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Computational models for
pan-cancer classification based
on multi-omics data

Jianlin Wang, Jiao Zhang, Xuebing Dai, Chaokun Yan and
Caili Fang*

School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China

Tumor heterogeneity presents a significant challenge in cancer treatment,
limiting the ability of clinicians to achieve accurate early-stage diagnoses and
develop customized therapeutic strategies. Early diagnosis is crucial for effective
intervention, yet current methods lack robust solutions to overcome this
challenge. The Pan-Cancer Atlas has emerged as a pivotal framework to
investigate cancer heterogeneity by integrating multi-omics data (genomics,
transcriptomics, proteomics) across tumor types. This initiative systematically
maps inter- and intratumor variations, providing insight for clinical decision
making. However, such frameworks often struggle to integrate dynamic
temporal changes and spatial heterogeneity within tumors, limiting their real-
time clinical applicability. In this review, we first summarize the available multi-
omics data and public biomedical databases used in pan-cancer research. Then,
we examine current pan-cancer classification approaches based on the
computational models they employed, including machine learning and deep
learning. We also provide a comparison of these classification methods to explore
their advantages and limitations. Finally, we conclude by discussing the key
challenges in pan-cancer research and suggesting potential directions for
future studies.

KEYWORDS
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1 Background

Cancer, a heterogeneous group of diseases that affect various tissues and organs,
constitutes a major global health burden. Despite advances in prevention, detection, and
therapeutic interventions, global cancer incidence and mortality rates continue to increase
(Santucci et al., 2020; Bray et al., 2024). A key limitation of current clinical practices is their
reliance on molecularly insensitive tools, which often detect cancer only at intermediate or
advanced stages, preventing early diagnosis (Wei et al., 2022). This delay is critical, as early
detection is directly related to patient outcomes. For example, the 5-year survival rate for
early-stage prostate cancer is 98%, and early breast cancer has a cure rate exceeding 95%
(Siegel et al., 2020). However, tumor heterogeneity and similarity complicate early and
accurate diagnosis, as well as treatment planning. Tumor heterogeneity manifests itself
through genomic, transcriptomic, and proteomic differences between tumor cells, driving
variations in morphology, proliferation, and metastatic potential (Zheng et al., 2022).
Furthermore, even within the same tumor, cancer cells exhibit phenotypic and
morphological heterogeneity during progression (Zhang et al., 2025). For example, lung
cancer cells can differentiate into the subtypes of small cell lung cancer, lung squamous cell
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FIGURE 1
The workflow of pan-cancer classification model.

carcinoma, and lung adenocarcinoma (Yang and Fan, 2024). Each
type and subtype of cancer has unique characteristics, leading to
various clinical treatment approaches, and this heterogeneity poses
significant challenges to diagnosis and treatment (Capper et al.,
2018). The similarity of tumors is reflected in the finding that, at a
molecular level, tumors in different parts of the body can be more
similar than tumors of the same type (Sinha et al., 2021).

To address these challenges, The Cancer Genome Atlas (TCGA)
launched the Pan-Cancer Project in 2012 (Weinstein et al., 2013),
integrating omics data from more than 11,000 tumor samples to
identify shared and unique oncogenic drivers. Pan-cancer aims to
describe and identify the commonalities and differences between
different types of cancer in order to find the key factors that may
trigger cancer and thus guide clinical diagnosis, which is important
to improve the cure rate of cancer. Many institutions have launched
pan-cancer studies and developed public databases that collect data
from various cancer-related researches. For example, the UCSC
Genome Browser, that developed and maintained by the University
of California, Santa Cruz (UCSC), is a comprehensive multi-omics
database. Integrates various types of molecular data including copy
number variations, methylation profiles, gene and protein
and mutation Furthermore, the

expression levels, records.

platform supports
through user-friendly tools. The Gene Expression Omnibus
(GEO), developed and maintained by the National Center for

Biotechnology Information (NCBI), serves as a public repository

efficient data analysis and visualization

for gene expression data. This database systematically integrates
diverse cancer-related datasets, including high-throughput gene
expression profiles and microarray data. Analysis of these pan-
cancer datasets enables researchers to identify unique features of
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individual cancer types and explore shared or distinct molecular
patterns across cancers. Such insights support the accurate
classification of cancer subtypes and the development of targeted
therapies. These research efforts form the foundation for the
advancement of precision cancer and remain a central focus in
contemporary cancer studies.

Traditional pan-cancer studies relied on cluster analysis,
network modeling, and pathway enrichment to identify
these methods lack the
resolution required for early diagnosis. Rapid advancements in

histological ~similarities. However,
sequencing technologies have exponentially increased the scale
and complexity of omics data, necessitating advanced
computational approaches. Machine learning (ML) and deep
learning (DL) methods now offer scalable solutions to analyze
these high-dimensional datasets. For example, Li et al. (2017)
achieved 90% precision in classifying 31 tumor types using
genetic algorithms (GA) and K closest neighbors (KNN), while
Lyu and Haque (2018) leveraged convolutional neural networks to
classify 33 cancers with 95. 59% precision, identification of
biomarkers via guided Grad-CAM. Overall, classification studies
of pan-cancer datasets are important for improving the cure rate of
cancer. Figure 1 shows the standardized workflow for pan-cancer
classification models utilizing machine learning and deep learning
frameworks.

Initially, researchers must collect and curate data from diverse
publicly accessible biomedical databases relevant to the onset and
progression of cancer. These data are critical for identifying
oncogenic drivers underlying tumorigenesis. With advances in
computer technology, a variety of feature dimension reduction
and classification algorithms have been developed. These tools
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are instrumental in constructing models that can accurately
discriminate between different cancer types. Once developed, the
performance of these methodologies should be assessed against
state-of-the-art approaches. This involves comparing them across
various metrics and prediction tasks using both standard and
supplementary test datasets. Lastly, conducting relevant biological
analyses and validations is vital to ensure the reliability and
applicability of the findings.

Despite the existence of numerous classification methods for
pan-cancer studies, there is a lack of comprehensive literature
reviewing the data and methodologies employed. We addresses
this gap by providing a thorough analysis of recent pan-cancer
classification methods based on diverse models. We begin by
exploring the data types commonly used in pancancer research
and curating biomedical databases. This process improves our
understanding of cancer heterogeneity and similarities and helps
to validate research findings. We then examine prevalent
classification approaches utilizing machine learning and deep
learning models. Finally, we analyze standard datasets and
evaluation metrics used in pan-cancer classification and provide a
concise comparison of various methods. This comparison aims to
assess the strengths and limitations of each approach.

2 Data and databases

2.1 Available data

With the conclusion of the Human Genome Project and the
onset of the post-genomic era, innovative sequencing technologies
have emerged (Waterman, 2021). Currently, gene microarray
technology and transcriptome sequencing are the primary
methods for acquiring cancer multi-omics data. Gene microarray
technology, also called DNA microarray, detects both qualitative
and quantitative information of DNA or RNA within a sample
(Karakach et al., 2010). Transcriptome sequencing (RNA-Seq), also
known as second-generation sequencing, offers greater accuracy and
sensitivity in gene expression detection compared to microarray
technology (Wang et al., 2009). Advancements in sequencing
technologies have generated vast multi-omics datasets
encompassing genomic, transcriptomic, and proteomic profiles.
These multi-omics datasets serve as foundational resources for
systematic exploration of oncogenic mechanisms across genomic,
transcriptomic, and proteomic dimensions. Subsequently, we
provide a detailed description of the multi-omics data closely

related to pan-cancer research.

2.1.1 mRNA expression data

mRNA is a single-stranded RNA molecule that carries genetic
information transcribed from DNA. It plays a crucial regulatory role
in protein synthesis within the cell (Qin et al, 2022). mRNA
expression data provide insights into gene function and activity.
Investigating fluctuations in gene expression levels can elucidate
disease development mechanisms. In cancer research, mRNA
expression profiling has emerged as an essential element in
elucidating cancer progression mechanisms. Studies show that
dysregulation of specific genes can result in uncontrolled cell
proliferation, a major factor in cancer development (Leibovitch
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and Topisirovic, 2018). For example, Li et al. (2017) used GA
with a KNN classifier to classify mRNA data from 9,096 tumor
samples of 31 types with 90% precision. Similarly, Kim et al. (2020)
identified key genes that accurately distinguish 21 types of tumors by
using ANOVA tests on mRNA data from cancer and normal
samples. Therefore, studying mRNA expression data to find
oncogenes helps in early cancer diagnosis and more accurate
classification, improving treatment.

2.1.2 miRNA expression data

miRNAs are small noncoding RNAs present in plants and
animals, typically 20 to 24 nucleotides long. They play a critical
role in the regulation of cellular processes (Cui et al., 2025). miRNA
controls oncogenes and tumor suppressor gene expression by
degrading mRNAs or inhibiting their translation (Tang et al,
2021; Galagali, 2020). For example, in non-small cell lung cancer,
high let-7 expression reduced lung cancer cell growth and inhibited
differentiation (Pop-Bica et al,, 2020). In gastric cancer, certain
miRNAs inhibit the expression of the phosphatase and tensin
homolog (PTEN) gene and promote cancer cell growth and
invasion (Ashrafizadeh et al., 2020). Wang et al. (2019) combined
GA with random forest (RF) for pan-cancer classification of miRNA
data from 32 tumor types, achieving 92% sensitivity. To more robust
and reliable set of miRNA features capable of distinguishing
different types of tumor, Lopez-Rincon et al. (2019). developed
an integrated feature selection algorithm for an accfor ante
classification of 28 types otypes of tumorsth reliable miRNA
features. Therefore, studying miRNA functions is vital for
accurate cancer classification and early diagnosis, significantly
impacting treatment and prognosis.

2.1.3 IncRNA expression data

IncRNAs are RNA molecules with transcript sequences of more
than 200 nucleotides. Although they do not encode proteins, they
regulate biological processes such as gene expression, development,
and differentiation (Chen et al., 2021). Initially considered as
genomic noise, IncRNAs are now recognized as important in
cancer development. Changes in their expression can serve as
diagnostic markers (Nandwani et al, 2021; Fang and Fullwood,
2016). Analyzing IncRNA data has identified potential biomarkers
and distinguished between tumor types (Al Mamun and Mondal,
2019a; Al Mamun and Mondal, 2019b; Al Mamun et al., 2020).
Therefore, understanding the roles of IncRNAs is crucial for early
cancer diagnosis and treatment.

2.1.4 Copy number variation (CNV)

CNV refers to the variation in the number of copies of a
particular gene present in an individual’s genome (Pos et al,
2021). Genes such as BRCA1, CHEK2, ATM, and BRCA2 have
strong associations with cancers like breast cancer (Hu et al., 2018).
Zhang et al. (2016) proposed using a Dagging classifier to categorize
CNV data from six cancer types, highlighting key features for
accurate classification. Therefore, studying CNV helps explore
cancer pathogenesis, aiding early diagnosis and treatment selection.

2.1.5 DNA methylation

DNA methylation, an epigenetic modification, involves adding a
methyl group to DNA, usually suppressing gene expression (Liu
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TABLE 1 Description of common data types of pan-cancer. The dimensions presented are the feature counts derived from the TCGA Pan-Cancer Atlas

dataset.
Data type Data description Dimension

mRNA The real-time product of gene expression, which controls protein synthesis, and abnormal expression can lead to the development of 20,531
cancer

miRNA Key molecules in the regulation of transcription and translation of oncogenes and tumor suppressor genes. Aberrant expression 1,882
regulates tumor cell growth, proliferation and apoptosis

IncRNA An RNA molecule that does not have protein-coding ability and is involved in the development of cancer, and changes in its 19,166
expression level can be used as a marker for the diagnosis of cancer

CNV Caused by genomic rearrangements, occurring in genes 1-kb or longer in length that are implicated in the development and 24,174

progression of human cancers

DNA Methylation

DNA methylation usually inhibits the expression of genes in cells and plays an important regulatory role, and abnormal expression 48,578
silences tumor suppressor genes leading to the development of cancer

TABLE 2 Overview of the cancer database.

Database Brief description Links

TCGA (Weinstein et al., 2013) Collected multiple omics data of 33 tumor types, the largest human tumor sequencing | https://www.cancergenome.nih.gov/
database in the world

EGA (Lappalainen et al., 2015) Collection of over 800 medical studies of all types of sequencing data and typing data | https://ega-archive.org/

CGHub (Wilks et al., 2014) Sequencing data of 25 different types of cancers from TCGA, TARGET, and CCLE | https://cghub.ucsc.edu/
were collected and organized

ICGC (Consortium et al., 2010) Collecting omics data from many different types of cancers, and comprehensively https://dcc.icgc.org/
described the genomic changes of many cancer

COSMIC (Forbes et al., 2015) Collecting omics data on many types of cancer, it is the world’s largest and most https://cancer.sanger.ac.uk/cosmic
comprehensive database of somatic mutations

cBioPortal (Gao et al., 2013) Collects genomic data on many different types of cancer, providing visual analysis | http://www.cbioportal.org/
tools across genes, samples and data types

UCSC Xena (Navarro Gonzalez et al., Collecting data from several large cancer research projects, and provides convenient | http://genome.ucsc.edu/

2021) data analysis and visualization capabilities

arrayMap (Cai et al,, 2015) Provide pre-processed tumor genome microarray data and CNA atlas http://www.arraymap.org/

BioMuta (Wu et al., 2014) 26 different types of cancers were collected SNV-data https://hive.biochemistry.gwu.edu/home/

GEO (Barrett et al,, 2012) Collection and organization of high-throughput gene expression data submitted by = https://www.ncbi.nlm.nih.gov/geo/

research institutions around the world

ArrayExpress (Kolesnikov et al., 2015) Collected and organized microarray chip-based and high-throughput sequencing of | https://www.ebi.ac.uk/arrayexpress/

experimental genomics data

OncomiRDB (Wang et al., 2014) Collection and annotation of experimentally validated miRNAs with promotive or  http://www.oncomir.org/

inhibitory effects on different cancer types

miRCancer (Xie et al., 2013) A comprehensive collection of miRNA expression profiles in various human cancers = http://mircancer.ecu.edu/

SomaMiR (Bhattacharya et al.,, 2013) Collecting data on miRNAs and mutations on their targets https://compbio.uthsc.edu/SomaMiR/
ChiTaRS (Frenkel-Morgenstern et al., Cancer genome sequence breakpoints were collected along with expression level data | https://chitars.bioinfo.cnio.es/

2015) of the corresponding chimeric transcripts

MethylCancer (He et al., 2007) Collected tumor DNA methylation, cancer-related genes, mutations, CpG islands, and | http://methylcancer.psych.ac.cn/

cancer information

MethHC (Huang et al., 2015) Organized DNA methylation, mRNA/miRNA gene expression, miRNA methylation, = http://methhc.mbe.nctu.edu.tw/

and association between methylation and gene expression levels from TCGA

CGC (Subramanian et al., 2021) NCI-funded cloud platform co-localizing large datasets, and compute power for https://www.cancergenomicscloud.org/

secure, collaborative multi-omics analysis

CPTAC (Mesri et al., 2024) CPTAC provides a rich source of public data, serving as a critical resource for https://cptac-data-portal.georgetown.edu/

researchers studying pan-cancer proteomics cptac/
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etal,, 2016). It is crucial for normal cellular functions and implicated
in cell differentiation and tumorigenesis. Dysregulated methylation,
such as hypermethylation of CpG islands in promoter regions, can
silence tumor suppressor genes or reduce oncogenic miRNA
transcription, increasing cancer risk (Formosa et al., 2013). Liu
et al. (Liu et al,, 2019) used methylation data from 27 cancers types
and proposed machine learning and deep learning strategies for
accurate cancer differentiation. Therefore, DNA methylation is
closely related to the occurrence and development of cancer, and
the analysis and study of methylation is very important in the field of
cancer diagnosis.

2.1.6 Multi-omics

The development of cancer is a very complex process that is not
simply caused by the occurrence of abnormalities in one type of data,
but often involves multiple histological pathological processes.
Therefore, data mining analysis based on single omic data has
certain one-sidedness and limitations. In recent years, with the
rapid development of next-generation genomic technologies, a
large amount of genomic data of different types of cancers has
been accumulated, and more and more researchers have started to
integrate multiple omic data to conduct systematic and complete
analysis of the mechanisms of cancer occurrence, and cancer
research is developing from single omic to multi-omics.
Integrated multi-omics analysis can make up for the lack of
information in single-omics data and provide a comprehensive
and enable researchers

view of patients, to explore the

relationship  between cancer and genes from multiple
perspectives, so as to perform early cancer diagnosis more
accurately.

Table 1 summarizes the characteristics of common pan-cancer

data types, including mRNA, miRNA, and DNA methylation.

2.2 Biomedical database

With the rapid development of high-throughput sequencing
technology, a large amount of tumor-related histological data has
been accumulated, and meanwhile, various public medical databases
have emerged continuously. These public databases can be classified
into comprehensive databases, genomic, transcriptomic, epigenomic
databases, etc. according to the research areas or data types. Table 2
summarizes some cancer-related databases and provides brief
descriptions and access links.

Next, we provide a detailed description of the most commonly
used databases in pan-cancer research.

22.1TCGA

TCGA is the largest human tumor genome sequencing database
globally (Weinstein et al., 2013). Jointly sponsored by the National
Human Genome Research Institute (NHGRI) and the National
Cancer Institute (NCI), this major research project was officially
launched in 2005. TCGA has sequenced 33 common cancers and
over 11,000 tumor samples, using genomic analysis technology to
enhance understanding of tumor mechanisms and improve cancer
diagnosis and treatment capabilities (Tomczak et al., 2015). TCGA
currently provides mRNA expression data, miRNA expression data,
DNA methylation data, CNV data, and other high-throughput
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sequencing data. Researchers can access these datasets through
the Genomic Data Commons (GDC) Data Portal, the primary
data source for many cancer researchers.

2.2.2 GEO

GEO is a subdatabase of the National Center for Biotechnology
Information (NCBI). This free and publicly accessible repository
houses biological data from gene chips, second-generation
sequencing, and other high-throughput functional genomics
experiments. It includes submissions from over
16,000 laboratories and research teams worldwide, featuring
175,825 datasets with 5,069,606 data samples. GEO supports data
download capabilities, enabling users to obtain samples or datasets
of interest. Additionally, it offers tools to discover genes of interest
and their expression profiles, as well as to identify genes with similar

expression patterns.

2.2.3 UCSC Xena

UCSC Xena is a cancer genomics data analysis platform
developed by the UCSC Cancer Genome Browser (Navarro
Gonzalez et al, 2021). This platform collects and standardizes
data from several major cancer research projects such as TCGA,
ICGC, and TARGET, facilitating subsequent analysis (Consortium
et al, 2010). UCSC Xena encompasses multiple levels of data,
including copy number, methylation, gene expression, protein
expression, and mutation data. It provides user-friendly data
analysis and visualization tools. Researchers can easily analyze or
download organized data with link clicks and can also upload their
data for analysis. This flexibility considerably aids in the
advancement of genomic research.

2.2.4 CPTAC

The Clinical Proteomic Tumor Analysis Consortium (CPTAC)
is a comprehensive proteomic and genomic research program
initiated by the National Cancer Institute (NCI) that aims to
accelerate the understanding of cancer biology through the
integration of large-scale proteomic and genomic analysis (Mesri
et al,, 2024). The consortium systematically identifies, quantifies,
and analyzes proteins from cancer biospecimens characterized by
genomic data to improve cancer prevention, early diagnosis,
treatment, and prognosis. CPTAC provides a rich source of
public data, serving as a critical resource for researchers studying
pan-cancer proteomics. Its data, which includes protein abundance,
post-translational modifications, and mass spectrometry data, is
often used in combination with genomic data to provide a multi-
layered view of tumors, enabling the discovery of new biomarkers
and therapeutic targets.

2.2.5 CGC

The Cancer Genomics Cloud (CGC), an NCI-funded resource
powered by Seven Bridges, is a secure and scalable cloud-based
platform designed to overcome the challenges associated with
accessing, sharing, and analyzing massive, diverse multi-omics
datasets (Subramanian et al, 2021). The platform achieves this
by co-localizing three essential components within the cloud:
major cancer datasets like The Cancer Genome Atlas (TCGA)
and Clinical Proteomic Tumor Analysis Consortium (CPTAC);
over 400 bioinformatics tools and best-practice workflows; and
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Pan-Cancer classification methods based on various models.

the high-performance computational capabilities for large-scale
analysis. The CGC simplifies the user experience by enabling
researchers to browse, query, and filter datasets, run their entire
analysis workflow on the platform, and even integrate their own
private tools and data.

Building on the data sources described above, the following
section  reviews methods  for

computational pan-cancer

classification.

3 Methods

Advances in biotechnology have significantly expanded the
application of gene sequencing in pan-cancer studies. The
proliferation of high-throughput sequencing data offers a critical
foundation for research. However, a key challenge lies in developing
efficient computational to extract

algorithms biologically

meaningful insights from these complex datasets. Current
methodologies for pan-cancer analysis are broadly categorized

into two frameworks: classical machine learning and deep
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learning. As illustrated in Figure 2 deep learning models can be
further subdivided into supervised and unsupervised approaches,
depending on the utilization of labeled data.

3.1 Pan-cancer classification model based
on machine learning

Feature selection innovations and model optimization strategies
in machine learning have significantly advanced pan-cancer
classification accuracy. To balance feature relevance and
parsimony, Kim et al. (2020) implemented a two-stage gene
selection strategy: ANOVA-based F-statistic ranking identified
top genes across 21 cancers, followed by frequency-based
filtering. Neural networks trained on 300 selected genes achieved
peak accuracy (90%), outperforming other classifiers. Mahin et al.
(2022) refined this approach by retaining only genes consistently
expressed across all 21 cancers and incorporating data smoothing/
oversampling, enhancing model robustness. Luo et al. (2023)
developed an ML approach to predict

cancer pI‘Ogl’lOSiS
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considering 32 cancer types from TCGA.Initially, the approach was
applied to hepatocellular carcinoma and then extended to other
types of tumors.

Beyond conventional methods, researchers have explored
hybrid and multi-algorithm frameworks. Khadirnaikar et al.
(2023) analyzed mRNA, miRNA, DNA methylation, and protein
of 33 different types of cancer from TCGA. Firstly, multi-omics data
was combined by concatenating the features for each sample, and
then the autoencoder was used to reduce the dimension of data.
Novel subtypes of cancer samples were identified by clustering
k-means. Further exploring the efficacy of the classifier, Elsadek
et al. (2019) employed a machine learning approach using gene
CNV data across six types of tumor. Their approach utilized an
information gain algorithm for gene selection and evaluated various
classifiers, with LR achieving superior performance, underscoring
machine learning’s role in cancer classification. Liu (2022) analyzed
the association with a correlation test of epi-driver CpG sites
between DNA methylation and gene expression profiles.
XGBoost and SHAP algorithms identified the best biomarkers in
five genes and used them as features for the generation of a random
forest model to identify cancer subtypes. Finally, Cheerla and
Gevaert (2017) and Al Mamun and Mondal (2019a) both
explored two-stage feature selection approaches. Cheerla’s team
reduced miRNA features
elimination, achieving the best classification with SVM radial

using correlation and recursive
among 21 tumor types. Mamun’s approach selected common
features for classifiers, finding SVM provided the best accuracy
these
underscore machine learning’s adaptability in addressing omics

for eight different cancers. Collectively, innovations

complexity while balancing feature parsimony and accuracy.

3.2 Pan-cancer classification model based
on deep learning

Although machine learning methods have been widely used to
study pan-cancer classification problems and achieved good results,
with the development of deep learning and the high performance
shown on classification tasks, more and more researchers have
started to use deep learning to improve the performance of
tumor classification models. In the field of deep learning, deep
learning methods can be classified into two categories based on
whether the models use the labels of the data, namely, supervised
learning and unsupervised learning (Alzubaidi et al., 2021).

3.2.1 Supervised classification models

Recent advancements in supervised deep learning have
demonstrated remarkable efficacy in pan-cancer classification
through tailored architectural innovations. Sun et al, 2018)
(ANN)
framework designed to classify 11 tumor types using raw mRNA

introduced GeneCT, an artificial neural network
expression data without feature engineering, achieving 98.2%
accuracy and underscoring the potential of end-to-end learning
in omics analysis. Complementing this approach (Cava et al., 2023),
applied principal component analysis (PCA) to reduce data
dimensionality before deploying the model. The neural network
achieved a mean accuracy of 84%, the random forest reached 86%,

and XGBoost achieved the highest performance with a mean
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accuracy of 90%. To address the challenges of limited sample
sizes in specific cancer types (Cho et al.,, 2023), proposed a meta-
learning method that integrates multi-omics data (transcriptomics,
proteomics, and clinical data from TCGA) to create predictive
models using survival information from 17 cancer types. Their
approach requires fewer samples than conventional deep learning
models, effectively mitigating data scarcity issues. Expanding this
paradigm (Divate et al., 2022), employed deep neural networks
(DNNs) to classify 33 cancer types. Their methodology integrated
expression-based gene screening with SHAP (Shapley Additive
exPlanations) interpretability, identifying critical biomarkers and
achieving superior performance in distinguishing cancers from
healthy controls.

To address high-dimensional data challenges (Wu et al., 2024)
developed DeepMoIC, a method combining deep graph
convolutional networks (GCNs) with autoencoders for cancer
subtype classification. By constructing a patient similarity
network (PSN) and leveraging GCNs, DeepMoIC outperformed
existing models on multi-omics datasets, highlighting its potential
for precision oncology. (Li et al., 2025) introduced DGHNN, a deep
graph and hypergraph neural network for pan-cancer related gene
prediction that takes biological pathways into consideration. This
method applies a deep graph and hypergraph neural network to
encode higher-order information in protein interaction networks
and biological pathways. This approach, along with the introduction
of skip residual connections and a feature tokenizer with a
transformer for classification, demonstrates how advanced
network architectures can capture the multi-level complexity of
biological systems, setting a new standard for performance. (Li et al.,
2020) tackled CNV sparsity by coupling Monte Carlo feature
selection (MCES), which evaluates feature stability via
randomized sampling, with self-normalizing neural networks
(SNNs) Their

achieved 79.8% accuracy in classifying four cancer types. These

to enhance training robustness. framework
studies collectively highlight how supervised architectures can be

customized to diverse omics modalities while balancing
performance and biological interpretability.

In recent years, due to the excellent performance of
convolutional neural networks (CNNs) on image classification
tasks, more and more researchers have started to apply these
networks to the classification problem of pan-cancer. For
instance (Ameen et al, 2025) proposed a stacked deep learning
ensemble model for multi-omics cancer type classification,
demonstrating that deep learning can be effectively applied to
high-dimensional biological data. Similarly (Lyu and Haque,
2018), firstly proposed the use of a convolutional neural network
to classify mRNA expression data by embedding high-dimensional
gene expression data into a two-dimensional image as the input of
the convolutional neural network to classify 33 different types of
tumors. Building on this, Mostavi et al. (Mostavi et al., 2020)
systematically compared CNN architectures (e.g., Inception
modules, residual connections), revealing that deeper networks
achieved 95. 82% precision on 33-class tasks that highlight the
impact of structural optimization. Addressing computational
inefficiency Khalifa et al, 2020), applied binary particle swarm
optimization (BPSO) to reduce the dimensionality of mRNA
from 20,531 to 512 features before CNN training, achieving

accuracy of 96. 9% on five types of tumors. Hybrid models also
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emerged as a promising frontier: (Huynh et al.,, 2019) combined
deep CNNs (DCNN) with SVM classifiers, where DCNNs extracted
high-order features and SVMs performed classification, reaching 76.
33% precision for 25 cancers. (Abdullahi et al, 2020) further
demonstrated the efficiency of fine-tuning pre-trained AlexNet
models on mRNA data, reaching 98.1% accuracy for five cancers
with minimal computational overhead. Beyond expression data (Ye
et al., 2021) encoded somatic mutation profiles into heatmap-like
“mutation maps,” enabling ResNet-50 and Inception-v3 models to
outperform traditional methods (89.7% vs. SVM’s 72.3%). Finally
(AlShibli and Mathkour, 2019) validated CNN§’ versatility in CNV
analysis, showing that a six-layer residual network (ResCNNG6)
surpassed standard CNNs and VGG-16 (86% accuracy for six
cancers), underscoring the efficacy of residual connections in
combating gradient vanishing. These innovations exemplify
CNNs’ adaptability to multi-omics integration through data
architectural cross-domain

transformation, refinement, and

transfer learning.

3.2.2 Unsupervised classification models
Unsupervised deep learning techniques have emerged as
powerful tools for pan-cancer classification, particularly in
scenarios with limited labeled data. Rong et al. (Rong et al,
2022)
clustering variational autoencoders (Mcluster-VAEs), based on a

proposed a computational approach, multi-omics
new probabilistic model of a deep learning method consisting of
clustering algorithm for multi-omics data to estimate posterior
cancer subtypes. Building on this (Al Mamun et al, 2020)
introduced the Concrete Autoencoder (CAE), an unsupervised
framework for identifying discriminative IncRNAs. The CAE
outperformed supervised methods (Lasso, RF, SVM-RFE) in
classifying 33 tumors, achieving 93% accuracy. To address feature
instability across CAE iterations (Al Mamun et al., 2021) later
proposed the multi-run CAE (mrCAE), which aggregated high-
frequency IncRNAs from 100 CAE runs to derive a stable subset of
69 markers. This refined set enabled accurate classification of
12 cancers, resolving reproducibility challenges inherent to
stochastic deep learning models. Expanding to multi-omics
integration (Zhang et al., 2019) developed OmiVAE, an end-to-
end model combining VAEs with a classification network. OmiVAE
first compressed the mRNA and DNA methylation data into low-
dimensional embeddings, then predicted 33 tumor types using a
three-layer neural network, achieving precision of 97. 49%. Finally
(Albaradei et al., 2021) designed MetaCancer, which used
convolutional VAE to extract features from mRNA, miRNA and
methylation data. When fed into a deep neural network (DNN)), this
multi-omics integration classified 11 cancers with 88.85% accuracy-
surpassing mRNA-only approaches by 14.2%. (Li et al, 2024)
proposed AVBAE-MODFR, a that
combines adversarial variational Bayes autoencoder for multi-

two-phase framework
omics embedding with a dual-net feature ranking module. Tested
on TCGA pan-cancer data, AVBAE-MODFR outperformed four
state-of-the-art ~ methods, highlighting its robustness in
representation learning and biomarker discovery. Compared with
earlier VAE-based models such as OmiVAE and MetaCancer,
AVBAE-MODFR not only integrates heterogeneous omics but
also incorporates an explicit feature ranking mechanism, thereby

enhancing interpretability and facilitating the identification of

Frontiers in Genetics

10.3389/fgene.2025.1667325

biologically meaningful markers. These innovations underscore
unsupervised learning’s potential to uncover robust biomarkers
and integrate heterogeneous omics data without reliance on
labeled datasets.

Figure 3 illustrates the growing prominence of deep learning in
pan-cancer research. It shows the percentage of all pan-cancer-
related articles that used deep learning methods for classification
over the past few years. A systematic review of papers published on
the PubMed and Web of Science platforms using search terms “pan-
cancer classification”, “deep learning” and “machine learning” from
2018-2024 revealed a steady increase in this ratio from 2018 to 2024.
To summarize the current landscape of pan-cancer classification, we
present an overview of relevant studies in recent years in Table 3.
This table highlights the variety of machine learning and deep
learning approaches, as well as the multi-omics data they employ.

3.3 Integration strategies

The integration of multi-omics data is a critical step in pan-
cancer research, as it provides a more comprehensive view of
cancer’s molecular mechanisms by combining information from
multiple platforms. Integration strategies are typically categorized by
the stage at which the data is combined. For instance, an early
integration approach, where mRNA and CNV data are simply
concatenated, may be easy to implement but can lead to a high-
dimensional feature space and potentially introduce noise (Zhao
etal., 2024). In contrast, an intermediate integration approach using
a variational autoencoder (VAE) to create a joint latent space can
handle the high dimensionality and may reveal more complex,
underlying relationships between omics types, but the learned
features are often less interpretable.

To better evaluate the performance of these pan-cancer
classification ~ models, researchers are developing new
benchmarks. These include integrating multi-omics data from
large consortia, assessing cross-cohort generalization, and shifting
the focus to more specific clinical endpoints beyond simple cancer
type classification. For example, integrating genomics from TCGA
with proteomics from CPTAC offers a more comprehensive
understanding of cancer’s molecular mechanisms, as proteins are
the functional molecules that execute cellular processes. A related
large-scale multi-omics benchmark, CMOB, integrates data from
the TCGA platform, providing an accessible and usable resource for
machine learning research (Yang et al., 2024).

Beyond these comprehensive datasets, evaluating a model’s
generalization ability across different patient cohorts is essential
for validating its robustness and reliability in diverse clinical settings.
In addition, new benchmarks are moving beyond the simple
classification of cancer types to include more refined clinical
endpoints such as subtype classification, stage prediction, survival
analysis, and prediction of response to treatment. These more
granular predictions are crucial for personalized medicine, as
they inform specific patient care strategies. Several recent case
studies highlight these advances. AVBAE-MODEFR is a deep
learning framework that integrates multi-omics data through
embedding and feature selection, showing potential clinical
applications in tumor diagnosis and precision medicine (Li et al.,
2024). TMO-Net is another model that is pre-trained on multi-
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The ratio of pan-cancer research using deep learning technologies.A systematic review of the relevant literature shows a steady increase in the use

of deep learning in pan-cancer research in recent years.

omics pan-cancer datasets to facilitate cross-omics interactions and
enable joint representation learning and inference on incomplete
omics data, thereby supporting various downstream oncology tasks
(Wang et al., 2024).

Future research is also expanding to incorporate new data types
and modalities that offer a more holistic view of tumor biology.
Single-cell multi-omics (e.g., sScRNA-seq, scATAC-seq) provides an
unprecedented resolution of tumor heterogeneity at the cellular
level, capturing differences between individual cells that are lost in
bulk omics data. In addition, integration of radiology and pathology
images with molecular data is a promising area. This represents a
different data modality (unstructured images) that requires
specialized models such as CNNs. Combining these visual cues
with molecular data can provide a more comprehensive view of the
tumor, bridging the gap between molecular mechanisms and the
morphological features observed in clinical practice.

4 Evaluation and discussion
4.1 Selection criteria

We systematically reviewed papers published on the Ovid and
Web of Science platforms. Our search criteria focused on machine
learning and multi-omics data for pan-cancer studies. We only
included full-text, English-language papers from peer-reviewed
journals that used artificial intelligence to analyze multi-omics
data on cancer samples. We excluded any papers that only
applied machine learning to a single cancer type or data type,
did not use cancer samples, or were themselves reviews or
proceedings.

4.2 Classification evaluation metrics
Classification performance evaluation metrics are essential to

objectively assess the effectiveness of classification models. Selecting
a high-performing classifier relies on using rigorous evaluation
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criteria. Accuracy is a common metric for evaluating overall
model performance in classification tasks. However, in pan-
cancer classification, sample size imbalance is a prevalent issue,
where some cancer types have many samples while others have few.
In such cases, the majority class can disproportionately influence
overall accuracy, diminishing its evaluative significance. For
example, a model trained on an imbalanced dataset might
achieve a deceptively high accuracy simply by correctly
classifying all samples from the majority class, while failing to
identify samples from the rarer, minority classes. Thus, relying
solely on accuracy is insufficient.

Therefore, it is necessary to consider other metrics that provide a
more complete picture of a model’s performance on multi-label,
imbalanced datasets. We analyze several evaluation metrics as
reported in the reviewed literature, including Precision (PR),
Recall (RC), Fl-score, Area Under the Receiver Operating
(AUC), and Matthews
Coefficient (MCC). Precision measures the proportion of true

Characteristic ~ Curve Correlation
positive predictions among all positive predictions, while recall
measures the proportion of true positives correctly identified
from all actual positives. The Fl-score provides a single value
that balances both precision and recall, making it particularly
useful for evaluating models on imbalanced data. The AUC and
MCC are also important for assessing overall performance, with
MCC providing a balanced measure that accounts for all four values

in a confusion matrix, regardless of class size.

4.3 Data sets

For pan-cancer classification research, multiple of the following
33 cancer types are commonly used for analysis. The types and
sample information of these 33 cancers are shown in Table 4.

Next, the analysis performed in terms of datasets employed
by the distinct research works is elaborated. Figure 4 depicts
several datasets utilized for pan-cancer classification. BRCA is
the most frequently utilized dataset in pan-cancer classification
research. In addition, the most commonly used datasets in pan-
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TABLE 3 Overview of pan-cancer classification methods.
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References Data Code link
source
Kim et al. (2020) ML (SVM,KNN) mRNA - 21 -
Mahin et al. (2022) ML (KNN) mRNA TCGA 22 https://github.com/Zwei-inc/panclassif
Luo et al. (2023) ML (SVM) Gene expression TCGA 32 -
Khadirmaikar et al. (2023) | ML (SVM) mRNA, miRNA,DNA GDC 33 https://github.com/seemark11/Pancancer-
Methylation subgroup-identification
Cheerla and Gevaert (2017) | ML (SVM) miRNA - 21 -
Al Mamun and Mondal, ML IncRNA - 8 -
(2019a)
Elsadek et al. (2019) ML (SVM,Random CNV - 6 -
forest)
Liu (2022) ML (Random forest) DNA Methylation, Gene - 11 -
expression
Sun et al. (2018) SDL mRNA - 11 http://sunlab.cpy.cuhk.edu.hk/GeneCT/
Cava et al. (2023) SDL (Neural Gene expression - 16 https://github.com/claudiacava/Applied-
Network) Sciences
Cho et al. (2023) SDL (Neural Gene expression TCGA 17 https://github.com/berkuva/TCGA-omics-
Network) integration
Mostavi et al. (2020) SDL (CNN) mRNA - 33 https://github.com/chenlabgccri/
CancerTypePrediction
Khalifa et al. (2020) SDL (CNN) mRNA - 5 -
Huynh et al. (2019) SDL (DCNN) mRNA - 25 -
Abdullahi et al. (2020) SDL (CNN) mRNA - 5 -
Li et al. (2020) SDL (SNN) CNV - 4 https://github.com/KohTseh/
CancerClassification
Rong et al. (2022) DL miRNA,DNA Ucsc 32 https://github.com/luyiyun/MCluster-VAEs
methylation,CNV
Albaradei et al. (2021) UDL (CVAE) mRNA, miRNA,DNA - 11 https://github.com/SomayahAlbaradei/
Methylation MetaCancer
Al Mamun et al. (2020) UDL (CAE) IncRNA - 33 -
Al Mamun et al. (2021) UDL (CAE) IncRNA - 12 -
Zhang et al. (2019) UDL (VAE) mRNA,DNA Methylation Ucsc 33 https://github.com/zhangxiaoyul1/OmiVAE
Li et al. (2024) UDL (VAE/CVAE) mRNA, miRNA,DNA - 33 https://github.com/zhanglabNKU/AVBAE-
Methylation MODFR

ML: machine learning; SDL: supervised deep learning; UDL: unsupervised deep learning; CNN: convolutional neural network; SNN: self-normalizing neural network; CVAE: convolutional

variational autoencoder; CAE: concrete autoencoder; VAE: variational autoencoder.

cancer classification also

include KIRC, LUAD, COAD,

Haque, 2018) reported a 95.59% accuracy using a convolutional

KIRP, LIHC, etc.

4.4 Comparison and analysis

As reported in the reviewed literature, a performance
comparison of various pan-cancer classification methods on the
mRNA gene expression dataset for 33 cancer types reveals that deep
learning models generally achieve higher classification accuracies
than traditional machine learning methods. For instance (Lyu and
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neural network, a performance that surpasses many of the reported
accuracies of traditional machine learning algorithms on similar
tasks. This qualitative comparison of architectures suggests that
deep learning models are often more capable of distinguishing
between 33 different cancer types due to their ability to learn
complex, hierarchical features from high-dimensional data.

Next, the classifiers used in different research works are elaborated
and analyzed. Figure 5 illustrates several common classifiers utilized
for pan-cancer classification. This figure was generated by counting
the primary classifiers used in the reviewed articles. A classifier was
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TABLE 4 Types of cancer and number of samples.
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No. Cancer name Code Cases
1 Adeno-cortical carcinoma ACC 79
2 Bladder-Urothelial-Carcinoma BLCA 408
3 Breast-invasive carcinoma BRCA 1093
4 Cervical and endocervical cancers CESC 304
5 Cholangiocarcinoma CHOL 36
6 Colon-adenocarcinoma COAD 457
7 Lymphoid-Neoplasm-Diffuse-Large B-cell-Lymphoma DLBCL 48
8 Esophageal carcinoma ESCA 184
9 Glioblastoma multiforme GBM 160
10 Head and Neck squamous cell carcinoma HNSC 520
11 Kidney-Chromophobe KICH 66
12 Kidney renal clear cell carcinoma KIRC 533
13 Kidney renal papillary cell carcinoma KIRP 290
14 Acute-Myeloid Leukemia LAML 179
15 Brain Lower-Grade Glioma LGG 516
16 Liver-hepatocellular carcinoma LIHC 371
17 Lung adenocarcinoma LUAD 515
18 Lung squamous cell carcinoma LUsC 501
19 Mesothelioma MESO 87
20 Ovarian serous cystadenocarcinoma ov 304
21 Pancreatic adenocarcinoma PAAD 178
22 Pheochromocytoma and Paraganglioma PCPG 179
23 Prostate-adenocarcinoma PRAD 497
24 Rectum-adenocarcinoma READ 166
25 Sarcoma SARC 259
26 Skin Cutaneous Melanoma SKCM 469
27 Stomach adenocarcinoma STAD 415
28 Testicular Germ Cell Tumors TGCT 150
29 Thyroid carcinoma THCA 501
30 Thymoma THYM 120
31 Uterine Corpus Endometrial Carcinoma UCEC 545
32 Uterine Carcinosarcoma UCs 57
33 Uveal Melanoma UVM 80

counted if it was the main model for the classification task. The raw
counts were then converted to percentages to show the proportion of
each classifier type. As shown in the figure, the most frequently used
machine learning classifiers in pan-cancer classification studies are
SVM, RF, ANN, and KNN, respectively. Meanwhile, among deep
learning classifiers, CNNs and fully connected deep neural networks
(DNNs, e.g., multilayer perceptrons) were the most frequently used.
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4.5 Discussion

In our review, we have summarized the diverse ML and DL
algorithms applied to pan-cancer multi-omics analysis. In many
cases, proposed methods were evaluated against existing algorithms,
often showing comparable levels of performance. However, no
systematic comparison of different approaches on a common
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dataset has yet been conducted. Despite the variety of methods, there
is still no standardized framework applicable in clinical practice. A
major challenge remains the difficulty of generalizing results across
studies and ensuring reproducibility. To address this, automatic and
standardized methodologies that can be readily applied by non-
expert users should be developed to better support clinical
decision-making.

The application of ML and DL to multi-omics data also presents
significant challenges. As multi-omics data derived from different
platforms have varying distributions, this must be carefully
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data 2021).
Furthermore, the integration of multiple omics datasets can
generate noise and introduce redundant information. New

considered before integration (Reel et al,

algorithms must also be designed to effectively handle missing
observations, as samples may be absent in one or more omics
datasets (Leng et al., 2022).

In addition, class imbalance and overfitting are commonly
reported issues in biomedical datasets. A training set composed
of imbalanced classes can negatively influence the accuracy of a
classifier, necessitating the use of statistical techniques such as

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1667325

Wang et al.

under- or oversampling (Misra et al., 2019). Moreover, the high-
dimensional nature of multi-omics features can impact a classifier’s
performance, as correlated features introduce redundant
information. To address this, optimal feature selection algorithms
should be applied to select a limited, yet representative, subset

of features.

5 Challenges and future work

Current pan-cancer classification methods leverage diverse data
types and models to improve cancer type differentiation and inform
clinical decision-making. This review systematically summarizes the
methodologies, data sets, and evaluation metrics used in pan-cancer
research, highlighting the progress in utilizing genomics,
transcriptomics, and epigenomics to analyze tumor heterogeneity.
We

categorizing them based on the models used and assessing their

reviewed current pan-cancer classification methods,
performance across different data types.

Despite these advancements, challenges persist. Many models
heavily depend on labeled data, overlooking the potential of

abundant unlabeled data. Pan-cancer studies often focus on

molecular features, neglecting clinical correlations with
diagnosis and treatment. Additionally, data imbalance and the
underrepresentation of some tumor types lead to

unstable models.

Moreover, a lack of standardized benchmarks, limited cross-
cohort validation, and a need for uncertainty quantification and
calibration remain significant obstacles for the field. The absence of
standardized and reproducible benchmarks hampers fair
comparison across methods. We encourage the community to
establish unified benchmark datasets with consistent splitting
protocols—such as 5-fold stratified cross-validation (CV)
standardized in TCGA-33 mRNA data with fixed preprocessing
steps (e.g., gene filtering, normalization, and batch-effect correction)
to facilitate transparent and reproducible evaluation. In addition, the
use of common baseline models (e.g., logistic regression, random
forest, standard deep neural networks) alongside more advanced
architectures will help future studies assess genuine performance
gains. Data imbalance, especially the underrepresentation of rare
cancers, further restricts the generalizability of the model, calling for
strategies such as data augmentation, few-shot learning, or federated
learning to mitigate scarcity.

Future studies should prioritize semi-supervised learning (SSL)
frameworks to leverage both annotated and unannotated datasets,
thereby addressing data scarcity challenges. Self-supervised pre-
training on large-scale unlabeled datasets could uncover tumor
heterogeneity and enhance downstream classification tasks.
Incorporating multi-modal data fusion—combining genomics,
proteomics, and normal tissue data—could bridge the gap
between molecular research and clinical applications.Beyond
general cancer classification, future research must pivot toward
more granular, clinically actionable predictions. This includes
predicting cancer subtypes, disease stage, patient survival rates,
and response to specific treatments, which directly informs
personalized medicine.

In conclusion, addressing data limitations, imbalance, and
clinical integration using advanced techniques such as SSL and
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multimodal fusion will enable more robust pan-cancer
classification models, improving cancer prediction, diagnosis, and

treatment for better patient outcomes.

6 Clinical translation and ethics

Developing robust pan-cancer models is the first step;
translating them into effective clinical tools requires addressing a
second set of critical challenges related to translation,
generalizability, and ethics. Although a model may perform well
on a single curated dataset, its utility in real-world clinical practice
depends on its performance in diverse patient populations and
healthcare systems.

Currently Available vs. Necessary Validation. Pancancer models
are mainly in the research and development stages. Models that can
now be used are typically those integrated into established platforms
(like the CGC) for secondary research analysis, offering broad tumor
type classification or basic survival predictions on standardized
datasets (e.g., TCGA, CPTAC). However, most high-performing
models require rigorous, multi-center external validation before they
can influence patient care. To ensure external validity, models must
be evaluated in data from multiple centers, reducing batch effects
and acquisition bias that can arise when trained in the data set of a
single institution (Cen et al., 2025). Batch effects, often stemming
from variations in sequencing platforms or laboratory protocols
across different institutions, can introduce confounding signals that
a model may mistakenly learn as biological features. Similarly,
acquisition bias can occur if certain rare cancer subtypes or
patient demographics are disproportionately represented in the
training data from a single center, limiting the model’s ability to
generalize to a broader patient cohort.

Equally important is equitable performance across diverse
demographic groups. The precision of a model must remain
consistent regardless of the race, sex, or age of the patient, to
ensure fair clinical outcomes and prevent health disparities from
being exacerbated (Desai et al., 2022). These validation efforts must
be accompanied by strict attention to data privacy and informed
consent, particularly given the reliance of pan-cancer studies on
large-scale, sensitive patient data. Concurrently, the increasing
complexity of deep learning models highlights a critical need for
interpretability, enabling clinicians to understand model predictions
and extract meaningful biomarkers that inform clinical decision-
making with confidence (Su et al, 2024). Going beyond simply
identifying individual genes, interpretable models can provide
pathway-level attribution, linking predictions to entire biological
processes (e.g., the p53 signaling pathway), which offers more
clinically actionable and biologically meaningful insights.

To be reliable for high-stakes clinical decisions, a model must
also provide more than a single prediction. It is crucial for models to
offer uncertainty estimation, which allows clinicians to gauge the
confidence of the model in its prediction. A well-calibrated model,
for example, will have its predicted probability (e.g., a 90% chance of
a certain tumor type) accurately reflect its true correctness. Such
reliability measures are essential to build trust and ensure the safe
deployment of these models in patient care. Furthermore, potential
regulatory considerations are paramount; any model intended for
diagnostic or prognostic use must undergo rigorous review by
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regulatory bodies (such as the FDA) to ensure safety, efficacy, and
clinical benefit.

In conclusion, the path from a pan-cancer model to a clinical
tool is complex. It requires a holistic approach that moves beyond
technical performance metrics to embrace the crucial factors of
external validation, cost-effectiveness, and ethical responsibility.
This comprehensive perspective is essential for developing
models that are not only accurate in a research setting but are
also robust, trustworthy, and beneficial in real-world clinical
applications.
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