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Maturity-onset diabetes of the young (MODY) is an autosomal dominant form of
monogenic diabetes, frequently caused by heterozygous loss-of-function
variants in transcription factor (TF) genes. Why are MODY variants in TF
genes dominantly inherited? Here | present a systems biology-based
explanation. The fact that MODY-associated TFs are master regulators of
pancreatic B cell fate suggests that pathogenic variants cause defects in cell
fate determination. From a systems biology perspective, cell fate defects are
based on disrupted bistability, a crucial feature of dynamical systems to make
binary choices. Bistability requires both positive feedback and ultrasensitivity,
the latter often in the form of cooperativity. MODY -associated TFs exhibit both
features, which not only allows for bistability, but also makes these TFs
extremely dosage sensitive, which explains why heterozygous loss of
function is sufficient to cause a disease phenotype. A review of the literature
strongly supports this hypothesis. Moreover, the hypothesis also helps to
explain why incomplete penetrance is such a pervasive feature of MODY-
associated variants in TF genes.

monogenic diabetes, cell fate, haploinsufficiency, dosage sensitivity, positive feedback,
cooperativity, bistability, incomplete penetrance

Introduction

Maturity-onset diabetes of the young (MODY) is a rare inherited form of diabetes
caused by mutations in a single gene and characterized by an early onset, typically
before the age of 25 years. MODY represents the most common form of monogenic
diabetes and is due to impaired development and function of pancreatic § cells,
resulting in deficient secretion of insulin. MODY is inherited predominantly in an
autosomal dominant mode, which is remarkable because other forms of monogenic
diabetes do not show this inheritance pattern (Bonnefond et al., 2023). Why are most
MODY variants dominantly inherited? In an attempt to address this issue, Li et al.
(2022) asked: “Could it be because of some biological property of the insulin-secreting
pancreatic B cells that makes them susceptible to the deleterious effects of heterozygous
but not homozygous variants?” Interestingly, however, rather than giving an answer to
this question, Li et al. proposed that autosomal recessive forms of MODY “are at least as
common as the dominant ones, but have not been discovered yet”. In their view, the
preponderance of autosomal dominant MODY does not have a biological reason, but
rather reflects our inability to detect recessive variants. While this is theoretically
possible, I here argue that there is indeed a plausible biological reason why MODY is
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All 19 known autosomal MODY genes, their protein functions, and their inheritance modes. 10 genes code for transcription factors, 3 for potassium
channel subunits, and one gene, respectively, for each of the other categories. AD, autosomal dominant; AR, autosomal recessive. Based on Bonnefond

et al. (2023) and Sriram et al. (2025).

mostly dominant. In the following sections I will outline the
hypothesis step by step, together with empirical evidence. Finally,
I discuss why the hypothesis also helps to explain incomplete
penetrance of MODY variants, and I disprove the idea that
homozygous variants are less deleterious.

Most MODY cases are caused b%/
variants In master transcription factor
(TF) genes

Although the protein products of MODY genes serve a variety of
molecular functions, by far the largest functional group comprises
transcription factors (TFs) (Figure 1). These TFs act as master
regulators of pancreatic development, and of P cell differentiation
and function in particular (Arda et al., 2013; Conrad et al.,, 2014;
Dassaye et al., 2016; Wortham and Sander, 2021). Therefore, MODY
cases that are due to impaired pancreas and P cell development,
caused by variants in master TF genes, should be considered
developmental disorders (Zug, 2022).

Out of 19 autosomal genes in which MODY-causing variants are
known, 10 code for TFs (Figure 1) (Bonnefond et al., 2023). These TF
genes are given in Table 1. Note that I do not include two other TF genes,
KLF11 and PAX4 (nor the genes APPLI, BLK, and WFSI), because there
is insufficient evidence that variants in these genes actually cause MODY
(Laver et al,, 2022; Sriram et al., 2025). Of the 10 known MODY-
associated TF genes, the three most common ones alone are estimated to
account for more than two-thirds of all MODY cases: HNFIA (52%),
HNF4A (10%), and HNFIB (6%) (Shields et al., 2010).
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Haploinsufficiency of master TF genes
as a cause of developmental disorders

All known MODY -causing variants in TF genes show dominant
inheritance. Why is that? In order to answer this question, let us look
at these variants in more detail. All MODY-associated variants in TF
genes cause loss-of-function (LOF). This is not surprising, as most
mutations cause LOF. What is surprising, though, is that LOF of a
single allele is sufficient to cause a clinical phenotype. In other
words, a 50% reduction in gene expression is not tolerated. This
pronounced dosage sensitivity is called haploinsufficiency.
Strikingly, all MODY-associated TF genes are haploinsufficient
and hence intolerant to heterozygous LOF variants (Table 1).
Haploinsufficiency is a manifestation of genetic dominance, as a
phenotype is already visible in the heterozygous state (Zschocke
et al., 2023). Haploinsufficiency represents a particularly strict form
of gene essentiality, which can be defined as a considerable reduction
in organismal fitness associated with a gene’s LOF (Bartha et al.,
2018). Accordingly, in haploinsufficient genes, there is strong
negative selection even against heterozygous LOF variants,
reducing the frequency of such variants in the population
(‘selective constraint’) (Zeng et al., 2024). Haploinsufficiency is a
hallmark of master regulator TF genes and can lead to a plethora of
developmental disorders, MODY being one of them (Seidman and
Seidman, 2002; Zug, 2022). Most often, MODY is caused by LOF
variants in the coding regions of TF genes, but it can also be due to
LOF variants in the cis-regulatory elements (CREs) of these genes, as
has been shown, for example, for HNFIA (Gragnoli et al., 1997) and
HNF4A (Hansen et al., 2002).
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TABLE 1 Features of transcription factor (TF) genes in which MODY-causing variants have been identified. All variants exhibit autosomal dominant

inheritance.

Pancreatic
development, B cell
fate and function

Haploinsufficiency
(intolerance to

heterozygous LOF) as the
cause of MODY

Positive
feedback

Cooperativity Estimated strength
of selection against

heterozygous LOF?

GATA4 Shaw-Smith et al. (2014) Carrasco et al. (2012); Xuan | Arda et al. (2013) | Charron et al. (1999); Xin 0.115 (extreme selection)
et al. (2012) et al. (2006)
GATA6 Bonnefond et al. (2012) Carrasco et al. (2012); Xuan | Meng et al. Charron et al. (1999); Xin 0.318 (extreme selection)
et al. (2012) (2018) et al. (2006); Chia et al. (2019)
HNFIA Yamagata et al. (1996b) Qian et al. (2023); Ng et al. | Ferrer (2002); Cujba et al. (2022) 0.084 (strong selection)
(2024) Hansen et al.
(2002)
HNFIB Horikawa et al. (1997) Cujba et al. (2022) Ardaetal. (2013); | Cujba et al. (2022) 0.251 (extreme selection)
De Vas et al.
(2015)
HNF4A Yamagata et al. (1996a) Ng et al. (2019), Ng et al. Ferrer (2002); Jiang and Sladek (1997); Lu 0.051 (strong selection)
(2024) Hansen et al. et al. (2008)
(2002)
MAFA Tacovazzo et al. (2018) Olbrot et al. (2002); Raum et al. Zhao et al. (2005) 0.008 (strong selection)
Nishimura et al. (2015) (2006)
NEURODI | Malecki et al. (1999) Gu et al. (2010); Jia et al. Arda et al. (2013) = Zhao et al. (2005); Jia et al. 0.100 (extreme selection)
(2015); Bohuslavova et al. (2015)
(2023)
ONECUTI = Philippi et al. (2021) Heller et al. (2021) Arda et al,, 2013; | Henley et al. (2016) 0.081 (strong selection)
De Vas et al.,,
2015
PDX1 Stoffers et al. (1997a) Gao et al. (2014) Raum et al. Zhao et al. (2005); Shih et al. | 0.005 (strong selection)
(2006); Shih et al. | (2015); Henley et al. (2016);
(2015) Bastidas-Ponce et al. (2017)
RFX6 Patel et al. (2017) Piccand et al. (2014); He et al. (2022) Churchill et al. (2017) 0.037 (strong selection)
Ibrahim et al. (2024)

*Estimated sy, values taken from Zeng et al. (2024). Under the strong selection regime (107 > s, < 107), heterozygous LOF has a fitness effect on par with the strongest selection measured for
common variants. Under extreme selection (spee > 107"), fitness effects are equivalent to a >10% chance of embryonic lethality (Zeng et al., 2024).

Bistability and its disruption through TF
haploinsufficiency

Why are heterozygous LOF variants in TF genes (or their CREs)
sufficient to cause MODY? In other words, why are these TFs so
dosage-sensitive? Building upon earlier work (Wilkie, 1994; Veitia,
2002; Johnson et al., 2019), I have recently proposed the hypothesis
that developmental disorders caused by TF haploinsufficiency result
from defects in cell fate determination, which can be traced to
disrupted bistability in the underlying gene regulatory network (Zug,
2022). Bistability is a crucial feature of dynamical systems that are
able to make binary choices such as cell fate decisions. Bistability
means that a system can be resting in two alternative stable states but
not in intermediate states, resulting in switch-like threshold effects.
The threshold corresponds to an unstable steady state separating the
two stable steady states. A system is able to generate bistability if its
components engage both in positive feedback and ultrasensitivity
(Ferrell, 2002). Positive feedback prevents the system from resting in
intermediate states. Ultrasensitivity means that an increase in the
input signal first has little effect, but then produces higher and higher
levels of output, as represented by a steep sigmoidal curve.
Ultrasensitivity filters small stimuli out of the feedback loop,
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allowing the system to have a stable off-state (Ferrell, 2002), and
often comes in the form of cooperativity (Zhang et al, 2013).
Bistable switches based on positive feedback and cooperativity
are a pervasive regulatory motif underling cell fate determination.
Cell fate is mainly controlled by the assembly of master regulators at
cell-type-specific  enhancers, often called super-enhancers
(Figure 2A). Genes associated with super-enhancers include those
encoding the master regulators themselves, thus establishing
autoregulatory positive feedback loops. Super-enhancers assemble
a high density of master regulators, allowing for extensive
cooperative TF-DNA binding (e.g., via dimerization). The
requirement of both positive feedback and cooperativity for
proper cell fate determination helps to explain the distinct dosage
sensitivity (that is, haploinsufficiency) of master regulators: it is the
high level of cooperativity (an instantiation of ultrasensitivity) that
makes the positive feedback loops particularly sensitive to changes in
TF concentration. Therefore, heterozygous LOF variants that
disrupt positive feedback or cooperativity are sufficient to
interfere with proper cell fate determination and eventually lead
to developmental disorders such as MODY (Figure 2B) (Zug, 2022).
Although bistability has been invoked before to explain MODY
etiology (in the context of the HNFIA-HNF4A positive feedback
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A model of transcriptional regulation of cell fate and its
misregulation due to haploinsufficiency. (A) Master transcription
factors (TFs) maintain their own expression through positive feedback
by cooperatively binding to their own super-enhancers.
Cooperative binding occurs through multivalent interactions between
TFs and cofactors (inset, red dashed lines). (B) Haploinsufficiency (here
caused by TF gene deletion) disrupts positive feedback and
cooperativity and thus leads to disease. Adapted from Zug (2022).

loop: Ferrer, 2002; Kaci et al, 2024), these studies ignore
cooperativity, failing to account for both requirements of bistability.

Supporting evidence with respect
to MODY

Here I collect evidence in support of the hypothesis that
heterozygous LOF variants in MODY-associated TF genes
disrupt positive feedback or cooperativity and thus cause the
disease. As shown in Table 1, all known MODY-associated TF
genes (1) are haploinsufficient, (2) are master regulators of
pancreatic development, and of P cell fate and function in
particular, (3) engage in positive feedback and cooperativity, and
(4) exhibit strong or extreme selection against heterozygous LOF, as
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estimated by a powerful Empirical Bayes approach (Zeng et al.,
2024). Moreover, for HNFIA and HNF4A, disruption of positive
feedback (Hansen et al., 2002) and of cooperativity (Hua et al., 2000;
Singh et al,, 2019) has been identified as the cause of MODY. Taken
together, this evidence strongly supports the hypothesis that
heterozygous LOF variants in master regulators of 8 cell fate are
sufficient to disrupt TF positive feedback or cooperativity and thus
cause MODY. This explains why MODY-associated variants in TF
genes are dominantly inherited.

A better understanding of incomplete
;Igenetrance of MODY-associated
F genes

The hypothesis outlined above also helps to better understand why
not every individual carrying a pathogenic variant actually develops the
disease, a phenomenon termed incomplete penetrance (Kingdom and
Wright, 2022). Many MODY-associated TF genes show incomplete
penetrance, e.g., HNFIA, HNFIB, HNF4A, NEURODI, PDXI, and
RFX6 (Mirshahi et al., 2022; Li et al., 2023; Sharp et al., 2025; Sriram
et al,, 2025). Even though incomplete penetrance can be caused by a
range of factors, it has a strong genetic basis (Kingdom and Wright,
2022). Goldschmidt (1938) explained incomplete penetrance by
assuming stochastic fluctuation in gene expression combined with
some threshold effect. The stochastic nature of gene expression is
established (Raj and van Oudenaarden, 2008).
Goldschmidt’s postulated threshold effect can be readily explained as
well, at least with respect to master regulator TFs: as outlined above,

now well

these TFs engage in positive feedback and cooperativity, which allows
for bistability and, thus, threshold effects. Heterozygous LOF variants
bring gene expression levels close to the threshold, but only those
variants for which gene expression happens to lie below the threshold
will elicit a disease phenotype (Figure 3). This idea explains incomplete
penetrance of variants in TF genes, including those associated with
MODY (Zug, 2022).

Homozygous LOF variants generally
show worse outcomes than
heterozygous variants

Lastly, I would like to address the assumption made by Li et al.
(2022) that P cells are susceptible to heterozygous but not homozygous
variants. I argue that this assumption is wrong, at least with respect to
TF genes. The reason is that, in TF genes, variants in the homozygous
state have generally more severe consequences than in the
heterozygous state, a phenomenon termed semi-dominance
(Zschocke et al, 2023). In many MODY-associated TF genes,
thought to be
embryonically lethal or result in early mortality, e.g., in GATA4
(Kuo et al,, 1997), GATA6 (Morrisey et al., 1998), HNFIA (Harries
et al,, 2009), HNFIB (Barbacci et al., 1999), HNF4A (Chen et al., 1994),
and ONECUT1 (Philippi et al., 2021). In other MODY-associated TF
genes, homozygous variants exist but cause severe syndromic and

homozygous LOF variants are generally

usually neonatal diabetes, such as in MAFA (Iacovazzo et al., 2018),
NEURODI (Rubio-Cabezas et al., 2010), PDX1 (Stoffers et al., 1997b)
and RFX6 (Smith et al,, 2010). Therefore, the question is not why
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FIGURE 3

An explanation of incomplete penetrance, based on the combined action of stochastic fluctuation in gene expression and a threshold effect. The
latter results from TF genes engaging in positive feedback and cooperativity. Heterozygous LOF mutations bring expression levels close to the threshold.
Only individuals whose gene expression lies below the threshold (here, individuals 2 and 4) will show a disease phenotype. Based on Hobert (2010).

MODY-associated TF genes are not susceptible to homozygous
variants (they are very much so), but rather why homozygous
variants are tolerated at all (at least in some genes), given the
generally high intolerance of these genes even to heterozygous variants.

Conclusion

LOF variants in TFs controlling pancreatic p cell fate are a
common cause of MODY. To understand the dominant inheritance
of such variants, I have adopted a systems biology perspective. I have
shown that MODY-associated TFs are involved in positive feedback
and cooperativity, which makes them extremely dosage-sensitive
and thus explains why even heterozygous LOF is not tolerated,
resulting in dominance. The proposed hypothesis also helps to
explain incomplete penetrance, which is widespread in MODY,
and thus advances our understanding of the most common form
of monogenic diabetes. Future studies should gather further
empirical evidence showing that MODY is caused by disrupted
TF cooperativity or positive feedback (beyond HNF1A and HNF4A).
Another important issue for future work is to investigate what
distinguishes those TF genes that are able to tolerate homozygous
LOF variants. It will also be interesting to elucidate how functioning
of the bistable switch motif is affected by polygenic background,
which can substantially modify MODY penetrance and expressivity
(Murray Leech et al., 2025).
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