
CELF1 promotes aerobic
glycolysis and an aggressive
phenotype in ER-positive breast
cancer via GLUT1 regulation

Jinyu Li1†, Ning Wang2†, Jianlei Bi1, Meihua Guo2, Bingbing Xu2

and Gena Huang1*
1Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning,
China, 2Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University,
Dalian, Liaoning, China

Introduction: RNA-binding proteins (RBPs) shape post-transcriptional programs
in cancer, yet subtype-specific roles in breast cancer remain unclear. We
evaluated whether CUGBP Elav-like family member 1 (CELF1), an RBPs with
prognostic relevance in luminal A (ER-positive) breast cancer, drives malignant
phenotypes via glycolytic reprogramming through glucose transporter 1 (GLUT1).
Methods: We surveyed 1,337 RBPs across TCGA to identify luminal A prognosis-
related candidates using Cox models and random-forest ranking, then validated
CELF1 biologically. Functional assays combined CELF1 knockdown in ER-positive
cells (MCF7, T47D) and overexpression in HER2-positive cells (SKBR3, HCC1954),
RNA-seq with differential expression and GSEA, qPCR,western blot, migration,
colony assays, IHC in clinical tissues, and a nude-mouse xenograft with the
GLUT1 inhibitor BAY-876.
Results: Cox and random-forest analyses prioritized CELF1 among prognosis-
related RBPs in luminal A tumors; high CELF1 associated with poorer survival and
was overexpressed in breast cancer versus normal tissue. CELF1 modulation
bidirectionally altered glycolytic programs and malignant traits: CELF1 loss
reduced proliferation, colony formation, migration, and xenograft growth,
whereas overexpression enhanced these phenotypes. RNA-seq and
enrichment analyses highlighted suppression of glycolysis pathways upon
CELF1 loss; GLUT1 (SLC2A1), HK2, and G6PD were consistently downregulated
at mRNA and protein levels after CELF1 knockdown and upregulated with CELF1
overexpression. In vivo, combining CELF1 knockout with BAY-876 further
curtailed tumor growth and proliferation markers.
Conclusion: CELF1 promotes aerobic glycolysis and aggressive behavior in ER-
positive breast cancer, at least partly by regulating GLUT1. These findings reveal
RBP-driven metabolic reprogramming in luminal A disease and nominate the
CELF1–GLUT1 axis as a potential therapeutic vulnerability.
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Introduction

RNA-binding proteins (RBPs) have long been a subject of
interest in the field of oncology due to their capability to alter
the localization, stability, and alternative splicing of transcripts that
code for a wide range of known tumor suppressors and oncogenes
(Hentze et al., 2018; Gerstberger et al., 2014; Tao et al., 2024). In
addition, extensive sequencing analysis has revealed a plethora of
mutations, mRNA expression changes, and copy number variations
(CNVs) in numerous RBPs across a variety of tumor types,
including, yet not confined to, brain, lung, kidney, colon, and
breast carcinomas (Corley et al., 2020; Van Nostrand et al., 2020;
Massey et al., 2024). However, characterizing the contributions of
distinct RBPs in the context of malignant transformation is a
formidable obstacle. A recent survey of human cells has
identified over 1,300 human RNA-binding proteins, and many
remain functionally uncharacterized (Hentze et al., 2018).

In breast cancer, RBPs have the potential to promote malignant
phenotypes and present therapeutic opportunities (Massey et al.,
2024; Wang et al., 2024). Breast tumors exhibit extensive mRNA-
level alterations; RBPs are positioned to shape these expression
programs. Nonetheless, their subtype-specific roles remain
incompletely defined. CUGBP Elav-like family member 1
(CELF1) belongs to the CELF/Bruno-like RNA-binding protein
family, which is involved in diverse cellular processes (Dasgupta
and Ladd, 2012). CELF1, primarily acknowledged as a vital regulator
in the development of myotonic dystrophy type 1 (DM1) disease
(Lutz et al., 2023), has now been associated with liver dysfunction
(Tan et al., 2022; Ye et al., 2024) and specific cancer types (Xia et al.,
2015; Wang et al., 2016; Talwar et al., 2013; Huang et al., 2020),
highlighting its multifaceted roles. Furthermore, CELF1 is associated
to controlling genes related to cell cycle regulation, apoptosis, and
DNA damage response. Dysregulation of CELF1 can affect the
expressions of these genes, leading to uncontrolled cell growth
and reduced cell death, which are characteristic features of
cancer. It is worth highlighting that research is currently delving
into the specific ways in which CELF1 is involved in driving cancer
development and progression, and the specific roles of CELF1 may
vary depending on the cancer type and context.

It is well known that the dysregulated metabolism of glucose and
lipids is closely linked to cancer incidence and aggressiveness (Braun
et al., 2011; Faulds and Dahlman-Wright, 2012). Not surprisingly,
glycolysis is an important feature of tumor occurrence and
progression. Glucose transporter 1 (GLUT1), a member of the
glucose transporter family, is crucial in controlling the transport
of glucose through the cellular membrane (Deng et al., 2014). The
movement of glucose through the cell membrane is not only a
critical process that regulates the pace of glycolysis but also
represents the initial phase of glucose metabolism. Numerous
research studies have demonstrated that GLUT1 exerts a notable
influence on different types of cancer, such as lung, breast, and renal
cancers. Its participation manifests in promoting cell growth and
metastasis, while concurrently suppressing apoptosis (Oh et al.,
2017; Chan et al., 2011; Zhou et al., 2024).

In this study, we analyzed clinical datasets to provide an
impartial assessment of the genetic conditions (mutations,
amplifications, deletions, and translocations) of all recognized
RBPs in breast cancers. Among RBPs in luminal breast cancer,

CELF1 emerged as a leading contributing factor. CELF1 is
particularly relevant in the context of alternative splicing, which
is important in generating protein diversity (Timchenko et al., 1999;
Timchenko et al., 2001). In the previous study, we explored the
influence of CELF1 on the alternative splicing of INSR and observed
a shift in its oncogenic effects in breast cancer; these effects were
found to differ among various molecular subtypes (Huang et al.,
2020). Few studies have been conducted on the correlation between
CELF1 and metabolism thus far. In the context of this study, we
observed that CELF1 is expressed and functional across diverse
molecular subgroups of breast cancer; additionally, by modulating
the expression of GLUT1, CELF1 stimulates aerobic glycolysis in
breast cancer cells.

Materials and methods

Dataset source

Data on copy number alterations and mutations for 33 types of
tumors were acquired from the TCGA database via UCSC Xena
(Goldman et al., 2020). This also included mRNA expressions and
clinical information for 10,289 patient samples from the TCGA
PanCancer dataset, also sourced from UCSC Xena (Weinstein et al.,
2013). For the comparative analysis of tumor versus normal
samples, only 19 of the 33 tumor categories, each with at least
five pairs of tumor and normal samples, were selected for inclusion.

Human RBP catalog

A catalog of 1,393 RBP genes, curated by Matthias W. Hentze
et al. in 2017, was downloaded (Hentze et al., 2018). These genes
were meticulously described according to Ensembl version 111 and
categorized into various subclasses based on their RNA-binding
domains, following the Pfam classification system. After evaluating
the curated RBPs for duplicates, we eliminated any redundancies. By
integrating data from TCGA, we identified a total of 1,337 RNA-
binding proteins.

CNV and SNV analyses

In CNV data, a value of 2 indicates amplifications, while a value
of −2 signifies deep deletions (Gu and Hübschmann, 2023). For
single-nucleotide variant (SNV) data, only non-silent mutations
such as missense, nonsense, frame shift deletions, splice site
alterations, frame shift insertions, in-frame deletions, and
nonstop mutations were included. The study calculated the ratios
of SNV and CNV for every type of tumor. Moreover, the
comprehensive somatic changes across tumors were visualized in
the OncoPrint plot, created with the ComplexHeatmap package.

Establishing the RBP potential index

An index to quantify RBP levels was developed using expression
data from 1,337 RBP genes (Hänzelmann et al., 2013). The
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enrichment score (ES) for gene sets regulating RBP was determined
through single-sample gene set enrichment analysis (ssGSEA) using
the GSVA package. The RBP potential index, representing
normalized differences in ES, was then used to computationally
analyze RBP levels/trends in tissue samples.

Identification of prognosis-related RBPs

An examination of the connection between RBP expression and
overall survival (OS) among individuals diagnosed with luminal A
breast cancer was conducted through univariate Cox proportional
hazards regression analysis within the TCGA dataset, selecting RBPs
with a Benjamini–Hochberg (BH) FDR–adjusted P < 0.05.
Subsequently, the randomForestSRC package’s rfsrc function
refined this selection of RBPs (Taylor, 2011). We trained a
random survival forest with ntree = 1,000 and computed
permutation-based variable importance (VIMP) with nrep =
1,000 Monte-Carlo repetitions to rank genes. Through a random
survival forest algorithm, an iterative process was employed to
progressively reduce the gene set, eliminating the least significant
25% of RBPs at each step. At every iteration, 1,000 trees were
cultivated, with the number of RBPs randomly selected at each node
set to the square root of the total number of input nodes for that tree.
Adjustments were made to the class weights due to the imbalance
between patients with good and poor prognosis. The out-of-bag
samples provided an estimate of the generalization error. Ultimately,
this process resulted in the selection of six RBPs.

DepMap analysis

In the DepMap analysis, gene effect scores derived from CRISPR
knockouts and mRNA expression data were sourced from the
DepMap 23Q4 release via the Broad Institute’s DepMap portal
(Pacini et al., 2024). The analysis excluded cell lines identified as
fibroblast, teratoma, unknown, engineered, or non-cancerous. A
linear model was applied using R to explore the relationship between
the effect of the CELF1 gene and mRNA expression. Correlation
coefficients were used for preliminary ranking. The analysis utilized
the GSEA Preranked algorithm for Hallmark gene sets from
MSigDB (version 2023.2), calculating normalized enrichment
scores (NESs) based on a pre-ranked list of genes. This was
achieved through 1,000 permutations, with significance
established at an FDR q-value below 0.05 (Tsherniak et al., 2017;
Ghandi et al., 2019).

Samples and clinicopathological data

From January 2008 to January 2014, we collected 94 breast
cancer specimens, along with paired adjacent non-cancerous breast
tissue, through surgical resection at the Second Hospital of Dalian
Medical University. Patients were excluded if they 1. had a history of
other malignancies, 2. received neoadjuvant chemotherapy or
radiotherapy, or 3. had incomplete clinical records. The study’s
selection criteria included the following: 1. histopathological
confirmation of ER-positive, PR-positive, and HER2-negative

breast cancers, 2. post-operative analysis of at least 15 lymph
nodes, 3. the ability to uniformly treat tumor samples with the
CELF1 antibody, and 4. the presence of comprehensive medical
records for each patient. Tissue samples were systematically
randomized using a computer-generated sequence to ensure
unbiased allocation for experimental analyses. Clinical data
collection included patient age, menopausal status (pre-/post-
menopausal), and standard pathological parameters. The study’s
research protocol received ethical approval from the Ethics
Committee of the Second Hospital of Dalian Medical University.

Cell culture

Breast cancer cell lines MCF7, T47D, SKBR3, HCC1954, MDA-
MB-436, and MDA-MB-231 were obtained from the American
Type Culture Collection (ATCC, Manassas, United States). These
cell lines were grown in RPMI 1640 medium (Gibco, United States)
enriched with 10% fetal bovine serum (FBS) and kept at 37 °C in a
5% CO2 incubator. MCF-7 and T47D are characterized by their
estrogen receptor positivity, while SKBR3 and HCC1954 are noted
for Her-2 receptor overexpression. Conversely, MDA-MB-436 and
MDA-MB-231 are identified as triple-negative breast cancer cell
lines due to their lack of estrogen, progesterone, and Her-2 receptor
expressions.

shRNA constructs

Two shRNA hairpins were designed to target human CELF1
(shCELF1-1 or shCELF1-2), along with a control shRNA (shNC),
into the LV-3 (pGLVH1/GFP+Puro) plasmid. These plasmids were
labeled as shCELF1-1, shCELF1-2, or shNC, respectively
(GenePharma, Suzhou, China). After transfection, cells were
collected at 24 h and 48 h for PCR and Western blot analyses,
respectively. The LV-3-CELF1, shCELF1-1, and shCELF1-2
plasmids underwent sequencing for validation of their orientation
and integrity. CELF1 shRNA#1: 5′-GGTTGAATGCAATGCAGT
TAC-3′; CELF1 shRNA#2: 5′-GCAGGAATGGCTGCTTTA
AAT-3’.

Plasmid construction

The open reading frame (ORF) of CELF1 was amplified using
PCR and subsequently cloned into a pcDNA3.1 vector (sourced
from GenePharma, Suzhou, China) at the EcoRI and BamHI sites.
The transfection protocol previously employed for shRNA
introduction was also used for this process.

Cell proliferation assay

Following transfection with shRNA or plasmids, cells were
plated at a density of 5,000 cells per well in a 96-well plate. We
utilized the CCK8 assay kit from Abbkine (Wuhan, China) to
evaluate cell proliferation, following the manufacturer’s
instructions. In summary, 10 μL of CCK8 solution was added to
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each well and incubated at 37 °C for 2 h. Subsequently, the
absorbance of each sample was gauged at 450 nm using a
Thermo (United States) microplate reader.

Colony formation assay

After being suspended in a serum-free medium and transfection
with shRNA or plasmids, the cells were introduced into 6-well plates
at a density of 1,000 cells per well, optimal for subsequent analyses.
Over 2 weeks, colonies were allowed to form and expand. Post-
incubation, colonies were fixed using formaldehyde and stained with
crystal violet for visualization. Colony images were captured, and the
colony count per well was quantified using ImageJ software.

Transwell assay

For the cell migration study, transwell chambers with 8-μm
pores (Costar) were employed. Cells transfected with shRNA or
plasmids were grown to 75%–80% confluence before initiation of the
migration assay. Cells were then trypsinized, rinsed with phosphate-
buffered saline (PBS), and resuspended in a serum-free medium.
Subsequently, 100 μL of the cell suspension, containing 10 × 104

cells, was placed into the transwell’s upper chamber, while the lower
chamber was filled with medium supplemented with FBS to
encourage migration. Post-migration, cells remaining on the
upper surface were removed with cotton swabs. Migrated cells,
on the other hand, were fixed with formaldehyde and stained
with crystal violet for better visualization. Photographs of six
different ×10 fields per membrane were taken to count the
migratory cells. The average number of migratory cells was
calculated based on the mean values from triplicate assays for
each experimental condition.

RNA-seq library generation

Total RNA was extracted from 5 × 106 CELF1 knock-out and
wild-type MCF7 cells using the TRIzol method, following the
manufacturer’s guidelines. The extracted RNA was assessed using
the Agilent RNA 6000 Assay Kit on an Agilent Bioanalyzer
2100 system. Library preparation followed the TruSeq RNA
Sample Preparation Kit (Illumina) protocol. The libraries
underwent paired-end sequencing (150 bp) on an Illumina
NovaSeq platform.

Differential gene expression and
enrichment analyses

RNA-seq reads underwent gene expression processing,
starting with quality control and adapter removal using
FastQC, followed by alignment to the GRCh38 reference
genome and initial quantification with STAR (Dobin et al.,
2013). Transcripts with a minimum count of ≥10 were
prefiltered, and differential expression analysis was conducted
using the DESeq2 package to compare wild-type with knock-out

samples (Love et al., 2014). Significant alterations were identified
with a threshold of |Log2-fold change| ≥1 and an adjusted
P-value ≤ 0.05. For enrichment analysis, the clusterProfiler
package was utilized, applying gene sets from GO and the
Hallmark category in the Molecular Signatures Database
(MSigDB) (Wu et al., 2021; Subramanian et al., 2005). The
GseaVis package was employed to effectively present the
GSEA results (Liberzon et al., 2015).

Western blot

Total cell lysates underwent protein extraction via treatment
with radio-immunoprecipitation assay (RIPA) buffer; protein
concentrations were quantified using a BCA Protein Assay Kit
(Thermo Fisher, A55865). Proteins were then resolved on a 12%
SDS-PAGE gel and transferred to nitrocellulose membranes. These
membranes were probed with monoclonal antibodies targeting
CELF1, GLUT1, cyclin D1, cyclin B1, c-Myc, HK, G6PD, and
GAPDH (Proteintech, Wuhan, China), as well as Bcl-2 and BAX
(Abbkine, United States). Protein bands were detected using the
SuperLumia ECL HRP Substrate Kit (Abbkine, United States). The
bands were quantitatively analyzed using Quantity One software
(Bio-Rad, Hercules, CA, United States), and band intensities were
normalized to GAPDH using ImageJ.

RNA isolation and reverse-transcriptase PCR
quantification process

The total RNA from cultured cells was isolated using the TRIzol
reagent (Takara), following the manufacturer’s instructions.
Complementary DNA (cDNA) was then generated from the
extracted total RNA or purified small RNAs utilizing the
TransScript One-Step gDNA Removal and cDNA Synthesis
SuperMix (TransGen Biotech, Beijing, China) as per the provided
guidelines. PCR was performed using Taq polymerase acquired
from Takara and specialized primers designed to aim at CELF1
(forward: 5′-ACATCCGAGTCATGTTCTCTTCG-3′ and reverse:
5′-CATTGCCTTGATAGCCGTCTG-3′), GLUT1(SLC2A1) (5′-
GGCCAAGAGTGTGCTAAAGAA-3′ and reverse: 5′- ACAGCG
TTGATGCCAGACAG-3′), HK2 (forward: 5′- GAGCCACCACTC
ACCCTACT-3′ and reverse: 5′- CCAGGCATTCGGCAATGTG-
3′), G6PD (forward: 5′- CGAGGCCGTCACCAAGAAC -3′ and
reverse: 5′- GTAGTGGTCGATGCGGTAGA -3′), and
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (forward:
5′- GGAGCGAGATCCCTCCAAAAT-3′ and reverse: 5′- GGC
TGTTGTCATACTTCTCATGG-3′). For normalization, GAPDH
was utilized as an internal reference gene. The PCR protocol
involved an initial denaturation at 94 °C for 3 min, followed by
35 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 45 s,
and extension at 72 °C for 1 min, concluding with a final extension at
72 °C for 15 min. The PCR products were visualized on 2% agarose
gels stained with ethidium bromide (10 mg/mL) under UV light.
The TransStart Tip Green qPCR SuperMix (Transgene Biotech) was
employed for real-time PCR analysis on an ABI 7900HT FAST Real-
Time PCR System (Applied Biosystems); relative mRNA expression
was calculated using the 2−ΔΔCT method, normalized to GAPDH.
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Immunohistochemistry

Ninety-four formalin-fixed, paraffin-embedded primary breast
tumor samples, along with adjacent breast tissue, were analyzed
using immunohistochemistry. These samples were provided by the
Department of Breast Surgery at the Second Hospital of Dalian
Medical University, following thorough histopathological and
clinical assessments. IHC was also conducted on tumors from
nude mice. Deparaffinization, rehydration, and antigen retrieval
procedures were performed on the tissue sections via microwave
treatment in 10 mM citrate buffer (pH 6.0) for 10 min. Sections were
treated with 0.3% hydrogen peroxide for 15 min and then incubated
with primary antibodies against human CELF1, GLUT1, and Ki-67
(1:100 dilution) at 4 °C overnight. Afterward, the samples were
incubated with HRP-conjugated immunoglobulin for 30 min. The
detection was completed using 3′-3′ diaminobenzidine (DAB) as the
chromogenic substrate.

Immunofluorescence

MCF7 and SKBR3 cells were fixed for immunofluorescence
analysis using 4% paraformaldehyde and permeabilized with
0.5% Triton X-100. The cells were then incubated with goat
serum before being exposed to a primary antibody against
GLUT1 overnight at 4 °C. Subsequently, the samples were
exposed to a secondary antibody and DAPI for nuclear staining,
then mounted, and visualized using a Nikon Eclipse Ni-E
fluorescence microscope.

Nude mouse subcutaneous tumor
formation experiment

To investigate CELF1’s function in vivo, female nude BALB/c
mice from the Model Animal Research Center of Nanjing
Medical University were subcutaneously injected in the
axillary fossa with 4 × 106 T47D cells. These cells were
previously transfected with either the control plasmid (shNC)
or the CELF1-targeting plasmid (shCELF1-1). Tumor growth was
monitored, and when tumors reached approximately 60 mm3 in
volume, their size was recorded every 4 days. No significant
differences in tumor volume were observed either between or
within the experimental groups. The mice received oral 3 mg/kg/
day of BAY-876 for 3 consecutive days. The pharmacokinetic
characteristics of BAY-876 were then assessed using established
methods in this subcutaneous tumor model (Siebeneicher et al.,
2016). Tumor and body weights of the mice were measured at 3-
day intervals, with the study concluding on day 21. At this point,
mice were anesthetized with isoflurane (2%–3% in oxygen) and
euthanized, and then the tumors were collected for further
analysis. The formula V = (W2 × L)/2 was used to calculate
the tumor volume, where V is the volume, W is the width, and L is
the length. All animal procedures were performed in accordance
with the National Institutes of Health Guide for the Care and Use
of Laboratory Animals, ARRIVE guidelines 2.0, and institutional
regulations of the Second Hospital of Dalian Medical University.
The study protocol was approved by the Ethical Committee of the

Second Hospital of Dalian Medical University (Approval No:
2019-ETH-102).

Statistical analysis

Statistical analyses were conducted using GraphPad Prism
v9.5.1 or R v4.2.1. Data with n < 15 were analyzed using
Mann–Whitney U (two groups)/Kruskal–Wallis tests
(>2 groups). Parametric tests were reserved for larger samples
(n ≥ 30) with confirmed normality; a two-tailed Student’s t-test
facilitated the comparison between two groups, and ANOVA was
utilized for assessing differences among three or more groups.
Normality was verified using the Shapiro–Wilk tests for all
continuous variables (P > 0.05). Outcomes were expressed as
mean ± standard deviation, indicating both the central tendency
and variability of the data. These results were based on at least three
independent experiments, confirming their consistency and
reliability.

Results

Genetic alterations of RBPs in pan-cancers

To ascertain the extent of alterations of RBPs in human cancers,
we explored 1,337 known human RBPs across the entire Cancer
Genome Atlas (TCGA) and analyzed factors influencing protein
CNVs and mutations. Somatic copy number analysis (SCNA) is
frequently reported in cancer genomes (Beroukhim et al., 2010; Zack
et al., 2013) and could potentially hamper the expressions of crucial
genes that facilitate carcinogenesis. We assessed the extent of CNVs
(both amplifications and deletions) among RBPs in various cancers.
Generally, we found high rates of copy number amplification in
most cancers, with more than 5% of samples showing this trend,
except for RBPs in thyroid cancer (THCA), which had a low SCNA
frequency (Supplementary Figure S1A). When considering both
amplifications and deletions, breast cancer (BRCA) had a relatively
higher frequency of genomic changes in RBPs (Figure 1A;
Supplementary Figure S1B). Additionally, mutations play a
significant role in cancer (Kandoth et al., 2013; Lawrence et al.,
2013). We, therefore, analyzed the mutation patterns of these
1,337 RBPs across 33 types of cancer, identifying 135,820 somatic
mutations in 10,289 tumor samples. Remarkably, 91.1% of these
samples had at least one RBP mutation. The number of non-silent
mutations within RBPs varied widely within the same cancer type,
with some samples showing only a few mutations and others
presenting hundreds (Figure 1B).

We examined SNP data related to RBPs to assess mutation
frequencies and types across different cancer subtypes. In particular,
we focused on the top 10 RBPs exhibiting the highest frequencies of
non-silent mutations, with SNV rates varying from 10% to 37% in
UCEC, SKCM, and COAD (Figure 1C). Among these cancers, the
overall SNV frequency for the regulatory proteins analyzed was
84.11% (3,764 out of 4,475 tumors). Further analysis revealed that
missense mutations predominated as the SNP of interest. In terms of
specific genes, SYNE1, KMT2C, APOB, SYNE2, AHNAK, ANK3,
DST, HUWE1, LAMA2, and MACF1 stood out, with their mutation
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frequencies being 29%, 21%, 18%, 16%, 15%, 15%, 15%, 14%, 14%,
and 13%, respectively (Figure 1D). Additionally, we noted an
increase in the SNV frequency among these regulators in SKCM,
UCEC, LUAD, BRCA, and LUSC.

To delve deeper into the function of RBP in tumor development
and to identify factors or biological processes related to RBP, we
evaluated the RBP potential index using the enrichment score (ES)
from ssGSEA. We analyzed the variations in the RBP potential
index, an established RBP marker, between tumor and normal

tissues using TCGA pan-cancer data (Supplementary Figure
S1C). Substantial discrepancies were observed in various cancers,
including BRCA and LUSC, with an increased count of RBP found
in most tumors, with KIRC being the exception. In particular,
significant differences were observed in breast cancer (Figure 1E).
To further scrutinize the factors contributing to these varied RBP
potential index patterns, we studied the RBP potential index across
different BRCA subtypes. The findings depicted in Figure 1F
revealed that all luminal subtype patients had higher RBP

FIGURE 1
A distinct landscape of RNA-binding proteins (RBPs) in pan-cancer. (A) Histogram illustrates the occurrence of somatic copy number changes
(deletions or amplifications) in breast cancer for all identified RBPs, categorized based on their RNA-binding domains using Pfam nomenclature. Data
were obtained from the breast cancer TCGA database through UCSC XENA. (B) The count of non-silent coding-mutated RBPs in each sample across the
33 cancer types. The data underwent preprocessing involving log2-based conversion. (C) Mutation frequency of top 10 RBP-responsive genes.
Numbers indicate the count of sampleswhere the specificmutated gene is present in a particular cancer type. “0” signifies the absence ofmutations in the
coding region of the gene, while the absence of any number denotes no mutations in any area of the gene. (D) Oncoplot illustrating the distribution of
mutations in RBP-responsive genes and categorization based on SNV types. (E) The different RBP potential index between tumor and normal tissues in
breast cancer. (F) The different RBP potential index among different molecular subtypes of breast cancer.
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FIGURE 2
Identification of candidate RBP-responsive genes, along with CELF1 upregulation in breast cancer within a specific landscape of RBPs. (A) Left,
volcano plot of univariable Cox analysis for RBPs in TCGA-BRCA [log2(HR) vs. −log10(P), BH adjusted]. Right, forest plot for the 12 top-ranked RBPs (HR
with 95% CI; Wald test P). (B) A total of 12 genes were selected through random survival forest analysis. (C) Conducting Kaplan–Meier analysis on 212–1 =
4,095 combinations, the top 20 signatureswere organized according to their p-values. Among these signatures, six geneswere selected for having a
relatively large −log10 p-value and a small gene count. (D) The location of CNV alteration of six selected RBPs on 23 chromosomes using the TCGA-BRCA
cohort. (E) Enrichment of Hallmark gene sets for genes that decrease in importance as CELF1 gene effect levels increase in a DepMap analysis. (F)
Expression of CELF1 in TCGA-BRCA tumors vs. adjacent normal (UCSC Xena; overall comparison). The median and interquartile range are depicted by
black lines in each group ***p < 0.001. (G) Immunohistochemical technique was employed to assess the expression levels of CELF1 in both breast
carcinomas and adjacent noncancerous tissues. (H) Kaplan–Meier analysis on overall survival among luminal A breast cancer patients, categorizing
samples into high- and low-CELF1 expression groups, with p-values derived from log-rank testing.
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potential indices compared to other patient types. This evidence
suggests that RBPs have a significant role in pan-cancer, with their
functions potentially differing among various molecular subtypes in
breast cancer.

Unraveling the role of CELF1 and its
prognostic significance in luminal A
breast cancer

By employing an integrated analysis approach in luminal A
subtype breast cancer, we identified RBPs with oncogenic
capabilities. Our methodology involved retrieving gene
expression data and clinical profiles of 545 eligible patients
diagnosed with luminal A breast cancer from the TCGA
database. Subsequent data processing revealed 1,337 RBPs
extracted from this extensive patient cohort. To study the
prognostic characteristics of RBP in luminal A subtype breast
cancer patients, we applied univariate Cox regression analysis,
and the outcomes indicated that 348 RBPs exhibited a significant
association with the OS of patients diagnosed with luminal A
breast cancer (p < 0.05, Supplementary Table S1, point above the
dashed line in Figure 2A). Afterward, using the random forest
supervised classification algorithm, we narrowed down the list of
348 OS-associated RBPs to 12 specific RBPs (CELF1, MECP2,
ROR2, RPF2, RPL7L1, RPS18, MRPS9, ZCCHC9, FBL, GRB2,
EIF4G3, and AFDN) (Figure 2B).

Since the combination of 12 genes could generate a total of
212–1 = 4,095 permutations, we proceeded with additional
Kaplan–Meier (KM) analysis to identify the most optimal
permutation. By comparing the −log10 Plog-rank values of
these 4,095 permutations, we found that the six RBP
permutations ranked highest. Given that an ideal permutation
should contain minimal risk genes, we selected the ultimate
prognostic signature consisting of six RBPs (CELF1, ROR2,
RPF2, RPL7L1, FBL, and GRB2) (Figure 2C). The circular
diagram depicts the chromosomal locations of CNV alterations
in six RBPs (Figure 2D). Given CELF1’s top ranking, we
additionally provide an overview of pan-cancer in
Supplementary Figure S1D, integrating tumor mRNA
expression, SNV, and CNA across 33 cancer types.

As our analysis above shows that CELF1 plays a vital role in
lumina A breast cancer patients, we then proceeded to determine
whether cancer cell lines with heightened CELF1 levels exhibit
unique functionalities in contrast to cell lines with reduced
CELF1 expression. As part of this evaluation, we first examined
gene essentiality concerning CELF1 expression in cell lines using
data from the DepMap database (Figure 2E). A direct relationship
was observed between the levels of CELF1 and the significance of
genes (signifying that elevated CELF1 levels correspond to reduced
gene impact) implicated in late estrogen response, oxidative
phosphorylation, and glycolysis. These particular genes display
diminished importance in cancer cell lines included in the
Cancer Cell Line Encyclopedia (CCLE) that exhibit
overexpression of CELF1. This implies that cancer cell lines
within the CCLE dataset, manifesting high CELF1 levels, possess
an enhanced capacity to regulate metabolism across various
cancer types.

To explore the function of CELF1 in human breast carcinomas,
we conducted an examination of CELF1 gene expression data
utilizing the TCGA database and found that the analyzed cohort
comprised 545 cases of invasive ductal breast carcinomas and
22 samples of noncancerous breast tissues (Figure 2F) and
identified a substantial upregulation of CELF1 expression in
breast cancer in contrast to normal tissues. Moreover, the
overabundance of CELF1 in breast carcinomas was validated
through information obtained from the UALCAN database
(Chandrashekar et al., 2017; Supplementary Figure S2A), which
is in agreement with the immunohistochemistry staining results
from human breast cancer tissue samples, providing support for
the expression of the CELF1 protein (Figure 2G). We next
determined whether CELF1 expression exhibits any correlation
with the survival rates observed among breast cancer patients, by
analyzing patients with luminal A subtype breast cancer in the
TCGA database, stratified by CELF1 expression levels (Nagy et al.,
2018; Figure 2H; Table 1). Patients were divided into two groups:
those with high CELF1 expression and those with low expression.
The Kaplan–Meier survival analysis reveals a marked difference in
the median survival times between the two groups. In particular,
the luminal A-type breast cancer patients with low
CELF1 expression had a median survival time of 216.2 months.

TABLE 1 Correlation between CELF1 expression and clinicopathological
features.

Variable Patient CELF1 P-value

Low High

Age (year)

≤50 47 23 24 0.6788

>50 47 20 27

No. of metastatic axillary nodes

0 20 8 12 0.0301

1–3 45 10 35

>3 29 15 14

Diameter of the primary tumor

≤30 mm 52 27 25 0.2951

>30 mm 42 20 22

Histological grade

1 18 9 9 0.4536

2 59 28 31

3 17 11 6

TNM staging

I 39 9 30 0.0121

II 15 4 11

III 24 14 10

IV 16 9 7

Abbreviation: TNM, tumor node metastasis.
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FIGURE 3
CELF1 is overexpressed in luminal A breast cancer and lowly expressed in triple-negative breast cancer cell line. (A) Subtype-stratified
CELF1 expression based on TCGA-BRCA via UALCAN (luminal, HER2-enriched, and TNBC; subtype annotation available in the portal). Black lines in each
group indicate a median with an interquartile range. **P < 0.01. ns, not significant. (B) Endpoint RT-PCR gels showing CELF1 and GAPDH in adjacent
normal tissues (Normal) and tumor subtypes (Luminal A, HER2-enriched, and TNBC). Representative images are shown. (C) Quantitative real-time
PCR (qRT-PCR) of CELF1 mRNA in the same tissue groups, normalized to GAPDH and expressed relative to the normal group. Data are shown as mean ±
SEM from three independent experiments. (D) Endpoint RT-PCR gels for CELF1 and GAPDH in luminal cell lines (MCF7 and T47D), HER2 cell lines
(SKBR3 and HCC1954), and TNBC cell lines (MDA-MB-436 and MDA-MB-231). Representative images are shown. (E) qRT-PCR measurement of

(Continued )
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Conversely, those with high CELF1 expression had a significantly
shorter median survival time of 113.5 months (P = 0.006). These
findings underscore the potential impact of CELF1 expression on
patient prognosis.

CELF1 is commonly overexpressed in the
luminal subtype of luminal breast
carcinomas and positively correlated
with ESR1

The gene expression profiling of breast cancer allows for its
classification into distinct subtypes. In our analysis of the UALCAN
platform, we observed a significant overexpression of CELF1 in
luminal breast cancer, while its expression was comparatively lower
in the HER2-positive subtype (Figure 3A). To further investigate
this, we compared CELF1 mRNA levels in different molecular
subtypes of breast cancer tissues, including normal breast tissues,
luminal, HER2+, and TNBC samples using RT-PCR. Our findings
revealed that CELF1 exhibited the highest expression levels in
luminal cells (Figures 3B,C; Supplementary Figure S2B).
Additionally, when examining CELF1 expression in breast cancer
cells at both transcriptional and protein levels, we observed a
pronounced upregulation specifically in luminal breast cancer
cells, as opposed to HER2-positive cells (Figures 3D–G;
Supplementary Figure S2C). Given CELF1 overexpression in
luminal A and the ER-positive nature of this subtype, we
analyzed the CELF1–ESR1 correlation to determine whether
CELF1 aligns with the ER-defined luminal transcriptional state.
Our data reveal a significant positive association between CELF1 and
ESR1 expressions (ERα) (Figure 3H; Supplementary Figure S3).
Collectively, these results suggest that the role of CELF1 levels differs
according to the specific molecular subtype of breast cancer.

CELF1 regulates the proliferation, colony-
forming ability, migration, and invasion of
breast cancer cells

Subsequently, we reduced CELF1 levels in luminal breast cancer
cells and enhanced CELF1 expression in HER2-positive breast
cancer cells using shRNA and the pcDNA3.1-CELF1 plasmid,
respectively. The functional role of CELF1 was assessed in breast
cancer cells (Figure 4). The utilization of shRNA to hinder
CELF1 gene expression in both MCF7 and T47D cell lines was
validated through Western blot analysis, leading to a notable
elevation in the BAX/Bcl2 ratio, while cyclin B1 and cyclin
D1 levels were decreased following transfection with CELF-
shRNA (Figures 4A,B). In contrast, when the pcDNA3.1-
CELF1 plasmid was transfected into SKBR3 and HCC1954 cells,

CELF1 expression increased, while the BAX/Bcl2 ratio decreased
and the levels of cyclin B1 and cyclin D11 increased (Figures 4H,I).
To explore the process of cellular proliferation, we evaluated cell
viability using both the CCK8 assay and colony formation assay.
Depletion of CELF1 significantly inhibited the growth of MCF7 and
T47D cells compared to control cells (Figures 4C–E), whereas
overexpression of CELF1 promoted cell growth in SKBR3 and
HCC1954 cells (Figures 4J–L). Similarly, transwell assays revealed
consistent patterns for invasion function (Figures 4F,G).
Additionally, in the subsequent in vivo experiments of
subcutaneous tumor implantation in nude mice, we also observed
a substantial decrease in both tumor weight and volume in the
CELF1-KO group. The expression of Ki-67, an indicator of cell
proliferation, was also decreased. Collectively, these integrated
findings demonstrate that CELF is associated with breast cancer
aggressiveness.

CELF1 promotes breast cancer cell aerobic
glycolysis by regulating the expression
of GLUT1

For a more comprehensive understanding of how
CELF1 functions in breast cancer, we performed RNA
sequencing (RNA-seq) analysis on both CELF1-KO MCF7 cells
and wild-type MCF7 cells (Figure 5). The differentially expressed
genes (DEGs) were found to be significantly enriched in the
glycolipid catabolic pathway (Figures 5A,B; Supplementary Figure
S4C). The enrichment analysis of glycolipid metabolism in GSEA
reveals that CELF1-KO cells exhibit inhibition of glycolytic-related
genes and key enzymes (Figures 5C–E). This aligns with our
observations in the Hallmark gene set enrichment analysis
conducted in the CELF1 gene using the DepMap platform, which
underscores the glycolysis pathway as prominently
impacted (Figure 2E).

It is well known that many aggressive tumors develop
dysregulated metabolism; the glycolytic pathway was closely
correlated to the vitality of tumors. Our transcriptome results
suggest that the mRNA expressions of G6PD and
GLUT1 changed in RNA-Seq analysis. Therefore, we focused on
the genes related to aerobic glycolysis. As shown in Figure 6, the
expression of GLUT1 is substantially decreased in the CELF1 knock-
out group, and so are the expressions of key enzymes HK and G6PD
in the aerobic glycolysis process (Figures 6C,D). Conversely, the
CELF1 overexpression group led to an upregulation of the
expressions of GLUT1, HK, and G6PD (Figures 6B,E,F). The
alterations in CELF1 expression also impact the expressions of
cyclin D1 and c-Myc, thereby implying a consequential
modification in the occurrence, invasion, and metastasis
processes within tumor tissues. The tumor weight and volume of

FIGURE 3 (Continued)

CELF1 mRNA in the indicated cell lines, normalized to GAPDH and expressed relative to MCF7. Data are shown as mean ± SEM from three
independent experiments. (F,G)Western blot analysis was performed on CELF1 protein levels within subtypes of luminal, HER2, and TNBC; GAPDH acted
as the loading control (F) Protein expression levels were quantified relative to GAPDH using densitometric analyses (G) Data are expressed as means ±
SEM. (H) The correlation between CELF1 and ESR1 expressions **P < 0.01. Every circle signifies a distinct human breast carcinoma sample.
Correlation analysis was performed using Gene Expression Profiling Interactive Analysis (Tang et al., 2017).
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FIGURE 4
CELF1 regulates the proliferation, colony formation, migration, and invasion of breast cancer cells. (A,B) ShRNA-mediated silencing of CELF1, Bax,
Bcl-2, cyclin D1, and cyclin B1 was analyzed using Western blotting in MCF7 cells (A) and T47D cells. (B) GAPDH acted as a loading control. For proteins
CELF1, Bax, and Bcl-2, cropped lanes are obtained from the same gel (dividing lines between groups). Full uncropped blots are provided in Supplementary
Figure file 2. (C) Knockdown of CELF1 in MCF7 and T47D cells; cell viability was assessed using CCK8 assays. Data are expressed as means ± SEM.
***P < 0.001. (D,E) Knockdown of CELF1 in MCF7 and T47D cells; cell growth was examined using plate assay (D) and the quantitative analysis (E), at a
density of 500 cells/well for 14 days. Data are expressed as means ± SEM. *P < 0.05. (F,G) Knockdown of CELF1 in MCF7 and T47D cells; cell invasion was
examined using the transwell assay (F) and the quantitative analysis (G). Data are expressed as means ± SEM. *P < 0.05. H, (I)Overexpression of CELF1 by
transfection of the pcDNA3.1 vector and pcDNA3.1-CELF1 in SKBR3 (H) and HCC1954 cells (I); CELF1, Bax, Bcl-2, cyclin D1, and cyclin B1 protein levels
were analyzed using Western blotting; GAPDH was used as a loading control. (J)Overexpression of CELF1 in SKBR3 and HCC1954 cells; cell viability was

(Continued )
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mice in the CELF1-KO group decreased significantly compared with
those in the control group, and the expression of the cell
proliferation indicator Ki-67 also decreased; we also found that
CELF1-KO combined with the GLUT1 inhibitor BAY876 inhibits
the proliferation of breast cancer cells in vivo in the subcutaneous
tumor implantation experiment in nude mice (Figures 7A–E). As
schematically described in Figure 8, CELF1 promotes breast cancer
cell aerobic glycolysis by regulating the expression of GLUT1.

Discussion

Recent comprehensive genomic studies have revealed a diverse
array of RBPs that experience frequent mutations and gene
amplifications across various types of tumors (Sebestyén et al.,
2016; Kechavarzi and Janga, 2014). In this study, we have
investigated how RBPs may function across various types of
cancers, with a specific focus on breast cancer receptor-positive
molecular subtype—luminal A. Using comprehensive analysis
across TCGA, we found that RBPs show high frequencies of
copy number amplification in most cancer types, and they also
exhibit a wide range of non-silent mutations. We subsequently
revealed the importance of RNA-binding protein CELF1 in
luminal A subtype breast cancer. Unlike MSI proteins that
sustain cancer stemness in triple-negative breast cancer or HuR’s
regulation of Snail/MMP9-driven metastasis in HER2+ tumors
(Chen et al., 2022), CELF1 uniquely drives metabolic
reprogramming in luminal A. This aligns with its role in
reshaping mitochondrial metabolism in diabetic cardiomyopathy
(Belanger et al., 2018), suggesting tissue-agnostic
metabolic functions.

Several studies have revealed that CELF1 demonstrates frequent
upregulation in glioma, oral squamous-cell carcinomas, and
hepatocellular carcinoma (Xia et al., 2015; Talwar et al., 2013;
Kim et al., 2017), and its oncogenic properties make it a crucial
target for influencing cell proliferation and growth and precisely
regulating the cell cycle. Contrary to G. David et al.’s report that
CELF1 mRNA alone lacked a prognostic value (Géraldine et al.,
2018), our IHC-based analysis of luminal A specimens revealed that
CELF1 protein overexpression strongly correlates with poor
survival. This discrepancy likely stems from the following: (i)
methodological differences (subtype-stratified IHC vs. pan-cancer
mRNA sequencing) and (ii) post-transcriptional regulation by
ELAVL1, which stabilizes CELF1 protein in aggressive subtypes,
as observed in oral SCCs (House et al., 2015).

Emerging evidence suggests that CELF1 dysregulation can
influence crucial molecular processes involved in cancer
pathogenesis. This study demonstrates that
CELF1 overexpression contributes to a downregulation in the
BAX/Bcl2 ratio and upregulation in cyclin B1 and cyclin

D1 levels, thereby promoting cell viability, colony formation, and
invasion. Conversely, the downregulation of CELF1 expression has
the opposite effect. A similar phenomenon was detected in HER2-
positive breast cancer, in which CELF1 activates the translation of C/
EBPb-LIP isoform and further promotes the proliferation of cancer
cells (Arnal-Estapé et al., 2010). Aberrant splicing events of
CELF1 can lead to the production of abnormal isoforms,
contributing to the translational activation of genes that drive
epithelial–mesenchymal transition (EMT) and, consequently,
tumor progression (Chaudhury et al., 2016). Diverging from
preceding investigations, our research employed a varied array of
molecular subtypes of cell lines and breast cancer tissues, leading us
to discern the impact of CELF1 on apoptosis and cell cycling
progress. Our findings confirmed that CELF1 promotes the
aggressiveness of breast cancer cells, which was supported by
both in vitro and in vivo experiments. Moreover, our findings
indicated a direct relationship between CELF1 expression and the
existence of ESR1 (ERα), a marker for the luminal subtype. These
results further emphasize the importance of molecular subtype-
specific studies in understanding the complexity of cancer biology.

Metabolic dysregulation represents a pivotal attribute within the
intricacies of tumorigenesis. CELF1 can regulate alternative splicing
patterns in various genes associated with cancer. Currently, few
researchers are elucidating the intricate relationship between
CELF1 and metabolic processes. Our previous study revealed that
CELF1 exerts its influence by modulating the LIP/LAP molar ratio,
thereby controlling the diverse mRNA splicing profiles of INSR in
breast cancer cells and affecting cell aggressiveness (Huang et al.,
2020). This intriguing observation engenders novel inquiries.
Considering the significance of the insulin receptor (INSR) as a
gene intricately linked to metabolic processes, it stimulates our
curiosity as to whether CELF1’s regulatory control over INSR
splicing also exerts an influence on metabolic functions. Our
discovery that CELF1 upregulates GLUT1 extends prior work on
endocrine resistance. Notably, ER+ tumors with TCA cycle
disruption (e.g., via MAT1A downregulation) exhibit similar
metabolic vulnerabilities (Santaliz-Casiano et al., 2023; Brechbuhl
et al., 2024). This suggests that CELF1-driven glycolysis may
synergize with ESR1-mutant-induced OXPHOS suppression—a
mechanism recently implicated in fulvestrant resistance
(Brechbuhl et al., 2024; Saatci et al., 2021).

In conclusion, our study has provided valuable insights into the
complex roles of RBPs in tumorigenesis, with an emphasis on their
subtype-specific impacts on breast cancer. We highlighted CELF1 as
a potentially key regulator of metabolic reprogramming in luminal A
breast cancer, thereby shedding light on new directions for future
research and treatment strategies. However, there are significant
unresolved aspects that warrant further research to gain a
comprehensive understanding. First, the reliance on TCGA data
and cell line models may not fully recapitulate the heterogeneity of

FIGURE 4 (Continued)

assessed using CCK8 assays. Data are expressed asmeans ± SEM. *P < 0.05. (K,L)Overexpression of CELF1 in SKBR3 and HCC1954 cells; cell growth
was examined using the plate assay (K), and the quantitative analysis (L), at a density of 500 cells/well for 14 days. Data are expressed as means ± SEM.
**P < 0.01.
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FIGURE 5
CELF1 promotes breast cancer cell aerobic glycolysis in vitro. (A) Enriched Gene Ontology (GO) terms of significantly differentially expressed genes
between CELF1-knocked-out MCF7 cells and wild-type MCF7 cells. (B) GSEA shows the enriched hallmarks pathways between CELF1-knocked-out
MCF7 cells and wild-type MCF7 cells. (C) GSEA shows the molecules that are significantly altered in the glycolytic pathway. (D) The volcano plot of
differentially expressed genes between CELF1-knocked-out MCF7 cells and wild-type MCF7 cells. (E)Differential mRNA expressions of GLUT1, HK2,
and G6PD in CELF1-knocked-out MCF7 cells and wild-type MCF7 cells.
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FIGURE 6
CELF1 governs aerobic glycolysis by regulating GLUT1 levels. (A) Relative RNA expressions of GLUT1 HK and G6PD in CELF1-KO MCF7 cells (upper)
and CELF1-overexpressed SKBR3 cells (lower) measured using real-time PCR. Data are expressed as means ± SEM. *P < 0.05.**P < 0.01. ***P < 0.001. (B)
Immunofluorescence of GLUT1 in CELF1-KO MCF7 cells and CELF1-overexpressed SKBR3 cells. Scale bar: 50 μm. (C,D) Protein levels of CELF1, HK,
c-Myc, G6PD, and GLUT1 inMCF7 cells after the transfection of control and CELF1 shRNAwere determined usingWestern blotting. Cell lysates were
collected with or without pretreated 20% fetal bovine serum (FBS) for 4 h. GAPDH served as an internal control. (E,F). Protein levels of CELF1, HK, c-Myc,
G6PD, and GLUT1 in SKBR3 cells after the transfection of the pcDNA3.1 and pcDNA3.1–CELF1 vectors were determined using Western blotting. Cell
lysates were collected with or without pretreated 20% FBS for 4 h. GAPDH served as an internal control.
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human breast tumors, particularly in accounting for
microenvironmental influences such as stromal interactions and
immune cell infiltration. Second, although we identified CELF1’s
role in glycolytic reprogramming via GLUT1, the precise molecular
mechanisms linking CELF1 to ESR1 signaling remain unresolved.

Therefore, further exploration is warranted to elucidate the interplay
between CELF1 and ER in breast cancer. It remains to be
investigated whether ER is involved in the glycolytic metabolism
process and whether CELF1 influences endocrine resistance in ER-
positive breast cancer.

FIGURE 7
CELF1-KO combined with the GLUT1 inhibitor BAY876 inhibits the proliferation of breast cancer cells in vivo. (A) Nude mice were injected with
CELF1-KO T47D cells to establish subcutaneous tumor models. The mice were orally administered BAY-876 for 3 consecutive days (once daily). The
outcomes are visually represented as the images of the subcutaneous tumor tissues (A), tumor weights (B), and tumor volumes (C). F (3,12) = 40.89, *P <
0.05 and ***P < 0.001. (D,E). Immunofluorescence and IHC of Ki67, Tunel, and CELF1 in the control group, BAY-876 group, CELF1-KO group, and
CELF1-KO combined with the BAY-876 group. Scale bars = 100 μm. (E) Statistical analysis of the data shown in the upper panel yielded F (3,12) = 188.7,
and for the lower panel F (3,12) = 285.0 (*P < 0.05.**P < 0.01. ***P < 0.001).
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Novelty and impact

The specific impact of RBPs on the development of breast
cancer remains uncertain. Our research has led us to uncover a
set of genes enriched in breast cancer influenced by CELF1,
which shows distinctive prognostic value specifically in luminal
A breast cancer. It is well known that the dysregulated
metabolism of glucose and lipids is strongly associated with
cancer incidence and aggressiveness. So far, there are a limited
number of studies exploring the relationship between
CELF1 and metabolism. Our data suggest that CELF1 is
expressed and functional in different molecular subtypes of
breast cancer; additionally, CELF1 drives the metabolic
preference for aerobic glycolysis in breast carcinomas by
modulating the expression of GLUT1.
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FIGURE 8
Mechanism diagram illustrating the involvement of CELF1 in aerobic glycolysis in breast cancer. It is well known that many aggressive tumors
develop dysregulated metabolism; the glycolytic pathway was closely correlated to the vitality of tumors. Our transcriptomic analysis results suggest that
CELF1 alterations impact the glycolysis process, and GLUT1 is the main molecule among all the volatile metabolites. Therefore, we focused on the genes
related to aerobic glycolysis. As shown in Figure 8, the expression of GLUT1 is substantially decreased in the CELF1-knocked-out group, and so is the
expression of key enzymes HK and G6PD in the aerobic glycolysis process (Figure 8). In addition, knockout of CELF1 affects the expression of cyclin
D1 and c-Myc, suggesting that the occurrence, invasion, and metastasis processed are changed accordingly in the tumor tissues.
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Glossary
CELF1 CUGBP Elav-like family member 1

ER Estrogen receptor

TCGA The Cancer Genome Atlas

IHC Immunohistochemistry

GLUT1 Glucose transporter 1

G6PD Glucose-6-phosphate dehydrogenase

HK2 Hexokinase 2

ACC Adrenocortical carcinoma

BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

DLBC Lymphoid neoplasm diffuse large B-cell lymphoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and neck squamous cell carcinoma

KICH Kidney chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LAML Acute myeloid leukemia

LGG Brain lower-grade glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO Mesothelioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and paraganglioma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin cutaneous melanoma

STAD Stomach adenocarcinoma

TGCT Testicular germ cell tumor

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine corpus endometrial carcinoma

UCS Uterine carcinosarcoma

UVM Uveal melanoma
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