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A novel splicing variant in NBAS
identified by minigene assay
causes infantile liver failure
syndrome type 2

Anna Hu?, Jun Liang?’, Hongbo Liu?, Jinghui Jiang?, Fujing Xie?,
Xin Zhou?* and Xiaojia Zhang'*

'Department of Pediatrics, Liaocheng People’s Hospital, Liaocheng, China, ?Department of Cardiology,
Children’s Hospital Affiliated to Shandong University (Jinan Children’s Hospital), Jinan, China

Background: Infantile liver failure syndrome type 2 (ILFS2) is an autosomal
recessive disorder caused by biallelic NBAS variants, characterized by
recurrent acute liver failure (ALF) typically triggered by febrile episodes.
Methods: Trio-based whole-exome sequencing (Trio-WES) was performed on a
child with recurrent ALF and both parents. Candidate variants were validated in
family members by Sanger sequencing, and the functional impact of a novel
splice-site variant was assessed using a minigene splicing assay.

Results: Trio-WES revealed compound heterozygous NBAS variants in the
proband: the known pathogenic variant c.3596G>A (p.Cys1199Tyr) and a novel
splice-site variant ¢.1600-1G>T. The ¢.1600-1G>T variant was classified as
pathogenic based on ACMG criteria, supported by SpliceAl analysis predicting
potential splicing abnormalities with the following scores: acceptor gain (AG =
0.33 at -9 bp), acceptor loss (AL = 0.93 at —1 bp), donor gain (DG = 0.00 at —8 bp),
and donor loss (DL = 0.25 at =126 bp). Minigene assays confirmed that ¢.1600-
1G>T causes aberrant pre-mRNA splicing, resulting in multiple abnormal
transcripts—including 185 bp and 56 bp intron 15 retention, an 8 bp deletion
within exon 16, and full exon 16 skipping—predicted to produce truncated or
internally deleted NBAS proteins, providing functional evidence of pathogenicity.
Conclusion: We report a novel pathogenic splicing variant in NBAS that causes
ILFS2 in compound heterozygosity. This finding underscores the importance of
integrating genomic sequencing with functional validation for accurate diagnosis
and genetic counseling.

NBAS, ILFS2, splicing variant, minigene assay, whole-exome sequencing, acute
liver failure

1 Introduction

The NBAS gene encodes the NBAS protein, which functions as a component of an
endoplasmic reticulum (ER) tethering complex involved in retrograde Golgi-ER transport
(Haack et al., 2015; Staufner et al., 2016). Recent evidence suggests an additional role for
NBAS at the ER exit site in facilitating the formation of large transport vesicles required for
bulky cargo, such as collagen, within the secretory pathway (Raote et al., 2018). NBAS
deficiency is an autosomal recessive disorder caused by pathogenic variants in the NBAS
gene. It presents with a broad and variable clinical spectrum, including short stature with
optic nerve atrophy and Pelger Huét anomaly (SOPH, OMIM #614800), infantile liver
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failure syndrome type 2 (ILFS2, OMIM #616483), and combined
phenotypes of both SOPH and ILFS2 (Capo-Chichi et al., 2015;
Segarra et al, 2015; Balasubram et al, 2017). ILFS2 typically
manifests in infancy or early childhood, with acute onset and
rapid progression. The main clinical features include recurrent
febrile episodes accompanied by acute liver failure (ALF),
presenting as vomiting, lethargy, abrupt elevation of
transaminases, mild to moderate jaundice, coagulopathy, and, in
some cases, seizures. Additionally, some patients may develop
hyperammonemia and hepatic encephalopathy. However, liver
function can return to normal during remission periods (Li WR.
et al,, 2020). Notably, ILFS2 exhibits significant clinical and genetic
heterogeneity. Recent studies suggest that the major phenotypic
variability may be associated with the location of missense or in-
frame variants within the NBAS protein (Staufner et al., 2020; Li ZD.
et al., 2020).

Early diagnosis and appropriate management are essential for
improving the quality of life and long-term outcomes in these
patients (Wang et al., 2018). In pediatric practice, the diagnosis
of ILFS2 relies on a combination of clinical, biochemical, and genetic
assessments (Li et al., 2018). Here, we report a child with recurrent
febrile-induced ALF and a positive family history, in whom Trio-
based whole-exome sequencing (Trio-WES) identified compound
heterozygous variants in NBAS, including a novel splice-site variant
(c.1600-1G>T). Functional minigene assays confirmed that this
variant disrupts normal splicing, giving rise to multiple aberrant

transcripts with predicted deleterious effects on protein structure.

2 Materials and methods

2.1 Clinical data collection, blood sampling,
and DNA extraction

Clinical information and family history were prospectively
collected from an ALF pedigree, including detailed medical
history,  physical laboratory
parameters. Peripheral blood samples were collected from the

examination  findings, and
proband and his family members using EDTA anticoagulant
tubes. Genomic DNA was extracted from whole blood using the
QIAamp DNA Blood Mini Kit (Qiagen, Spain), according to the
manufacturer’s instructions.

2.2 Trio-WES

Trio-WES was performed on the proband and his parents to
identify potential pathogenic variants. A total of 500 ng of genomic
DNA was enriched using the IDT xGen Exome V2 capture kit
(Integrated DNA Technologies, Inc., Iowa, United States), followed
by paired-end sequencing on an Illumina NovaSeq 6,000 platform
with 150-bp read length (Illumina, Inc., California, United States).
The raw sequencing data were processed to generate high-quality
clean reads for downstream analysis. These reads were aligned to the
human reference genome (hgl9) using the Sentieon software
package. Over 99% gene coverage was achieved, with an average
sequencing depth of more than 150x. Duplicate reads were removed
using Picard, and variant calling, including single nucleotide
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variants (SNVs) and small insertions/deletions (indels), was
performed using the Sentieon-GATK pipeline.

2.3 Bioinformatics analysis and variant
verification

Detected variants were annotated using multiple public
databases, including dbSNP (Build 150), the 1000 Genomes
Project (Phase 3), gnomAD (v4.1.0), ExXAC (v0.3.1), ESP6500,
and OMIM. Pathogenicity prediction was performed using
various bioinformatics tools such as REVEL, PolyPhen-2, SIFT,
MutationTaster, SpliceAl and RNA Splicer. Variants were
classified according to the guidelines of the American College of
Medical Genetics and Genomics (ACMG) (Richards et al., 2015).
Candidate variants identified through WES were further validated
by Sanger sequencing in the proband, parents, and siblings.

2.4 Minigene splicing assay

To evaluate the pathogenicity of ¢.1600-1G>T, a minigene
containing exonl5 (258bp)-intronl5 (719bp)-exonl6 (126bp)-
partial intronl6 (526bp) was constructed in pcMINI-N (MCS-
IntronB-ExonB backbone). The genomic fragment was amplified
from normal gDNA via nested PCR using two primer pairs (A
and B), cloned into the vector, and validated by sequencing.
Mutant constructs were generated by site-directed mutagenesis
(primers pcMINI and MT) and confirmed by sequencing.
Recombinant plasmids were transfected into Hela and
HEK293T cells (Lipofectamine 2000). After 48 h, RNA was
amplified by RT-PCR
(primers N). Splicing isoforms were analyzed via agarose gel

isolated, reverse-transcribed, and
electrophoresis and sequencing. The relevant primer sequences

are listed in Table 1.

3 Results
3.1 Clinical presentation and diagnosis

The proband is a 5-year-old male, the fourth child of non-
consanguineous parents, born at term via cesarean section without
perinatal complications. Early growth and development were
unremarkable, and baseline liver function was previously normal.
At 1 year of age, he presented with reduced oral intake and fever.
Fourteen hours after fever onset, laboratory evaluation revealed
markedly elevated aminotransferases (AST and ALT), mild
hyperbilirubinemia, hypoglycemia, and coagulopathy, consistent
with ALF. He was transferred to our center for further management.

On admission, his temperature was 37 °C, heart rate 154 beats
per minute, and he exhibited lethargy, irritability, and mildly
decreased muscle tone, without other focal neurological deficits.
Laboratory findings (Table 2) showed neutrophilia and elevated
procalcitonin, suggestive of systemic inflammation. Autoantibody
screening was positive for anti-liver/kidney microsomal type 1 (anti-
LKM-1), anti-glycoprotein 210 (anti-gp210), and anti-soluble liver
antigen/liver pancreas (anti-SLA/LP), while antibodies against
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TABLE 1 Primer sequences used in the minigene splicing assay.

Primer name Sequence direction

10.3389/fgene.2025.1687266

Primer sequence (5'to 3)

A Forward GGGTGAGGGAGAGCTATTCT
Reverse AGACCGTATTAATGACCTGT

B Forward GGCTGCCTATAGGAGTAGAC
Reverse TGGCACTTACTTCCCCGCTT

PcMINI Forward GCTTGGTACCATGTGTGAGATTAAACTTGCCCC
Reverse TTTCCTCGAGCCTACATGCTGCAACCACTC
MT Forward GTGTTTTTATCTGAATATTGAAAGTGAAGAG

Reverse CTCTTCACTTTCAATATTCAGATAAAAACAC

N Forward CTAGAGAACCCACTGCTTAC
Reverse TAGAAGGCACAGTCGAGG

TABLE 2 Main laboratory findings of the proband.
Parameter Reference range

First admission

First discharge

Proband'’s value

Second admission

Second discharge

ALT 9-50 (U/L) 5,643 151 8,036 45
AST 15-40 (U/L) 10,448 46 9,500 57
TBil 0-23 (umol/L) 46.7 24.8 41.7 10.7
DBil 0-4 (umol/L) 40 8.9 28.8 3.1
BA 0-13 (umol/L) 270.7 6.2 384.8 35.8
PT 11-15 (PT s) 40.8 10.5 49.6 13.6
INR 0.87-1.13 (INR) 4.16 0.99 5.56 1.05
PTA 80-120 (PTA) 18 102 13 92
APTT 28-42.5 (APTT s) 61.8 43.6 59.6 383
FIB 2-4 (g/L) 151 2.93 2.11 3.47
D-D 0-0.5 4.71 1.07 8.46 1.88
ALB 40-55 (g/L) 33 47 43 51
NH3 9-30 (pmol/L) 58.2 31.4 189 31
Lac 0-1.8 (mmol/L) 49 1.8 16 1.5

ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBil, total bilirubin; DBIl, direct bilirubin; BA, bile acids; PT, prothrombin time; INR, international normalized ratio; PTA,
prothrombin activity; APTT, activated partial thromboplastin time; FIB, fibrinogen; D-D, D-dimer; ALB, albumin; NH3, blood ammonia; Lac, lactate.

mitochondrial M2 (AMA-M2), liver cytosol antigen 1 (LC-1), and
spindle apparatus protein 100 (SP100) were negative. Natural killer
(NK) cell count was reduced. Metabolic profiling revealed increased
fatty acid oxidation and elevated plasma amino acid levels.
Hyperammonemia and lactic acidosis were also present. Brain
MRI demonstrated abnormal signals in the bilateral frontal and
parietal lobes and periventricular white matter, consistent with
grade III hepatic encephalopathy. Complete blood count,
lymphocyte
subsets, blood culture, and pathogen screening were otherwise

abdominal ultrasound, immunoglobulin levels,

unremarkable.
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He was treated with antipyretics, antibiotics, nutritional support,
hepatoprotective agents, and plasma exchange. His symptoms
resolved completely within 10 days, and he was discharged with
normal liver function.

At 3.5 years of age, he experienced a second episode of ALF
following febrile illness, which resolved after 20 days of supportive
therapy. At the time of writing, the proband is 5 years old,
asymptomatic, and maintains normal liver function during
remission periods. Family history is significant: his elder brother
had a similar clinical course and died of ALF at age 5. The proband
has two healthy sisters (Figure 1).
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FIGURE 1
Family Pedigree of Infantile Liver Failure Syndrome Type 2 (ILFS2)
Caused by NBAS Variants. The arrow points to the proband.

3.2 Trio-WES and sanger sequencing

Trio-WES identified compound heterozygous variants,
€.1600-1G>T and ¢.3596G>A (p.Cys1199Tyr), in the NBAS
gene (NM_015909) in the proband. Both variants were
inherited from the parents, with the ¢.1600-1G>T variant
originating from the mother and ¢.3596G>A from the father.
Sanger sequencing further confirmed these findings and showed
that one sister carried the c.1600-1G>T variant and the other

10.3389/fgene.2025.1687266

carried ¢.3596G>A (Figure 2). Unfortunately, no sample was
available from the deceased brother who had presented with
similar clinical features as the proband.

The ¢.1600-1G>T variant was classified as pathogenic based
on the ACMG criteria, including: PVSI (loss-of-function variant
likely to cause complete loss of gene function), PM2 (absent in
population gnomAD, ExAC,
1000 Genomes Project), and PP4 (the patient’s phenotype is
highly consistent with NBAS-associated ILFS2). SpliceAI analysis
predicted potential splicing abnormalities, with the following

databases such as and

scores and positions: acceptor gain (AG = 0.33 at =9 bp), acceptor
loss (AL = 0.93 at —1 bp), donor gain (DG = 0.00 at —8 bp), and
donor loss (DL = 0.25 at =126 bp). All scores >0.2 (AG, AL, and
DL) suggest potential splicing alterations. The high AL score
indicates likely disruption of the canonical splice acceptor site,
which is consistent with a loss-of-function mechanism.

The ¢.3596G>A variant has been previously reported in trans
with putative pathogenic variants in multiple patients with
phenotypes consistent with ILFS2 (Li et al., 2017), supporting
its classification as pathogenic under the PM3-Very_Strong
criterion. Additional evidence included PM2 (not present in
population  databases), PP3
suggesting a deleterious effect), and PP4 (phenotype match
with NBAS-related disease).

(computational  evidence

¢.1600-1 G>T

T T TATCTGOGAATATTGAAAGTG

1
T T TATCTGAAGATTGAAAGTG

' -
T T TATCTGAATATTGAAAGTG

1
TT TATCTGAAGATTGAAAGTG

4
TT TATC TGAATATTGAAAGTG

c.359§G>A

T CTAGGTGCTACTTACAACTG

T CTAG GTGCT

1 3
AC T TACAACTG

. ' < 2
T CTAGGTGCTGCTTACAACTG

o 1
T CTAGGT GC T AC T TACAACTGG

T
T CTAGGTGCTGCTTACAACTG

FIGURE 2

Sanger sequencing chromatograms confirm the presence of a paternal c.3596G>A variant and a maternal c.1600-1G>T variant in the NBAS gene of
the proband. P, proband; F, father; M, mother; S1, sisiter; S2, the other sisiter.
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FIGURE 3

Functional analysis of the c. 1600-1G>T variant using pcMINI-N minigene splicing assays. (A) Schematic of the pcMINI-N minigene construct. The
vector contains an ampicillin resistance gene (Amp) for bacterial selection, a T7 promoter to drive transcription, and a bovine growth hormone
polyadenylation signal (bGH poly [A]) for 3'-end processing of the transcript. (B) RT-PCR analysis of splicing products in HeLa and HEK293T cells. Agarose
gel electrophoresis shows distinct bands (a—e) from wild-type (wt) and mutant (mut) constructs. Band a represents the correctly spliced isoform;
bands b—e are observed only in the mutant, indicating aberrant splicing. (C) Predicted splicing patterns corresponding to each RT-PCR product. (D)

Sanger sequencing validation of splicing isoforms.
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3.3 Splicing study of NBAS c.1600-1G>T by
minigene assay

Minigene splicing assays revealed that the ¢.1600-1G>T variant
leads to four distinct aberrant splicing events, consistently observed
in both HeLa and HEK293T cells (Figure 3): (i) retention of 185 bp
from the 5'regi0n of intron 15 (c.1599_1600ins185bp,
p. lle534CysfsTer2); (ii) retention of 56 bp from the same
intronic region (c.1599_1600ins56bp, p. Ile534AspfsTer9); (iii) an
8-bp deletion at the 5'end of exon 16 (c.1600_1607del, p. Ile534Ter);
and (iv) complete skipping of exon 16 (c.1600_1725del,
p- 1le534_Leu575del).

The first three aberrant transcripts introduce premature
termination codons (PTCs) upstream of the exon 17-exon
18 junction and are therefore predicted to undergo nonsense-
mediated mRNA decay (NMD), resulting in haploinsufficiency.
These data demonstrate that the ¢.1600-1G>T variant severely
disrupts normal mRNA splicing and is pathogenic.

4 Discussion

In this study, we conducted clinical and genetic analyses of an
ALF family and identified compound heterozygous variants in the
NBAS gene in the proband: ¢.1600-1 G>T and ¢.3596 G>A
(p.Cys1199Tyr). The proband’s healthy parents and two sisters
each carried one of these variants. Notably, the ¢.3596 G>A
(p.Cys1199Tyr) variant is the most common hotspot variant
patients with ILFS2 and has been well-documented to be closely
associated with liver failure phenotypes (Li et al., 2025). In contrast,
the c.1600-1 G>T variant has not been previously reported; it affects
a canonical splice site and is predicted by in silico tools to alter
splicing. To further evaluate its impact on RNA splicing, a minigene
assay was performed, which revealed aberrant splicing patterns.
However, as this is an in vitro assay, it may not fully recapitulate in
vivo splicing, and the functional consequences remain inferred
2005). Our preliminary findings suggest that
¢.1600-1 G>T should be classified as a splice-altering variant
with predicted (not definitively proven) loss of protein function.

(Maquat,

This compound heterozygosity likely underlies the proband’s
recurrent episodes of ALF.

As of 27 April 2025, the Human Gene Mutation Database
(HGMD) had cataloged 322 NBAS variants, with missense/
nonsense variants being the most frequent (54.7%), followed by
splicing variants (14.0%), small deletions/insertions/indels (27.0%),
and gross deletions/insertions/duplications (4.3%) (HGMD, 2025).
Regarding the functional domains of the NBAS protein and their
correlations with clinical phenotypes, previous studies have
indicated that different variants within distinct functional
domains of NBAS are associated with varying clinical subtypes
(Staufner et al., 2020). Specifically, SOPH syndrome is typically
linked to variants in the C-terminal region of the NBAS protein,
whereas ILFS2 is predominantly associated with variants affecting
the Sec39 domain. Moreover, variants located in the p-propeller
domain of NBAS may lead to a mixed multisystem phenotype
exhibiting features of both ILFS2 and SOPH syndrome. For
patients harboring Sec39 domain variants, the second allele often
carries a loss-of-function variant, regardless of its specific location.
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These
frameshift variants, or other alterations leading to complete

loss-of-function variants include nonsense variants,
protein dysfunction. In our case, the proband carried the
Sec39 domain variant ¢.3596 G>A along with a potentially
inactivating variant c.1600-1 G>T, presenting with typical
ILES2 features consistent with previous reports.

The immunological manifestations of NBAS deficiency mainly
include granulocyte abnormalities (e.g., Pelger-Huét anomaly,
neutropenia), hypogammaglobulinemia (particularly low IgG
levels), and reduced NK cell counts, all of which contribute to
impaired immune function and increased susceptibility to recurrent
infections (Kortiim et al., 2017). Bi et al. (2022) demonstrated that
NBAS may also be
lymphobhistiocytosis (HLH),
protein or vesicle trafficking between the endoplasmic reticulum

implicated in  hemophagocytic

possibly through disruption of

and Golgi apparatus, thereby affecting downstream cytotoxic vesicle
transport and degranulation pathways. Notably, in our study, the
detection of anti-LKM-1, anti-gp210, and anti-SLA/LP antibodies
during the proband’s acute liver failure episode raises the possibility
that autoantibody production may occur in the context of NBAS
deficiency. While these findings could reflect secondary immune
dysregulation due to liver injury rather than a primary autoimmune
process, they highlight the need for further investigation into
immune dysfunction in NBAS-deficient patients, particularly
regarding the interplay between cytotoxic defects and humoral
immune responses.

ALF caused by NBAS variants often presents acutely following
fever, with disease severity correlating with the duration and peak of
fever (Yu et al.,, 2025). In this case, aggressive temperature control
and metabolic support were implemented, resulting in only two
episodes of liver failure before age five—considerably milder than his
affected brother’s experiencing ALF,
maintaining hepatic function, correcting metabolic disturbances,

course. For patients
and preventing complications are crucial (Li et al, 2023).
Additionally, treatment strategies for NBAS deficiency may
include liver transplantation, management of extrahepatic
manifestations, and long-term follow-up (Nazmi et al., 2021).

In conclusion, this study reports for the first time the presence of
compound heterozygous variants ¢.1600-1 G>T and ¢.3596 G>A
(p.Cys1199Tyr) in a family with recurrent ALF. Although the exact
functional impact of ¢.1600-1 G>T remains to be fully elucidated,
the combined analysis of phenotype, family data, and minigene
results supports their role in causing the ILFS2 phenotype.
Furthermore, the coexistence of immunological abnormalities in
the proband offers novel insights for future research. Through
detailed clinical and molecular investigations, we can better
understand the complexity and variability of NBAS variants and

provide more valuable guidance for clinical practice.
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