& frontiers | Frontiers in Genetics

’ @ Check for updates

OPEN ACCESS

Nouar Qutob,
Arab American University, Palestine

Binny Khandakar,

Hofstra University, United States
Mari Uyeda,

Fundacao Antonio Prudente, Brazil

Xianshuo Cheng,
chengxianshuo@sina.com

Jian Dong,
dongjian18@yahoo.com

17 July 2025
03 October 2025
15 October 2025

Lu G, Pan T, Deng C, Wan X, Wang Z, Hu T,
Cheng X and Dong J (2025) A rare subtype of
lynch syndrome familial with co-mutation of
EpCAM ¢.344T>C, MSH2 c.2744A>G,

PMS2 ¢.1408C>T and APC c.5465T>A, case
report and literature review.

Front. Genet. 16:1667899.

doi: 10.3389/fgene.2025.1667899

© 2025 Lu, Pan, Deng, Wan, Wang, Hu, Cheng
and Dong. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics

Brief Research Report
15 October 2025
10.3389/fgene.2025.1667899

A rare subtype of lynch syndrome
familial with co-mutation of
EpCAM ¢.344T>C,

MSH2 c.2744A>G,

PMS2 c.1408C>T and APC
c.5465T>A, case report and
literature review

Guiyu Lu'?, Ting Pan?, Cuidong Deng?, Xiaogian Wan?,
Zihan Wang?, Tengyue Hu?, Xianshuo Cheng?* and Jian Dong?*

'Department of General Practice, Zigong Fourth People’s Hospital, Zigong, Sichuan, China, ?Department
of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University/Yunnan Tumor
Hospital, Kunming, Yunnan, China

Background: Lynch syndrome (LS) is an autosomal dominant disorder caused by
germline mutations in mismatch repair (MMR) genes or EpCAM, leading to various
cancers, particularly colorectal cancer (CRC). EpCAM mutations account for
approximately 1%—-3% of LS cases, while co-mutations involving EpCAM and
MSH2 are exceedingly rare. To date, co-mutations of EpCAM, MSH2 and
PMS2 have not been reported in the literature.

Case Presentation: This case reports a 25-year-old male diagnosed with
adenocarcinoma of the ascending colon. His family history revealed eight
cancer cases among 30 relatives across five generations, consistent with LS.
Immunohistochemistry (IHC) of the tumor showed loss of EpCAM, MSH2 and
MSH6 protein expression. Genetic testing of the proband’s tumor identified a
novel large deletion affecting EpCAM exons 8-9 and MSH2 exons 1-16, likely
pathogenic mutations disrupting MMR gene function. Whole-exome sequencing
(WES) of peripheral blood from six family members, including the proband and his
son, revealed co-mutations of EpCAM (c.344T>C), MSH2 (c.2744A>G), PMS2
(c.1408 C>T) and APC (c.5465T>A). Although public databases suggested these
variants are benign or of uncertain significance (VUS), several in silico prediction
tools and prior literature suggest potential pathogenicity. Notably, WES of the
proband’s son’s peripheral blood also detected the same large deletions in
EpCAM and MSH2, implying the presence of germline mosaicism and a
possibly heightened early-onset cancer risk.

Conclusion: This rare subtype of LS emphasizes the need for comprehensive
genetic screening and may inform future strategies for early detection and
management in LS families. Further studies are required to confirm these findings.
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Introduction

Lynch syndrome (LS), also known as hereditary nonpolyposis
colorectal carcinoma (HNPCC), is the most common hereditary
colorectal cancer (CRC) syndrome, accounting for approximately
2%-4% of all CRCs. LS is an autosomal dominant disorder caused by
germline mutations in mismatch repair (MMR) genes (MLHI,
MSH2, MSH6, PMS2) or the epithelial cell adhesion molecule
(EpCAM) gene (Vasen et al, 2010). These mutations lead to
MMR deficiency (dMMR) and high microsatellite instability
(MSI-H), resulting in genomic instability and increased tumor
susceptibility. In addition to CRC, LS is associated with increased
risks of endometrial, gastric, ovarian, and brain cancers. The
spectrum and magnitude of cancer risk among LS families vary
depending on which specific MMR or EPCAM gene is mutated.

Population-based prospective data further highlight gene-
Lynch
Syndrome Database (PLSD), the cumulative cancer risks by age
70 are estimated at 71.9% for MLH1, 74.5% for MSH2, 46.3% for
MSHS6, and 21.7% for PMS2 mutation carriers (Vasen et al., 2007;
Prospective Lynch Syndrome Database, 2025). CRC risk is
particularly high in MLHI and MSH2 carriers (48.2% and 43.7%,
respectively), whereas endometrial cancer (EC) risk is most elevated
in female MSH2 and MSH6 mutation carriers (46% and 41%,
respectively). Although brain tumors are relatively uncommon in
LS, their relative risk is highest in MSH2 carriers (3.7%).

EpCAM deletions are rare, accounting for only 1%-3% of LS

specific penetrance. According to the Prospective

cases (Tiwari et al,, 2016). A well-established mechanism is that
3'EpCAM deletions can lead to MSH2 promoter hypermethylation,
thereby silencing MSH2 expression and triggering dMMR (Niessen
et al,, 2009). In a cohort of 41 LS families, EpCAM deletion carriers
had a cumulative CRC risk of 75% by age 70, which was higher than
that of MSHG6 carriers (50%) and similar to that of MSH2 (77%) and
MLHI mutation carriers (79%) (Kempers et al.,, 2011). Notably,
female carriers with EpCAM-MSH2 co-deletions showed a
markedly increased EC risk (55%) compared with EpCAM-only
deletions (12%) (Kempers et al., 2011). These findings suggest that
EpCAM-related alterations not only confer substantial CRC risk but
also modify extracolonic cancer susceptibility depending on their
interaction with MSH2.

At the molecular level, MSH2 with MSH6 forms MutSa complex
that recognizes DNA mismatches, while PMS2 with MLHI1 forms
MutLa complex that executes the excision and repair step of MMR
(Li, 2008-01). This division of labor highlights their complementary
roles in genomic maintenance. APC, a gatekeeper of the Wnt/p-
catenin pathway, initiates colorectal tumorigenesis (Kinzler and
Vogelstein, 1996-10). In this context, MMR deficiency may
accelerate APC-related mutational events, while APC loss in a
dMMR background can further lower the threshold for
malignant transformation. Thus, concurrent EpCAM/MSH2,
PMS2, and APC alterations provide a biological rationale for
synergistic tumorigenesis.

Despite these insights, most prior studies focus on single-gene
mutations or EpCAM-MSH2 co-deletions, often limited to case
reports or small series. Important knowledge gaps remain: (i) how
concurrent alterations spanning multiple loci (e.g., EpCAM, MSH2,
PMS2, and APC) jointly shape penetrance, tumor spectrum, and age
at onset; (ii) whether point mutations and structural variants
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interact to produce tissue-specific silencing and phenotype
modification; and (iii) to what extent current surveillance
guidelines, which are organized on a gene-by-gene basis,
adequately capture multi-locus constellations.

To address these gaps, we report a LS family harboring a
previously undocumented co-mutation subtype: EpCAM
c.344T>C, MSH2 c.2744A>G, PMS2 c. 1408 C>T and APC
¢.5465T>A. Notably, we identified novel large fragment deletions
spanning EpCAM exons 8-9 and MSH2 exons 1-16 in the
proband’s CRC tissues. This case underscores the complexity of
LS genetics and highlights the need for comprehensive evaluation
incorporating both point mutations and structural variations, to
better inform clinical management and surveillance strategies.

Case presentation
Proband'’s clinical details

In October 2020, a 25-year-old male presented with a 1-month
history of right lower abdominal pain and localized tenderness.
Colonoscopy revealed an annular elevation in the ascending colon
(Figure 1A), confirmed as adenocarcinoma by histopathology. CT
indicated asymmetric thickening of the ascending colon wall
(Figure 1A). In November 2020, he underwent 3D laparoscopic
right hemicolectomy. Postoperative pathology revealed moderately
to poorly differentiated adenocarcinoma (pT3NOMO, stage IIA)
(Figure 1A). IHC showed loss of EpCAM, MSH2, and
MSH6 expression, with preserved MLHI and PMS2 (Figure 1B).
Adjuvant chemotherapy was not administered based on guidelines.

As of the 56-month follow-up in May 2025, regular test
confirmed disease-free survival. Genetic counseling addressed his
concerns about hereditary cancer risk, especially for his son.

Family history

Several family members have been diagnosed with cancer
(Figure 1C), including the proband’s father (III-2, 29-year-old,
rectal cancer), uncle (III-3, 32-year-old, colon cancer),
grandmother (II-2, 64-year-old, EC), great-aunts (II-3, 78-year-
old, and II-4, 68-year-old, brain cancer; II-5, 60-year-old, breast
cancer), and cousin (III-10, 45-year-old, pancreatic cancer).

Genetic testing

Tumor tissue genetic testing

Next-generation sequencing (NGS) (Figure 1D) of the proband’s
CRC tissue identified novel large deletions in EpCAM (exons 8-9)
and MSH2 (exons 1-16), not previously documented in the
International Society for Gastrointestinal Hereditary Tumors
(InSiGHT) database. To date, only three similar EpCAM-MSH2
co-deletions have been reported (Table 1): case 1 (Sekine et al., 2017)
(EpCAM exon nine to MSH2 exon 1-2), case 2 (Salman et al., 2018)
(EpCAM exon 8-9 and MSH2 exon 1-8), case 3 (Huang et al., 2022)
(EpCAM exon 1-9 to MSH2 exon 1-6). These structural variants are
pathogenic, disrupting MSH2 function via epigenetic silencing or
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FIGURE 1

Clinical and molecular analysis of the LS family. (A) Colonoscopy figure, abdominal CT scan, surgical resection of ascending colon tumor specimen

and HE staining of CRC tissues of the proband (IV-2). (B) IHC Staining of EpCAM and MMR Protein in the Proband’s CRC Tissue. Columns displayed from
top to bottom: tumor tissue (400x), tumor-normal boundary (100x) and normal tissue (400x), respectively. (C) Pedigree structure of the LS family.
Squares denote males, circles denote females, solid symbols represent cancer cases, the arrow indicates the proband, slashes mark deceased
individuals with age at death, and tumor types are listed below each symbol. Solid circles in squares indicate mutation carriers. Consanguineous marriages
are represented by double horizontal lines. (D) Copy Number Variation (CNV) Analysis of Proband’'s CRC Tissues. The plot shows CNVs across genomic
positions in tumor tissue. Red dots indicate CN loss in EpCAM, cyan dots indicate CN loss in MSH2, and gray dots represent non-significant regions.

03 frontiersin.org


mailto:Image of FGENE_fgene-2025-1667899_wc_f1|tif
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1667899

Lu et al.

TABLE 1 Six cases of LS with co-mutation of EpCAM and MSH2.

Case 4 (

10.3389/fgene.2025.1667899

Case 5 (

Case 1 ( Case 2 ( Case 3 (
Basic 44-year-old female 38-year-old male 45-year-old female
Information
Cancer Colon cancer at 39,43, | Synchronous poorly Moderately
History and 44 (poorly differentiated differentiated
differentiated adenocarcinoma of the = endometrial
mucinous cecum, appendix, and adenocarcinoma with
adenocarcinoma) ileocecal area, with post-surgical vaginal
retroperitoneal and and lymph node
vertebral metastasis metastasis
IHC MSH2 nuclear (-), MSH2 (-), EPCAM  MSH2, MSH6 (-)
cytoplasm (+); MSH6 | (-) EPCAM (+), MLH1
(=) MLHI (+). PMS2 (+) | (+). PMS2 (+)
EPCAM (+). MLH1
(+), PMS2 (+)
Genetic Deletions in EpCAM | Deletions in EpCAM Deletions in EpCAM
Testing exon 9 and exon 1-9 and exons 8-9 and
MSH?2 exons 1 and 2, = MSH2 exons 1-6 MSH2 exons 1-8
EPCAM-MSH2
fusion
Family Mother: colon cancer | Father: colon cancer, First-degree relatives:
History (40s), endometrial skin cancer endometrial and
cancer (50s); sister: colorectal cancers;
colon cancer (30s), second-degree
ovarian cancer (40s) relatives: gallbladder
and gastric cancers
Pathogenic EpCAM and EpCAM and EpCAM and
Mechanism MSH?2 deletions cause | MSH2 exon deletions, MSH?2 exon deletions,
EpCAM-MSH2 MMR deficiency MMR deficiency
fusion and MMR
deficiency

54-year-old female

Sigmoid colon cancer at
37, ascending colon
cancer at 41,
endometrial cancer at
42, duodenal
adenocarcinoma at 45,
breast cancer at 52

MSH2 (=), MSH6 (-)
EPCAM (+), MLH1
(+). PMS2 (+)

EpCAM full gene and
MSH2 exons

1-7 duplication,
heterozygous deletions
on chromosomes

20 and X

Two sisters: colon
cancer (43s, 40s);
another sister:
pancreatic cancer (47s);
nephew: colon cancer
(27s); brother: colon
cancer (55s)

EpCAM-MSH2
duplication, MMR
deficiency; LOH on
chromosomes 20 and X,
increasing cancer risk

9-year-old female

Rectal cancer, multiple
colonic polyps

MSH2 (-), MSH6 (-)
EPCAM (+), MLH1
(+). PMS2 (+)

Deletions in EpCAM
exons 8-9.

MSH2 missense
mutation ¢.2075G>T

First-degree relatives:
no cancer; paternal
second-degree: early-
onset colon and gastric
cancer; maternal
second- and third-
degree: uterine,
gastrointestinal, renal,
and brain cancers

EpCAM mutation
silences MSH2 in
epithelial cells,
increasing epithelial
tumor risk

25-year-old male

Moderately to poorly
differentiated ascending
colon adenocarcinoma
at 25

MSH2 (-). MSH6 (-).
EPCAM (-)
MLHI (+), PMS2 (+)

EPCAM ¢.344T>C,
MSH2 ¢.2744A>G, APC
c.5411T>A (germline)
Deletions in EpCAM
exons 8-9 and

MSH2 exons 1-16 (CRC
tissue)

Father: rectal cancer
(29s); uncle: colon cancer
(32s); grandmother:
endometrial cancer (64s);
two maternal aunts: brain
cancer (78s, 68s); another
maternal aunt: breast
cancer (60s); cousin:
pancreatic cancer (45s)

EpCAM and

MSH2 mutations with
large deletions, MMR
deficiency; mosaicism
increase cancer risk;
unknown APC mutation
may promote
tumorigenesis

gene interruption. Microsatellite instability (MSI) analysis revealed a
30.43% instability rate (MSI-H) (Figure 2).

WES of peripheral blood in family members

WES of peripheral blood from six family members (proband IV
2,111,111 3,111 4, IV 1, V 3) identified mutations in EpCAM (NM_
002354.3:c.344T>C, p.Metl15Thr), MSH2 (NM_000251.3:
c2744A>G, p.GIn915Arg), PMS2 (NM_000535.7:c.1408C>T,
p-Pro470Ser) and APC (NM_000038.6:¢.5465T>A, p.Vall1822Asp)
in all (Figure 1C; Table 1). Remarkably, the proband’s son (V-3) also
carried the same EpCAM and MSH2 deletions as the proband’s
tumor tissue.

Discussion

LS is an autosomal dominant syndrome with high cancer
susceptibility, as 54%-61% of patients develop a second primary
tumor and 15%-23% develop three or more (Stoffel et al., 2009).
Diagnosis is based on family history (Amsterdam II Criteria, the
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Revised Bethesda Guidelines, and the Chinese Criteria) and
confirmed by genetic testing of MMR, EpCAM, and BRAF
V600E. Among LS families, MSH2 mutations account for ~50%,
MLH]1 for 30%-40%, MSH6 for 7%-10%, and PMS2 for <5% (Silva
et al., 2009).

Co-mutations involving EpCAM and MSH2 are rare. A cohort
study of 41 LS families, including 194 EpCAM deletion carriers,
identified 42 patients with both EpCAM and MSH2 co-deletions
(Kempers et al., 2011). Additionally, only five case reports document
LS patients with EpCAM and MSH2 co-mutations (Table 1).

e Case 1 describes a 44-year-old woman with three episodes of
CRC, whose family history includes her mother (CRC and
EC) and sister (CRC and ovarian cancer) (Sekine
et al.,, 2017).

e Case 2 reports a 38-year-old man with three synchronous
intestinal cancers, whose father had a history of intestinal
and skin cancers (Salman et al., 2018).

e Case 3 involves a 45-year-old woman with metastatic EC,
where first-degree relatives had EC and CRC, and second-
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cumulative distribution shift analysis. The instability rate was 30.43%, exceeding the 20% threshold for MSI-H.

degree relatives had gallbladder and gastric cancers (Huang
et al.,, 2022).

Case 4 concerns a 54-year-old woman who developed CRC
three times, along with EC and breast cancer. Her family
history includes two sisters who died of CRC, another sister
who died of pancreatic cancer, and both a brother and
nephew diagnosed with CRC at ages 55 and 27,
respectively (Pirini et al., 2019).

Case 5 is a 9-year-old female with rectal cancer and multiple
colonic polyps. Her parents have no cancer history, but
paternal relatives have early-onset CRC and gastric cancers.
Several maternal relatives have malignancies involving the
uterus, gastrointestinal tract, kidneys, and central nervous
system (Li-Chang et al., 2013).

To our knowledge, co-mutations involving EpCAM, MSH2,
PMS2 and APC have not been reported. We present an LS
family in which all six tested members carried EpCAM
c.344T>C, MSH2 c.2744A>G, PMS2 c.1408C>T, and APC
¢.5465T>A co-mutations, with the proband’s CRC tissue showing
large deletions of EpCAM (exons 8-9) and MSH2 (exons 1-16).
Tumor testing corroborated the sequencing results: THC of the
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proband’s tumor showed loss of EpCAM, MSH2, and
MSH6 with retention of MLH1 and PMS2, consistent with
MSH2-pathway deficiency; MSI testing demonstrated 30.43%
unstable loci (MSI-H). These findings confirm dMMR and link
EpCAM-associated ~ MSH2 the  observed
immunophenotype (Figures 1B,E). Tumor testing was limited to

disruption  to
the proband, restricting assessment across relatives.

In this family, eight members developed cancers at ages 25-32,
including three CRCs before 40 (youngest 25), two brain cancers,
one EC, one breast cancer, and one pancreatic cancer. Among the
six carriers tested, two (33%) had developed cancer while four
(67%) remained unaffected, illustrating incomplete penetrance.
This rate is lower than PLSD estimates (~45% for MLH1/
MSH2 carriers by age 70), likely reflecting the relatively young
age of unaffected carriers in this family (Prospective Lynch
Syndrome Database, 2025). Compared with published cohorts,
this family shows unusually early CRC onset and excess brain
cancer. CRC onset was earlier than reported by the German
Consortium (42-69 years for MSH6, 61-66 years for PMS2,
~44 years for MLH1/MSH2) and PLSD (49-50 years for MSH2)
(Gupta etal., 2019). The five reported EpCAM/MSH?2 co-mutation
cases also showed early CRC (9-54 years), and Danish data
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TABLE 2 Clinical database annotations, in silico predictions, conservation analyses, and acmg/amp classifications of four mutations.

Mutation EpCAM PMS2 (NM_000535.7: MSH2 (NM_000251.3: APC (NM_000038.6:
Gene (NM_002354.3: c.1408C>T, p.Pro470Ser) c.2744A>G, c.5465T>A,
C.344T>C, p.Gln915Arg) p.Vall822Asp)
p.Met115Thr)
Exon 3 11 16 16
ClinVar Benign Benign Not recorded Benign
Significance
MGeND Benign Benign Not recorded Benign
Significance
LOVD Benign Benign Not recorded Benign
Significance
OncoKB Not recorded Likely Neutral Not recorded Not recorded
Significance
Pop Freq 0.51515 0.37107 Not recorded 0.82099
(gnomAD)
CADD Prediction | 0.238 0.089 0.021 13.24
MetaSVM T T T T
Prediction
MetaLR T T T T
Prediction
SIFT Prediction T T D T
Polyphen-2 B B B B
Prediction
MutationTaster P P P P
Prediction
GERP++RS 1.71 0.572 -3.02 3.59
phastCons 0.815 0 0 0.991
(20-way)
Related Articles 6 1 3 13
Detailed Article Supplementary Table S1 The PMS2 ¢.1408C>T was detected at 100% | Supplementary Table S1 Supplementary Table S1
List allele frequency across replicates in an MSI-
stable tumor with no other pathogenic
PMS?2 alterations. Lacking functional data, it
is classified as likely benign or of uncertain
significance
ACMG/AMP Benign (BA1/BS1, BP4) Benign (BA1, BP4) VUS (conflicting in silico; lacking | Benign (BA1/BS1, BP4)
Classification functional evidence)

Mutations are annotated using HGVS, nomenclature. Clinical databases (ClinVar, MGeND, LOVD, OncoKB) assess clinical and genetic relevance. “Benign”: no significant disease association;
“Not recorded”: absent from major clinical databases, potentially classifying it as a VUS, pending further evidence; “Likely Neutral”: minimal or no impact on protein function and low
oncogenic potential. Pop Freq reflects allele frequency from gnomAD (>1% suggests a common mutation; “Not recorded” indicates missing data). CADD: Scores >10 indicate potential
deleteriousness, with >20 marking the top 1% most deleterious mutations. “Tolerated (T)”: no significant functional impact and likely benignity. “Deleterious (D)”: potential pathogenicity;
“Tolerated (T)”: minimal impact on protein function, likely benignity. “Benign (B)”: unlikely functional effect. “Polymorphism (P)”: a common genetic mutation unlikely to cause disease.
GERP++ RS (22.0) and phastCons (20-way, >0.9) measure evolutionary conservation, indicating functional importance.

reported brain cancers in 14% of LS families (mainly MSH2)
(Therkildsen et al., 2015), compared to 3.7% in PLSD male
MSH2 carriers. In contrast, brain tumors occurred in 25% of
affected members here. Compared to recent findings (Niessen
et al., 2009; Markowitz and Bertagnolli, 2009), the co-mutation
of EpCAM, MSH2, PMS2 and APC might be a pathogenic factor,
though statistical validation is lacking. While most tumors were
single primaries, metachronous cancers cannot be excluded. The
strong family history facilitated early CRC detection by
colonoscopy in the proband and his uncle, leading to favorable
outcomes with standard management.

Frontiers in Genetics

Genetic testing revealed multiple germline mutations together
with large deletions in EpCAM and MSH2, suggesting a hereditary
multi-tumor etiology. Review of public databases (NCBI, MGeND,
LOVD, OncoKB; accessed July 2025) classified EpCAM ¢.344T>C
and APC c¢.5465T>A as benign, PMS2 ¢.1408 C>T as benign or
neutral, and MSH2 c.2744A>G as VUS. Based on ACMG/AMP
criteria (Richards et al, 2015), EpCAM ¢.344T>C and APC
c.5465T>A fulfill BA1/BS1 owing to high allele frequency in
gnomAD (Karczewski et al., 2020), and BP4 given consistent
benign predictions. PMS2 ¢.1408C>T shows ~35-40% frequency
in gnomAD and 1,000 Genomes, meeting BA1 and BP4. In contrast,
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MSH2 ¢.2744A>G shows very low population frequency (<0.01) and
inconsistent in silico results, thus remains VUS. Overall, these
mutations appear unlikely to drive cancer (Table 2), though
discordant predictions (e.g., MSH2 c.2744A>G was classified as
pathogenic by SIFT) underscore the limitations of in silico tools and
the need for functional validation.

Despite the overall benign or uncertain classification, several
reports suggest possible biological effects of these mutations
(Supplementary Table S1). EpCAM ¢.344T>C may weaken
protein folding, thereby promoting cervical cancer progression
(Hu et al, 2012; Sankpal et al, 2021), enhance tumor cell
stemness to facilitate breast cancer growth (Jiang et al, 2011),
and impair EpCAM’s inhibitory effect on cathepsin L, increasing
the invasiveness of non-small cell lung cancer (Yang et al., 2014).
APC ¢.5465T>A, though not disrupting the Wnt/B-catenin signaling
pathway, may still promote colorectal adenoma formation. Wallis’s
report indicates that this mutation could disrupt p-catenin
regulation, leading to intestinal cancer or adenoma formation
(Wallis et al., 1999). Moreover, Theodoratou et al. noted that this
mutation might alter the response to environmental factors through
Wnt pathway modulation, thus increasing CRC risk (Theodoratou
2008). There is
PMS2 ¢.1408 C>T to tumor development and progression
(Yurgelun et al., 2017), and the significance of MSH2 ¢.2744A>G
remains unclear. Overall, while ACMG/AMP classification favors
benign or VUS categories, subtle functional effects and gene-

et al, currently no evidence linking

environment interactions cannot be excluded, highlighting the
need for further validation.

In this family, sequencing of six members revealed EpCAM,
MSH2, PMS2 and APC co-mutations associated with early-onset
CRC. These co-mutations may modify CRC risk under specific
exposures. We employed multiple prediction systems to assess the
clinical significance of each mutation. Only Polyphen-2 and
MutationTaster classified these mutations as benign, while most
other systems classified them as potentially benign. The CADD
prediction system identified APC c.5465T>A as likely pathogenic,
while SIFT prediction system classified MSH2 c.2744A>G as
pathogenic (Table 2). Therefore, current prediction tools cannot
fully capture the biological impact of co-mutations, underscoring
the need for functional validation.

The unusual phenotype may reflect epistasis, as co-existing
EpCAM, MSH2, PMS2, and APC mutations could interact across
MMR and Wnt/B-catenin pathways. 3’ EpCAM deletions can
silence MSH2, establishing an MMR-deficient background, and
animal models show that MSH2 deficiency synergizes with APC
loss to accelerate intestinal tumorigenesis (Reitmair et al., 1996).

V-3, a 6-year-old child, warrants attention as WES revealed
EpCAM, MSH2, PMS2 and APC co-mutations along with large
deletions in EpCAM (exons 8-9) and MSH2 (exons 1-16),
paralleling his father’s CRC tissue and suggesting possible
germline mosaicism. Mosaicism is increasingly recognized in
cancer (Ogawa et al, 2022) but may be missed by blood-based
genetic testing, complicating LS diagnosis and genetic counseling.
Case reports have documented mosaic MSH2 mutations in Lynch
(-like) syndromes—for example, Erell Guillerm et al. detected a low-
frequency MSH2 mutation in tumor tissue but absent in blood,
which was confirmed as germline mosaicism in her daughter
(Guillerm et al., 2020), while Pastrello et al. described somatic
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mosaicism with uneven mutation distribution across tissues
(Pastrello et al., 2009). Reviews emphasize that mosaic events are
underdetected in LS with blood-only testing (Jansen and Goel,
2020), approaches.
Additional proband tissue could clarify this but was unavailable.

supporting multi-tissue or tumor-first
Alternatively, recurrent EpCAM 3’ deletions with shared haplotypes
in Dutch LS families (Kuiper et al., 2011-04) suggest ancestral
inheritance as another plausible explanation for the clustering of
EpCAM, MSH2, PMS2, and APC mutations in this pedigree.

LS family members carrying mutations require ongoing
surveillance. According to current guidelines (Vasen et al,, 2010),
MMR mutation carriers should undergo colonoscopy every
1-2 years starting at age 20-25, or 2-5 years before the earliest
CRC in the family. Based on the 25-year earliest onset, surveillance
should begin by age 20, and potentially earlier for young carriers.
Given the 25% incidence of brain cancer, annual neurological
evaluations are warranted, with brain MRI performed when
should
endometrial and ovarian cancer surveillance, such as annual

clinically indicated. Female carriers also undergo
transvaginal ultrasound or endometrial biopsy from age 30-35.
At the same time, cascade testing of at-risk relatives is essential
to identify asymptomatic carriers and enroll them in surveillance
programs at an appropriate age, thereby reducing cancer risk
through early detection and intervention. This strategy facilitates
personalized risk communication and supports informed decision-
making for long-term management within families.
Constitutional mismatch repair deficiency (CMMRD) is a rare
hereditary cancer syndrome caused by biallelic pathogenic MMR
mutations, leading to childhood tumors in the brain, gastrointestinal
tract, and blood. PMS2 mutations are the most predominant
causative genes (Mar et al, 2025). Genetic testing in V-3
identified a heterozygous MSH2 mutation without biallelic
mutations or CMMRD symptoms (e.g., early cancers, café-au-lait
spots) (Wimmer and Kratz, 2010; Wimmer et al., 2014). V-3’s
heterozygous status elevates LS-related cancer risk, distinct from
CMMRD’s biallelic-driven  childhood cancer predisposition
(Wimmer et al,, 2014). Wimmer et al. noted that CMMRD leads
to early malignancies, whereas LS typically manifests later (Wimmer
et al,, 2014). Therefore, V-3 requires LS-specific surveillance, not
CMMRD’s pediatric protocols. For offspring inheriting germline
mosaic mutations, LS-related cancer screening is advisable before
adulthood, as the youngest CRC patient identified was only 9 years
old in published case reports (Li-Chang et al., 2013). Further testing
of more samples in this family is essential, as the results hold
significant importance for management and disease prediction.

Limitations

This study has several limitations. First, the sample size and
potential selection bias may limit the generalizability of our findings.
Consanguinity within families may increase the frequency of rare
mutations, complicating interpretation of pathogenicity. Second, the
lack of functional validation reduces the certainty of our mutation
classification, as in silico predictions cannot fully capture biological
effects. Third, due to resource constraints, we were unable to
conduct additional tissue analyses to confirm mosaicism or to
perform comprehensive WES re-evaluations, thus limiting our
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insights into copy number alterations. Future studies with larger,
multicenter cohorts, coupled with functional assays and multi-tissue
analyses, are essential to overcome these limitations and provide
more definitive evidence.

Conclusion

This case report describes a LS family harboring a rare co-
mutation of EpCAM ¢.344T>C, MSH2 c.2744A>G, PMS2 c.
1408C>T and APC ¢.5465T>A. Notably, we identified pathogenic
large fragment deletions in EpCAM (exons 8-9) and MSH2 (exons
1-16) in the proband’s CRC tissue for the first time. These findings
expand the LS genetic spectrum and highlight the complexity of
interpretating co-mutations. Despite databases suggest these point
mutations are benign or VUS, bioinformatic predictions and prior
reports suggest possible functional relevance. Given these
uncertainties, conclusion should be regarded as preliminary.
Future research should include development of cellular or animal
models to dissect the synergistic effects of these alterations,
systematic exploration of mosaicism and founder effects, and
integration of functional assays with genomic profiling. Clinically,
surveillance and cascade testing remain essential, and therapeutic
implications, including immunotherapy responsiveness in dMMR,

warrant further investigation.
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