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Lysosomal storage disorders (LSDs) are rare substrate-accumulating diseases
primarily characterized by mutations in genes encoding proteins involved in
lysosomal function, most of which have enzymatic activity. Resulting lysosomal
dysfunction leads to the overaccumulation of non- or partially degraded
substrates. While it is true that enzyme deficiency is the primary cause of
LSDs, the epigenetic alterations in DNA methylation, miRNA expression, and
histone modifications appear to be critical mechanisms involved in the
pathogenesis of LSDs. As epigenetic marks are, in most cases, reversible, their
study becomes vital to developing strategies aimed at reversing epigenome
alterations. Although classical therapeutic alternatives aim to recover the
lysosomal function by restoring the protein expression lost, the use of
modifiers able to repair the epigenetic modifications in LSDs may become a
promising strategy. This manuscript explores the most recent evidence on the
epigenetic alterations in LSDs. It also discusses their modulation through
epigenetic modulators, a novel and intriguing approach to treat LSDs, as well
as the potential of the CRISPR/Cas9 system.
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1 Introduction

Belonging to the inborn errors of metabolism (IEM), the lysosomal storage disorders
(LSDs) encompass over 70 genetically inherited metabolic diseases characterized by the
accumulation of undegraded substrates due to lysosomal dysfunction (Leal et al., 2020a;
Ballabio, 2016; Parenti et al., 2021). LSDs are multisystemic pathologies, often presenting
with neurological decline, skeletal abnormalities, hepatosplenomegaly, along with
pulmonary and cardiac involvement (Parenti et al., 2021).

Resulting substrate accumulation leads to disturbances in cell homeostasis, which
ultimately promote pro-oxidant, pro-inflammatory, and pro-apoptotic profiles (Leal et al.,
2022). Beyond lysosomal substrate accumulation, as the primary cause of the LSDs, some
studies suggest that epigenetic dysregulation may contribute to LSD pathogenesis (Hassan
et al., 2017). For instance, aberrant DNA methylation, histone modification patterns, and
disrupted non-coding RNA expression have been documented in LSDs (Fu et al., 2022; Shen
et al,, 2022; Morena et al., 2019; Vargas-Lopez and Alméciga-Diaz, 2022; Xiao et al., 2019;
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Kunkel et al., 2023; Uzen et al., 2025; Tarallo et al., 2019; Tomatsu
et al,, 2005; Dasgu et al., 2015), further supporting their role in the
pathomechanisms of these disorders.

Given that epigenetic modifications can be reversible, they
emerge as attractive targets for therapeutic modulation (Lossi
et al, 2024). Some molecules, such as GSK-J4, a histone
demethylase inhibitor (KDMi) (Kunkel et al., 2023), RVX-208,
which targets epigenetic readers (Fu et al., 2022), and miRNA
overexpression (Inamura et al, 2021), have been evaluated in
LSD models with encouraging results. Similarly, the use of
(HDAC)
(DNMT) inhibitors already approved for use in oncology and

histone deacetylase and DNA methyltransferase
neurodegeneration may also open a new avenue for rapidly
moving into their repurposing for LSD treatment. The potential
of these molecules is exciting, but equally thrilling is the use of
advanced CRISPR/Cas9-based tools. This innovative strategy may
open a promising opportunity for
marks in LSDs.

In this manuscript, we review recent evidence on the role of

modifying epigenetic

epigenetic dysregulation in LSDs and the potential of treatments
emerging from classical- and CRISPR/Cas9-based epigenetic mark-
modifier approaches. The paper search was conducted using
PubMed, Web of Science, and Google Scholar databases, and the
following Boolean terms were applied: “lysosomal storage disorder”
OR “LSD” AND “epigenetics” OR “dCas9” OR “epigenome” OR
“DNA methylation” OR “histones” OR “chromatin”. Peer-reviewed
papers from 2015 to 2025 were included, with a focus on those
published between 2018 and 2025. Studies up to 2015 were
(2017),
encourage interested readers to consult their work.

systematically reviewed by Hassan et al and we

2 Molecular mechanisms of epigenetic
signatures

2.1 DNA methylation

DNA methylation is mediated by the covalent addition of a
methyl group to the 5'position of cytosine residues, typically within
CpG-rich regions (Figure 1) (Mattei et al., 2022; Li and Tollefsbol,
2021). DNA methylation is regulated by cellular metabolism since it
requires the methionine cycle to maintain the levels of
S-adenosylmethionine (SAM), the universal source of the methyl
group for DNA and histone methyltransferases (HMTs), and to
control S-adenosylhomocysteine (SAH), a competitive inhibitor of
HMTs (Bernasocchi and Mostoslavsky, 2024). Hypermethylation
silences the transcription of genes by blocking the transcriptional
machinery from binding to the genome; conversely,
hypomethylation may result in the overexpression of genes
(Mattei et al, 2022; Angeloni and Bogdanovic, 2019). DNA
methylation is an essential physiological mechanism and a key
that X-chromosome
inactivation, genomic imprinting, and tissue-specific gene
expression (Li and Tollefsbol, 2021). Aberrant DNA methylation
is observed in pathological scenarios such as cancer (Li and
Tollefsbol, 2021; Nishiyama and Nakanishi, 2021), autoimmune
disorders (Ali et al., 2022; Danieli et al., 2024), neurodegenerative
conditions (Ghosh and Saadat, 2023; De Plano et al., 2024), as well as

epigenetic  modification underpins
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some LSDs (Shen et al., 2022; Vargas-Lopez and Alméciga-Diaz,
2022; Tomatsu et al., 2005). Importantly, oxidative stress has been
documented in multiple LSDs (Ago et al., 2024; Lee and Hong, 2023;
Leal and Alméciga-Diaz, 2022; Simoncini et al., 2020; Stepien et al.,
2020) and may influence the activity of methyltransferases, thereby
SAM/SAH balance.
accumulation of SAH can reduce the adequate availability of

disrupting  the Indeed, an increased
methyl donors, ultimately contributing to both global and gene-
specific DNA hypomethylation. These findings support the idea that
metabolic stress and impaired lysosomal function converge on the
classical metabolic  dysfunction with

epigenome, linking

transcriptional dysregulation in LSDs.

2.2 Histone modifications

Histones are basic proteins that package DNA, forming a
structure known as nucleosomes (Knapp et al, 2023; Zhang
et al,, 2021). Their significance lies in their ability to undergo a
variety of post-translational modifications (PTMs) at their
tails, acetylation,
phosphorylation, — ubiquitination, and

N-terminal such  as methylation,
These

modifications play a pivotal role in shaping the chromatin

sumoylation.

structure and influencing gene expression (Figure 1) (Zhang
et al.,, 2021; Millin-Zambrano et al., 2022). For instance, histone
acetylation of lysine residues (e.g., H3K9ac) typically induces
transcription by opening the chromatin. Conversely, certain
methylation marks (H3K27me3, H3K9me3) are associated with
transcriptional repression (Zhang et al., 2021; Jain and Epstein,
2024). The activity of histone acetyltransferases (HATs), histone
deacetylases (HDACs), HMTs, and histone demethylases (KDMs),
which contribute to chromatin dynamics, is tightly regulated at the
transcriptional, post-translational, and cellular levels (Jain and
2024; 2021). The
understanding histone modifications is further highlighted by

Epstein, Ramaiah et al, urgency of
their role in disease, with dysregulation of these processes being

linked to several human diseases.

2.3 Non-coding RNAs

Non-coding RNAs (ncRNAs) form a vast and functionally diverse
group of RNAs that are not translated into proteins but rather are key
regulators of gene expression (Figure 1) (Nemeth et al., 2024; Chen
and Kim, 2024). This diversity is evident in the fact that microRNAs
(miRNAs), approximately 22 nucleotides in length, typically bind to
complementary sequences in the 3'untranslated regions (3'UTRs) of
target mRNAs, promoting mRNA degradation or translation
repression. Similarly, long non-coding RNAs (IncRNAs), which are
greater than 200 nt in length, are frequently implicated in chromatin
modification, transcriptional interference, and post-transcriptional
control via RNA stabilization or degradation (Chen and Kim,
2024; Virciglio et al, 2021). The complexity and diversity of
ncRNA underscore their importance in molecular biology, and
dysregulation of these molecules has been associated with several
human diseases, including LSDs (Morena et al., 2019; Xiao et al., 2019;
Uzen et al.,, 2025; Tarallo et al., 2019; Dasgu et al.,, 2015; Virciglio
et al,, 2021).
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FIGURE 1
Molecular mechanism in epigenetics. In (A), the processes of DNA methylation and demethylation control gene expression at CpG-rich promoter

regions are shown. DNA methyltransferases (DNMTs) mediate the addition of methyl groups (Me) to cytosines, leading to gene silencing. Passive
demethylation occurs during DNA replication, whereas active demethylation is catalyzed by the ten-eleven translocation (TET) enzymes and activation-
induced cytidine deaminase (AID). In (B), the post-translational modifications of histones are shown. Histone methyltransferases (HMTs) and histone
demethylases (HDMTs) add and remove methyl groups (Me), respectively. Likewise, histones can also be phosphorylated (P) by kinases, while
phosphorylation is removed by phosphatases (Phos.). Similarly, acetylation (Ac) of histones occurs through histone acetyltransferases (HATs) and is
deacetylated by histone deacetylases (HDACs). Finally, histones can also undergo ubiquitination and SUMOylation (Ub/SUMO). In (C), the mechanism of
non-coding RNA expression is illustrated. DROSHA first processes primary microRNAs (pri-miRNAs) into precursor microRNAs (pre-miRNAs), which are
then loaded onto RISC. In the RISC, mature miRNAs direct the complex to specific mMRNAs, resulting in the degradation or translational inhibition of these
mMRNAs. The image was created by BioRender.com.

3 EpigenetiCS and LSDs underscores the promising potential of certain epigenetic

signatures in the treatment, diagnosis, and prognosis of LSD

Recent evidence strongly supports that epigenetic  patients. In this section, we delve into the latest developments

dysregulation in LSDs may offer additional pathogenic in the field of epigenome alterations in LSDs, which have been
mechanisms beyond the lysosomal accumulation. This  succinctly summarized in Table 1.
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TABLE 1 Main epigenetic findings in LSDs.
LSD Epigenetic alteration Physiological outcome Ref.

Krabbe |miR-219 Oligodendrocyte dysfunction, impaired Inamura et al. (2021)
differentiation, increased apoptosis

GM2 T//miRNAs (miR-9, -19a, —29a, —33, —34a, —124, —126a, —128, —137) Brain region-specific miRNA profiles, Morena et al. (2019)
neuroinflammation, disrupted lipid metabolism and
synaptic function

NPC |DNMT3a, |5mC, LINE-1 demethylation, | H3K27me3, |H3K9me3 Defective oligodendrocyte maturation, myelin gene = Kunkel et al. (2023), Kennedy
dysregulation, increased apoptosis et al. (2016)
Gaucher |miR-15a, |miR-125b, TmiR-21 Neurodegeneration, oncogenic risk, inflammation, Uzen et al. (2025)

subclinical shifts in carriers

Fabry |Methylation (AR promoter, COL4A1/2); sex-specific miRNA signatures Proinflammatory signaling, therapeutic Shen et al. (2022), Xiao et al.
(miR-19a-3p, miR-486-5p, let-7a, let-7d) responsiveness in males (2019)
Pompe TmiR-133a Biomarker of severity and treatment response; Tarallo et al. (2019)

elevated in infantile onset, reduced with ERT

MPS 15mC, |H3K9me3, TH3K14ac (mutation-dependent) Mutation-specific histone modification profiles, Vargas-Lopez and

111B global hypomethylation Alméciga-Diaz (2022)
MPS Global DNA hypomethylation, H3K14ac increase in A393S (notin R94C/ =~ Mutation-dependent chromatin states, preserved Vargas-Lopez and

IVA A393S) H3K9me3 Alméciga-Diaz (2022), Tomatsu

et al. (2005)

5hmC, 5-Hydroxymethylcytosine; 5mC, 5-Methylcytosine; AR, Androgen receptor; ERT, Enzyme replacement therapy; GM2, GM2 gangliosidoses; MPS, Mucopolysaccharidosis; NPC,
Niemann-Pick disease, type C. |Downregulation. TUpregulation.
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FIGURE 2
CRISPR/Cas and genome and epigenome editing. (A) CRISPR/Cas9 genome editing uses a catalytically active Cas9 that induces double-strand

breaks (DSBs) at target loci. DSB repair by NHEJ may introduce small indels, while, in the presence of a donor DNA template, HR facilitates targeted
genome modification. (B) CRISPR/Cas9-based epigenome editing (GE) utilizes a catalytically dead Cas9 (dCas9), which allows for the targeted
recruitment of effector domains without inducing DNA cleavage. dCas9 fused to transcriptional activators (e.g., VP64) or repressors (e.g., KRAB)
modulates gene expression. Joining with ten-eleven translocation enzymes (TET) or DNA methyltransferases (DNMT) allows locus-specific
demethylation or methylation of the DNA. Histone modifications can also be mediated by dCas9-fused effectors, such as lysine-specific demethylase 1
(LSD1) or histone acetyltransferase p300. The image was created by BioRender.com.
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TABLE 2 Common epigenetic effectors evaluated in CRISPR/Cas9-based EE approaches.

Effector domain  Function Target epigenetic

mark

Mechanism

DNMT3A DNA meth 5 mC Catalytic addition of methyl groups at CpGs Park et al. (2022)
TET1 DNA demeth 5 mC — 5hmC — Oxidative removal of DNA methylation Qian and Liu (2024)
unmodified C
KRAB TR Indirect (via H3K9me3) Recruitment of SETDB1, HP1 to deposit repressive histone Alerasool et al. (2020)
marks
VP64 TA Indirect (mediator recruitment) Recruitment of transcription machinery Omachi and Miner (2022)
p300 (HAT domain) Hist. Ace H3K27ac, H3K18ac Acetyl transfer on histones at regulatory sites Huang et al. (2023b); Wu et al.
(2023)
LSD1 (KDM1A) His. Demeth H3K4mel/2, H3K9mel/2 Removes activating/repressive lysine methylation Xie et al. (2018)
EZH2 (SET) His. Meth H3K27me3 Catalyzes trimethylation of H3K27 O’Geen et al. (2017)
G9a (EHMT2) His. Meth H3K9mel/2 Promotes heterochromatin formation O’Geen et al. (2017)
SunTag ESA Configurable Recruits multiple effector copies via repeating Albrecht et al. (2024)
GCN4 epitopes
SID4X CR Indirect (via HDACs) Recruits mSin3/HDAC complexes Carleton et al. (2017)
SAM (VP64 + TA Indirect (via histone Synergistic activator complex Petazzi et al. (2024)
p65+HSF1) modification)

5mC, 5-methylcytosine; 5hmC, 5-Hydroxymethylcytosine; CR, Corepressor recruitment; DNA demeth, DNA demethylation; DNA meth, DNA methylation; DNMT3A, DNA
methyltransferase 3 alpha; EHMT2, Euchromatic histone-lysine N-methyltransferase 2; ESA, Effector signal amplification; EZH2, Enhancer of zeste homolog 2; G9a, Euchromatic histone-
lysine N-methyltransferase 2; H3K18ac, Histone H3 lysine 18 acetylation; H3K27ac, Histone H3 lysine 27 acetylation; H3K27me3, Histone H3 lysine 27 trimethylation; H3K4me1/2, Histone
H3 lysine 4 mono-demethylation; H3K9mel/2, Histone H3 lysine 9 mono-/demethylation; His. Demeth, Histone demethylation; His. Meth, Histone methylation; Hist. Ace, Histone acetylation;
KDM1A, Lysine demethylase 1A; KRAB, Kriippel-associated box; LSD1, Lysine-specific demethylase 1; p300, Histone acetyltransferase p300; SAM, Synergistic Activation Mediator; SID4X,
Four tandem repeats of the Sin3 interaction domain; SunTag, Supernova tag system; TA, Transcriptional activation; TET1, Ten-eleven translocation methylcytosine dioxygenase 1; TR,

Transcriptional repression; VP64, Tetrameric.

3.1 Krabbe

Krabbe disease (KD, OMIM # 245200) is an LSD caused by
mutations in the GALC gene, leading to a deficiency of
galactocerebrosidase (GALC) and accumulation of the glycolipids
galactosylceramide (GalCer) and sulfatide (Maghazachi, 2023).
GALC deficiency results in severe demyelination in the central
nervous system (CNS), along with early-onset forms causing rapid
neurodegeneration and early death (Maghazachi, 2023). Regarding
epigenetics, (2021) identified an epigenetic
mechanism involving miR-219 in the oligodendrocyte pathology of
KD using the twitcher mouse model (Inamura et al., 2021). The authors
observed a significant decrease in the miR-219 expression in developing

Inamura et al

oligodendrocytes in vivo and in vitro. Interestingly, oligodendrocyte
precursor cells (OPCs) isolated from twitcher mice failed to differentiate
and exhibited increased caspase-3-mediated apoptotic cell death when
cultured (Inamura et al, 2021). Likewise, functional assays using
confirmed that miR-219-mediated mRNA
repression was diminished in KD oligodendrocytes (Inamura et al,

luciferase reporters

2021), suggesting that miR-219 downregulation contributes to
oligodendrocyte dysfunction and demyelination in KD.
3.2 GM2 gangliosidoses

GM2 gangliosidoses are a group of three related LSDs, as follows:

Tay-Sach (OMIM # 272800), Sandhoft (OMIM # 268800), and AB
variant (OMIM # 272750), characterized by impaired degradation of the

Frontiers in Genetics

GM2 ganglioside (Leal et al., 2020b). The lysosomal accumulation of
GM2 in neurons leads to progressive neurodegeneration, with early-
onset forms typically causing motor decline, seizures, and early death in
infancy or childhood (Leal et al,, 2020b; Toro et al, 2021). A study
reported by Morena et al. (2019) provided, for the first time, an in-depth
analysis of miRNA dysregulation in mouse models of Tay-Sachs and
Sandhoff diseases (Morena et al., 2019). This study conducted miRNA
analysis of 12 candidates involved in lipid metabolism, neural
development, and neuroinflammatory processes, specifically in the
subventricular zone (SVZ) and the striatum region (STR) of the
brain (Morena et al, 2019). Interestingly, the comparative analysis
revealed distinct brain region- and disease-specific patterns of
miRNA  expression.  Nine  miRNAs  (including  miR-
9, —19a, —29a, —33, —34a, —124, —126a, —128, —137) showed altered
levels in SVZ and STR across models, with some miRNAs uniquely
dysregulated in SVZ or STR (Morena et al,, 2019). The computational
miRNA-mRNA network analysis further predicted downstream effects
on pathways central to lysosomal dysfunction, lipid trafficking, axon
guidance, synaptic signaling, inflammation, and cell survival (Morena
et al, 2019), suggesting that miRNA-mediated post-transcriptional
regulation may play a critical, region-specific role in the epigenetic
mechanisms of GM2 gangliosidosis.

3.3 Niemann-pick type C

Niemann-Pick type C (NPC) is an LSD caused by mutations in the
NPC1 (NPC type C1, OMIM # 257220) or NPC2 (NPC type C2,

frontiersin.org
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GRISPR/dC

Decreg
H3K9msé%d

Lysosomal
pathogenesis

Substrate accumulation
Lysosomal dysfunction
Cellular stress

Exosome
miRNA

10.3389/fgene.2025.1679497

KRAg 4S9,

gow/LeMEH
pasealoa(

Kaleidoscope view of the epigenetic landscape in LSDs. The epigenetic landscape in LSDs has switched the classical view of these diseases from
substrate-accumulating diseases to complex inherited metabolic disorders in which several epigenetic actors are actively contributing to the global cell
homeostasis impairment. While epigenome alterations are gaining importance in the pathogenesis of LSDs, novel therapeutic alternatives are emerging
to rescue these alterations. Likewise, some epigenetic marks have been recognized as playing a role in monitoring disease progression, prognosis,

and oncogenic risk. The image was created by BioRender.com.

OMIM # 607625) genes, leading to defective cholesterol and lipid
transport out of lysosomes (Lee and Hong, 2023). Early studies
conducted by Kennedy et al. (2016) in a murine model of NPC
revealed DNA methylation disruption, accompanied by a significant
decrease in DNMT3a and methyl-CpG binding protein expression,
decreased 5-methylcytosine staining, global LINE-1 demethylation, and
promoter-specific hypermethylation of single-copy genes, supporting
the alteration of epigenetic markers (Kennedy et al, 2016). Most
recently, Kunkel et al. (2023) have brought to light that NPCI is
essential for maintaining repressive histone methylation during
oligodendrocyte maturation (Kunkel et al, 2023). In Npcl’/’ mice,
RNA sequencing revealed disrupted myelin gene expression and
aberrant activation of neuronal programs in oligodendrocyte lineage
cells, along with reduced numbers of OLIG2" and MBP* cells, increased
apoptosis, and a loss of H3K27me3 and H3K9me3 marks (Kunkel et al.,
2023), further uncovering pathogenic mechanisms in NPC.

3.4 Gaucher

Gaucher disease (GD) is an LSD characterized by a deficiency of

the glucocerebrosidase (GCase), leading to the Ilysosomal

Frontiers in Genetics

accumulation of glucocerebroside. Clinically, three types of GD
are distinguished as follows: type 1 (non-neuronopathic, OMIM
#230800), type 2 (acute neuronopathic, OMIM # 230900), and type
3 (chronic neuronopathic, OMIM # 231000) (Minervini et al., 2023).
Epigenetic alterations, such as the dysregulation of miR-181c-5p,
miR-34b-5p, and miR-10a-5p, have been identified in early studies
using the neuronopathic GD mouse model and are attributed to the
pathogenesis of GD by impairing axonal guidance, synaptic
plasticity, and mitochondrial function (Dasgu et al, 2015).
Altered miRNA profiles have been widely identified in cancer
(Wilson and Scaffidi, 2025). Interestingly, a study conducted by
Uzen et al. (2025) assessed the oncogenic miRNA expression profile
in type I GD patients (Uzen et al., 2025). The blood-based profiling
revealed significant downregulation of miR-15a and miR-125b, both
known tumor suppressors (Uzen et al., 2025), and upregulation of
the oncogenic miR-21 in patients undergoing enzyme replacement
therapy (ERT) (Uzen et al, 2025), suggesting a sustained pro-
oncogenic molecular state that could predispose GD patients to
increased risks for multiple myeloma, hepatocellular carcinoma, and
hematologic malignancies. Importantly, heterozygous carriers also
exhibited reduced levels of miR-15a, miR-150, and miR-181b,
indicating subclinical epigenetic shifts (Uzen et al., 2025). These
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findings significantly contribute to our understanding of GD,
suggesting that epigenetic dysregulation may play a crucial role
in neurodegeneration in GD and an increased oncogenic risk.

3.5 Fabry

Fabry disease (FD, OMIM # 301500) is an X-linked LSD caused
by mutations in the GLA gene, leading to a deficiency of the a-
galactosidase A (a-Gal A), resulting in pathological accumulation of
globotriaosylceramide (Gb3) (Lenders and Brand, 2021). Lysosomal
accumulation of Gb3 in FD patients particularly affects endothelial
cells, the kidneys, the heart, and the CNS (Lenders and Brand, 2021).
Epigenetic alterations in FD have been described in several studies.
For instance, Shen et al. (2022) demonstrated that the a-Gal A defect
leads to DNA hypomethylation, thereby modifying the methylation
pattern of genes, including the androgen receptor promoter, and
hypomethylation of the COL4A1 and COL4A2 genes, resulting in
their overexpression (Shen et al, 2022). These findings were
accompanied by elevated methionine levels in both patient-
derived endothelial cells and FD mouse models (Shen et al,
2022), linking lysosomal glycosphingolipid accumulation to
epigenetically driven transcriptional remodeling.

At the post-transcriptional level, several studies have revealed
miRNA-based dysregulation in FD. For instance, Xiao et al. (2019)
identified distinct serum miRNA signatures that correlate with
treatment response (Xiao et al.,, 2019). Most importantly, as FD
primarily affects males, the authors also included analysis based on
sex differences. In this context, the levels of miR-19a-3p and miR-
486-5p expression were significantly reduced in ERT-treated males
compared to untreated males (Xiao et al., 2019), suggesting that an
epigenetic response to therapy is quantifiable and measurable.
Conversely, female patients showed greater diversity in the
expression of the miRNAs (Xiao et al., 2019), possibly due to the
larger clinical and molecular heterogeneity associated with X-linked
transmission. These results suggest that individual miRNAs may
serve as biomarkers to monitor treatment responsiveness in male
Fabry patients, highlighting the importance of considering gender in
epigenetic marker investigations. Other miRNAs predicting the
occurrence of a proinflammatory process, such as let-7a and let-
7d, were identified in FD (Maier et al., 2021), which may represent
potential biomarkers. This discovery offers optimism for the future
of disease monitoring in FD.

3.6 Pompe

Pompe disease (PD, OMIM # 232300) is an LSD caused by
mutations in the GAA gene. GAA encodes acid a-glucosidase
(GAA). GAA deficiency results in the progressive accumulation
of glycogen (George et al., 2024). In PD, an analysis of miRNA
conducted by Tarallo et al. (2019) in mouse models (at 3 and
9 months) and plasma from Pompe patients identified a specific
miRNA profile associated with disease severity and treatment
response (Tarallo et al, 2019). In mice, 211 miRNAs were
with
distinct patterns at different ages. Relevantly, in plasma from

dysregulated in skeletal muscle and 66 in the heart,

six patients, 55 miRNAs were differentially expressed, with
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16 overlapping those altered in mouse tissues (Tarallo et al,
2019). The miR-133a was proposed as a key biomarker, with
levels significantly elevated in Pompe patients, especially in
cases, and
severity (Tarallo et al, 2019).
miR-133a levels
decreased upon ERT, coinciding with clinical improvement

infantile-onset cases, compared to late-onset

correlating with clinical
Interestingly, in three infantile patients,
(Tarallo et al, 2019). These findings suggest that circulating
miRNAs, particularly miR-133a, may serve as non-invasive
biomarkers for monitoring disease progression and therapeutic

efficacy in PD, offering hope for improved disease management.

3.7 Mucopolysaccharidosis I1I1B

MPS IIIB (OMIM # 252920) is an LSD characterized by
dysfunction of the lysosomal enzyme o-N-acetylglucosaminidase
(NAGLU) (Rouse et al., 2024). Impaired NAGLU enzyme activity
leads to the accumulation of heparan sulfate, primarily in the CNS
(Rouse et al., 2024). Recently, Vargas-Lopez et al. (2024) identified
pronounced epigenetic alterations in two MPS IIIB patient-derived
fibroblasts carrying different mutations in the NAGLU gene
(Vargas-Lopez et al.,, 2024). Although a global reduction in DNA
methylation levels (5-methylcytosine) and the heterochromatin
marker H3K9me3 was reported in both cell lines, the authors
found that histone H3K14 acetylation was differentially altered in
both MPS IIIB fibroblasts (Vargas-Lopez et al., 2024). In fibroblasts
carrying the P358L mutation, H3K14 acetylation was significantly
increased. At the same time, it was found to be unaffected in E153K-
containing MPS IIIB fibroblast models, supporting the notion that
specific NAGLU mutations may differentially impact the epigenetic
landscape in MPS IIIB.

3.8 Mucopolysaccharidosis IVA

MPS IVA (OMIM # 253000) is an LSD caused by mutations in
the GALNS gene, which encodes for the lysosomal enzyme
N-acetylgalactosamine-6-sulfatase (GALNS) (Leal et al., 2023).
GALNS deficiency leads to the accumulation of keratan sulfate
and chondroitin 6-sulfate, resulting in skeletal dysplasia and
systemic manifestations in MPS IVA patients (Leal et al.,, 2023).
Early studies conducted by Tomatsu et al. (2005) revealed
methylation epigenetic alteration patterns at CpG dinucleotides
in the GALNS gene (Tomatsu et al., 2005). Most recently, in vitro
analyses of patient-derived fibroblasts have demonstrated a pattern
of global DNA hypomethylation (Vargas-Lopez et al., 2024). While
the heterochromatin marker H3K9me3 remained preserved in
MPS IVA, the H3KI14 acetylation pattern in MPS IVA
fibroblasts was found to be mutation-dependent, similar to that
observed in MPS IIIB fibroblasts (Vargas-Lopez et al., 2024).
Remarkably, patients with MPS IVA harboring the A393S
mutation had enhanced H3K14 acetylation. In contrast, the
double R94C/A393S did not affect the
H3K14 acetylation profile (Vargas-Lopez and Alméciga-Diaz,

mutation
2022), indicating that mutations can differentially influence

epigenetic marks. These novel findings open new avenues for
understanding and potentially treating MPS IVA.
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4 Targeting epigenetic alterations
in LSDs

Current evidence strongly supports the epigenetic dysregulation
in several LSD. In consequence, seeking novel alternatives to restore
the epigenetic alterations may offer a promising alternative for
treating LSDs along with classical interventions, including ERT
and GT. This last section explores classical and advanced
altered

approaches aimed at

signature in LSDs.

rescuing  the epigenetic

4.1 Histone-modifying alternatives

The histone modification-based strategies rely on histone-
modifying enzymes, including HDACs, HMTs, and KDMs (Yang
et al., 2022). In NPC disease, loss of transcriptional silencing is
observed, which impairs the proper function of oligodendrocytes
(Kunkel etal., 2023). Notably, GSK-J4, a KDMi, has been reported to
restore the maturation of NPC oligodendrocyte progenitor cells
(Kunkel et al., 2023), supporting the concept that correcting the
epigenetic signature could represent a valid therapeutic approach.
Interestingly, HATi, such as garcinol, may be more suitable in
conditions where histone hyperacetylation has been observed, for
example, in MPS IIIB and MPS IVA, where specific mutations are
associated with increased H3K14 acetylation (Vargas-Lopez and
Alméciga-Diaz, 2022). Taken together, these considerations
highlight that the use of epigenetic modulators in LSDs should
be individualized, guided by mutation-specific epigenetic signatures
and the underlying chromatin contexts.

4.2 Epigenetic readers

Epigenetic readers are a class of proteins that bind to domains
selectively recognizing covalent modifications on DNA, histones,
and non-histone proteins deposited by epigenetic writers (Damiani
et al, 2020). Upon binding, epigenetic readers recruit effector
complexes that modify chromatin architecture and influence gene
expression (Damiani et al, 2020). Consequently, targeting
epigenetic reader proteins could be a promising alternative in

epigenome modulation of LSDs. For instance, Apabetalone

(RVX-208), which binds to the BD2 domain of the
bromodomain and extraterminal-containing protein family
(BET), has been shown to suppress proinflammatory

transcriptional programs in innate immune cells from patients
with FD undergoing ERT (Fu et al,, 2022). Interestingly, RVX-
208 led to a decrease in proinflammatory markers, including TNF-a,
IL-12, MCP-1, and IL-6, as well as reduced oxidative stress (Fu et al.,
2022), further supporting the notion that epigenetic modulators can
positively impact the pathogenic features in LSD, such as FD.

4.3 microRNA-targeted approaches
miRNAs are the longest ncRNAs studied in LSD and are widely

recognized to be altered (Morena et al., 2019; Xiao et al., 2019; Uzen
et al., 2025; Tarallo et al.,, 2019; Dasgu et al., 2015). Since miRNA
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tightly regulates post-transcriptional gene expression of several
factors involved in the pathogenesis of LSDs, such as lysosomal
dysfunction, autophagy, immune activation, and oxidative stress,
among others, miRNA are potential targets for treating LSDs. For
instance, in KD, the downregulation of miR-219 has been identified
as a key trigger of OPC dysfunction, which limits their maturation
into oligodendrocytes (Inamura et al, 2021). Interestingly,
treatment with exogenous miR-219 has shown potential in
restoring maturation markers (MBP and PLP), while reducing
caspase-3 activation and psychosine levels (Inamura et al., 2021),
highlighting that targeting dysregulated miRNA may be an
alternative for treating KD. Further research and clinical trials
are necessary to fully explore the potential of miRNA-targeted
approaches in LSDs; however, the initial results are promising.

In GD, miRNA profiling has consistently detected dysregulated
miRNAs, which likely play a role in inflammation, synaptic
dysfunction, and mitochondrial stress, ultimately contributing to
the development of certain cancers (Uzen et al., 2025; Dasgu et al.,
2015). Although there are no studies directly targeting miRNA in
GD, the use of isofagomine, a pharmacological chaperone for GCase,
normalizes approximately 40%-60% of altered miRNA in the brains
of GD mouse models, suggesting that classical approaches may
influence the epigenome in some LSDs (Dasgu et al., 2015). This
finding underscores the potential of miRNA as a therapeutic target
in LSDs, including GD, and warrants further investigation into the
role of miRNA dysregulation in the pathogenesis of these diseases.

4.4 CRISPR/Cas9-based epigenome editing

Early reports demonstrated that the Clustered Regularly
Interspaced Short Palindromic Repeats and CRISPR-associated
protein 9 (CRISPR/Cas9) system is an immune system that
protects prokaryotes from re-infection by phages (Barrangou
et al,, 2007; Jiang and Doudna, 2017). Later, studies conducted
by Doudna and Charpentier demonstrated the suitability of
CRISPR/Cas9 in recognizing, binding to, and cutting genomic
DNA with high precision (Jiang and Doudna, 2017; Leal et al,
2024; Zhang, 2021), leading to development of a promising genome
editing approach, which is currently used to induce knockouts and
knock-ins (Figure 2), and resulting in its application for innovative
gene therapies for treating human diseases (Sharma et al., 2021; Wan
et al., 2023).

The CRISPR/Cas9 system includes a single guide RNA (sgRNA)
that binds to a desired DNA sequence and recruits the Cas9 protein.
Interaction of Cas9 with a protospacer adjacent motif (PAM) in
DNA precedes sgRNA-mediated DNA binding (Jiang and Doudna,
2017; Jinek et al., 2012). Moreover, Cas9 introduces a double-strand
break (DSB) in the DNA, ultimately promoting the activation of the
DSB repair. Cas9 has two nuclease domains (HNH and RuvC) that
generate the DSBs (Jiang and Doudna, 2017). If a donor template is
co-delivered into the nucleus, homologous recombination takes
place, and exogenous DNA information is inserted (knock-in).
Instead, when no donor is available, the non-homologous end-
joining (NHE]) pathway is activated, introducing random insertions
and deletions (indels), which can lead to knockouts (Leal et al., 2024;
Chen et al., 2024). Interestingly, novel approaches have combined
the extraordinary ability of CRISPR/Cas9 with the use of enzymes

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1679497

Leal et al.

capable of modifying epigenetic signatures, resulting in a novel
approach termed CRISPR/Cas9-based epigenome editing (EE)
(Villiger et al., 2024; Fadul et al., 2023). This innovative approach
utilizes the recognizing and binding properties of the CRISPR/
Cas9 system while avoiding Cas9-mediated DSBs by employing a
catalytically inactive Cas9 enzyme, also known as dead Cas9 (dCas9)
(Cai et al., 2023). dCas9 carries two mutations in the HNH (H840A)
and RuvC (D10A) domains that prevent DSBs within the DNA (Liu
et al,, 2020; Whinn et al., 2019). Along with dCas9, the CRISPR/
Cas9-based EE leverages epigenetic effectors that can inhibit or
activate gene transcription (Figure 2) (Koonin et al., 2023; Sar and
Dalai, 2021). Table 2 summarizes common effectors used in
CRISPR/Cas-based EE.

CRISPR/Cas9-based EE has been evaluated in several rare
diseases, including Prader-Willi Syndrome (Rohm et al., 2025),
Facioscapulohumeral =~ Muscular ~ Dystrophy  (Mariot —and
Dumonceaux, 2022), and Fragile X Syndrome (Liu et al., 2018),
among others. However, its true potential lies in its application to
LSDs, where it has not yet been tested. Indeed, the epigenetic
landscape observed in multiple LSD models strongly suggests
that epigenome profile restoration may be within reach through
CRISPR/Cas9-based EE, thereby offering a new avenue for treating
LSDs (Figure 2).

5 Future perspectives

The understanding of the epigenetic landscape in LSDs provides
a new paradigm in the LSD pathogenesis, from monogenic,
substrate-accumulating diseases to complex disorders involving
transcriptional and  chromatin-level ~ dysregulation, ~which
contribute to the disturbance of cell homeostasis. Importantly, as
epigenetic modifications can be reversed, several therapeutic
strategies hold enormous potential to ameliorate the epigenetic
alterations in LSDs (Figure 3). In this regard, the use of HAT
inhibitors, epigenetic readers modulators, miRNA mimics, or
antagonists may provide a further direction in treating LSDs.
Beyond pharmacological approaches, the interplay between
metabolism and the epigenome opens new opportunities for
nutritional and metabolic interventions in LSDs. Strategies aimed
at supporting one-carbon metabolism, including supplementation
with methyl donors such as folate, choline, or betaine, may help
SAM/SAH DNA
hypomethylation (Bernasocchi and Mostoslavsky, 2024; Inoue-
Choi et al, 2012).
neurodegenerative disorders suggests that such interventions may
improve epigenetic homeostasis (Bekdash, 2021; McKee et al., 2017;

restore the ratio and partially correct

Evidence from  metabolic and

Araki et al, 2022). Although these approaches remain largely
unexplored in LSDs, metabolic adjuvants could represent safe,
accessible, and potentially synergistic options to complement
ERT, GT, or emerging epigenetic treatments.

Novel studies have addressed the use of exosomes for
transporting miRNA in non-LSD (Huang et al, 2023a), which
may also constitute a promising alternative in the treatment of
LSDs. Indeed, the large number of FDA-approved molecules may
accelerate the implementation of epigenetic drugs into the classical
approaches used in LSDs. Likewise, the latest advances in the
CRISPR/Cas9 system, a revolutionary tool for editing the
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epigenome, may offer a novel and exciting strategy for restoring
epigenetic disturbances in LSDs, thereby increasing the treatment
options available.

Finally, the use of epigenomic signatures may benefit early
diagnosis, monitor therapeutic response, and classify patients,
especially in LSDs such as Gaucher and Fabry, where epigenetic
perturbations may influence oncogenic risk or inflammatory status
(Figure 3). However, it is crucial to emphasize the importance of
systematically investigating sex-specific epigenetic variation and
mutation-dependent chromatin states, recently highlighted in
Fabry and MPS subtypes. These variations could be key factors
in the progression and prognosis of LSDs, making this research an
urgent and significant area of study.
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