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Genomic medicine relies on single reference genomes that miss crucial genetic
diversity, creating diagnostic gaps that disproportionately affect
underrepresented populations. Pangenome graphs, collections of diverse
genomes represented as interconnected genetic paths, offer a powerful
alternative to the standard reference genome approach. Pangenome-based
approaches capture the spectrum of human variation, dramatically improving
how we detect complex structural variants, reconstruct haplotypes, and reduce
bias in genetic studies. Projects like the Human Pangenome Reference
Consortium have identified hundreds of megabases of missing genetic
diversity, leading to remarkable improvements in variant detection across
different populations. Yet, as pangenomes grow larger and computationally
complex, they become more challenging to interpret clinically, creating a
trade-off between comprehensiveness and usability. This review discusses the
technical and conceptual advances enabling clinical applications of pangenomes
in rare disease diagnosis. Realizing the future potential of pangenome graphs in
genomic medicine will require innovative implementation strategies, thorough
clinical testing, and user-friendly approaches.
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1 Introduction

Genome sequencing is transforming medicine, enabling the detection of rare genetic
variants (i.e., single nucleotide variants [SNVs], structural variants [SVs], insertions and
deletions [indels], copy number variants [CNVs], and short tandem repeats [STRs]) that are
missed with traditional genotyping. However, standard approaches to variant discovery rely
almost entirely on comparison to a single linear reference genome, which, by its nature,
lacks genetic diversity and does not represent the full range of human populations
(Aganezov et al., 2022; Nurk et al., 2022; Liao et al., 2023; Hickey et al., 2024; Sirén
et al., 2024; Taylor et al., 2024). Over-reliance on a single reference genome is a substantial
barrier to equitable, high-resolution diagnosis (Matalon et al., 2023). In this review, we
argue that pangenomes (i.e., collections of genomes) are not merely an incremental
improvement but, together with graph-based genome encoding (i.e., the storage of
genomic data as haplotype paths), constitute a disruptive paradigm shift that will
render current variant discovery pipelines in genomic medicine obsolete. Ironically, as
more pangenomes are built with increasingly large collections of genetic variations, it will
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become harder for clinicians and researchers to understand and use
them effectively. As such, new approaches are required to enable
rapid, interpretable pangenome queries.

2 The linear reference paradox

The Genome Reference Consortium (GRC) currently maintains
two primary human reference assemblies: GRCh37 (hg19, released
2009) (Church et al., 2011) and its successor GRCh38 (hg38,
published 2013) (Schneider et al., 2017). The GRCh38 assembly
is a composite of unphased single haplotypes, with about 70%
derived from a single individual, 23% from ten, and 7% from
over fifty additional sources (Ballouz et al., 2019). These two
reference genomes serve as critical foundations for genomic

research, enabling clinical, comparative, developmental,
population, and disease analyses (Lowy-Gallego et al., 2019;
Abascal et al., 2020; Collins et al., 2020; GTEx Consortium, 2020;
Taliun et al., 2021; Aganezov et al., 2022; Nassar et al., 2023; Reis
et al., 2023; Mahmoud et al., 2024; Nyaga et al., 2024). The power
that the incorporation of these references into biological studies
brings has been unequivocally demonstrated, including through the
identification of the genetic and molecular basis of rare diseases
(Lunke et al., 2023; Nyaga et al., 2024; Sinha et al., 2025).

GRCh37 and GRCh38 are not and have never been fixed entities.
Rather, the GRC has continually worked to improve these
assemblies by implementing patches, fixes, and alternate scaffolds
to represent allele diversity. For example, the transition from
GRCh37 to GRCh38 included approximately 100 Megabases
(Mb) of improvements, particularly in immune-related regions

FIGURE 1
Linear reference-based genomic analysis has inherent limitations in alignment, variant detection, and representing population genetic diversity. (a)
Raw sequencing reads from paired haplotypes are aligned to a linear reference genome, introducing inherent bias when genomic regions diverge
significantly from the reference. Successfully aligned reads undergo variant detection for SNVs, small indels, SVs, CNVs, and STRs based on the read depth
support for the linear reference (ref) and alternative (alt) sequence. However, variants in highly divergent regions remain undetected when reference
genome sequencing reads fail to map to the linear reference due to reference genome gaps (b) or complex variations within genomic regions (such as an
insertion on hap (haplotype) 1 and two inverted translocations with a deletion on hap (haplotype 2) (c). (d) Linear references inadequately represent
population genetic diversity. Linear models represent variations relative to the reference while graph-based models enable direct all-to-all genome
comparisons, capturing complete sequence relationships. Graphs models efficiently represent SVs (such as the inversion shown in dark grey) that linear
models miss. Hap - haplotypes, ref - reference, VCF - variant call format file.
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(Schneider et al., 2017). Despite these efforts, the lack of ancestral
diversity within these references remains a considerable limitation
(Figure 1), particularly in clinical settings. For example, it is possible
that diagnostic de novo pathogenic variants remain undetected
because they lie outside the reference structure in the gaps
(i.e., 7% or 210 Mb of its primary chromosome, unknown
sequences [151 Mb], or computationally simulated regions
[59 Mb] that are present in the reference structure (Figures
1A–C) (Aganezov et al., 2022; Nurk et al., 2022). Additionally,
GRCh38 includes alternative contigs (i.e., continuous stretches of
DNA sequence representing alternative haplotype diversity), which
can lead to variant calling errors (Jia et al., 2020; Li H. et al., 2021;
Aganezov et al., 2022) and biased variant interpretation, particularly
towards insertions and deletions (indels) (Church et al., 2011;
Schneider et al., 2017; Pan et al., 2019; Li H. et al., 2021). For
example, mishandling alternative scaffold inclusion resulted in
incorrect reports of genetic variation in 641 genes in UK Biobank
exome data (Jia et al., 2020).

Despite its limitations, it must be acknowledged that substantial
progress has been made in the continual development of the
reference human genome. Since the first draft of the human
genome was published in 2001, the quality (i.e., accuracy of base
calling and assembly) and contiguity (i.e., the length of continuous
DNA sequences without gaps) have improved substantially. Indeed,
the initial human genome was incomplete and highly fragmented,
consisting of more than 150,000 contigs, with just over half the
genome represented in contigs greater than 50 Kilobases (Kb)
(Church et al., 2011). The recent incorporation of long reads,
which can span multiple Kb in a single continuous read, has
allowed researchers to create a telomere-to-telomere genome
assembly (T2T) (Rautiainen et al., 2023). The T2T-
CHM13v2.0 human reference genome (Cai et al., 2020; Nurk
et al., 2022) is a near-gapless, ‘error-free’ telomere-to-telomere
assembly consisting of over 3.0 Gigabases (Gb) of fully resolved
sequence that is contiguous across all autosomes and chromosome X
(except for the highly repetitive ~9 Mb sequence from ribosomal
DNA arrays) for a haploid human genome (Nurk et al., 2022).

The complete T2T genome assembly has contributed to the
successfully resolved previously difficult-to-sequence regions,
including the short arms of all five acrocentric chromosomes,
centromeric repeats and segmental duplication (Nurk et al.,
2022). This has enabled researchers to study genetic variation
across these complex regions (Jeong et al., 2025). Despite
representing only a single human haplotype, the T2T-
CHM13v2.0 reference has already contributed to improvements
in genomic variant discovery. For example, the assembly has enabled
the discovery of over 2 million additional SNVs in regions missing
from GRCh38 and has improved CNV detection across the
1000 Genomes Project samples (Aganezov et al., 2022; Nurk
et al., 2022). In addition, researchers have attempted to genotype
population-level SVs by utilizing long-read sequencing in diverse
genomes andmapping these reads to the T2T assembly, identifying a
large number of novel SVs (Reis et al., 2023; Gustafson et al., 2024;
Logsdon et al., 2025; Schloissnig et al., 2025). However, even with
these significant advances, the T2T-CHM13v2.0 assembly does not
fully represent the genetic diversity of the human population, as
variation can only be comprehensively studied in the context of
multiple populations, not just by comparison to a single reference

(Figure 1D) (Garrison et al., 2018; Eizenga et al., 2020; Sirén et al.,
2021; Wang et al., 2022; Liao et al., 2023).

The standardized coordinate systems provided by reference
genomes are essential for communication and coordinated
analysis across the scientific and medical communities (Ballouz
et al., 2019). However, no single reference genome can fully
represent human diversity. This and the other inherent
limitations of the GRCh38 and T2T linear reference assemblies
are becoming particularly obvious as individualized approaches to
medicine and rare disease increase. This is particularly true for
patients of non-European ancestry, who experience substantially
lower diagnostic rates. One indication of this disparity is an observed
~23% increase in the burden of variants of uncertain significance
(VUS) compared to individuals of European ancestry (Dawood
et al., 2024). Such missed diagnoses translate into increased
morbidity, highlighting the importance of the inequalities that
arise from the clinical use of a single human genome reference
sequence (Green et al., 2023; Matalon et al., 2023). To address this,
clinical studies must transition to use collections of genome
assemblies as part of ancestrally diverse pangenome-based
approaches that are backwardly compatible with
published knowledge.

3 Graph-based pangenomes as next-
generation references

The concept of ‘pangenome’ was initially introduced in 2000 by
Sigaux, who applied it to describe a comprehensive database
containing genomic and transcriptomic changes found in tumors,
healthy cells and experimental systems (Matthews et al., 2024).
However, the term has evolved to the current graph reference (as
reviewed by (Marschall et al., 2018) to describe a set of whole-
genome assemblies from multiple individuals that are used together
as a reference or analyzed collectively (Marschall et al., 2018; Eizenga
et al., 2020; Wang et al., 2022; Liao et al., 2023). These collections of
multiple genomes enable the inclusion of variation from human
populations, especially when they include samples from individuals
underrepresented in previous genetic studies. As such, pangenomes
offer a promising alternative to single linear reference assemblies for
studying genetic variation (Figure 2A) (Wang et al., 2022; Gao et al.,
2023; Liao et al., 2023). However, pangenomes also risk creating new
inequities if not carefully implemented. If pangenomes are built
predominantly from well-resourced populations or lack diverse
ancestral representation, they will perpetuate existing biases
despite appearing inclusive. The technical and cost implications
of pangenome initiatives should not be overlooked. For example, the
substantial amount of genetic data required to build ancestrally
diverse pangenomes could restrict access for researchers and
clinicians in resource-constrained settings (Gong et al., 2023; Liao
et al., 2023). Additionally, as these pangenomes grow larger, they
become computationally demanding, requiring extensive memory
to process complete graphs, complex sorting algorithms, specialized
visualization tools (e.g., Optimized Dynamic Genome/Graph
Implementation [ODGI] (Guarracino et al., 2022)), and
sophisticated indexing methods, which consequently make
clinical interpretation challenging (Gong et al., 2023). This
creates a trade-off between comprehensiveness and usability,
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potentially widening the genomic equity gap between well-resourced
and under-resourced communities.

Pangenome construction relies on generating high-quality,
haplotype-resolved genome assemblies. Long-read sequencing
technologies have enabled the generation of these haplotype-
resolved genomes, where maternal and paternal chromosome
segments are distinctly identified. These precisely assembled and
haplotype-resolved genomes can be organized into graph-based data
structures, using two dominant computational approaches: 1)
sequence graphs (Garrison et al., 2018; Hickey et al., 2020;
Hickey et al., 2023; Sirén et al., 2021; Groza et al., 2024) (e.g.,
minigraph (Li et al., 2020); and 2) de Bruijn graphs (Iqbal et al., 2012;
Minkin et al., 2017; Holley and Melsted, 2020) (Box 1), that

efficiently compress and index the sequence information while
maintaining an intuitive coordinate system for genetic variant
identification (Garrison et al., 2018; Hickey et al., 2020; Sirén
et al., 2021; Liao et al., 2023).

However, representing complex structural variants in
pangenomes remains challenging. While efforts exist to unify
coordinates using the reference graphical fragment assembly
(rGFA) format, which provides a stable coordinate system
indicating the origin of segments from linear genomes, no
straightforward method exists for representing complex SVs in
VCF files (Li et al., 2020). This is particularly problematic for
nested variants (i.e., bubbles within bubbles) or variants
occurring only on alternative haplotypes (Li et al., 2020). This

FIGURE 2
Graph-based approaches overcome limitations of linear genome representations while ensuring backward compatibility and preserving analytical
continuity. (a) High-quality haplotype-resolved de novo assemblies provide the foundation for building pangenome frameworks. Pangenome graphs
represent assembled genomes from individuals (i.e., Individual 1, Individual 2, . . . , Individual n) as embedded haplotype paths (colored lines) where nodes
contain DNA sequences linked by directional connections, with edges illustrating interconnections between DNA sequences. Individual haplotypes
follow specific paths (colored lines) through these nodes, while branching regions called “bubbles” or “snarls” capture genetic variations (nucleotides
colored in black), including SVs, where genomes differ. For example, the inversion in haplotype 2 from Individual 1 and the deletion in haplotype 1 from
Individual 2 are represented in the graph as bubbles or snarls with different paths. This structure preserves genetic diversity from all contributing genomes.
Variant detection from pangenomes can be performed by mapping sequencing reads directly to the graph, aligning new assemblies to the pangenome
reference, or analyzing variants already represented within the graph structure. (b) Advantages of using pangenome-based approaches instead of linear
references in genomic analysis.
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complex problem is compounded by the requirement for a linear
reference backbone, which reintroduces the very biases that
pangenomes are designed to eliminate. Despite these challenges,
the incorporation of haplotype-resolved genome assemblies into
pangenomes has improved upon linear references, while the stable
coordinate system ensures backward compatibility, thereby
preserving analytical continuity (Garrison et al., 2018; Sirén et al.,
2021; Wang et al., 2022; Liao et al., 2023; Secomandi et al., 2025).

Box 1 Sequence and de Bruijn graphs: a quick summary
Sequence graphs have clear advantages over de Bruijn graphs for clinical

application due to their stable coordinate systems and support for complex
SVs. This enables precise backwardly compatible connections between graph
structures and biological features for accurate variant identification (Li et al.,
2020; Andreace et al., 2023; Chin et al., 2023; Hickey et al., 2023; Groza et al.,
2024).

Sequence graphs:

• Nodes represent variable length DNA sequences (or reverse
complement, depending on traversal direction). Edges
represent interconnections between DNA sequences (Figure 2a).

• “Bubbles” or “snarls” are defined as divergent paths in the graph
where sequences from different individuals branch apart and then
reconverge, thereby connecting common head and tail nodes and
representing genetic variations (Figure 2a) (Onodera et al., 2013;
Paten et al., 2018; Eizenga et al., 2020; Dabbaghie et al., 2022;
Secomandi et al., 2025).

• Variation graphs consist of all possible sequences from a
population and embed sample haplotype sequences as
navigable paths.

• Key advantage: provides a stable coordinate system that remains
consistent regardless of methodology of the graph construction
(Li et al., 2020; Hickey et al., 2023; Hickey et al., 2024; Sirén et al.,
2024).

• Limitation: scalability is a significant limitation for sequence/
variation graphs.

• Enable precise alignment, annotation, and comparative analysis
across variation graphs and linear reference genomes (Figure 2b).

De Bruijn graphs:

• Nodes represent fixed-length sequences (k-mers) while edges
represent interconnections between DNA sequences (Iqbal et al.,
2012; Andreace et al., 2023).

• Colored de Bruijn graphs enhance pangenome analysis by
assigning sample- or population-specific identifiers, enabling
efficient population-scale genomic studies (Iqbal et al., 2012;
Holley and Melsted, 2020).

• Limitations: these graphs struggle to resolve repetitive genomic
regions due to their reliance on fixed k-mer lengths (Bankevich
et al., 2022), and cannot be effectively built from noisy sequencing
reads (Nie et al., 2024)

• Computational efficiency is improved through using compact
data structures and the Burrows-Wheeler transform (BWT)
(Baier et al., 2016).

• Challenges persist in maintaining connections between graph
structures and the original sequence coordinates, which is
essential for reference pangenome applications (Li et al., 2020;
Hickey et al., 2023).

Early attempts to build a human pangenome identified novel
sequences absent from the standard reference genome assembly. For
example, the African Pangenome Project uncovered >290 Mb of
novel contigs from 910 individuals of African descent (Sherman
et al., 2019) Similarly, the HUPAN initiative, which constructed the
first Chinese pangenome from 275 individuals, revealed 29.5 Mb of
population-specific novel sequences (Duan et al., 2019) Li et al. also
utilized deep sequencing data from 486 Han Chinese individuals to

build a pangenome that contained 276 Mb of sequences absent from
the current human reference (Li Q. et al., 2021).

The Human Pangenome Reference Consortium (HPRC) used
long-read, phased, diploid assemblies to create a more inclusive
reference (Wang et al., 2022; Liao et al., 2023). The first HPRC
release contained 47 phased diploid genomes representing
94 haplotypes. This has subsequently expanded to include phased
haplotypes from 232 individuals in the most recent release. The
genomes that were included in the HPRC pangenome were initially
selected from the 1000 Genomes Project (1KGP) to represent
diverse ancestries: 24% African, 30% Americas, 18% East Asian,
28% South Asian (https://humanpangenome.org/samples/) (Wang
et al., 2022). To improve global representation, the HPRC is
expanding beyond these initial samples to incorporate
700 haploid genomes from cohorts that include the BioMe
Biobank and African American individuals to maximize diversity
and create a truly representative global pangenome reference (Wang
et al., 2022). This population-level approach has improved SV
detection, identifying an average of over 29,000 SVs per
individual compared to fewer than 16,000 SVs when using linear
reference (Groza et al., 2024; Schloissnig et al., 2025). Additionally,
this approach has enhanced genotyping accuracy and reduced the
reference bias inherent in traditional genomic analysis methods
(Hickey et al., 2020; Sirén et al., 2021; Sirén et al., 2024; Lee et al.,
2022; Liao et al., 2023).

4 Building, manipulating and querying
pangenome graphs

While pangenome graphs offer powerful representations of
genomic diversity, their practical application depends on our
ability to effectively construct, query, and analyze these complex
data structures. This involves building graphs from multiple
assemblies, extracting specific genomic regions, performing
comparative analyses, and integrating functional annotations.
However, efficient pangenome graph manipulation requires
substantial computational resources and technical expertise
(Garrison et al., 2024; Secomandi et al., 2025). To address these
challenges, methods have been developed for de novo genome
assembly, collecting and mapping assemblies into pangenomes,
and annotating pangenome graphs (Table 1).

Pangenome graph builders such as PanGenome Graph Builder
(pggb), Minigraph-Cactus, and TwoPaCo can deal with
mammalian-sized (~3 Gb) assemblies. Minigraph constructs
specialized pangenome graphs through iterative sequence
alignment to reference templates. Human pangenome projects
have utilized these tools at varying scales: Pantools (7 genomes
(Sheikhizadeh et al., 2016); Minigraph-Cactus and pggb (94 single
chromosomes (Hickey et al., 2023; Liao et al., 2023); TwoPaCo
(100 simulated genomes (Minkin et al., 2017); andMinigraph (94 (Li
et al., 2020) and 574 (Groza et al., 2024) haplotype-resolved
assemblies). Recently, the HPRC released a draft human
reference pangenome constructed using pggb and Minigraph-
Cactus pipelines (Liao et al., 2023). As more diverse genomes are
assembled de novo, the resulting pangenome references will
progressively capture the full spectrum of human genomic
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TABLE 1 Popular open-source tools for de novo genome assembly, construction and annotation of pangenomes.

Tool name (Year) GitHub URL Description

Genome assembly

Canu (2017) https://github.com/marbl/canu Assembly tool for noisy long reads (i.e., PacBio CLR and ONT reads) into a graphical fragment
assembly that can be integrated with complementary phasing and scaffolding methods

Flye (2019) https://github.com/fenderglass/Flye A de novo assembler for long reads (i.e., PacBio CLR, HiFi and ONT reads) into genomes using
repeat graph

GoldRush (2023) https://github.com/bcgsc/goldrush GoldRush produces a “golden path” of long reads (i.e., PacBio CLR and ONT reads) with ~1 fold
coverage, which are then polished and scaffolded into the final assembly

Hifiasm (2021) https://github.com/chhylp123/hifiasm Constructs haplotype-resolved assemblies from accurate PacBio HiFi reads and ultralong ONT
reads

La Jolla Assembler https://github.com/AntonBankevich/LJA A tool for genome assembly from PacBio HiFi reads based on de Bruijn graphs

MECAT2 (2019) https://github.com/xiaochuanle/MECAT2 An ultra-fast and accurate mapping, error correction and de novo assembly tool for long reads
(i.e., PacBio CLR, HiFi reads)

Miniasm (2016) https://github.com/lh3/miniasm A fast OLC-based de novo assembler for noisy long reads (i.e., ONT reads) into an assembly graph
in the GFA format

NECAT (2021) https://github.com/xiaochuanle/NECAT An error correction and de novo assembly tool for noisy long reads (i.e., ONT reads)

NextDenovo (2024) https://github.com/Nextomics/NextDenovo A string graph-based de novo assembler for long reads (i.e., PacBio CLR and ONT reads) that uses
a “correct-then-assemble”

PECAT (2024) https://github.com/lemene/PECAT A haplotype-aware correction and assembly tool for long noisy reads (i.e., PacBio CLR and ONT
reads)

Peregrine-2021 (2022) https://github.com/cschin/peregrine-2021 A genome assembler designed for long reads that have good enough accuracy (i.e., PacBio CLR
and ONT reads)

Raven (2021) https://github.com/lbcb-sci/raven A de novo genome assembler for long uncorrected reads (i.e., PacBio CLR and ONT reads)

Rust-mdbg (2021) https://github.com/ekimb/rust-mdbg/ An ultra-fast minimizer-space de Bruijn graph implementation, geared towards the assembly of
long and accurate PacBio HiFi reads

Shasta (2020) https://github.com/paoloshasta/shasta A de novo assembler for long reads optimized for ONT reads

SMARTdenovo (2021) https://github.com/ruanjue/smartdenovo A de novo assembler for long reads (i.e., PacBio CLR and ONT reads) into an assembly from all-
vs-all raw read alignments without an error correction

Verkko (2023) https://github.com/marbl/verkko A hybrid telomere-to-telomere genome assembly pipeline of accurate long reads (PacBio HiFi,
ONT Duplex, and HERRO corrected ONT simplex reads) and ONT ultra-long reads

Wtdbg2 (2020) https://github.com/ruanjue/wtdbg2 A de novo sequence assembler for noisy long reads (i.e., PacBio CLR and ONT reads) into FBG

Pangenome construction

Bifrost (2020) https://github.com/pmelsted/bifrost Tool for parallel construction, indexing and querying of colored and compacted de Bruijn graphs

MEMO (2025) https://github.com/StephenHwang/MEMO A pangenome indexing method based on maximal exact matches between genomes

Minigraph (2020) https://github.com/lh3/minigraph Tool for sequence-to-graph mapping, with incrementally sequence mapping to existing graphs,
and variant calling.

Minigraph-Cactus (2023) https://github.com/
ComparativeGenomicsToolkit/cactus

A pangenome graph construction toolkit

Pangene (2024) https://github.com/lh3/pangene Constructs pangenome gene graphs, with nodes representing marker genes and edges between
two genes indicating their genomic adjacency on input genomes

Pangenome (2025) https://github.com/nf-core/pangenome A bioinformatics best-practice analysis pipeline that renders a collection of sequences into a
pangenome graph

Pannagram (2025) https://github.com/iganna/pannagram A tool for constructing pan-genome alignments, analyzing SVs, and translating annotations
between genomes

PanPipes (2022) https://github.com/USDA-ARS-GBRU/PanPipes An end-to-end pipeline for pan-genomic graph construction and genetic analysis

PanTools (2025) https://git.wur.nl/bioinformatics/pantools A toolkit for building pangenomes from genomes using de Bruijn graphs and constructing pan-
proteomes from proteins

(Continued on following page)
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diversity, ultimately enhancing our ability to detect and interpret
rare and clinically relevant variants in precision medicine
applications.

4.1 Advantages of genome graphs for
variant calling

Traditional variant calling relies on aligning reads to a single
reference genome (i.e., GRCh37, GRCh38, or more recently, T2T-
CHM13). However, linear reference approaches struggle with
regions where individuals differ substantially from the reference,
including CNVs, SVs, large indels, and highly polymorphic regions
(e.g., killer immunoglobulin-like receptor [KIR] and human
leucocyte antigen [HLA] loci) (Kulski et al., 2022; Olson et al.,
2023). To overcome these challenges, researchers have developed
methods to map reads to pangenome references using graph-based
structures that incorporate variants from diverse individuals as

alternative paths, with alignments often converted back to linear
references for compatibility with conventional variant-calling
tools (Table 2).

Recent advances by the HPRC have significantly improved
variant detection through graph-based references constructed
from long-read high-fidelity (HiFi) reads that provide per-base
accuracy of 99.9%. Specialized tools further enhance variant
calling (e.g., Giraffe-DeepVariant) and variant genotyping (e.g.,
PanGenie), particularly for large indels, SVs and variations in
highly polymorphic regions previously problematic in GRCh38
(Table 2) (Li et al., 2020; Sirén et al., 2021; Ebler et al., 2022).
The Minigraph-Cactus pangenome pipeline represents a significant
computational advancement by combining fast assembly-to-graph
mapping with an improved base aligner and including all SNVs and
small indels in the pangenome (Hickey et al., 2023). This approach
constructs nucleotide-resolution pangenome graphs through a two-
stage process: first extracting SVs from each of hundreds of
haplotype-resolved assemblies, then using these variants as

TABLE 1 (Continued) Popular open-source tools for de novo genome assembly, construction and annotation of pangenomes.

Tool name (Year) GitHub URL Description

Pggb (2025) https://github.com/pangenome/pggb Builds pangenome variation graphs from a set of input sequences

Psvcp (2023) https://github.com/wjian8/psvcp_v1.01 A tool for pangenome construction and population structure variation genotype calling pipeline

Pangenome annotation

GrAnnot (2025) https://forge.ird.fr/diade/dynadiv/grannot An annotation transfer tool for pangenome graphs that transfers linear genome annotations to a
pangenome graph

PanTools (2025) https://git.wur.nl/bioinformatics/pantools Constructs and expands the annotation layer of an existing pangenome using genomic features
like genes, mRNAs, proteins, tRNAs from GFF files

ONT, Oxford Nanopore Technologies; PacBio - Pacific Biosciences; CLR, continuous long reads; HiFi - high-fidelity; HERRO, Haplotype-aware ERRor cOrrection; FBG, fuzzy Bruijn graph;

GFA, graphical fragment assembly text format describing a set of sequences and their overlap; OLC, Overlap-Layout-Consensus paradigm; GFF, General Feature Format; tRNA, transfer RNA;

mRNA, messenger RNA; Year - represents year of publication or the year of the latest version available on GitHub.

TABLE 2 A list of popular open-source tools for pangenome-based variant genotyping.

Tool name (Year)
GitHub URL

Description

Ctyper (2024) https://github.com/ChaissonLab/Ctyper A pangenome allele-specific and copy number specific genotyping tool

DeepVariant (2025) https://github.com/google/deepvariant A deep learning-based variant caller for alignments (BAM or CRAM) and pangenome graphs

Graphtyper2 (2019) https://github.com/DecodeGenetics/graphtyper A graph-based variant caller capable of genotyping population-scale short read data sets

Minigraph (2020) https://github.com/lh3/minigraph Tool for sequence-to-graph mapping, with incrementally sequence mapping to existing graphs,
and variant calling

Minigraph-Cactus (2023) https://github.com/
ComparativeGenomicsToolkit/cactus

A graph construction and variant genotyping toolkit

PanGenie (2024) https://github.com/eblerjana/pangenie A short-read genotyper for SNPs, indels and SVs represented in a pangenome graph

Paragraph (2019) https://github.com/Illumina/paragraph A graph-based structural variant genotyping tool for short-read sequence data

PHI (2024) https://github.com/at-cg/PHI A pangenome-based genotyping method from low-coverage sequencing data (short-reads or
long-reads)

SVarp (2024) https://github.com/asylvz/SVarp A tool to discover haplotype resolved SVs on top of a pangenome graph reference using long
sequencing reads

Varigraph (2025) https://github.com/JiaoLab2021/varigraph A pangenome graph-based variant genotyper for diploid and polyploid genomes

Vg (2020) https://github.com/vgteam/vg A pangenome-based SV genotyping tool

BAM, Binary AlignmentMap of genome sequencing data; CRAM, Compressed Reference-oriented AlignmentMap of genome sequencing data; Year - represents year of publication or the year

of the latest version available on GitHub.
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alignment anchors to generate a comprehensive base-level graph.
The resulting graph represents variation at all resolutions (i.e., from
SNVs to complex SVs such as inversions) (Hickey et al., 2023).

Minigraph-generated pangenome graphs have improved short-
read and long-read mapping, variant calling, and SV genotyping
(Hickey et al., 2023). For example, minigraph has recently been
employed to identify 200,000 unique SVs from a pangenome graph
of 574 assemblies, outperforming standard methods (Groza et al.,
2024). However, despite multiple tools promising perfect recall for
complex SVs, few clinical labs have validated these graph-based
callers on patient cohorts. Therefore, randomized trials testing graph
genotypers are required to determine if they improve the detection
of clinically relevant indels and variants.

4.2 Clinical impact and research applications
of pangenome graphs

Pangenomes represent a paradigm change in the
conceptualization and analysis of human genetic diversity
(Eggertsson et al., 2019; Hickey et al., 2020; Sirén et al., 2021;
Ebler et al., 2022; Lee et al., 2022; Tetikol et al., 2022; Liao et al.,
2023; Groza et al., 2024; Secomandi et al., 2025). The potential
impact of the use of pangenomes is particularly notable in
applications that incorporate accurate haplotype reconstruction
into the diagnosis of rare disorders (Abondio et al., 2024; Groza
et al., 2024) and complex SV interpretation (Hickey et al., 2020;
Ebler et al., 2022; Lee et al., 2022; Tetikol et al., 2022; Groza et al.,
2024). However, simply aggregating more genomes will not solve the
fundamental problem of missing diversity, as bigger is not always
better. Clinically, strategic sampling and generation of pangenomes
from related individuals (e.g., trios–mother, father, child, or siblings)
may yield more clinically actionable variants per unit (e.g., terabase)
of sequencing, particularly in genomic regions that are poorly
captured by standard linear reference genomes. In addition, by
moving away from short-read sequencing, which suffers from a
limited ability to resolve complex SVs and repetitive regions,
pangenome efforts will improve the clinical utility of these
genomic features (Abondio et al., 2024; Groza et al., 2024).

4.2.1 Accurate haplotype reconstruction
Many genome assembly methods collapse heterozygous alleles

that are present in diploid organisms, erasing heterozygous variation
and potential misrepresentation in regions of significant haplotype
divergence (Dilthey et al., 2015; Li et al., 2020; Ebler et al., 2022; Chin
et al., 2023; Matthews et al., 2024; Secomandi et al., 2025). This
limitation is particularly problematic in genomic regions with high
sequence diversity or complex SVs, such as the major
histocompatibility complex (MHC) region on chromosome 6 that
encodes the classical human leucocyte antigen alleles (Dilthey et al.,
2015; Li et al., 2020).

However, a diversely sampled pangenome graph for the highly
complex MHC region allows inference of haplotypes using only
short-read sequencing data even in regions that were previously
difficult to characterize accurately (Dilthey et al., 2015). Notably,
approximately 1% of the human genome is poorly represented by
linear references, including gene-dense loci containing the olfactory
receptors and ubiquitin-specific peptidases (Dilthey et al., 2015). As

such, incorporating alternative sequence variants through graph-
based models significantly enhances our ability to reconstruct
accurate genomic representations. Thus, the development of
population reference graphs across the MHC locus highlights the
broader potential impact of graph-based methods in regions of high
sequence diversity.

4.2.2 Precise detection and phasing of
genetic variants

The success of pangenome-based variant calling, however,
depends critically on both variant characteristics and sequencing
technology, with effectiveness varying significantly by variant size
when using short-read sequencing data (Eizenga et al., 2020). For
SNVs and small indels, pangenomes offer modest improvements in
detection accuracy (Eizenga et al., 2020; Li et al., 2020; Hickey et al.,
2023; Hickey et al., 2024; Secomandi et al., 2025). However,
pangenome graphs demonstrate substantial improvement in
genotyping SVs (e.g., over 10% increase in number of SVs
detected), addressing a key limitation of traditional approaches
(Hickey et al., 2020; 2024; Li et al., 2020; Sirén et al., 2021). This
improvement stems from a fundamental technical constraint for
short-read sequencing. Specifically, short reads can encompass small
variants entirely but fail to span larger structural changes (Hickey
et al., 2020; Hickey et al., 2024; Sirén et al., 2021). By contrast,
pangenome graphs incorporate SVs into their framework,
significantly improving variant detection, even from short-read
data, compared to the currently used single-reference methods
(Ebler et al., 2022; Groza et al., 2024). For example, graphs built
from haplotype-resolved assemblies can harness short-read k-mer
patterns to identify previously undetectable SVs (Groza et al., 2024).
Additionally, some pangenome graph representations (e.g., de
Bruijn) are capable of SV detection without requiring a reference
genome of any type, offering a flexible alternative for variant
discovery (Iqbal et al., 2012).

Pangenomes have proven valuable for population-scale variant
detection (Tetikol et al., 2022; Hickey et al., 2024). For example, the
pan-African (Tetikol et al., 2022) and the Chinese pangenomes (Gao
et al., 2023) have substantially improved variant detection accuracy
compared to traditional linear reference approaches. The
effectiveness of these graphs is influenced by two key factors:
nucleotide diversity within populations and the level of absolute
divergence from linear reference sequences (Tetikol et al., 2022;
Hickey et al., 2024). This is particularly relevant for highly diverse
populations like Africans (i.e., >290 Mb of novel contigs), or groups
with significant archaic admixture, such as some individuals from
Australo-Melanesian populations, who may retain Denisovan
haplotypes over 250 kb in length (Jacobs et al., 2019; Sherman
et al., 2019; Tetikol et al., 2022).

Population-specific graphs that incorporate cohort-specific
information enable the identification of functionally important
variants within coding regions that are missed by standard
variant calling pipelines (Ebler et al., 2022; Tetikol et al., 2022;
Gao et al., 2023; Groza et al., 2024; Hickey et al., 2024). Notably,
these graphs provide improvements in sensitivity and specificity
typically achieved by calling variants jointly from cohorts, but
without requiring simultaneous processing of all cohort samples.
Thus, they represent a computationally efficient solution for large-
scale genomic studies (Eggertsson et al., 2019; Ebler et al., 2022;
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Tetikol et al., 2022; Gao et al., 2023; Groza et al., 2024; Hickey et al.,
2024; Wu et al., 2024).

4.2.3 Exemplar application of pangenome graphs
to rare disease diagnosis

Recent application of pangenome graph approaches has
demonstrated their promise in rare disease diagnosis (Chin et al.,
2023; Gao et al., 2023; Groza et al., 2024). Groza et al. established a
practical framework for clinical implementation (Groza et al., 2024).
Their graph-based analysis of 574 rare disease cases
identified >200,000 unique and >500,000 shared SVs and
~1,000 rare (MAF <0.01) coding variants (Groza et al., 2024). The
pangenome approach proved particularly useful in complex genomic
regions where traditional methods fail, enabling the identification of a
previously undetectable diagnostic variant in KMT2E associated with
macrocephaly, hypotonia, and developmental delay. These results
highlight the potential of pangenome graphs to enhance diagnostic
yields through improved variant detection and prioritization of
candidate SVs, while providing a scalable resource for the rare
disease community (Groza et al., 2024).

5 Discussion and future perspectives

The transition from linear reference genomes to pangenome
graphs represents a transformative paradigm shift in how we
conceptualize and analyze human genetic diversity, addressing
fundamental limitations in variant detection and population
representation. Through initiatives like the HPRC and population-
specific pangenome projects, we can access sophisticated graph-based
frameworks that capture hundreds of megabases of previously missing
genetic diversity. Tools such as Minigraph-Cactus (Hickey et al., 2023)
and specialized variant callers have demonstrated remarkable
improvements in structural variant detection, accurate haplotype
reconstruction, and genotyping accuracy across diverse populations,
improving diagnostic accuracy for rare genetic disorders and reducing
reference bias in underrepresented populations. However, significant
challenges remain in computational scalability, clinical validation,
interpretability, and user accessibility.

Realizing the transformative potential of pangenomes requires
several key advances, which are currently being developed and
researched around the world. Specifically: 1) strategic selection of
samples to ensure genetic diversity by prioritizing quality over
quantity in genome selection, as demonstrated by the HPRC
initiative (Wang et al., 2022); 2) leveraging long-read sequencing
technologies and tools that facilitate T2T genome assembly, as
demonstrated by (Rautiainen et al., 2023), enabling haplotypes to be
added to the pangenome graphs; 3) developing efficient algorithms for
building, genotyping and annotating genetic variants from pangenome
graphs, with tools such as Minigraph-Cactus (Hickey et al., 2023) being
continuously improved for computational efficiency and GrAnnot
(Marthe et al., 2025) ensuring annotation of sequences within these
graphs; 4) conducting rigorous validation for variant detection in
clinical cohorts, such as benchmarking variant calling using
standards set by the Global Alliance for Genomics and Health
(GA4GH (Krusche et al., 2019)) and including Genome in a Bottle
(GIAB (Zook et al., 2014)) samples in pangenomes; and 5) creation of
simplified analytical workflows that create equitable detection of

clinically relevant variants for routine genomic medicine.
Additionally, the development of splice-aware population-level RNA
sequencing analysis algorithms has enabled precise quantification of
haplotype-specific transcript expression (Sibbesen et al., 2023;
Secomandi et al., 2025). The impacts of this extend beyond
transcriptomics, specifically providing deeper insights into the
relationship between genetic variation and biological function in rare
diseases (Grytten et al., 2019; Wang et al., 2024).

In conclusion, graph-based approaches represent a transformative
shift towards truly equitable precisionmedicine that delivers accurate,
clinically actionable insights across all populations regardless of their
ancestral background or genetic diversity.
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