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Introduction: Dysfunction in mitochondrial oxidative phosphorylation (OXPHOS)
has been implicated in the pathophysiology of schizophrenia, yet its molecular
underpinnings remain poorly defined. In this study, we performed an integrative
multi-omics analysis to delineate these molecular signatures.

Methods: Bulk transcriptomic datasets of schizophrenia patients and controls
were obtained from the Gene Expression Omnibus. Differentially expressed
genes (DEGs) associated with OXPHOS were identified through a combination
of differential expression analysis, single-sample gene set enrichment analysis
(ssGSEA), and weighted gene co-expression network analysis (WGCNA). Hub
genes were prioritized by machine learning algorithms (LASSO, SVM-RFE, and
random forest). These hub genes were validated using an independent dataset
and further corroborated by RT-gPCR in an MK-801-induced mouse model.
Single-nucleus RNA sequencing (snRNA-seq) was employed to delineate cell
type-specific oxidative phosphorylation activity and transcriptional profiles.
Results: Transcriptomic analysis identified 130 DEGs between schizophrenia and
controls, significantly enriched in oxidative phosphorylation and mitochondrial
respiration pathways. Subsequent ssGSEA confirmed the reduced OXPHOS
enrichment scores in schizophrenia. Furthermore, WGCNA uncovered two
hub modules significantly associated with OXPHOS, which also showed strong
correlations with schizophrenia. Intersecting their 2,609 module genes with
130 DEGs yielded 69 OXPHOS-related DEGs. From these, machine learning
prioritized six hub genes, four of which demonstrated strong diagnostic
potential and robust correlations with OXPHOS scores. Extending these
findings in vivo, MK-801-treated mice exhibited behavioral and neuronal
deficits, reduced ATP5A fluorescence intensity, and decreased ATP
concentrations; expression of all four hub genes was significantly altered, with
three (MALATY, PPIL3, and ITM2A) concordant with transcriptomic results. Finally,
snRNA-seq analysis indicated that OXPHOS is the principal ATP-generating
pathway in the brain, with notable enrichment in excitatory neurons and
endothelial cells, and further revealed significant correlations of MALATL,
PPIL3, and ITM2A with OXPHOS, consistent with bulk and in vivo observations.

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fgene.2025.1690947/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1690947/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1690947/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1690947/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1690947&domain=pdf&date_stamp=2025-10-23
mailto:fanzhen_dr@163.com
mailto:fanzhen_dr@163.com
mailto:33015207@qq.com
mailto:33015207@qq.com
https://doi.org/10.3389/fgene.2025.1690947
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1690947

Zhou et al.

10.3389/fgene.2025.1690947

Conclusion: This finding suggests a potential link between OXPHOS dysfunction
and schizophrenia, with MALAT1, PPIL3, and ITM2A emerging as candidate
regulators of this process.

schizophrenia,

oxidative phosphorylation, mitochondrial dysfunction, multi-omics,

single-nucleus RNA sequencing

Introduction

Schizophrenia is a chronic psychiatric disorder characterized by
hallucinations, cognitive impairments, and negative mood, affecting
~1% of the global population and ranking among the leading causes
of disability worldwide. Despite decades of research, major questions
remain unanswered. Current treatments predominantly target
dopaminergic pathways to alleviate positive symptoms, but they
demonstrate limited efficacy in addressing cognitive dysfunction
and negative symptoms (Wu Q. et al., 2021), highlighting a critical
unmet clinical need. Recent evidence increasingly implicates
mitochondrial dysfunction and disrupted energy metabolism in
the pathophysiology of schizophrenia (Zilocchi et al., 2020; Ni
et al., 2024).

Oxidative (OXPHOS), the
mitochondrial mechanism responsible for adenosine triphosphate

phosphorylation principal
(ATP) synthesis, is essential for neuronal functions including action
propagation, synaptic synaptic
plasticity. Neuroimaging studies consistently report reduced ATP

potential transmission, and
levels in the prefrontal, temporal, and frontal cortices of
schizophrenia patients, correlating with cognitive deficits and
negative symptoms (Duarte and Xin, 2019; Pruett and Meador-
Woodruff, 2020). Postmortem transcriptomic analyses further
reveal downregulation of OXPHOS-related genes and respiratory
chain enzymes in the dorsolateral prefrontal cortex, particularly
within parvalbumin-positive interneurons, which are essential for
cortical synchrony and cognitive control (Sullivan et al, 2019;
Morén et al, 2025). Complementary in vivo spectroscopy and
molecular profiling investigations demonstrate that OXPHOS
deficits are concomitant with abnormal lactate accumulation,
redox imbalance, and dysregulated inflammatory responses in the
prefrontal cortex (Enwright Tii et al, 2018; Luptdk et al., 2021;
Fizikovd et al., 2023), characteristics that are widely acknowledged as
pathological hallmarks of schizophrenia. These findings collectively
suggest that OXPHOS dysfunction may represent a potential
metabolic alteration in schizophrenia. However, the mechanisms
linking mitochondrial deficits to the progression of the disease are
not yet well understood.

Recent advances in high-throughput sequencing technologies
have significantly expanded our understanding of disease
mechanisms. In schizophrenia, previous transcriptomic and
proteomic analyses have identified numerous differentially
expressed genes and proteins (Steiner et al,, 2017; Khan et al,
2023). However, investigations specifically focusing on OXPHOS
remains limited and often confined to single datasets, leaving its
mechanistic contribution poorly defined. In this study, we focused
on OXPHOS by integrating bulk transcriptomics, single-nucleus
RNA sequencing (snRNA-seq), and the MK-801 mouse model. This
integrative approach suggests a potential mechanistic link between
OXPHOS dysfunction and schizophrenia and highlights three hub
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genes that may mediate this association. These findings may advance
the understanding of schizophrenia pathophysiology and provide a
basis for future therapeutic development.

Materials and methods
Data acquired

The NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/)
was queried using the terms “Schizophrenia” and “Homo sapiens” to
obtain expression profiles from dorsolateral prefrontal cortex tissue.
Three datasets were retrieved. The datasets GSE87610 (GPL13667)
and GSE53987 (GPL570) encompass bulk microarray expression
data. Specifically, GSE87610, which includes 65 samples from
individuals with schizophrenia and 72 control samples, was
utilized as the training set. In contrast, GSE53987, comprising
15 schizophrenia samples and 19 control samples, was employed
as the validation set. Because of its limited sample size, the validation
set was used only for expression validation. Additionally, as no
snRNA-seq data from schizophrenia brain tissue were publicly
available, GSE247416 (GPL24676), consisting of snRNA-seq data
from the dorsolateral prefrontal cortex of 37 neurologically healthy
adults, was analyzed to enable cell type-specific transcriptomic
characterization.

Differential gene expression analysis and
functional annotation

Differential expression analysis was performed using the limma
package (Ritchie et al., 2015). Expression data were log2-
transformed and normalized, and linear models were fitted with
ImFit followed by empirical Bayes moderation using eBayes. Genes
with |log2FC| > 0.5 and unadjusted P < 0.05 were defined as
differentially expressed genes (DEGs). Heatmaps were generated
using the pheatmap package (Wickham and Sievert, 2009). Gene
Ontology Biological Process (GO-BP) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses were performed
with a significance threshold of P < 0.05 (Wu T. et al.,, 2021).

Single-sample gene set enrichment
analysis (ssGSEA)

The OXPHOS gene set, comprising 132 marker genes, was
obtained from the Molecular Signatures Database (MSigDB;
https://www.gsea-msigdb.org/gsea/msigdb) and is listed in
Supplementary Table S1. Pathway enrichment scores for each

sample were calculated using ssGSEA (Hanzelmann et al., 2013).
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Statistical differences between groups were evaluated using the
Wilcoxon rank-sum test, with significance established at a
threshold of P < 0.05.

Weighted correlation network
analysis (WGCNA)

WGCNA was performed with the WGCNA package (Langfelder
and Horvath, 2008). Outlier samples were excluded, and the optimal
soft-thresholding power was determined from the scale-free
topology fit index (signed R’) and mean connectivity, with a
power of 2 selected. Co-expression modules were identified using
a dynamic tree-cutting algorithm with a minimum module size of
100 and a merging threshold of 0.1. Pathway enrichment scores were
used as phenotypic traits, and Pearson correlation analysis was
performed with the psych package (Lin et al, 2023). Modules
showing the strongest positive and negative correlations with
OXPHOS OXPHOS-associated
modules. In addition, Module-trait relationships were also

scores were designated as
examined to assess correlations with schizophrenia status. Genes
from OXPHOS-associated modules were then intersected with

DEGs to identify OXPHOS-related DEGs for downstream analyses.

Machine learning and validation analyses

To refine disease-associated candidates, three machine learning
algorithms: least absolute shrinkage and selection operator (LASSO)
regression 2010),  support
machine-recursive feature elimination (SVM-RFE) (Cinelli et al.,
2017), and random forest (RF) (Breiman, 2001), were applied to the
training dataset GSE87610. Genes identified by all methods were
considered signature hub genes. Receiver operating characteristic
(ROC) curve analysis determined genes with AUC >0.7 and P <
0.05 as diagnostically significant (Robin et al., 2011). Hub gene
expression was validated in both the GSE87610 and
GSE247416 cohorts using the Wilcoxon rank-sum test (P < 0.05).
Correlation with OXPHOS scores was also assessed, with P < 0.05 as
significant.

(Friedman et al, vector

snRNA-seq data analysis

The snRNA-seq data were processed using the Seurat R
package (Satija et al, 2015). Cells with 500-30,000 detected
genes and <10% mitochondrial transcripts were retained. After
quality control, 799,217 cells were included for downstream
analysis. Data were normalized, and highly variable genes were
identified. Dimensionality reduction was performed by principal
component analysis (PCA), followed by sample integration. Cell
clustering was conducted with FindNeighbors and FindClusters
(Stuart et al, 2019) and cell types were annotated based on
canonical marker genes from published studies (Frohlich et al.,
2024). Pathways associated with ATP synthesis, including
OXPHOS, glycolysis/gluconeogenesis, and the tricarboxylic acid
(TCA) cycle, were annotated utilizing KEGGREST (Tenenbaum
and Maintainer, 2021). Enrichment scoring was conducted using
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AUCell (Aibar et al., 2017). Subsequently, OXPHOS scores were
calculated employing multiple complementary methodologies,
including AUCell, AddModuleScore, Scoring, singscore,
ssGSEA, and UCell (Tirosh et al, 2016; Aibar et al., 2017;
Foroutan et al., 2018; DeTomaso et al., 2019; Andreatta and
Carmona, 2021; Jin et al.,, 2021). Spearman correlation analysis
was conducted to evaluate the associations between OXPHOS
enrichment scores and the expression of hub genes. CellChat
was employed to infer signaling networks among various cell
types (Azadian et al, 2023). Cell trajectory analysis was
performed with the Monocle package (Joo et al,, 2024) using
the top 2,000 highly variable genes to reconstruct lineage
trajectories across cell subpopulations. This approach enabled
pseudotime inference for key cell types and dynamic profiling
of hub gene expression along cellular state transitions.

Animal procedures

N-methyl-D-aspartate receptor (NMDAR) hypofunction is a
major hypothesis in schizophrenia pathophysiology, and MK-801, a
non-competitive NMDAR antagonist, is widely used to establish
corresponding animal models (Ang et al., 2021). Five-week-old male
C57BL/6 mice were used. Following a 1-week acclimatization,
animals were randomly assigned to either the control or MK-801
group (n = 6 per group) and housed under standard conditions with
ad libitum access to food and water. MK-801 (HY-15084, MCE,
in 0.9%
intraperitoneally at 0.5 mg/kg (10 ml/kg) once daily for 14 days;

China) was dissolved saline and administered
controls received an equal volume of saline. Behavioral assessments,
including the open-field and novel object recognition tests, were
conducted 2 days after the final injection. Mice were subsequently
anesthetized with isoflurane and euthanized by cervical dislocation.
Bilateral prefrontal cortices were rapidly dissected: one hemisphere
was fixed in 4% paraformaldehyde for histology, and the other
was snap-frozen in liquid nitrogen and stored at -80 °C for
molecular analyses. All animal procedures were approved by the
Ethics Committee

20250403-005).

of Southwest Medical University (No.

Open field test

Locomotor activity was evaluated using the open-field test, a
standard paradigm for assessing hyperactivity analogous to the
positive symptoms in schizophrenia Mice
individually placed in a black open-field chamber (50 x 50 x

models. were

50 cm), and locomotion was recorded for 5 min using
EthoVision XT (Noldus, Netherlands). The total
distance traveled served as the primary measure of locomotor

software

activity. Chambers were cleaned with 75% ethanol and air-dried
between trials.

Novel object recognition test

The novel object recognition test consisted of training and
testing phases, both conducted in an open-field chamber. During

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1690947

Zhou et al.

TABLE 1 Sequence of primers for RT-qPCR.

Genes Forward primer 5-3'  Reverse primer3'-5’
18S rRNA aggggagagcggotaagaga ggacaggactaggcggaaca
MALATI1 gggagtggtcttaacagggaggag aacagcatagcagtacacgccttc
GAPDH aggtcggtgtgaacggatttg tgtagaccatgtagttgaggtca
PPIL3 gaacacccaaaacatgtgagaa tgaaccatgaagcccttgatat
ITM2A ttctgaggatcctgtcaattce tcaaagtcgtgaataattgeeg

GJA1 cactctcacctatgtctcctectg cgctggcttgcttgttgtaattg

training, two identical objects (Al and A2) were placed in
adjacent corners, 5 cm from the walls. Mice were placed facing
away from the objects and allowed to explore for 5 min. After a 6-
h interval, A2 was replaced with a novel object (B), and
exploration time for Al and B was recorded during a
subsequent 5-min session. Recognition memory was quantified
using the discrimination index (DI = [TB — TA1]/[TB + TAl]),
where TA1l and TB represent the time spent exploring the
familiar and novel objects, respectively; lower DI values
indicated impaired recognition memory. Chambers and objects
were cleaned with 75% ethanol between sessions, and mice had no
prior exposure to the objects or arena.

Nissl staining

Nissl staining was performed to identify dark neurons in the
prefrontal cortex. Brain tissues were fixed, embedded in paraffin,
sectioned, and stained with cresyl violet for examination under a
light microscope. Dark neurons were characterized by intense
basophilic ~ staining, shrunken soma, and condensed or
fragmented nuclei, distinct from normal neurons. Manual
counting under the microscope quantified these neurons. Three
random, non-overlapping regions were analyzed in each section,
and quantification was independently performed by two blinded

investigators.

Immunofluorescence

Tissue sections were permeabilized and blocked using 10% goat
serum for 1 h at room temperature. This was followed by an
overnight incubation at 4 °C with an anti-ATP5A primary
(14676-1-AP, Proteintech, China).
sections were washed and incubated for 1 h with Alexa Fluor

antibody Subsequently,
488-conjugated goat anti-mouse IgG. Nuclei were counterstained
with DAPI The slides were then mounted and visualized using
a fluorescence microscope (OLYMPUS VS200, Japan). Image
analysis was conducted using OlyVIA and Image] software. For
each section, three random fields within the prefrontal cortex were
captured, and the mean fluorescence intensity of ATP5A was
quantified  after  subtracting  background  fluorescence
(Teorrected = Traw —Ibackgmund). The quantification process was
independently carried out by two investigators who were blinded

to the experimental conditions.
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ATP content detection

Brain tissues were homogenized, and ATP levels were quantified
using an ATP Content Detection Kit (BC0300, Solarbio, Beijing)
following the manufacturer’s protocol. Absorbance was measured at
340 nm with a microplate reader.

RT-gPCR

Total RNA was extracted using TRIzol reagent, and cDNA was
synthesized with the PrimeScript RT kit (RR037B, Takara, Japan).
Quantitative PCR was performed using SYBR Green Premix (HY-
K0524, MCE, China) with 2 uL of cDNA per reaction. Primers
(Table 1) were designed and synthesized by Beijing Tsingke Biotech
Co., Ltd. GAPDH was used as the internal control for the protein-
coding genes PPIL3, ITM2A, and GJA1, whereas 18S rRNA served
as the reference for the long non-coding RNA MALAT]I. Relative
expression levels were calculated using the 2-““Ct method. All
reactions were performed in triplicate, and fold changes were
expressed relative to the control group (set as 1).

Statistical analysis

Bioinformatic analyses were conducted in R 4.2.2. For in vivo
validation, intergroup differences were evaluated using unpaired
two-tailed t-tests in SPSS 23, with statistical significance set at P <
0.05. Data visualization was performed using GraphPad Prism 9.

Results

Differential expression and enrichment
analyses reveal OXPHOS downregulation in
schizophrenia

Transcriptomic profiling of the training set (GSE87610)
identified 130 DEGs,
79 downregulated genes (Figure 1A). Heatmaps illustrated the
top 30 upregulated and 30 downregulated DEGs (Figure 1B).

including 51  upregulated and

GO-BP analysis highlighted processes related to mitochondrial
respiration and the electron transport chain (Figure 1C), while
KEGG indicated significant enrichment in pathways associated
with neurodegenerative diseases and OXPHOS (Figure 1D). A
row-scaled heatmap of the OXPHOS gene set demonstrated their
predominant downregulation in schizophrenia (Figure 1E). Full
gene lists and detailed statistics are provided in Supplementary
Table S2. This transcriptional pattern was further corroborated
by ssGSEA, which demonstrated a significant reduction in
OXPHOS enrichment scores in schizophrenia (Figure 1F).

WGCNA identifies OXPHOS-associated
modules linked to schizophrenia
WGCNA was applied to the training set (GSE87610) to identify

co-expression networks linked to OXPHOS. No outlier samples
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FIGURE 1

Control Disease

Differential expression and enrichment analyses reveal OXPHOS downregulation in schizophrenia. (A) Volcano plot of DEGs between schizophrenia
and control brain tissues. (B) Heatmap of the top 30 upregulated and 30 downregulated DEGs. (C) GO-BP enrichment analysis. (D) KEGG pathway
enrichment analysis. (E) Heatmap of OXPHOS signature genes. (F) Boxplot of OXPHOS enrichment scores derived from ssGSEA.

were detected (Figure 2A), and a soft-thresholding power of 2 was
selected to achieve a scale-free topology (Figure 2B). The brown
module showed the strongest positive correlation with OXPHOS
scores, whereas the yellow module showed the strongest negative
correlation (Figures 2C,D). Functional enrichment confirmed that
brown-module genes (n = 1,780) were enriched in mitochondrial
translation and RNA splicing, while yellow-module genes (n = 829)
were enriched in respiratory-chain biogenesis and ATP synthesis
(Figures 2E,F). Notably, in addition to their association with
OXPHOS, the brown module was most negatively correlated with
schizophrenia, whereas the yellow module was most positively
correlated (Figure 2G), underscoring their close relevance to
disease status. By intersecting 2,609 genes from these modules

with 130 DEGs, we identified 69 OXPHOS-related DEGs
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2H),
dysfunction in schizophrenia.

(Figure which may be involved in mitochondrial

Machine learning prioritizes OXPHOS-
associated hub genes implicated in
schizophrenia

To refine disease-associated candidates, three machine
learning algorithms were applied to the GSE87610 dataset,
identifying 21 genes from LASSO, 63 from SVM-RFE, and
10 from RF (Figures 3A-D). Integrating these methods
revealed six hub genes (Figure 3E). ROC analysis showed
that five genes—MALATI, PPIL3, ITM2A, MTA2, and
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FIGURE 2

WGCNA identifies OXPHOS-associated modules linked to schizophrenia. (A) Sample clustering dendrogram. (B) Soft-thresholding power selection

(B = 2). (C,D) Correlations between module traits and OXPHOS. (E,F) GO-BP enrichment of brown-module and yellow-module genes. (G) Correlation
analysis between module traits, specifically brown and yellow, and schizophrenia status. (H) Venn diagram showing overlap between module genes
and DEGs.
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FIGURE 3

Machine learning prioritizes OXPHOS-associated hub genes implicated in schizophrenia. (A,B) LASSO regression showing coefficient profiles and
the optimal penalty parameter (). (C) SVM-RFE curve indicating the minimum classification error. (D) Gene importance scores ranked by the RF model. (E)
Venn diagram of overlapping genes identified by LASSO, SVM-RFE, and RF. (F) ROC curves and AUCs of the six genes. (G) Expression patterns of hub
genes in the training set (GSE87610) and validation set (GSE247416). (H) Correlations between hub gene expression and OXPHOS enrichment scores

in the GSE87610 dataset.

GJAl—effectively distinguished schizophrenia from controls
(AUC >0.70) (Figure 3F). These genes had consistent
expression  patterns in  both the GSE87610 and
GSE247416 cohorts (Figure 3G). Correlation analysis linked
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OXPHOS scores positively with PPIL3 and ITM2A, negatively
with MALAT1 and GJAl, and not significantly with MTA2
(Figure 3H), suggesting their role in schizophrenia-related
mitochondrial dysfunction.
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FIGURE 4

MK-801 schizophrenia model indicates OXPHOS impairment and gene—-ATP associations. (A,B) Open-field test showing representative movement
trajectories and total distance traveled. (C,D) Novel object recognition test and discrimination index (DI). (E,F) Nissl-stained cortical sections and
quantification of dark neurons (scale bar, 50 pm). (G,H) Immunofluorescence of ATP5A (green) with DAPI-stained nuclei (blue) and quantification of

fluorescence intensity (scale bar, 50 pm). (I) ELISA-based measurement of ATP content. (J) RT-gqPCR of MALATL, PPIL3, ITM2A, and

GJA1 expression. (K) Heatmap showing associations between gene expression and ATP content. Data are presented as mean + SEM (n = 6 per group)
Statistical analyses were performed using unpaired two-tailed Student’s t-tests for two-group comparisons and Spearman correlation for association

analyses. Significance: ns, P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001
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FIGURE 5
snRNA-seq reveals OXPHOS-enriched cell types and communication networks. (A) UMAP plot showing major cell types, including astrocytes
(Astro), endothelial cells, excitatory neurons (Exc), inhibitory neurons (In), microglia, oligodendrocytes, and oligodendrocyte precursor cells (OPCs). (B)
Canonical marker gene expression validating cell-type annotations. (C) Assessment of ATP-generating processes utilizing AUCell methodology. (D,E)
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FIGURE 5 (Continued)
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OXPHOS activity across cell populations by six enrichment methods. (F) UMAP showing cell-type—specific expression of MALATZ, PPIL3, and ITM2A.

(G) Correlations between hub gene expression and OXPHOS activity. (H) Cell-cell communication networks showing the number (left) and strength
(right) of interactions among cell types. (I) Outgoing and incoming interaction strengths across cell types. (J) Bubble plot of ligand—-receptor signaling
contributions by cell type, with bubble size indicating contribution strength. (K) Sankey diagram of outgoing communication patterns.

MK-801 schizophrenia model indicates
OXPHOS impairment and gene—ATP
associations

The administration of MK-801 induced marked behavioral
abnormalities, including hyperlocomotion in the open field
(Figures 4A,B) and impaired recognition memory in the novel
object test 4C,D), the
schizophrenia-like model. Nissl staining further identified an

recognition (Figures confirming
elevated proportion of dark neurons, which is indicative of
neuronal injury (Figures 4E,F). Previous research indicates that
mitochondrial OXPHOS serves as the primary source of ATP in
the brain (Hall et al, 2012). Immunofluorescence staining for
ATP5A revealed a reduction in fluorescence intensity (Figures
4G,H), which correlated with decreased ATP levels in the MK-
801 group, as quantified by ELISA (Figure 4I). These findings
that
phosphorylation may be involved in schizophrenia. RT-qPCR

collectively suggest impaired mitochondrial oxidative
analysis corroborated the transcriptomic expression profiles of
MALATI1, PPIL3, and ITM2A, as depicted in Figure 4J.
Additionally, correlation analysis revealed that increased levels of
MALATT1, coupled with decreased levels of PPIL3 and ITM2A, were
linked to a reduction in ATP content (Figure 4K). However, it is
noteworthy that the correlation with PPIL3 did not reach statistical

significance.

snRNA-seq reveals OXPHOS-enriched cell
types and communication networks

Due to the lack of appropriate snRNA-seq datasets for
schizophrenia, we analyzed the GSE247416 dataset derived from
neurologically healthy adults, identifying seven key brain cell types,
with excitatory neurons being the most prevalent (Figure 5A). Cell
types were confirmed using marker gene expression (Figure 5B).
AUCell analysis indicated that OXPHOS is the main ATP-
generating pathway in the brain, surpassing glycolysis and the
TCA cycle (Figure 5C). OXPHOS activity was notably higher in
excitatory neurons and endothelial cells (Figures 5D,E). UMAP
clustering showed MALAT1 and PPIL3 were mainly in neurons,
while ITM2A was in endothelial cells (Figure 5F). Correlation
analysis aligned with bulk transcriptomics, showing higher
MALAT1 and lower PPIL3 and ITM2A expression linked to
reduced OXPHOS scores (Figure 5G).

Having delineated the cell-type-specific OXPHOS landscape, we
explored intercellular communication. Excitatory and inhibitory
neurons, along with oligodendrocyte precursor cells (OPCs),
showed the most frequent and strong ligand-receptor interactions
(Figures 5H,I). The analysis of outgoing communication revealed
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that neurons function as primary signaling hubs, while endothelial
cells and microglia participate in a more selective manner,
predominantly through pathways associated with vascular and
immune functions (Figure 5]). Sankey analysis highlighted two
main signaling programs: one focused on neurotrophic,
angiogenic, and extracellular matrix pathways, and the other on
immune-regulatory and adhesion signals (Figure 5K). The finding
that OXPHOS-enriched cell populations engage in extensive
intercellular signaling suggests that mitochondrial dysfunction
may extend beyond metabolism, perturbing neuronal support

and neuroimmune balance.

Pseudotemporal dynamics of OXPHOS-
related hub gene

To elucidate the dynamic regulation of OXPHOS within adult
brain tissue, we employed pseudotime trajectory analysis, which
revealed a continuous progression with bifurcating lineages
(Figure 6A). Cell-type annotation identified distinct branches for
neuronal and glial populations, including astrocytes,
oligodendrocytes, microglia, and OPCs, capturing biologically
relevant lineage bifurcations (Figure 6B). Notably, OXPHOS
activity persisted throughout pseudotime, suggesting sustained
metabolic involvement in cell state transitions (Figure 6C).
Expression analysis of OXPHOS-related key genes further
showed that MALAT1 maintained high expression levels at both
early and late pseudotime stages, suggesting a sustained functional
role. In contrast, PPIL3 and ITM2A exhibited relatively lower
expression levels, implying potential auxiliary functions (Figures
6D-F). Given their distinct cell-type-specific expression patterns,
MALAT1 and PPIL3 and ITM2A
predominantly in endothelial cells (Figure 5F), we subsequently

conducted cell type-specific pseudotime analyses. MALAT1 and

enriched in neurons,

PPIL3 were preferentially expressed in inhibitory neurons during
early pseudotime and in excitatory neurons during later stages,
indicating stage- and cell-type-specific regulation of neuronal states
(Figures 6G,H). Conversely, ITM2A expression progressively
increased in endothelial cells over pseudotime, pointing to its
involvement in endothelial cell state transitions (Figure 61).

Discussion

Mitochondrial OXPHOS dysfunction has been increasingly
linked to schizophrenia, but its molecular basis remains poorly
defined. Using approach
transcriptomics, snRNA-seq, and an MK-801 mouse model, we
observed reduced OXPHOS in schizophrenia and identified three

an integrative combining  bulk
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5 10
Pseudo-time

5 1
Pseudo-time

Pseudotemporal dynamics of OXPHOS-related hub gene. (A) Pseudotime trajectory of brain cells. (B) Cell-type annotation mapped onto the
trajectory. (C) OXPHOS pathway activity (AUC scores) across pseudotime. (D—F) Trajectory-based expression dynamics of MALAT1, PPIL3, and ITM2A.
(G,H) Expression patterns of MALAT1 and PPIL3 in excitatory and inhibitory neurons along pseudotime. (I) ITM2A expression in endothelial cells across

pseudotime.

candidate genes—MALAT]1, PPIL3, and ITM2A—associated with
this process. The findings indicate a possible link between OXPHOS
dysfunction and schizophrenia, thus offering a basis for further
mechanistic investigations and the exploration of targeted
therapeutic interventions.

Clinical investigations have documented diminished activities of
respiratory chain complexes I and IV in blood samples from patients
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(Morén et al., 2025). Corroborating these findings, Fizikova et al.
demonstrated that disruptions in the tricarboxylic acid cycle and
oxidative phosphorylation (OXPHOS)

astrocytes  adversely  affect  energy
neurotransmission (Fizikovd et al., 2023). At the molecular level,
transcriptomic analyses of cortical regions have revealed a
downregulation of OXPHOS-related genes, particularly within

within neurons and

metabolism  and
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networks associated with visuospatial working memory, thereby
further associating mitochondrial dysfunction with cognitive
impairment in schizophrenia (Kimoto et al., 2022). In addition to
compromised bioenergetics, dysfunction in OXPHOS has been
associated with secondary disturbances, such as oxidative stress,
calcium dysregulation, and aberrant inflammatory signaling. These
disturbances are widely recognized as pathological hallmarks of
schizophrenia (Ermakov et al., 2021; De Simone et al., 2023). Both
genetic and developmental evidence further underscore the pivotal
role of OXPHOS metabolism in schizophrenia. Genome-wide
association studies have demonstrated a significant enrichment of
nuclear-encoded mitochondrial genes, while the 22q11.2 deletion
syndrome, one of the most penetrant genetic risk factors, induces a
metabolic shift from OXPHOS to glycolysis (Napoli et al., 2015).
Therapeutic evidence increasingly implicates mitochondrial
pathways. Protein profiling conducted on murine models treated
with chlorpromazine, clozapine, or quetiapine has demonstrated a
significant alteration in mitochondrial proteins, particularly within
the OXPHOS This
mitochondrial metabolism may play a role in the therapeutic
efficacy of these agents (Ji et al., 2009).

In agreement with prior studies, our bulk transcriptomic analysis

subunits. suggests that modulation of

revealed significantly reduced OXPHOS enrichment scores in
schizophrenia. ~ Consistently, ~MK-801-treated mice exhibited
diminished ATP5A fluorescence and ATP concentrations, supporting
impaired mitochondrial function. Complementary snRNA-seq analysis
further corroborated OXPHOS as the principal ATP-generating pathway
in the brain, in line with previous evidence (Hall et al., 2012). However, it
should be noted that MK-801 has also been reported to affect glycolysis,
particularly in oligodendrocytes (Guest et al., 2015), raising the possibility
that the observed ATP reductions reflect broader metabolic disturbances.
Taken together, while glycolytic alterations cannot be excluded, the
convergence of bulk transcriptomic, snRNA-seq, and in vivo data
highlights OXPHOS dysfunction as a reproducible feature that may
contribute to schizophrenia pathophysiology. To probe its molecular
basis in schizophrenia, we applied complementary methodologies with
multi-level validation, which converged on three genes—MALATI,
PPIL3, and ITM2A—that consistently correlated with OXPHOS activity.

Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) is a ubiquitously expressed nuclear long non-coding
RNA (IncRNA) (Gutschner et al., 2013). Elevated MALAT1 levels
have been detected in the peripheral blood of patients with
schizophrenia and correlate positively with disease duration
(Fallah et al.,, 2019), yet its role in the nervous system remains
unclear. In cardiomyocytes exposed to high glucose in vitro and in
myocardial tissue from mice with diabetic cardiomyopathy in vivo,
MALAT1I expression is upregulated. Knockdown of MALAT1 in
these settings alleviates oxidative stress and mitochondrial damage,
suggesting a detrimental effect on OXPHOS (Wang et al., 2023). In
immune cells, MALAT1 expression is inversely associated with
genes involved in cell division, OXPHOS, and cytokine responses
during T cell activation (Dey et al, 2023). Silencing
MALAT1 enhances mitochondrial OXPHOS in IL-4-treated
macrophages (Cui et al., 2019). By contrast, in prostate cancer
cells, MALAT]1 silencing downregulates ME3, PDK1, PDK3, and
choline kinase—enzymes critical for OXPHOS (Nanni et al., 2020).
In hepatocellular carcinoma, MALAT1 localizes to mitochondria
and interacts with multiple mitochondrial DNA (mtDNA) loci
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(D-loop, COX2, ND3, CYTB). MALAT1 knockdown could alter
mtDNA methylation and transcription, leading to structural
disruption, impaired OXPHOS, and reduced ATP production
(Zhao et al, 2021). Collectively, these findings suggest that
MALAT1 may have either promotive or inhibitory effects on
OXPHOS, depending on the cell type
schizophrenia, we found that MALAT1 is highly expressed across

and context. In
multiple cell types, including neurons, and negatively correlates with
OXPHOS. This association suggests that elevated MALATI may
impair mitochondrial energy production in neurons, thereby
contributing to synaptic dysfunction and cognitive deficits.
Peptidyl-prolyl isomerase-like 3 (PPIL3), also known as
cyclophilin J (CyPJ), is a spliceosome-associated cyclophilin
involved in mRNA splicing and a member of the cyclophilin
(CyP) family. CyPs, particularly CyPD, have been shown to
facilitate the assembly of ATP synthase into higher-order
supercomplexes, thereby stabilizing the respiratory chain and
enhancing OXPHOS efficiency 2023).
of CyPB mitigates stress by
upregulating antioxidant enzymes such as manganese superoxide
dismutase and catalase, thereby protecting against MPP*-induced
mitochondrial dysfunction and neurotoxicity (Oh et al., 2016); in

(Coluccino et al,

Overexpression oxidative

human kidney-2 cells, it also reduces reactive oxygen species and
restores mitochondrial function under aldosterone stress (Wang
et al,, 2016). In our study, we observed a significant enrichment of
PPIL3 in excitatory neurons, accompanied by a positive correlation
with OXPHOS. Given the mitochondrial roles of other cyclophilins,
we hypothesize that reduced PPIL3 expression may impair neuronal
energy metabolism and disrupt the excitation-inhibition balance.

Integral membrane protein 2A (ITM2A) is a transmembrane
protein predominantly expressed in brain endothelial cells and
widely recognized as a marker of the blood-brain barrier (BBB)
(Zhang et al., 2016; Cegarra et al., 2022). BBB abnormalities have
been documented in individuals with schizophrenia (Najjar et al.,
2017). Experimental evidence further indicates that mitochondrial
respiration supports BBB integrity, whereas impaired OXPHOS in
brain endothelial cells compromises barrier function and promotes
neuroinflammation (Lee et al, 2022). In our study, ITM2A was
selectively expressed in brain endothelial cells and positively
correlated with OXPHOS, although its precise role in the central
nervous system remains undefined. Autophagy is integral to the
maintenance of OXPHOS, as it facilitates the removal of damaged
mitochondria and recycles substrates for the tricarboxylic acid cycle
(Garcfa-Miranda et al., 2024). Indeed, ITM2A has been shown to
regulate autophagy in a context-dependent manner: in breast cancer
cells, it enhances mTOR-dependent autophagy to inhibit tumor
growth (Zhou et al, 2019), whereas in HEK293 cells, its
overexpression disrupts vacuolar ATP synthase and blocks
autophagic flux (Namkoong et al, 2015). Given the specific
enrichment of ITM2A in brain endothelial cells, we propose that
its dysregulation may perturb the autophagy-OXPHOS axis,
thereby compromising BBB integrity and ultimately aggravating
neuronal and synaptic dysfunction.

This study has several limitations. First, although we identified a
link between OXPHOS dysfunction and schizophrenia, causality
remains unresolved; genetic or pharmacological interventions will
be needed to determine whether mitochondrial abnormalities are
drivers or consequences of the disease. Second, the absence of
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schizophrenia-specific snRNA-seq data limited validation of cell
type-specific differential expression; future patient-derived datasets
will enable more precise characterization. Third, the MK-801 model
captures only a subset of schizophrenia features and cannot reflect
the full complexity of the disorder; validation in genetic or iPSC-
based models will improve translational relevance. Finally, the
associations of MALAT1, PPIL3, and ITM2A with OXPHOS are
correlative, and mechanistic studies in neuronal and endothelial
contexts are required to establish causality.

Conclusion

In conclusion, through the integration of bulk transcriptomics,
snRNA-seq, and in vivo validation, we propose a potential link
between OXPHOS dysfunction and schizophrenia. The genes
MALATI, PPIL3, and ITM2A emerge as candidate regulators in
this process, meriting further investigation into their causal roles
and therapeutic significance.
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