattle or pigs. These characteristics amplify the
consequences of pedigree errors and increase the reliance on
well-designed genotyping strategies, making random genotyping
especially valuable in sheep populations.

Several studies have compared the impact of genotyping animals
with extreme phenotypes or EBV (superior and inferior animals) or
just the inferior animals (Ødegård andMeuwissen, 2014; Perez et al.,
2019). These selective genotyping strategies for the extremes may
result in greater GEBV accuracies but their bias and dispersion were
also greater compared to random genotyping. Gowane et al. (2019)
stated that, in practice, it is common for producers to prioritize
genotyping animals with superior EBV or phenotypes. For these
reasons, we did not test additional scenarios that genotyped only
genetically inferior animals (bottom rankings) or both extremes.
While more robust genotyping strategies, such as optimizing for
family structure, relatedness, or population representativity, have
been proposed (Pszczola et al., 2012; Rincent et al., 2012), they often
require detailed pedigree and complete data not available in many
U.S. flocks. This could confound results under pedigree error
scenarios. Additionally, we did not include these strategies to
avoid further increasing the number of simulated scenarios,
which were already substantial due to the combination of
genotyping strategies, pedigree error types, and heritability levels.

To our knowledge, this is the first study to jointly investigate
genotyping strategies alongside pedigree errors and varying
heritabilities in a simulated sheep population, providing a
comprehensive evaluation relevant to practical implementation.
The results presented here represent marginal averages for each
genotyping strategy, accounting for pedigree errors and all
genotyping proportions. This explains the greater inflation of
GEBV for the youngest animals (reflected in smaller dispersion
values) across all strategies compared to their baselines
(Supplementary Figure S4c: Additional File 3).

4.3 Pedigree scenarios

Our results showed the negative impact of pedigree errors (MI or
MS) on (G)EBV accuracy, bias, and dispersion even when genomic
data were included in the analyses. Parentage misidentification has
been a concern since the early stages of genetic evaluations (Van
Vleck, 1970). Even with relatively low levels of pedigree errors, the
accuracy of additive genetic relationships among animals is reduced,
with estimates of variance components and the accuracy of
predictions negatively impacted, reducing genetic progress. The
numerically (P > 0.05) greater negative impact of MI compared
to MS was unexpected, but it may be because MI breaks pedigree
links entirely, potentially leading to underestimated relationships
and reduced connectedness based on theAmatrix. This could create

a stronger structural mismatch with the G matrix than MS, for
which pedigree paths remain present, though incorrect, and can be
partially accounted for byGwhen building theH inverse. As a result,
MI may have resulted in greater GEBV bias and dispersion.
However, it is important to highlight that both types of pedigree
errors should be avoided in breeding programs.

Pimentel et al. (2024), like our findings, found negative impacts
of pedigree errors in a recent study evaluating simulated dairy cattle
populations. As the proportions of MS increased, the acc decreased.
However, in their study the bias was not impacted by pedigree
errors, and the disp levels increased from less than 1 towards greater
than 1 (deflation of GEBV).

As previously mentioned, potential mismatch between A22 and
G are known to cause bias, deflation, or inflation of predicted (G)
EBV (Misztal, 2017). We further confirmed this mismatch by
examining the correlation between the off-diagonal elements of
A22 and G, which declined from 0.89 with standard deviation on
0.02 (in the scenario without pedigree errors and with 100%
genotyped animals) to 0.44 with standard deviation on 0.04 (in
the scenario with 20% MS and all animals genotyped). Comparing
the scenario without pedigree errors to the baseline, the inclusion of
genomic information resulted in higher GEBV accuracies, reduced
bias, and similar inflation for the parameters. Similar results were
observed for a composite sheep simulation study for heritability
levels of both 0.30 and 0.10 (Araujo et al., 2021). These results
confirm the hypothesis that pedigree mismatching can cause
inflation or deflation. Additionally, the current study did not test
unknown parent groups or metafounders to account for missing
pedigree information. The impact of these approaches in U.S.
composite sheep breeds needs to be further investigated, as they
have been shown to yield more accurate and less biased genomic
predictions (Legarra et al., 2015; Koivula et al., 2022; Macedo
et al., 2020).

Several studies reported that a proportion of animals suffered
incorrect parentage: between 5% and 15% in Danish dairy cattle
(Christensen et al., 1982), between 2.9% and 5.2% in the Israeli
Holstein population (Ron et al., 1996), 10% in UK Holstein-Friesian
dairy cattle population (Visscher et al., 2002), and more recently in a
sheep population, 5%–6% in UK Texel sheep (Kaseja et al., 2022).
We calculated the proportion of pedigree errors within NSIP
Katahdin sheep using the SeekParentF90 software (Misztal et al.,
2022). Across 10,032 animals with pedigree and genomic
information, the proportion of pedigree mismatches was 1.6% for
dam-offspring, 8.0% sire-offspring, and 5.5% for sire and dam-
offspring. However, these errors might be higher in practice as
producers use genomic information to correct pedigrees. These
findings, along with simulation results, highlight that uncorrected
pedigree errors in NSIP data can significantly reduce the accuracy of
(G)EBV, particularly for young animals. Furthermore, such errors
can increase bias and cause inflation or deflation in EBV, potentially
leading to suboptimal selection decisions. Addressing these errors is
critical to ensure the reliability of genetic evaluations and improve
the overall effectiveness of breeding programs. Furthermore, using a
reference population with genomic information through the
ssGBLUP method proved to be a suitable approach for
addressing existing pedigree errors. On average, this method
performed well in scenarios with up to 5% MS and 5% MI, or
10% MS alone. In these scenarios, ssGBLUP achieved greater
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accuracy than the baseline, reduced bias, and showed a slight
decrease in disp.

In this study, we intentionally did not correct misidentified sires
by replacing them with the true sires. This approach was chosen to
mimic the reality of many livestock populations, where parentage
errors are often undetected or unresolved due to limited genotyping
coverage. However, given the scenarios compared, correcting
pedigrees based on genotype information would potentially bias
the comparisons. Where the percentage of animals genotyped was
higher, more pedigree errors would be detected and corrected. We
therefore disabled BLUPF90’s default behavior of removing progeny
with genotype conflicts, ensuring that all animals, including those
with detectable errors, were retained in the analysis.

4.4 Genotyping proportion scenarios

Our results showed that increasing the reference population size,
defined as the number of genotyped individuals with phenotypic
records, led to higher genomic prediction accuracy. However, when
selective genotyping was applied, the average accuracies were lower
compared to scenarios with random genotyping. Without a
sufficiently large reference population, the SNP effects may not
be well predicted, resulting in poor estimates of breeding values in
the validation population and, consequently, lower GEBV
prediction accuracy (Goddard and Hayes, 2009). Another factor
that explains our linear trends is that the reference population was
strongly genetically related to the validation set and was not
composed of isolated subpopulations, which made GEBV more
reliable (Isidro et al., 2015; Wu et al., 2015). Furthermore, we
maintained the same proportional increase based on the
genotyping proportion in the size of the validation population as
the training population. In other words, the ratio of the animals in
the validation and training population with genomic information
remained constant as the proportion of animals with genotypes
increased. In the case of a validation set of fixed size, we might have a
plateau where the increment in accuracy reduces as the number of
animals in the training population increases.

Importantly, all genotyping proportions were equally applied for
each RC, which provided equal representation of animals of
different ages. When this criterion was not included, bias almost
doubled, the prediction accuracies reduced on average 0.2, and the
dispersion values were even greater towards inflation of GEBV for
young animals in all scenarios with selective genotyping. The result
of this test reinforced the need to constantly update the reference
population with animals in new generations and to have multiple
generations represented in the dataset. Only by adopting this
strategy will the accuracy of predictions remain constant or
increase over time in a breeding program (Pszczola and Calus,
2016). A similar pattern was found in a simulation study of purebred
swine with the same heritability values of 0.10 and 0.35 as in the
current study (Li et al., 2019). As the proportions of animals
increased, the accuracy of prediction increased by applying the
same genotyping proportions for each generation. When selective
genotyping is preferred, our results indicate that prioritizing
genotyping in only one sex—ensuring that at least 40% of
animals within that sex are genotyped—can help reduce bias,
improve accuracy, and bring dispersion closer to 1. These

findings suggest that strategic genotyping of specific sexes or
increasing genotyping proportions beyond 40% can enhance the
reliability of genetic evaluations in breeding programs.

The increase in bias under the selective genotyping strategy
when up to 40% of one sex was genotyped was a consequence of
directionally selecting a subset of the population to genotype. Under
both an EBV- and phenotypic-based strategy, genotyped animals
tend to originate from the same high-ranking families across RC. In
our simulation design, selection of replacement animals was strictly
based on phenotypic and EBV distribution, consistently favoring
higher values, i.e., the highest-ranking animals available. Since we
applied directional selection for only one trait, this reinforced the
tendency for genotyped animals to originate from the same high-
ranking families across cycles. In other words, over successive RC,
selection decisions for replacements and culls followed the same
criteria as the selective genotyping strategy. As genotyping levels
increase incrementally, selection remains concentrated within these
families, meaning that while more animals are added, genetic
diversity in the reference population does not necessarily increase
and can even decrease. This repeated selective genotyping increased
bias in genomic prediction. However, as genotyping proportions
continue to increase, the inclusion of animals from lower-
performing families rises, resulting in a more representative
sample and a subsequent reduction in bias.

4.5 Genotyping proportion, pedigree, and
sex scenarios

All our results showed that genotyping males and females in
equal proportion resulted in greater accuracy compared to
genotyping animals from a single sex. A similar result was
observed in broilers (Lourenco et al., 2015), where it was
concluded that both sexes should be genotyped when building
reference populations. Our results indicate that prioritizing male
genotyping up to 10% is a practical strategy for composite sheep
populations, particularly when the cost of genotyping is relatively
high. However, this may be trait specific. In a study evaluating
genotyping strategies in Latxa dairy sheep, Granado-Tajada et al.
(2021) found that genotyping strategies can have a significant
impact on prediction accuracy. Specifically, they observed that
genotyping only females yielded significantly higher accuracies
than genotyping only males, highlighting the importance of
considering sex-specific strategies depending on the traits of
interest and population structure. In our study, we observed a
similar trend, particularly when females were the only sex
genotyped. Accuracy was higher when at least 40% of females
were genotyped under the random genotyping strategy and when
at least 10% were genotyped under the selective strategy based on
EBV or phenotype. Our simulation considered that all animals in the
reference population had phenotypes. The small differences
observed in the genotyped sexes, therefore, only related to the
greater selection pressure in males than in females, and the M:F
ratio, which impacted the genetic contribution of each sex to
subsequent generations.

Other studies have demonstrated the importance of genotyping
females. By doing so the accuracy of genomic prediction was
improved in Holstein cattle (Uemoto et al., 2017) and genetic
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gain increased while inbreeding decreased in simulated Danish
Jersey and Red Dairy cattle populations (Thomasen et al., 2020).
Despite the importance of female genotyping, these studies were
conducted on sex-limited traits, and their conclusions are not
directly comparable to our study. These findings highlight the
need for further research using real data, especially for U.S. sheep
breeds where maternal traits, measured only in females, are
a priority.

In our study, female genotyping demonstrated additional value
by reducing bias and dispersion. The bias tended to reduce as the
proportion of genotyped animals increased. However, when only
males were genotyped, the bias reduction was less compared to
genotyping only females. This primarily happened because males
tend to sire more offspring, leading to a more unequal distribution of
alleles in the next-generation, reducing the representation of the
overall genetic diversity in a population (Falconer and Mackay,
1996). Consequently, genotyping only males primarily captures the
genetic variation of a few influential sires, resulting in biased allele
frequency estimates and less effective genomic predictions. In
addition, females generally represent a broader genetic base
because there are more breeding females contributing to the
population.

The bias for either pedigree error type tended to stay the same or
increase when up to 40% of animals were genotyped. When only
females were genotyped, inflation values were closer to the scenario
with both males and females, while when only males were
genotyped, the inflation was higher. These results emphasize the
importance of carefully designing genotyping strategies, particularly
considering female genotyping when aiming to reduce bias, improve
prediction accuracy, and better capture the overall genetic diversity
in genomic evaluations.

5 Conclusion

The use of the ssGBLUP method enabled the mitigation of up to
5% of misidentified sires and missing pedigree information,
generating higher prediction accuracy than BLUP with a perfect
pedigree, while also reducing bias with similar dispersion values.
These results indicate that ssGBLUP should be prioritized over
traditional BLUP evaluations.

When selective genotyping was used, bias and dispersion
increased, and in the long term, breeding programs may
experience a reduction in the accuracy of predictions. This
reduction can ultimately slow genetic progress if a robust
reference population is not established first.

Strategically, the most effective approach to constructing a
reference population was random genotyping, with animals
selected in a balanced and consistent manner within each
reproductive cycle (i.e., production year in real sheep
populations). This strategy provided the highest GEBV prediction
accuracy and the lowest bias compared to selective approaches.

When genotyping costs are prohibitive, and the trait of interest is
measured in both sexes, prioritizing males for genotyping initially is
the most efficient approach. However, after reaching a threshold
(e.g., 10% of males genotyped), prioritizing females leads to higher
prediction accuracy, lower bias, and improved dispersion compared
to continued male genotyping.

Overall, these findings highlight the importance of tailoring
genotyping strategies based on the proportion of animals genotyped,
the traits of interest, and the structure of the target population. They
also reinforce the value of ssGBLUP as a robust method for genomic
evaluations in sheep breeding programs facing pedigree errors and
limited genotyping resources.
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