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Background: Senescence-related lncRNAs (srlncRNA) mediate carcinogenesis in
various malignancies. However, its roles in endometrial cancer (EC) remain
unknown. Our research aims to construct a predictive srlncRNA model with
prognostic and therapeutic significance in EC.
Methods: We first downloaded the gene expression and medical information
from the TCGA, as well as senescence-related lncRNAs (srlncRNAs) from the
CellAge databases. Then, a co-expression network of cell senescence-related
mRNA−lncRNA was explored with R. Subsequently, we performed Cox and Lasso
regression and machine learning analysis to identify srlncRNAs related to the
prognosis of EC and built a predictive model. Continually, we drew a nomogram
to improve its ability to predict prognosis. Further, GSEA was used to explore
potential mechanisms. Differences in TME, immune infiltrating cells, and
checkpoints of the two risk groups were compared using GSEA and
CIBERSORT. Finally, the drug sensitivity of patient-derived tumor organoids
(PDOs) was investigated.
Results: We first built a prognostic model based on seven srlncRNAs
(AL121906.2, AP002761.4, BX322234.1, LINC00662, LINC00908, VIM-AS1,
and ZNF236-DT). The model, which was screened by machine learning,
functioned well in three sets with good stability and accuracy.
Furthermore, the nomogram based on age, grade, and risk scores could
precisely predict the prognosis of EC patients. The AUC of risk scores was
highest compared to other clinical parameters (AUC risk score = 0.769, AUC
age = 0.615, and AUC grade = 0.681). This srlncRNAs were enriched in the cell
cycle, certain malignant tumors, and cancer-associated regulatory pathways.
Afterward, low-risk EC patients had more immune-infiltrating cells and may
benefit from anti-PD-1 and anti-CTLA4 treatment. Paclitaxel, gemcitabine,
and cisplatin (all p < 0.05) may be more useful in EC patients with high
expression of targeted srlncRNAs in the GDSC database. The levels of
targeted srlncRNAs and drug sensitivity varied significantly among different
EC PDOs. The EC-18 PDO was more resistant to three drugs, which aligned
with clinical observation.
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Conclusion: The srlncRNA signature (AL121906.2, AP002761.4, BX322234.1,
LINC00662, LINC00908, VIM-AS1, and ZNF236-DT) could guide prognosis
prediction and treatment choices for EC patients.
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Introduction

Endometrial cancer (EC) is currently the most lethal gynecologic
malignancy, with its incidence rising globally (Lin et al., 2024; Corr
et al., 2025). According to the 2022 Global Cancer Observatory
(GLOBOCAN), new cases of EC were estimated to reach 420,242,
with mortality figures at 97,704 (Bray et al., 2024). It is projected that
by 2050, more than 676,296 individuals worldwide will still be
diagnosed with EC, resulting in nearly 183,083 fatalities (https://
gco.iarc.who.int/tomorrow/en). The standard treatment for EC,
according to NCCN guidelines, is a total hysterectomy along
with bilateral salpingo-oophorectomy. Adjuvant therapies, such
as radiation and/or chemotherapy, are considered based on the
tumor’s histology and its stage (Abu-Rustum et al., 2025). Recently,
molecular classification has brought immunotherapy, such as anti-
PD-1, anti-PD-L1, or anti-CTLA-4 treatments, to the forefront
(Abu-Rustum et al., 2025). While most EC patients present with
early-stage disease and have favorable prognoses, patients with stage
III and IV disease have 5-year survival rates of 48% and 15%,
respectively (Crosbie et al., 2022). Specifically, approximately 20%–
30% of ECs are considered high risk and are associated with
recurrence rates of up to 30% at diagnosis (Gordhandas et al.,
2023). Therefore, it is essential to focus on developing precise
therapeutic strategies and effective prognostic biomarkers for
patients with EC who are at high risk of recurrence.

Cellular senescence is a stress response that inhibits the growth
of aged, damaged, or abnormal cells (McHugh et al., 2025). It can
have both beneficial and detrimental effects in various physiological
and pathological contexts, including cancer regulation (Schmitt
et al., 2022; Chen et al., 2023; Deng et al., 2024; Zingoni et al.,
2024; Colucci et al., 2025). A key molecular process involved in
senescence is the progressive shortening of telomeres, the protective
structures at the ends of chromosomes. This process ultimately leads
to cellular senescence and can be influenced by senescence-related
long non-coding RNAs (srlncRNAs) (Rossi and Gorospe, 2020).
SrlncRNAs are typically over 200 nucleotides long. Although they do
not code for proteins, they play important roles in immune
remodeling and cancer regulation across various types of cancer
(Santos-Sousa et al., 2025), including melanoma (Lin et al., 2023),

head and neck squamous cell carcinoma (Chen et al., 2024), and
glioma (Liu et al., 2023). To date, there has been limited research
focused on the roles of srlncRNAs in EC.

To fill this gap, we construct a predictive srlncRNAs RNA
signature based on the Cancer Genome Atlas (TCGA) database
and the CellAge database by using machine learning analysis. Then,
we investigate its predictive abilities in prognosis, potential
biological functions and mechanisms, and immune status.
Finally, the drug sensitivity of patient-derived tumor organoids
(PDOs) was investigated as external validation.

Materials and methods

Data source

Gene expression and clinical medical information for EC
patients were retrieved from the TCGA-UCEC database (https://
cancergenome.nih.gov/). The raw data were normalized using R
(version 3.6.3). Initially, 552 patients were selected for analysis.
However, after excluding samples with incomplete or duplicated
clinical features—such as age, stage, TNM classification, and overall
survival—a total of 503 samples were included in our study. Detailed
clinical features can be found in Supplementary Table S1.
Additionally, we extracted 279 senescence-related mRNAs from
the CellAge database (https://genomics.senescence.info/cells/
cellAge.zip) for further analysis. The data were downloaded
on 1 May 2022.

Construction of predictive signature

A senescence-related lncRNA-mRNA co-expression gene
expression network was established with absolute Pearson
correlation coefficient values |Coef| of >0.3 and P < 0.001 as the
thresholds. To visualize the lncRNA-mRNA co-expression network,
a Sankey diagram was created using the R package (version 3.6.3). A
total of 974 senescence-related lncRNAs were identified. After
filtering out srlncRNAs related to the prognosis, we created a
prognostic model by performing Kaplan–Meier and univariate
and multivariate Cox regression analyses and Lasso analysis
using machine learning analysis. Finally, a receiver operating
characteristic curve (ROC) was drawn to evaluate the model’s
predictive ability. We also identified whether the signature was
an independent risk factor by Cox analyses.

The risk score was calculated by the following formula (Lin et al.,
2025): Risk score = ∑i β1 (lncRNA1) × EXP (lncRNA1) + β2
(lncRNA2) × EXP (lncRNA2) +. . .. . .+ β n (lncRNAn) × EXP
(lncRNAn), EXP represents the expression level of srIncRNAs in

Abbreviations: srlncRNA, Senescence-related lncRNAs; EC, Endometrial
cancer; PDOs, Patient-derived tumor organoids; GLOBOCAN, Global
Cancer Observatory; TCGA, The Cancer Genome Atlas; GBM, Boosting
Machine; RSF, Survival Forest; OS, Overall survival; ROC, Receiver
operating characteristic curve; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; TME, Tumor microenvironment;
ssGSEA, Single-sample gene set enrichment analysis; IHC,
Immunohistochemistry; GDSC, Drug Sensitivity in Cancer; IC50, Half
maximal inhibitory concentration; dMMR, Mismatch-repair deficient
(dMMR) tumors; AML, Acute myeloid leukemia.
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our model, β represents the coefficient of srIncRNAs in the
multivariate Cox regression analysis. According to the median
risk score, EC patients were divided into the high- and low-
risk groups.

Signature validation and nomogram
assessment

We developed an optimal predictive model using machine
learning techniques, including GBM (Gradient Boosting
Machine), Random Survival Forest (RSF), CoxBoost,
SurvivalSVM, and Lasso regression. We randomly divided
503 EC patients into a training set (n = 251) and a test set (n =
252) to evaluate the model’s reliability and accuracy. We compared
the risk score distributions, ROC curves, and overall survival (OS)
between the two groups across three sets. Additionally, we created a
nomogram that incorporates risk scores, age, and tumor grade. The
calibration curves for 1-, 3-, and 5-year survival demonstrated the
predictive capability of the nomogram.

GSEA analysis and immune status
investigation

We conducted Gene Ontology (GO) (Nucleic Acids Res 43,
2015) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses (Kanehisa and Goto, 2000), as well as GSEA (https://www.
broadinstitute.org/gsea/index.jsp) to explore the potential
mechanisms and pathways between the two groups. To evaluate
the immunotherapy response of the two risk groups, we analyzed
and compared the differences in the tumor microenvironment
(TME), immune cells, and immune checkpoints. The TME
(stromal, immune, and ESTIMATE scores) of each sample in the
two risk groups was assessed using ESTIMATE (Yoshihara et al.,
2013). We then used a single-sample gene set enrichment analysis
(ssGSEA) (Hänzelmann et al., 2013) and the CIBERSORT(Newman
et al., 2019) algorithm to investigate the tumor-infiltrating immune
cells between the two groups. Moreover, the immune checkpoints
between groups were also compared.

PDOs culture

The fresh tumor tissues were obtained from EC patients who
were undergoing surgical treatment. Their clinical information is
provided in Supplementary Table S2. The procedure for PDO
culture is described in our previous experiments (Cai et al.,
2023). Fresh tumor tissue was cut into 1 mm3 and transferred to
a 6 cm dish containing 4 mL Tumor Tissue Digestion Solution
(Mogengel Bio; Cat: MB-0818L05). The mixture was digested on a
shaker at 80 rpm at 37 °C for 30 min to 1 h until no granular tissue
was evident. Digestion was stopped by the addition of DPBS. The
solution was filtered through a 100 μm cell filter to remove debris,
then centrifuged at 300 g for 3 min at 4 °C, and the supernatant was
discarded. Pellets were resuspended in Human Endometrial Cancer
Organoid Kit (Mogengel bio; Cat: MA-0807T007), then mixed with
1:1Matrigel (Mogengel bio; Cat:082703), and 50 μL of each drop was

inoculated into preheated 6-well plates. Incubate at 37 °Cand 5%
CO2 for 15–30 min to polymerize the matrix. After polymerization,
2 mL of organoid medium was added to each well for continuous
culture. The morphology of PDOs was observed every 2 days by the
microscope (Nikon, TS2). Organoids were dissociated at 37 °C for
5 min when they grew to 150–200 µm using organoid dissociation
solution TrypLE™ Express (Gibco; Cat:12605028). Then we passed
them to the first (P1) and second generations (P2).

RT-qPCR validation

We extracted total RNA from the PDOs following the
instructions provided with the RNAeasy™ Animal RNA
Extraction Kit (Beyotime; Cat: R0026). cDNA was synthesized
through reverse transcription using the NovoScript® Plus All-in-
one 1st Strand cDNA Synthesis SuperMix (gDNA Purge)
(Novoprotein; Cat: E047). GAPDH served as the internal
reference. The amplification process comprised 40 cycles, starting
with an initial denaturation step at 95 °C for 5 minutes. This was
followed by 10 s at 95 °C and then 30 s at 60 °C. The mRNA
expression levels were normalized to GAPDH using the ChamQ
Blue Universal SYBR qPCR Master Mix (Vazyme; Cat: Q312) (Ji
et al., 2023). The primers utilized are listed in
Supplementary Table S3.

Immunohistochemistry (IHC) validation

The IHC of tumor tissues and organoids was performed to
validate their origin consistency with specific biomarkers
associated with EC, including Estrogen Receptor (ER),
Progesterone Receptor (PR), and Vimentin. Additionally, Ki-67
was assessed to identify tumor malignant behaviors. The
antibodies used in this study are listed below: ER (Proteintech;
Cat: 21244-1-AP; 1:500), PR (Proteintech; Cat: 25871-1-AP; 1:
500), Vimentin (Servicebio; Cat: GB121308; 1:1000), and Ki-67
(Servicebio; Cat: GB111499; 1:1000).

Immunohistochemical staining for each slide was evaluated
blindly by two pathologists using a semi-quantitative method.
For each sample, three random fields of view
at ×100 magnification were selected for scoring. Staining
intensity was scored based on the degree of positive staining:
intense (3 points), moderate (2 points), weak (1 point), and
negative (0 points). The proportion of stained cells was
categorized into four groups: 76%–100% (4 points), 51%–75%
(3 points), 26%–50% (2 points), and 0%–25% (1 point). The
immunohistochemical H-score for each sample was calculated by
multiplying the intensity score by the percentage of positively
stained cells.

Samples were classified into four groups based on their
immunoreactive scores: 0 (negative, −), 1–4 (weakly positive, +),
5–8 (positive, ++), and 9–12 (strongly positive, +++). The
concordance of immunohistochemical staining between tumor
tissue and PDOs was assessed using the Pearson correlation
coefficient (r = 0.8651, p < 0.05). The agreement between the
two pathologists’ assessments was evaluated using the Kappa test
(κ = 0.869, p < 0.05), which indicates good agreement.
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Drug sensitivity in PDOs

First, we retrieved drug information, including paclitaxel,
gemcitabine, and cisplatin, from the Genomics of Drug
Sensitivity in Cancer (GDSC) database (https://www.
cancerrxgene.org). Half maximal inhibitory concentration (IC50)
was used to predetermine drug sensitivity for EC patients. Then, the
PDOs from different EC patients were cultured and exposed to
various concentrations of Paclitaxel (GLPBIO; Cat: GC12511),
Gemcitabine (GLPBIO; Cat: GC14447), and Cisplatin (MCE; Cat:
HY-17394) at concentrations of 100, 10, 1, 0.1, and 0.01 μg/mL for
120 h, respectively. The 0.1% DMSO was used as the control group.
The drug sensitivity of organoids was measured by ATP using
CellTiter-Lumi™ Luminescence 3D Cell Viability Detection Kit
(Beyotime; Cat: C0061).

Statistical analysis

R (version 3.6.3) was utilized for data analysis. The Kaplan-
Meier plots and Cox regression analysis were conducted using the
“survival” and “survminer” packages. GBM machine learning
analysis was performed using the “GBM” package, while RSF
machine learning analysis was conducted using the
“randomForestSRC” package. The CoxBoost machine learning
analysis utilized the “CoxBoost” package, and the SurvivalSVM
analysis was conducted using the “survivalsvm” package.
GraphPad Prism (version 10.1.2) was employed for statistical
analyses of the experiments. All experiments were performed in

triplicate, and a significance level of p < 0.05 was considered
statistically significant.

Results

The construction and validation of
srlncRNA signature

The workflow is demonstrated in Figure 1. Nine hundred forty-
seven srlncRNAs were initially identified. Sixty-three out of these
identified srlncRNAs were significantly associated with the
prognosis of EC (p < 0.01). Among sixty-three srlncRNAs,
thirty-one were linked to low risk (hazard ratio (HR) < 1), and
thirty-two were related to high risk (HR > 1). Subsequently, we
anchored seven srlncRNAs to create a predictive model by
performing Lasso regression and Cox regression analysis
(Figure 2). Those genes were LINC00908, VIM-AS1, and
ZNF236-DT, AL121906.2, AP002761.4, BX322234.1, and
LINC00662. Among these seven srlncRNAs, three srlncRNAs
(LINC00908, VIM-AS1, and ZNF236-DT) were beneficial for
prognosis, whereas the other four srlncRNAs (AL121906.2,
AP002761.4, BX322234.1, and LINC00662) were detrimental to
prognosis (Figure 3; Supplementary Table S4). By machine
learning, the Lasso model with seven srlncRNAs was identified to
be optimal (Supplementary Table S5). A prognostic visual co-
expression network of srlncRNAs–mRNAs was exhibited (Figure 4).

We contrasted the distribution of risk scores, the survival
status, the ROC curve, and the survival outcomes in three sets,

FIGURE 1
Flow diagram of the study.
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respectively (Figure 5; Supplementary Figure S1). The risk curves
and scatter plots implied that mortality was positively associated
with the risk score in three sets (Figures 5A,B). We also found that
the patients in the high-risk group had lower OS rates than
patients with lower risk scores in three sets (all p < 0.05,
Figure 5C). Moreover, ROC curves of the entire set (ROC1-

year = 0.762, ROC3-year = 0.76, ROC5-year = 0.773), train set
(ROC1-year = 0.762, ROC3-year = 0.76, ROC5-year = 0.773), and
test set (ROC1-year = 0.714, ROC3-year = 0.751, ROC5-year = 0.730)
all demonstrated our prognostic model was stable and
reliable (Figure 5D).

Prognosis value and nomogram assessment

Based on the results of univariate and multivariate Cox
regression analyses, we found the HR of risk score was 1.106
(Figure 6A) and 1.081 (Figure 6B), respectively (all p

values <0.001). These results indicated that our predictive model
was an independent prognostic factor for EC patients. The AUC
value was 0.769, higher than age and grade (Figure 6D), suggesting
that our model could more precisely predict the survival outcomes of
EC patients. Afterward, the nomogram we created was easy to
master and could precisely predict the 1-, 3-, and 5-year survival
probability (Figure 6C). Calibration curves validated our model’s
predictive ability (Figures 6E–G).

We examined the correlation between model genes, risk score,
age, fustat, and grade. High levels of three favorable lncRNAs
(ZNF236-DT, VIM-AS1, and LINC00908) were negatively
correlated with risk scores, grade, age, and mortality rates. In
contrast, high levels of the other four harmful lncRNAs
(BX322234.1, LINC00662, AP002761.4, and AL121906.2) were
positively correlated with them (Figure 7A). Furthermore, we
found that patients in the high-risk group had lower OS,
compared to those in the low-risk group, based on different
subgroups (age ≤65 years or >65 years and grade 1 or grades

FIGURE 2
Identification of srlncRNAs with significant prognostic value in EC. (A) The forest showed the HR (95%CI) and p-value of selected lncRNAs by
univariate Cox proportional-hazards analysis. (B,C) Lasso regression.
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2–3) (Figure 7B). These results indicated that the risk score was
efficient in predicting the prognosis of EC patients.

We investigated the prognostic value and immune response
of the srlncRNA signature across different TCGA molecular
subtypes. Our findings indicate that EC patients with the
CNH subtype have a higher risk score. In contrast, patients
with the POLE, MSI, and CNL subtypes show lower risk

scores, reflecting a similar trend in prognostic prediction and
immune response with TCGA molecular subtypes. Specifically,
patients with high-risk scores tend to have worse survival
outcomes compared to those with low-risk scores, particularly
in the MSI subtype (p < 0.0001) and the POLE subtype (p =
0.035). Therefore, our scoring system may be valuable for
predicting prognostic significance and immune response when

FIGURE 3
Survival curve of EC patients in different groups. (A) Comparison of survival rates between high and low VIM-ASI levels in EC patients using Kaplan-
Meier analysis. (B) Comparison of survival rates between high and low LINC00908 levels in EC patients using Kaplan-Meier analysis. (C) Comparison of
survival rates between high and low ZNF236-DT levels in EC patients using Kaplan-Meier analysis. (D) Comparison of survival rates between high and low
AP002761.4 levels in EC patients using Kaplan-Meier analysis. (E) Comparison of survival rates between high and low BX322234.1 levels in EC
patients using Kaplan-Meier analysis. (F)Comparison of survival rates between high and low LINC00662 levels in EC patients using Kaplan-Meier analysis.
(G) Comparison of survival rates between high and low AL121906.2 levels in EC patients using Kaplan-Meier analysis. EC, endometrial cancer.

FIGURE 4
Screening of prognostic srlncRNA in EC. (A) A co-expression network of srlncRNAs andmRNAs. (B) The Sankey diagram of the relationship between
lncRNA and mRNA.
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combined with TCGA subtypes (Supplementary Table S6;
Supplementary Figure S2).

GSEA analysis

GO analysis revealed that nuclear chromosome segregation
and extracellular transport were the primary biological functions
of our identified srlncRNAs (Figure 8A). At the same time, KEGG
analysis revealed srlncRNAs with high-risk scores were enriched
in cell cycle, tumor regulations, and classical tumor-related
pathways, such as the Erbb signaling pathway. In contrast,
srlncRNAs with low-risk scores were concentrated in immune
rejection (Figure 8B).

Immune landscape investigation

The tumor immune microenvironment of EC was investigated
using ESTIMATE. The TME scores (ESTIMATE, immune, and
stromal scores) were lower in the high-risk group than in the low-

risk group (all p < 0.050), indicating that the immune system was
more vigorous in patients with lower-risk scores (Figures 9A–C).
Furthermore, we used ssGSEA to assess immune-infiltrating cells
and immune functions between the two risk groups (Figures 9D,E).
The abundance of B cells (p < 0.05), CD8+ T cells (p < 0.001), iDCs
(p < 0.001), neutrophils (p < 0.001), NK cells (p < 0.01), pDCs (p <
0.01), T helper cells (p < 0.01), Th1 cells (p < 0.001), Th2 cells (p <
0.001), TILs (p < 0.001) and Tregs (p < 0.01) were observed in low-
risk patients. In contrast, the aDCs were higher in patients with
high-risk scores (p < 0.001). In the low-risk group, a total of
25 checkpoints were upregulated, such as CD28, CD86, CTLA4,
TIGIT, CD44, and CD27 (p < 0.05), whereas in the high-risk group,
four therapy sites (ICOSLG, IDO2, CD40, and BTNL2) were
upregulated (p < 0.05) (Figure 9F).

Drug sensitivity in PDOs

We cultured the PDOs of EC patients for drug sensitivity
analysis. The morphology of EC organoids confirmed that EC
organoids were successfully cultured and passaged from P0 to P2

FIGURE 5
The prognostic value of our predictive model in the entire, train, and test sets. (A) Exhibition of risk scores of the low and high-risk groups in three
sets. (B) Survival time and survival status of EC patients in low and high-risk groups of three sets. (C) Kaplan-Meier survival curves for EC patients in low-
and high-risk groups across three sets. (D) Time-dependent ROC curves between low and high-risk groups in three sets.
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FIGURE 6
Assessment of the prognostic survival model based on seven srlncRNAs. (A,B) Univariate and Multivariate Cox regression analysis of risk score and
clinical factors. (C) The nomogram of risk score and clinical factors. Clinical factors: age and grade. (D) The AUC for risk model score, age, and grade.
Clinical factors: age and grade. (E) The 1-year OS calibration curve. (F) The 3-year OS calibration curve. (G) The 5-year OS calibration curve.
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(Figure 10A). IHC results further confirmed that the EC organoids
maintained the same homological origin as their corresponding
tissue (Figure 10B). Then, we calculated the relative expression of
targeted srlncRNAs in tumor tissues from four EC patients. The
expression levels varied significantly among different patients
(Figure 11A). Subsequently, paclitaxel, gemcitabine, and
cisplatin showed increased sensitivity in patients with high-risk
scores (all p < 0.05), as indicated by the GDSC database
(Figure 11B). Continually, we assessed the drug sensitivity of
paclitaxel, gemcitabine, and cisplatin in EC organoids. The
dose-response curves are shown in Figure 11C. The EC-18 PDO
was more resistant to three drugs, which aligns with clinical
observations. Our findings on drug sensitivity may help
optimize individualized treatment strategies.

Discussion

Cellular senescence is an almost universal property of biological
organisms. Over the past decade, research has indicated a strong
association between cellular senescence and cancers (Colucci et al.,
2025). While cellular senescence is primarily viewed as an antitumor
mechanism, it can also promote tumor development through
interactions with the immune system (Herranz and Gil, 2018;
Kowald et al., 2020; Wang et al., 2021). Recent studies have
increasingly emphasized the important roles of lncRNAs in
cellular senescence (Schmitt et al., 2022), the immune system
(Barczak et al., 2023; Han, 2023), and the prediction of prognosis
(Feng et al., 2022; Huo et al., 2022) across various cancers. However,
the role of srlncRNAs in EC remains unclear. In this study, we

FIGURE 7
(A) Heat map of seven srlncRNAs’ expression. (B) Survival analysis of the high-risk and low-risk groups in patients under different subgroups
(age ≤ 65, age >65, grades 1, and grades 2–3).

FIGURE 8
The results of functional analysis based on seven srlncRNAs model by GSEA. (A) GO enrichment analysis. (B) KEGG enrichment analysis.
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FIGURE 9
The investigation of tumor immune factors and immunotherapy. (A–C) Estimate score, immune score, and stromal score in high-and low-risk
groups. (D,E) The varied proportions of immune cells and immune functions in high-and low-risk groups by ssGSEA. (F) The 29 immune checkpoint
inhibitor (ICI) levels in high-and low-risk groups.

Frontiers in Genetics frontiersin.org10

Lin et al. 10.3389/fgene.2025.1687922

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1687922


developed a novel srlncRNA signature using machine learning
analysis, which can predict survival outcomes and treatment
responses for patients with EC.

Using TCGA data mining, we developed a predictive model
based on seven srlncRNAs, which include AL121906.2, AP002761.4,
BX322234.1, LINC00662, LINC00908, VIM-AS1, and ZNF236-DT.
Among these srlncRNAs, AL121906.2 influences the prognosis of
EC through glycolysis metabolism (Jiang et al., 2021). Additionally,
BX322234.1 is also a prognostic biomarker for EC patients by the
way of autophagy (Huo et al., 2022). Furthermore, LINC00662 has
been shown to promote tumor progression in various cancers,
including gallbladder cancer (Pérez-Moreno et al., 2024),
osteosarcoma (Zhang et al., 2023), and melanoma (Luo et al.,
2024). Similarly, LINC00908 promotes the progression of
prostate cancer (Guan et al., 2025) and gastric cancer (Zhang
et al., 2024). VIM-AS1 is implicated in the development of liver

cancer (Han et al., 2024) and bladder cancer (Xiong et al., 2021).
Lastly, AP002761.4 and ZNF236-DT appear to affect the immune
microenvironment and tumor growth in acute myeloid leukemia
(AML) (Zhao et al., 2024) and pancreatic adenocarcinoma (Huang
et al., 2023), respectively.

In this study, ROC curves demonstrated that the predictive
signature and tumor grade had better abilities in predicting survival
outcomes compared to age. The tumor grade has been fully
confirmed as related to the prognosis of EC patients (Tanaka
et al., 2017). While our novel predictive model was the first to be
established as an independent prognostic factor for EC patients. The
advantage of the risk score was that it calculated each patient’s status
and scored them separately, which made patient-oriented therapy
possible. Moreover, it was closely related to TME and could predict
the response to immunotherapy. Research indicates that patients
with POLE mutations and those with mismatch-repair-deficient

FIGURE 10
(A) The organoid morphology of P0, P1, and P2. (B) Comparison of HE and IHC between organoids and EC tissues. HE, Hematoxylin-eosin staining.
IHC, Immunohistochemistry.
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FIGURE 11
(A) Relative mRNA levels of targeted genes from four organoids; (B) Drug sensitivity analysis, including paclitaxel, gemcitabine, and cisplatin, based
on the GDSC database; (C) The inhibition ratio plot of organoids treated with various concentrations of paclitaxel, gemcitabine, and cisplatin. GDSC, Drug
Sensitivity in Cancer.
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(dMMR) tumors tend to respond well to immunotherapy (Jamieson
and McAlpine, 2023). The response rates for PD-1 inhibitors can
range from 27% to 57% in advanced cases (Green et al., 2020).
However, clinical observations have shown that strong responses to
immunotherapy can occasionally occur in other molecular types,
highlighting the necessity for more precise biomarkers to identify
patients who are likely to benefit from immunotherapy. Given that
the srlncRNA signature was closely related to immune infiltration in
EC, we speculated that these lncRNAs could be promising targets for
immune checkpoint blockade therapy.

To further validate the predictive power of our risk model in
forecasting the sensitivity to commonly used chemotherapeutic
drugs such as paclitaxel, gemcitabine, and cisplatin, we cultured
PDOs for validation. Organoids are innovative three-dimensional,
self-organizing cell cultures representing various tissues and can be
used to study diverse biological systems. They provide a patient-
specific model to investigate known diseases and predict treatment
responses (Verstegen et al., 2025). The EC-18 PDO showed
resistance to paclitaxel, gemcitabine, and cisplatin, even at high
drug concentrations. This finding aligns with clinical observations,
as EC patient 18 experienced disease progression quickly after
chemotherapy. Therefore, we recommend that clinicians pay
close attention to strategies that target the srlincRNAs identified
in our model during oncology treatments. Targeting these
srlncRNAs in combination with immune checkpoint inhibitors
may represent a promising new approach in cancer therapy.

This study provides new insights into predicting prognosis and
therapy response in EC based on a signature of srlncRNAs. Our
nomogram has the potential to aid clinicians in making informed
medical decisions and developing individualized treatment plans.
However, our study has some limitations. First, certain factors that
could influence prognosis, such as obesity, pathological types, and
molecular types, were not included in the nomogram due to a lack of
available data in public databases. Second, due to the lack of relevant
data in the GEO and other databases, which posed challenges for
external validation.We then used four organoid samples for validation.
However, more samples are needed for further investigation. Lastly,
functional and basic experiments are necessary to better understand
the underlying mechanisms of srlncRNAs in EC.

Conclusion

In summary, we identified a novel srlncRNA signature with
prognostic predictive value. The srlncRNAs, including AL121906.2,
AP002761.4, BX322234.1, LINC00662, LINC00908, VIM-AS1, and
ZNF236-DT, are promising prognostic markers and potential
therapeutic targets for EC patients.
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