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Prostate cancer poses a serious burden on men’s quality of life. Identifying novel
biomarkers for therapeutic development and prognostic prediction has long
been a focal point in prostate cancer research. HSP family is a group of molecular
chaperones that exhibit close relationship with many cancer types. In this study
we screened out HSPB8 as a potential biomarker using WGCNA. Then we
analyzed its expression patterns, investigated its biological functions, and
assessed its prognostic values with a combination of bioinformatic analyses
and experimental validation. Our data demonstrated that HSPB8 exhibited
lower expression levels in prostate cancer tissues than in normal prostatic
tissues. As a tumor suppressor gene, lack of HSPB8 was associated with
unfavorable survival outcomes among patients with prostate cancer. In terms
of biological function, HSPB8 were predominantly enriched in muscle-related
biological processes, such as muscle contraction and muscle cell differentiation.
On the molecular and cellular levels, HSPB8 silencing induced cellular
proliferation and enhanced invasive and migratory capacities of prostate
cancer cell lines. Its tumor-suppressive function was likely mediated through
inactivation of PI3K−AKT signaling. Overall, this study offers a new understanding
into the pathogenesis of prostate cancer, proposing that targeting HSPB8 might
be a promising area in prostate cancer treatment.
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1 Introduction

With 1,466,680 new diagnoses and 396,792 reported deaths in 2022, prostate cancer
(PCa) has become the second most common cancer worldwide (Bray et al., 2024). Incidence
exhibits significant geographic variation, with Northern Europe (82.8 per 100,000),
Australia-New Zealand (82.8 per 100,000) and Caribbean (73.8 per 100,000) sharing the
top three highest rates and several Asian regions (predominantly developing countries)
reporting the lowest rates (Bray et al., 2024). In recent years, transitioning countries (e.g.,
China and some African countries) observe a rapid increase in new cases per year (Culp
et al., 2020; Seraphin et al., 2021), indicating that prostate cancer has become a worldwide
health problem. A consensus that the pathogenesis of prostate cancer is very complex has
been established. Genetic and molecular alterations, chronic unresolved inflammation,
persistent epithelial cell injury and many other pathophysiological processes have been all
attributed to contributing factors (Kulac et al., 2024; Wilson and Zishiri, 2024). At present,
immune properties of prostate cancer become a new focus for cancer research. Due to its
low levels of tumor-infiltrating lymphocytes (TILs), reduced inflammatory signaling, low
mutational burden and presence of immune checkpoint molecules, prostate cancer is
immunologically categorized into “cold” tumor (Stultz and Fong, 2021). This suppressive
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tumor-immune microenvironment (TIME) leads to limited efficacy
of present immunotherapy, such as immune checkpoint inhibitor
(ICI), chimeric antigen receptor T-cell (CAR-T) and Sipuleucel-T
(Anton et al., 2024). As a result, exploring new biomarkers for
immunotherapy and developing novel immune agents have become
a hot research topic of prostate cancer.

Heat shock protein (HSP) family is a group of highly-conserved
molecular chaperones with cytoprotective properties (Gething and
Sambrook, 1992). Under cellular stress conditions induced by
various harmful stimulations, such as high temperature, infectious
agents and hypoxia, most HSPs serve their cell-protective functions
by either refolding or assisting in degrading misfolding proteins
(Kriegenburg et al., 2012). Of note, not all HSPs are stress-inducible:
some are constitutively expressed with relatively high expression levels
in the absence of any stress so as to ensure protein’s correct folding
(Gething and Sambrook, 1992; Bukau et al., 2006). These members are
often named heat shock cognate. Scientists classified HSPs into six
different subfamilies based on their molecular sizes: HSP110, HSP90,
HSP70, HSP40, small HSPs, and chaperonin families—HSPD/E
(HSP60/HSP10) and CCT (cytosolic chaperonin TCP1 ring
complex, TRIC) (Rappa et al., 2012). HSP members in different
subfamilies have different molecular structures. Such a large
molecular family is involved in a myriad of biological processes
apart from their chaperoning roles (i.e., protein folding and
assembly), such as cell differentiation, signal transduction, immune
regulation, programmed cell death and carcinogenesis (Rappa et al.,
2012). A large amount of literature has associated HSPs, both
experimentally and clinically, with initiation and progression of
prostate cancer (Ratajczak et al., 2022; Fu et al., 2022; Saini and
Sharma, 2018) and suggested that effective interventions targeting
HSP members with either molecular inhibitors or genetic methods
are expected to become a novel therapeutic regimen (Fu et al., 2022;
Saini and Sharma, 2018). More recently, the roles of HSPs as
immunomodulators have been revealed—they are implicated in
antigen processing and presentation, activation of antigen-presenting
cells (e.g., macrophages and dendritic cells), induction of immune cell
proliferation and regulation of immune checkpoints (Zininga et al.,
2018; Hagymasi et al., 2022). These immune functions of HSPs are
associated with initiation and progression of many cancer types
(Albakova and Mangasarova, 2021). However, little data concern
prostate cancer in this regard.

In this article, we screened out a predictive biomarker
HSPB8 from the HSP family with Weighted correlation network
analysis (WGCNA). Using multiple bioinformatic and experimental
methods, we studied HSPB8’s biological functions, explored the
relationship between HSPB8 and patients’ survival, and investigated
HSPB8’s impacts on TIME of prostate cancer.

2 Methods and materials

2.1 Data acquisition and processing

Gene expression matrix and clinical information of prostate
cancer were downloaded from The Cancer Genome Atlas (TCGA)
(http://cancergenome.nih.gov) (Accessed date: 14 May 2025). There
were a total of 59,424 genes and 554 samples in the expression matrix
with gene expression data normalized by log2 (exp+1). Downloaded

clinical information matrix included phenotype and survival data. Of
all clinical phenotypes, age, TNM stage, Gleason Score and prostate
specific antigen (PSA) were the primary focus of this research.

2.2 Weighted gene co-expression
network analysis

Using the R package “WGNCA”, we established a co-expression
network by calculating weighted adjacency between every two genes.
Hierarchical clustering is often the logical next step. Genes with similar
expression patterns were categorized into the same gene module. In this
study, HSP expression matrix that included 29 different HSP members
was used as sample trait data since our goal is to find a module where
genes have the highest similarity withHSP family in terms of expression
patterns. Of all included HSP members, gene with the highest
correlation coefficient shown in the heatmap was considered to be
the gene of interest. Meanwhile, the correlation of this gene with which
module is most significant could also be determined. The rationale and
specific steps forWGCNA analysis have been summarized by Peter and
Steve (Langfelder and Horvath, 2008).

2.3 Functional enrichment

For functional enrichment analysis, genes in the selected module
with gene significance (with the gene of interest) > 0.6 were
considered to be our targets. Gene Ontology (GO) (http://
geneontology.org) (Accessed date: 17 May 2025) and Kyoto
Encyclopedia of Genes and Genomes (KEGG, https://www.
genome.jp/kegg) (Accessed date: 19 May 2025) were practical
tools for investigating potential biological functions of those
selected genes (Ashburner et al., 2000; Kanehisa and Goto, 2000).
In GO enrichment analysis, three functional types, i.e., biological
process (BP), molecular function (MF) and cellular component
(CC), were all analyzed in the study. Result visualization was
implemented using the R package “ggplot2”.

2.4 Single-cell analysis for gene distribution

Single-cell datasets of prostate cancer were accessible on the
website Tumor Immune Single-cell Hub 2 (TISCH2) (http://tisch.
compbio.cn/home) (Accessed date: 2 June 2025), an online scRNA-
seq database focusing on tumor microenvironment (TME). In this
study, we included 4 different prostate cancer databases (GSE_
137829, GSE_141445, GSE_172301 and GSE_176031) and
13 different cell types including prostatic cells and immune cells
to investigate expression patterns of the gene of interest within the
prostate gland.

2.5 Univariate cox regression and
survival analysis

After merging survival-related data (i.e., survival status (fustat)
and survival time (futime)) into the gene expression matrix of
selected module, we performed univariate cox regression using
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the R package “survival”. Hazard ratio (HR) of each gene and
corresponding p value and KM value were calculated during the
analysis process. Top ten genes in the selected module ranked by
gene significance with both p value and KM less than preset pFilter
(=0.05 in this study) were key genes for survival analysis. The R
package “survminer” was used for result visualization.

2.6 Immune microenvironment analysis

We first employed the ESTIMATE algorithm to calculate
stromal and immune scores of prostatic samples in the
downloaded matrix. After merging survival data into the scoring
file, we divided included specimens into high-score group and low-
score group based on their score median. Then we implemented
survival analysis using the R packages “survival” and “survminer”
and compared expression levels of the gene of interest between the
two groups.

2.7 Clinical correlation analysis

First, we extracted expression profile of the gene of interest and
clinical data of all samples from the gene expression matrix and
clinical information file, respectively. The clinical phenotypes that
we focused on in this study included age, TNM stage, Gleason Score
and PSA. Then, we divided the samples into different groups based
on the clinical significance of each parameter (e.g., age into
&60 years and >60 years; PSA into <4 ng/mL, 4–10 ng/mL
and >10 ng/mL) and investigated whether or not there were
statistically significant differences in terms of gene expression
between samples from different groups.

2.8 Least absolute shrinkage and selection
operator regression and prognostic model
establishment

Least absolute shrinkage and selection operator (LASSO)
regression is a very powerful tool in the medical landscape of
outcome prediction. By selectively highlighting certain important
parameters (or predictors) and removing non-critical ones, LASSO
could construct a more refined model in the multivariate settings
compared with other regression methods. In this study, genes in the
selected module with gene significance (with the gene of interest) >
0.9 were considered to be the predictors and used to establish
prognostic model with LASSO regression. For model preliminary
validation, we performed Kaplan-Meier survival analysis, where
p-value and hazard ratio (HR) with 95% confidence interval (CI)
were calculated using log-rank test and univariate cox proportional
hazards regression.

2.9 Cell culture

Human prostate cancer cell lines DU145, 22Rv1 were purchased
from the National Collection of Authenticated Cell Cultures
(Shanghai, China). Two cell lines were cultured in RPMI

1640 medium with 10% fetal bovine serum (FBS) at 37 °C in 5%
CO2 atmosphere.

2.10 Cell transfection

Knocking down the gene of interest was achieved using pre-
designed small interfering RNA (siRNA), with negative control
siRNA serving as a control. DU145 and 22Rv1 cell lines were
seeded in 6 well plates and cultured for at least 24 h before
transfection. The transfection reaction mix was prepared with
Opti-MEM reduced serum medium and Lipofectamine®2000
(Invitrogen, United States) following the manufacturer’s
instructions. Western blot and quantitative PCR (qPCR) were
performed to assess the efficiency and duration of
gene knockdown.

2.11 Cell counting Kit-8 (CCK8) assay

Cellular proliferation was assessed using CCK8 assay.
DU145 and 22Rv1 cells were seeded in a 96-well plate and
cultured for different time intervals upon siRNA transfection.
CCK-8 solution (Sangon Biotech, Shanghai, China) was added to
each well, and the plate was then incubated in the dark for 1 h. The
absorbance reading at 450 nm was measured using a microplate
reader (Thermo Labsystems, Vantaa, Finland).

2.12 EDU staining

EdU staining was applied for cell proliferation assessment.
DU145 and 22Rv1 cell lines were seeded into 24-well plates after
siRNA transfection. Cell staining was performed using BeyoClick™
EdU-488 Cell Proliferation Kit (Beyotime Biotechnology, China),
cell images were captured using a fluorescent microscope, and cell
numbers were counted using ImageJ software (National Institutes of
Health, Bethesda, Maryland).

2.13 Transwell assay

DU145 and 22Rv1 cell lines were seeded in 24-well plates with
transwell chambers (8 μm pore size) (Corning Costar, Corning, NY,
United States). Chambers with or without Matrigel (BD, San Diego,
CA, United States) were employed to assess cell invasion and
migration, respectively. After incubated for 48 h, cells in the plate
were stained with 1.0% crystal violet. Cell images were captured
using an inverted microscope, and cell counting was implemented
using ImageJ.

2.14 Colony formation assay

Cells were suspended and plated into a six-well plate. Following
a 2-week incubation, colonies were fixed with paraformaldehyde and
stained with crystal violet solution, and then photographed
and counted.
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2.15 Total RNA extraction, reverse
transcription and quantitative real time PCR
(qRT-PCR)

Total RNA extraction was implemented using RaPure Total
RNA Micro Kit (Magen, China) and Trizol reagent (Invitrog,
Carlsbad, CA, United States). According to manufacturers’
instructions a total of 1 μg extracted RNA was reverse-
transcribed into cDNA with ABScript II RT Master Mix
(ABclonal, Wuhan, China). Gene amplification was performed by
qRT-PCR on Bio-Rad CFX96 system (Hercules, CA, United States)
and primers used in experiments were listed here: HSPB8: Forward:
5′-ACCAAAGATGGATACG TGGAGG-3′, Reverse: 5′-TGGGGA
AAGTGAGGCAAATACT-3’; β-actin: Forward: 5′-TCCCTGGAG
AAGAGCTACGA-3′, Reverse: 5′-TGAAGGTAGTTTCGTGGA
TG C-3’. β-actin was used as control. Relative mRNA expression
of a gene was calculated using 2−ΔΔCT method.

2.16 Western blot analysis

Total protein was extracted using Radioimmunoassay Buffer
(Shanghai Beyotime Biotechnology Co., Ltd., Shanghai, China).
Following concentration and purity assessment of extracted
protein, a total of 20 μg samples were electrophoretically
separated on 10% sodium dodecylsulfate-polyacrylamide (SDS-
PAGE) gels (Wuhan Boster Biological Technology Ltd., Wuhan,
China) at 80 V. The protein samples were then transferred onto
polyvinylidene fluoride (PVDF) membranes (Millipore, Billerica,
MA, United States) at a constant current of 274mA, followed by
incubation of PVDF membranes with transferred proteins in 5%
skimmed milk for 2 h. Washed in PBS for three times, the PVDF
membrane was incubated in primary antibody (Table 1) overnight at
4 °C and then in secondary antibody (Table 2) for 2 h at room
temperature. Washed again, the signal on bands was detected using
enhanced chemiluminescence kit (Thermo Scientific Fisher,
Waltham, MA, United States) on Tanon-5200 ECL imager
(Tanon, Shanghai, China). Densitometric quantification of
protein on each band was performed using ImageJ software.

2.17 Statistical analysis

All bioinformatic analyses were implemented on R software (v
4.4.3). R packages used for analysis were accessible online and could
be freely downloaded. All experiments were performed at least three
times. Data were presented as mean ± standard deviation (SD).
Apart fromR packages, GraphPad Prism v 5.01 and SPSS v 25.0 were
also the statistical tools applied in the study. p < 0.05 was considered
to be statistically significant.

3 Results

3.1 Gene screening through WGCNA

Before performing WGCNA analysis, we firstly screened out
genes with the top 25% variant across all samples to reduce the
computational workload in the following steps. (14,856 genes
remaining). After removing 4 outlier samples, we constructed a
co-expression network using the remaining 550 samples and
14,856 genes, with the soft-thresholding power beta = 3 and its
corresponding scale-free topology R2 = 0.93 (Figures 1A–E).
Hierarchical clustering is usually the next step. Genes with
similar expression patterns were grouped into the same gene
module (Figure 2A). Given that this study aimed to identify a
module where genes have the highest expression pattern
similarity with the HSP family, HSP expression matrix (29 genes
in total) was included and used as sample trait data. The module-
trait heatmap showed that there were three HSP genes—HSPBP1,
HSPA13 and HSPB8 — showing relatively high correlation
coefficient (>0.8) with ME green (0.87), ME skyblue (0.84) and
ME black (0.81), respectively (Figure 2B). Module membership in
ME green, ME skyblue and ME black significantly correlated with
gene significance for HSPBP1, HSPA13 and HSPB8, respectively
(Figures 2C–E). However, pan-cancer data from GEPIA showed
significant differences in terms of HSPB8 expression between
normal prostatic tissues and prostate cancer samples while this
was not the case for HSPBP1 and HSPA13 (Supplementary Figures
S1A–C). As a result, HSPB8 was considered to be the gene
of interest.

3.2 HSPB8 expression patterns within the
prostate gland

First, we employed the downloaded gene matrix to compare the
expression of HSPB8, HSPBP1 and HSPA13 levels between normal
and prostate cancer samples for validation purposes.
HSPBP1 expression was significantly higher in prostate cancer
groups than in normal controls (Supplementary Figure S1D),
while HSPA13 and HSPB8 showed lower expression levels
among prostate cancer tissues (Supplementary Figures S1E,F).

TABLE 1 Primary antibodies for Western blot.

Antigens Species & type Dilution Supplier

HSPB8 Rabbit, polyclonal 1:1,000 (WB) Abclonal (A2514)

AKT1 Rabbit, monoclonal 1:1,000(WB) Abclonal (A17909)

pAKT Rabbit, monoclonal 1:1,000(WB) Abclonal (AP0637)

mTOR Rabbit, polyclonal 1:1,000(WB) Abclonal (A2445)

pmTOR Rabbit, monoclonal 1:1,000(WB) Abclonal (AP0115)

β-actin Rabbit, polyclonal 1:1,000 (WB) Abclonal (AC006)

TABLE 2 Secondary antibodies for Western blot.

Antigens Species Dilution Supplier

Anti-Rabbit-IgG (H + L)-HRP Goat 1:10,000 (WB) Sungene Biotech, China, Cat. #LK2001
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There were a total of 31 genes (excluding HSPB8) with GS.
HSPB8 > 0.9. We focused on the top ten genes ranked by GS.
HSPB8 in this section and investigated whether their expression
correlated with HSPB8. The focused genes included PGM5,
KCNMB1, JPH2, FLNC, MYH11, LMOD1, RASL12, SYNM,
ASB2 and CNN1. Our data demonstrated that these genes
showed significant positive correlation with HSPB8 in terms of
expression patterns, with r ranging from 0.934 to 0.956 and p < 0.001
(Figures 3A–J).

3.3 Functional enrichment analysis for
HSPB8 and HSPB8-related genes

HSPB8-related genes was defined as genes in ME black with GS.
HSPB8 > 0.6. Using the R package ClusterProfilter, we performed
GO and KEGG enrichment analyses on HSPB8 and HSPB8-related
genes (911 genes in total). Our results demonstrated that those
selected genes were mainly enriched in muscle system process,
collagen−containing extracellular matrix, muscle cell

FIGURE 1
Co-expression network establishment. (A) sample dendrogram for preliminary hierarchical clustering; (B–E) soft-thresholding power determination
and corresponding scale-free topology R2 calculation (β = 3, R2 = 0.93 in this study).
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FIGURE 2
Sample clustering and gene module selection. (A) cluster dendrogram; (B) module-trait relationship heatmap; (C–E) correlation analysis between
module membership and gene significance.
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differentiation and muscle contraction (Figures 4A,B). And in
KEGG analysis, cytoskeleton in muscle cells, calcium signaling
pathway, and PI3K−AKT signaling pathway were the top three
enriched KEGG pathways (Figures 4C,D). Further, we used online
tool TISCH2 (http://tisch.compbio.cn/home) (Accessed date: 2 June
2025) and attached single-cell datasets of prostate cancer (GSE_
137829, GSE_141445, GSE_172301 and GSE_176031) to detect
HSPB8 distribution within the prostate gland. We found that
HSPB8 was primarily enriched in fibroblasts (Figures 4E–H).
Epithelial cells and endothelial cells also exhibited relatively high
HSPB8 expression (Figures 4E–G).

3.4 Survival analysis for HSPB8

Using the R package “survival”, we identified whether
HSPB8 was survival-related genes. First, we performed cox
regression analysis and found that hazard ratio (HR) for
HSPB8 was less than 1 (0.735, 95% CI: 0.645–0.837) (Figure 5A).
Survival analysis was then implemented and survival curves
demonstrated that low survival probability was observed among
patients with lowHSPB8 levels (p < 0.001) (Figure 5B). This was also
the case for the top ten genes ranked by GS. HSPB8, i.e., PGM5,
KCNMB1, JPH2, FLNC, MYH11, LMOD1, RASL12, SYNM,

ASB2 and CNN1 (excluding HSPB8 itself). They all had HR <
1 and their low expression levels were observed among patient
groups with low survival probability (p < 0.05) (Figures 5A,C–M).

3.5 Correlation of HSPB8 with different
clinical phenotypes

In this section, we compared expression differences of
HSPB8 among different patient groups. Clinical phenotypes we
studied here included age, tumor T and N stage, Gleason score and
PSA. Our data showed that there were no significant differences in
HSPB8 expression between patients aged& 60 years and>60 years (p =
0.201) (Figure 6A). HSPB8 expression was significantly higher in
T2 groups than in T3 group (p < 0.001), but no significant
differences were observed among groups T2 vs. T4 and T3 vs. T4
(Figure 6B). For tumor N stage, patients in N1 stage exhibited lower
HSPB8 expression levels compared to those in N0 stage (p < 0.001)
(Figure 6C). To investigate the correlation of HSBP8 with PSA, patients
were divided into three groups based on their PSA levels: <4 ng/mL,
4–10 ng/mL and >10 ng/mL. HSPB8 expression was lower in patient
groups with PSA ranging from 4 to 10 ng/mL than in those with
PSA <4 ng/mL, but not significantly (p = 0.132), while patients with
PSA >10 ng/mL had significantly lowerHSPB8 expression compared to

FIGURE 3
Gene expression correlation within the prostate gland. (A–J) Pearson correlation between HSPB8 and top ten genes in terms of gene
expression levels.
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FIGURE 4
Functional enrichment and single-cell analysis. (A,B) GO enrichment analysis; (C,D) KEGG enrichment analysis; (E–H) single-cell analysis for gene
distribution.
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FIGURE 5
Univariate cox regression and survival analysis. (A) univariate cox regression; (B–M) survival analysis.
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those with PSA <4 ng/mL (p < 0.05) (Figure 6D). For patients’Gleason
score, patient groups with Gleason score = 6 exhibited significantly
higherHSPB8 levels compared to those withGleason score = 9 and = 10
(p < 0.001 and p < 0.01, respectively), while no significant differences
were observed among groups Gleason score 6 vs. 7, 8 vs. 9 and 9 vs.
10 (Figure 6E).

3.6 Immune microenvironment analysis

Using the ESTIMATE algorism, we got the stromal score,
immune score and ESTIMATE score of prostate cancer samples
(normal samples had been excluded). Based on the score median,
included specimens were divided into two groups: high-score group
and low-score group. Then, we compared survival outcomes and
HSPB8 expression levels between the two groups. The survival curve
illustrated that patients with high stromal score, immune score and
ESTIMATE score tended to have poorer survival outcomes (p =
0.138, p = 0.060 and p = 0.028, respectively) (Figures 7A–C). Across
all three score metrics, HSPB8 was significantly higher in high-score
group than in low-score group (p < 0.001) (Figures 7D–F).

3.7 Prognostic model construction

Genes with GS. HSPB8 > 0.9 were employed to establish
prognostic model (31 genes in total). A total of 498 prostate
cancer samples were applied for model construction. The risk
score could be calculated using the following equation: Risk
score = (−0.5882)*AC005180.2 + (−0.1387)*LDB3 + (0.1349)
*BHMT2 + (0.2432)*TAGLN, where lambda. min = 0.0092

(Figures 8A,B). Based on the median value of risk scores, prostate
cancer samples were divided into two groups: high-risk group and
low-risk group (Figure 8C). Our results showed that HR for the high-
risk group was 3.713 (95% CI: 1.599–8.625) and they had poorer
survival prospect compared to the low-risk group (p = 0.002)
(Figure 8D). The areas under the receiver operating characteristic
curve (AUC) for themodel at three different time point: 1 year, 3 years
and 5 years were 0.746 (95% CI: 0.623–0.868), 0.749 (95% CI:
0.656–0.843) and 0.684 (95% CI: 0.579–0.790), respectively.

3.8 Expression and function validation of
HSPB8 in prostate cell lines

For gene expression verification in prostate cells, we knocked
downHSPB8 using pre-designed siRNA and investigated the impact
of HSPB8 silencing on cell proliferation, invasion and migration.
After siHSPB8 transfection two prostate cancer cell lines showed
significantly reduced HSPB8 expression levels (Figures 9A,B). As
expected, HSPB8 knockdown substantially increased proliferative
rates of two prostate cancer cell lines DU145 and 22Rv1 (Figures
9C,D). Following HSPB8 silencing enhanced invasion andmigration
abilities were observed in DU145 and 22Rv1 cells (Figures 9E–G).
Furthermore, knocking down HSPB8 promoted phosphorylation of
AKT and mTOR (Figure 9H).

4 Discussion

Identifying molecular markers with potential diagnostic,
therapeutic and prognostic values has always been a hotspot in

FIGURE 6
Gene expression differences across different patient groups. (A) age stratification: & 60years and >60years; (B) tumor T stage stratification: T2,
T3 and T4; (C) tumor N stage stratification: N0 and N1; (D) PSA level stratification: <4 ng/mL, 4–10 ng/mL and >10 ng/mL; (E)Gleason score stratification:
6, 7, 8, 9, 10. ns: p > 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001.
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cancer research. In this study we screened out HSPB8 as a potential
biomarker from the HSP family using bioinformatic methods, and
further investigated its biological role as well as its prognostic
significance in prostate cancer.

WGCNA is a broadly-used biological tool for describing
interaction patterns between genes among microarray samples by
constructing a weighted co-expression network (Langfelder and
Horvath, 2008). Compared to unweighted networks, weighted
networks could better capture the continuous nature of
underlying co-expression information and might therefore avoid
an information loss (Langfelder and Horvath, 2008). Using the R
package “WGCNA”, we established a co-expression network with a
total of 1,485 genes and 550 samples and then implemented
hierarchical clustering to group genes with similar expression
patterns into the same module. Of the sixteen constructed gene
modules, three modules (ME green, ME skyblue and ME black) had
HSP genes showing correlation coefficient >0.8 with the
corresponding module (HSPBP1 = 0.87 with ME green,
HSPA13 = 0.84 with ME skyblue, HSPB8 = 0.81 with ME black).
Considering the relatively slight differences in HSPBP1 and
HSPA13 expression between normal prostatic tissues and
prostate cancer tissues shown in the online tool GEPIA (http://
gepia.cancer-pku.cn/) (Accessed date: 16 May 2025), HSPB8 was
considered to be the gene of interest for further analysis. Following
gene significance (with HSPB8) calculation, the top ten genes ranked
by GS. HSPB8 in black module were PGM5, KCNMB1, JPH2,
FLNC, MYH11, LMOD1, RASL12, SYNM, ASB2 and CNN1
(excluding HSPB8 itself).

HSPB8, as its name indicates, is a member of HSPBs, which
primarily defines whether a HSPBs client will be refolded or
degraded (Haslbeck and Vierling, 2015). During tumor
development, HSPB8 plays an opposite role—pro-tumoral or
anti-tumoral—depending on the tumor type (Cristofani et al.,
2021). For example, HSPB8 promotes tumor growth in breast
cancer (Piccolella et al., 2017), lung cancer (Yu et al., 2021),
ovarian cancer (Suzuki et al., 2015), and gastric cancer (Li et al.,
2014), while in other tumor types, such as hepatocarcinoma
(Matsushima-Nishiwaki et al., 2017) and prostate cancer (Gober
et al., 2003), HSPB8 could repress tumorigenesis. Our
findings—based on analyses using TCGA database and the R
package “limma”, as well as the online tool GEPIA (http://gepia.
cancer-pku.cn/) (Accessed date: 16 May 2025) — showed that
compared to normal prostatic samples, lower HSPB8 expression
was observed in prostate cancer tissues. This is in line with existing
data (Gober et al., 2003; Yao et al., 2019; Kim et al., 2020) and
indicates that HSPB8 functions as a tumor suppressor gene during
the initiation and progression of prostate cancer. Ten genes
mentioned in the last paragraph, i.e., PGM5, KCNMB1, JPH2,
FLNC, MYH11, LMOD1, RASL12, SYNM, ASB2 and CNN1, had
relatively higher GS. HSPB8 values compared with others. As
expected, these genes positively correlated with
HSPB8 expression (p < 0.001), suggesting that they might be the
downstream target or upstream regulator of HSPB8. This
speculation needed to be supported by more mechanistic studies.

We further performed GO and KEGG functional enrichment
analyses on HSPB8 and related genes. The criteria for HSPB8-

FIGURE 7
Immune microenvironment analysis. (A–C) survival analysis; (D–F) gene expression differences between the two groups. ***: p < 0.001.
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related genes was GS. HSPB8 > 0.6, and a total of 911 genes were
selected as our target subjects. In GO functional annotation, these
genes were primarily enriched in muscle system process,
collagen−containing extracellular matrix, muscle cell
differentiation and muscle contraction, while in KEGG analysis
cytoskeleton in muscle cells, calcium signaling pathway, and
PI3K−AKT signaling pathway were top three enriched KEGG
pathways. This indicated that our targets probably had close
relationship with smooth muscle contraction. Further validation
through single-cell analysis also supported this finding. We used
online tool TISCH2 (http://tisch.compbio.cn/home) (Accessed date:
15 June 2025) and attached single-cell datasets of prostate cancer
(GSE_137829, GSE_141445, GSE_172301 and GSE_176031) to
detect the gene distribution of HSPB8 within the prostate gland.
Our data demonstrated that HSPB8 was primarily expressed in
fibroblasts and epithelial cells. This finding aligned with gene
functional annotations, providing evidence for HSPB8’s
important role in tumor stroma.

To verify whether HSPB8 and top genes PGM5, KCNMB1,
JPH2, FLNC, MYH11, LMOD1, RASL12, SYNM, ASB2 and
CNN1 were survival-related genes, we performed cox regression
and survival analysis on them using the R package “survival”. Their
hazard ratios were less than 1 (p < 0.001) and lower expression levels
were observed among patient groups with lower survival probability
(p < 0.05), indicating that lack of those genes often implied poor
survival and they were probably tumor suppressor genes on the
other hand. We further associated HSPB8 with patients’ survival
outcomes from the immunological prospective. By employing the
ESTIMATE algorism, we investigated the association of HSPB8 with
stromal and immune components in TIME based on obtained
stromal score, immune score and ESTIMATE score of prostate
cancer samples. Stromal score and immune score, as their names
indicate, are powerful tools for assessing the infiltration of stromal
and immune cells (Yoshihara et al., 2013). Our survival data
illustrated that poorer survival was observed among patients with
high stromal, immune and ESTIMATE scores. This was in

FIGURE 8
Prognostic model construction. (A,B) lambda. min determination in LASSO regression. (C–E) preliminary validation of established model.
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accordance with a previously-reported finding that high stromal
scores were associated with higher Gleason scores, an increased risk
of tumor metastasis, and poorer clinical outcomes (Mahal et al.,
2020). High immune scores in patients with prostate cancer might
result from abundant infiltration of immunosuppressive cells, such
as T regulatory cells (Tregs) and M2-polarized macrophages (Shen
et al., 2021), which was linked to unfavorable survival outcomes
(Andersen et al., 2021). It was interesting to note that across all three
score metrics HSPB8 was significantly higher in high-score group
than in low-score group, with groups stratified by the median
threshold. This finding stands in contrast to our previous results
reporting that HSPB8 is a tumor suppressor gene and, to the best of
our knowledge, no studies to date have reported such a
contradiction. Further immunological experiments are required
to validate this observation.

Then, we established a prognostic model using genes in black
module with GS. HSPB8 > 0.9 using LASSO regression method. The
risk score could be generated via the following formula: Risk score =
(−0.5882)*AC005180.2 + (−0.1387)*LDB3 + (0.1349)*BHMT2 +
(0.2432)*TAGLN. Upon the division of patients into high-risk and
low-risk patient groups, we found that the high-risk patient group
had poorer survival prospect compared to the low-risk group (p =
0.002), demonstrating this is a risk model. In addition, the AUC
values for this model at the time point 1 year, 3 years and 5 years
were 0.746 (95% CI: 0.623–0.868), 0.749 (95% CI: 0.656–0.843) and
0.684 (95% CI: 0.579–0.790), respectively. All the evidence indicated
the validity of this model.

Characterizing the correlation between HSPB8 and various
clinical phenotypes is also an important objective of this research.
We compared expression differences of HSPB8 among different
patient groups and clinical phenotypes we focused on included
age, tumor T and N stage, Gleason score and PSA. In this study,
no statistically significant differences in HSPB8 expression were
observed between patients aged & 60 years and >60 years.
Regarding tumor T and N stages, HSPB8 expression was
significantly higher in T2 groups than in T3 group, and lower in
N1 groups than in N0 groups. Patients had been divided into three
groups based on their PSA levels: <4 ng/mL, 4–10 ng/mL and >10 ng/
mL, and HSPB8 expression was lower in patients of >10 ng/mL than
in those of <4 ng/mL. For patients’ Gleason score, the group of
Gleason score = 6 showed significantly higher HSPB8 expression
levels than those of Gleason score = 9 and = 10. All such results
supported a strong association between HSPB8 expression and the
severity of prostate cancer, with lower HSPB8 expression generally
observed among patients exhibiting more pronounced abnormalities
in prostate cancer-related parameters.

As a final step, we carried out gene expression validation using
prostate cancer cell lines DU145 and 22Rv1. After knocking down
HSPB8 using pre-designed siRNA, we found that lack of
HSPB8 stimulated cellular proliferation of DU145 and 22Rv1 cell
lines. HSPB8-silencing prostate cell lines also showed enhanced
invasion and migration ability. These results strongly supported
the inhibitory role of HSPB8 in the development and progression
of prostate cancer. Further, we carried out an in-depth investigation
into the molecular mechanisms underlying this regulation.
PI3K−AKT axis is a classical cancer-relevant signaling pathway
and plays an oncogenic role in many cancer types, such as gastric
cancer (Fattahi et al., 2020), breast cancer (Miricescu et al., 2020) and

FIGURE 9
Expression and functional verification of HSPB8 using siRNA (A,B)
Transfection efficacy validation at both transcriptional and
translational levels. (C) Proliferative rates (OD value (450 mm)) of
DU145 and 22Rv1 cell lines following HSPB8 knockdown at
different time points. (D) Edu staining of HSPB8-silencing prostate cell
lines. (G) Colony formation of two prostatic cell lines following
HSPB8 silencing. (E,F) Invasion and migration ability of HSPB8-
silencing cell lines. (H) Immunoblot assay and relative densitometric
quantification of AKT, pAKT, mTOR and pmTOR expression in two
lines after HSPB8 knockdown. β-actin is used as loading control. *: p <
0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001.
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prostate cancer (Edlind and Hsieh, 2014). Since PI3K−AKT signaling
was identified as the third most enriched KEGG pathway in gene
enrichment analysis, we speculated that it might be linked to HSPB8’s
tumor-suppressive role in prostate cancer. Our mechanistic studies
revealed that HSPB8 knockdown promoted phosphorylation of AKT
and mTOR, which aligned with our speculation, i.e., the inhibitory
role of HSPB8 in prostate cancer was, at least in part, linked to the
inactivation of PI3K−AKT signaling pathway.

5 Conclusion

In this study we identified HSPB8 as new biomarker with potential
diagnostic, therapeutic and prognostic values in prostate cancer through
WGCNA. HSPB8 was a tumor suppressor gene and had significant
impact on patients’ survival and prognosis. On a molecular level, its
functional role was probably mediated via inactivation of PI3K−AKT
signaling. In aggregate, this study provided a novel insight into the
pathogenesis of prostate cancer and targeting HSPB8 appeared to be an
emerging area in prostate cancer treatment.
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