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1 Introduction

Mosquitoes (Diptera: Culicidae) are an important group of insects due to the important
role played by culicid species as disease vectors. Some Aedes species are competent to vector
human and veterinary relevant viruses, such as dengue, chikungunya, or Japanese
encephalitis viruses. In addition, there are some highly invasive Aedes species
(Lounibos, 2002). The two most widespread species globally are Aedes albopictus, native
to Southeast Asia, and Aedes aegypti, native to Africa, for which genomes have been
sequenced previously: Ae. aegypti AaegL5.0 (GCF_002204515.2; Matthews et al., 2018) and
Ae. albopictus AalbF5 (GCF_035046485.1; Palatini et al., 2020). Globally, Ae. aegypti is the
primary vector of chikungunya and dengue viruses (Sousa et al., 2012; Jansen et al., 2018).
Aedes albopictus is a secondary vector to Ae. aegypti for chikungunya and dengue viruses
(Jansen and Beebe, 2010; Sousa et al., 2012); however, it is the most important vector for
autochthonous cases of dengue and chikungunya in Europe (Rezza et al., 2007; Gjenero-
Margan et al., 2011; Succo et al., 2016). Both Ae. aegypti and Ae. albopictus are invasive
species in Europe (European Centre for Disease Prevention and Control and European
Food Safety Authority, 2023).

Another more recent invader to North America (Kaufman and Fonseca, 2014) and
Europe is Aedes japonicus japonicus, while its sister species Aedes koreicus has established
itself in Europe (European Centre for Disease Prevention and Control and European Food
Safety Authority, 2023). Over the last two to three decades, Ae. j. japonicus has spread
beyond its original area of distribution in East Asia via the import of used tires and trade
(Kaufman and Fonseca, 2014; Koban et al., 2019) and is likely to expand its range of area
distribution in the future (Cunze et al., 2020). Annotated genomes for Ae. j. japonicus and
Ae. koreicus (GCA_034211315.2, GCA_024533555.2) have only recently become available
(Catapano et al., 2023; Nagy et al., 2024).

Here, we describe an annotated genome and a complete mitochondrial sequence of Ae.
j. japonicus from a laboratory strain in Japan (Hoshino et al., 2010). This is the first study
wherein individuals from the native range of this species (Kaufman and Fonseca, 2014)
were sequenced.
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The mitochondrion of Ae. j. japonicus can help in constructing
phylogenies. For example, the genus Aedes and the tribe of Aedini
have been re-organized based on morphological analyses
(reviewed in Wilkerson et al., 2015) and molecular analyses
(Zadra et al., 2021). Thus, genetic datasets are highly desirable
for creating a well-founded phylogeny of Aedini or Aedes (Zadra
et al., 2021).

Our genome assembly can facilitate marker selection for
environmental associations and genotype-to-phenotype-
association studies. By doing so, the genomic basis of vector
competence or invasion success can be identified within the
species Ae .j. japonicus and also compared to that of other Aedes
spp. More specifically, the created dataset allows conducting
comparative studies regarding diapause (Kreß et al., 2016; Boyle
et al., 2021), thermotolerance (Kramer et al., 2023; Couper et al.,
2025), and population structure (Smitz et al., 2021), all considered
potential parameters influencing invasiveness (Lahondère and
Bonizzoni, 2022).

Although Ae. albopictus and Ae. aegypti are the primary vectors
of dengue and chikungunya viruses, Ae. j. japonicus is only a minor
vector in the transmission of disease agents, and its vector
competence is largely based on laboratory competence studies
(Medlock et al., 2012; Jansen et al., 2018; Wagner et al., 2018).
Both Ae. j. japonicus and Ae. albopictus can undergo photoperiodic
diapause (Armbruster, 2016; Krupa et al., 2021), which benefits the
species’ survival in more temperate regions. In addition, this dataset
provides data to study candidate genes related to not only vector
competence but also insecticide resistance. It also provides genomic
resources for marker identification, which can be used in eDNA
approaches for a more rapid species detection in the field (Wittwer
et al., 2024), genetic control measures such as gene drives,

Wolbachia-based methods (Verkuijl et al., 2025; Wang et al.,
2025), or RNA interference (Müller et al., 2023).

2 Methods

2.1 Origin of biological material and
DNA isolation

For DNA and RNA isolation, the offspring of ten female Ae. j.
japonicus were collected during the egg stage from the “Narita”
laboratory strain (Hoshino et al., 2010) and raised to the desired
stages (Figure 1A) for DNA and RNA isolation.

A pool of five sister species in the adult stage was used for DNA
MinION long-read and Illumina short-read sequencing, while a
single adult female (another sister) was used for PacBio DNA
sequencing. DNA was isolated using the protocol “HMW gDNA
Extraction from Single Insects” (10x Genomics, Pleasanton, CA,
United States). The fragment size distributions and DNA
concentrations were assessed using TapeStation (Agilent
Technologies, Santa Clara, CA, United States) and Qubit
Fluorometer measurements using the DNA BR kit (Thermo
Fisher Scientific, Waltham, MA, United States).

2.2 DNA sequencing data

The Illumina sequencing provider (BGI Hong Kong) handed
over already filtered, so-called clean reads in eight pairs. These
paired-end read files were adapter-trimmed using autotrim 0.6.1
(Waldvogel et al., 2018) and its dependencies FastQC, Trimmomatic

FIGURE 1
(A) Biological material for DNA and RNA isolation. We used closely related (offspring of one female) individuals for DNA isolation to minimize
variation. (B) Snail plot of statistics of the Ae. j. japonicus assembly.
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0.39 (Bolger et al., 2014), and MultiQC (Ewels et al., 2016). After a
quality-check, one file pair was additionally cropped to 140 bp in
length using Trimmomatic 0.39. All trimmed reads were combined
into one forward, one reverse (both paired-end), and one unpaired
fastq file. Illumina reads were classified in Kraken 2 (paired-end files
with the additional option-paired) using a customized database
consisting of the Kraken 2 databases “bacteria,” “archaea,”
“human,” and “UniVec-Core”.

MinION library preparation followed the manufacturer’s
protocol for the 1D-ligation kit (SQK-LSK109) of Oxford
Nanopore Technologies (ONT). In total, eight flow cells in three
runs were used. ONT-basecalling from fast5 files was conducted
with Guppy 3.4.5 (available via registering at https://nanoporetech.
com/support) using default settings and the following specifications:
the flowcell ID, the name of the kit used for library preparation
(SQK-LSK109), and the device (device auto). For the single female
species, one run on the PacBio Sequel II in CCS mode was
performed. The Guppy-basecalling includes adapter trimming
and Q-score-filtering.

2.3 RNA sequencing

For RNA extractions, 100 eggs, 15 L2 larvae, eight L4 larvae, four
pupae, and two adult male and two adult female species were used
(Figure 1A). Tissue samples were collected in TRIzol and extracted
using the Zymo RNA Kit (Zymo Research). Eggs, larvae, and pupae
were pooled for producing an immature pool. The fragment size
distributions and RNA concentrations per pool were assessed using
TapeStation (Agilent Technologies) and a Qubit Fluorometer with
the Qubit RNA HS kit measurements (Thermo Fisher Scientific).
Library construction and sequencing on a BGISEQ-500 Illumina
platform were carried out at BGI Hong Kong. Raw RNA Illumina
reads were quality-checked and adapter-trimmed using autotrim
0.6.1 (Waldvogel et al., 2018) and its dependencies FastQC,
Trimmomatic 0.39 (Bolger et al., 2014), and MultiQC (Ewels
et al., 2016). HISAT2 (Kim et al., 2019) was used to map the
RNA sequencing reads to the genome assembly.

2.4 Mitochondrial genome

Raw PacBio circular consensus sequencing (CCS) reads with
adapters were used in NOVOPlasty 4.2 (Dierckxsens et al., 2016) to
assemble the mitochondrion of Ae. j. japonicus. For annotations,
GeSeq (Tillich et al., 2017) and MITOS2 Galaxy 2.0.6 (Al Arab et al.,
2017; Donath et al., 2019) were used. Using Geneious Prime 2021.2.2
(Biomatters Limited), the origin was manually set, the sequence was
circularized, and the annotations were curated manually.

2.5 Genome size estimations

We used two in silico genome size estimation methods based on
k-mers and read mapping. Jellyfish 2.3.0 (Marçais and Kingsford,
2011) was used to count k-mers in the Ae. j. japonicus Illumina
paired-end reads processed by Kraken 2 v2.0.8 (Wood et al., 2019),
which were returned as unclassified. The online version of

GenomeScope 2.0 (Ranallo-Benavidez et al., 2020) was used to
estimate a k-mer-based genome size (Supplementary Figure S1).
backmap.pl v0.5 (Schell et al., 2017; Pfenninger et al., 2022)
(dependencies: bwa 0.7.17-r1188, minimap 2 2.29-r1283,
samtools 1.20, qualimap 2.2.1, bedtools 2.28.0, and multiqc 1.9)
was used to estimate the fraction of the assembled reads via the
mapping rate and for genome size estimation with the ModEst
method (Pfenninger et al., 2022).

Flow cytometry was used as a sequencing-free method for
genome size estimation. Genome sizes for Ae. j. japonicus and Ae.
koreicus were estimated following a flow cytometry protocol with
propidium iodide-stained nuclei (Hare and Johnston, 2012)
using the modification of the method proposed by Männer
et al. (2024). We included Ae. koreicus here because no flow
cytometric genome size estimate exists for this species
(Supplementary Table S1). One whole adult mosquito was
used per suspension and chopped with a razor blade in a Petri
dish. Two adults per species (one male and one female each,
collected as sympatrically occurring pupae on the graveyard
Wiesbaden–Kloppenheim on 27 May 2025, and lab-reared to
adults) were measured on three consecutive days to minimize
instrumental errors.

2.6 Genome assembly, scaffolding, and
gap closing

A de novo genome was assembled with PacBio CCS reads with
the Flye 2.8 assembler (Kolmogorov et al., 2019). We identified the
mitochondrial sequence in the Flye assembly using blast 2.10.0
(Altschul et al., 1990), and the respective contigs (>90% target
sequence identity and all blast hits per contig >70% contig
length) were removed to ensure that the mitochondrion was
removed but nuclear mitochondrial DNA segments (NUMTs)
were retained in the nuclear genome.

Subsequently, several rounds of scaffolding and gap closing were
conducted (Supplementary Figure S2): TheMinION long reads were
used to scaffold the Flye assembly using SLR (Luo, 2014). TGS-
GapCloser 1.0.1 (Xu et al., 2020) was applied to close gaps by first
using the PacBio CCS reads and then the constructed continuous
long reads (“CLR” reads) together with Illumina reads. The latter
were used for polishing the newly added “CLR”-gap sequence inside
TGS-GapCloser. “CLR” reads are all PacBio subreads, which were
not involved in the generation of a CCS read. They were filtered for
the longest per zero-mode waveguide. After this sequence extension,
SSPACE (Boetzer et al., 2011) was used to re-scaffold using the
“CLR” reads, followed by another two-step gap closing with TGS-
GapCloser using CCS reads and “CLR” and Illumina reads, as
described above. This workflow allowed the incorporation of all
the generated sequencing data (MinION long reads, Illumina short
reads, and PacBio CCS reads) into the genome assembly
(Supplementary Figure S2).

Every step of the genome assembly was evaluated regarding
quality using QUAST 5.0.2 (Gurevich et al., 2013) and regarding
completeness using BUSCO 5.4.6 with the diptera_odp10 gene set in
the genome mode. The process of gap closing and scaffolding
(Supplementary Figure S2) was checked to ensure no reduction
in the quality of the resulting assembly.

Frontiers in Genetics frontiersin.org03

Reuss et al. 10.3389/fgene.2025.1667262

https://nanoporetech.com/support
https://nanoporetech.com/support
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1667262


TABLE 1 Genome assembly (A) and annotation statistics (B) of selected Aedes spp. genomes. Calculations of contiguity statistics by a custom script. CDS:
coding exon regions. Total gene space: sum of all nucleotides that are annotated as a gene. Single CDS mRNA: number of mRNAs that only have a single
coding exon.

(A) Assembly statistics

Aedes species j. japonicus
This study

japonicus
GCA_034211315.2

koreicus
GCA_024533555.2

albopictus
GCF_035046485.1

aegypti
GCF_002204515.2

Quast

No. of scaffolds 6,029 25,235 6,100 1,497 2,310

Total scaffold length (bp) 1,185,987,502 1,389,713,034 1,100,040,858 1,344,164,507 1,278,732,104

Scaffold N50 (bp) 712,605 118,241 329,610 450,188,506 409,777,670

No. of Ns per 100 kbp 999.63 199.05 2.82 125.87 1.79

No. of contigs 6,744 25,703 6,127 6,007 2,539

Total contig length (bp) 1,174,131,623 1,386,947,059 1,100,009,795 1,342,452,197 1,278,709,169

Contig N50 (bp) 677,340 112,964 329,031 1,015,000 11,758,062

GC% 39.44 39.50 39.67 40.33 38.18

%BUSCO (n = 3,285)

Complete 92.9 92.4 84.0 95.7 96.7

Single-copy 83.5 78.8 70.7 90.7 93.4

Duplicated 9.4 13.6 13.3 5.0 3.3

Fragmented 1.7 2.4 2.7 1.6 1.6

Missing 5.4 5.2 13.3 2.7 1.7

(B) Annotation statistics

Aedes species j. japonicus
This study

koreicus
GCA_024533555.2

albopictus
GCF_035046485.1

aegypti
GCF_002204515.2

Continuity statistics

No. of genes 23,878 21,377 23,630 18,293

No. of mRNA 28,836 22,580 33,058 28,304

No. of CDS 120,432 87,069 171,395 173,240

Mean mRNAs/gene 1.21 1.06 1.40 1.55

Mean CDSs/mRNA 4.18 3.86 5.18 6.12

Median gene length (bp) 2,027 2,068 4,392 5,172

Median mRNA length (bp) 2,223 2,081 14,453 29,581

Median CDS length (bp) 180 217 196 187

Total gene space (bp) 407,892,850 144,700,806 738,863,314 683,632,137

Total mRNA space (bp) 407,892,850 144,698,715 702,543,701 669,443,925

Total CDS space (bp) 28,457,713 24,159,712 38,510,628 24,237,954

Single CDS mRNA (bp) 4,854 3,931 5,908 2,031

%BUSCO (n = 3,285)

Complete 91.4 81.2 98.5 99.4

Single-copy 62.3 48.7 61.8 60.5

Duplicated 29.1 32.5 36.7 38.9

(Continued on following page)
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2.7 Structural annotation

A reference-based annotation of the Ae. j. japonicus genome was
produced using the GeMoMa 1.9 software (Keilwagen et al., 2019),
own RNA sequencing data, and the Ae. albopictus and Ae. aegypti
annotations for reference (GCF_035046485.1; GCF_002204515.2).
The annotation of Ae. koreicus (GCA_024533555.2) was
additionally included as a third reference in a second GeMoMa
run (Supplementary Table S3).

In addition, an annotation with BRAKER 3.0.3 (Stanke et al.,
2008; Li et al., 2009; Barnett et al., 2011; Lomsadze et al., 2014;
Buchfink et al., 2015; Hoff et al., 2016; Brůna et al., 2021) with RNA
sequencing data as evidence was computed.

BRAKER and GeMoMa annotations for Ae. j. japonicus were
compared regarding contiguity statistics that were calculated
with a custom script by author TS (named “contiguity
statistics” in Table 1, Supplementary Tables S2, S3) and
regarding BUSCO 5.4.6 statistics using the protein sequences
as input (Supplementary Table S2). Complete and single-copy
BUSCO gene IDs unique to the GeMoMa annotation were
extracted and merged with the BRAKER annotation’s BUSCO
IDs using gff-merge and gff3_to_fasta of the GFF3toolkit 2.1.0
(Chen et al., 2019). Since the merging did not improve the
BRAKER annotation substantially (Supplementary Figure S4;
Supplementary Table S2), the latter alone was used for
subsequent analyses.

2.8 Functional annotation and detection of
integrated virus sequences

InterProScan 5.61.93 (Jones et al., 2014) with the options [-f tsv
-iprlookup -pa -goterms -dp -cpu 54] and blastp 2.14.0 with options
[-num_threads 70 -max_hsps 1 -max_target_seqs 1 -outfmt 6] were
run against the Swiss-Prot database (The UniProt Consortium et al.,
2025); Pannzer2 web version (Törönen and Holm, 2022) and
GhostKOALA web version (Kanehisa et al., 2016) were run to
functionally annotate the amino acid file of the Ae. j. japonicus
BRAKER annotation and the annotations of Ae. albopictus and Ae.
aegypti for comparison (Supplementary Table S4;
Supplementary Figure S5).

Integration of viral sequences was checked using a published
database for endogenous viral elements (Palatini et al. 2020; their
additional file 4) identified (tblastn 2.14.0 with options [-max_hsps
1 -max_target_seqs 1 -outfmt 6]; Altschul et al., 1990) in the
respective Aedes amino acid files (Supplementary Table S4;
Supplementary Figure S5).

3 Data analysis

3.1 Mitochondrion

The mitochondrial genome is available under the GenBank
accession-number MZ566802 and NCBI accession-number NC_
081591.1. The total length is 16,848 bp. As of 25 June 2025, seven
additional complete mitochondrial sequences of the species are
available (OP373191.1, OR668893-4.1, PQ588181.1, and
PV094741-3.1), generated from mosquitoes originating from Italy,
Germany, the Netherlands, andHawaii, USA. Thus, this is the firstAe.
j. japonicus mitochondrion from the species’ native range (Japan).

3.2 Assembly and genome size estimates

An Ae. j. japonicus assembly was obtained with a total length of
1.2 Gb, a contig N50 of 677 kb, a scaffold N50 of 712 kb, and
6,029 scaffolds (Figure 1B; Table 1A). The BUSCO protein set was
92.9% complete, with only 1.7% fragmented BUSCOs (Figure 1B).
Flow cytometric genome size estimates were 1.3 Gb for Ae. j.
japonicus as well as for Ae. koreicus (Supplementary Table S1).
The latter is in line with the size of the Ae. koreicus genome (1.1 Gb;
Supplementary Table S1; Nagy et al., 2024). The k-mer-based
estimate of Ae. j. japonicus was 695 Mb in length, and the
mapping-based estimate was the best performing, regarding peak
shape, with mapped CCS reads. The mapping-based genome size
estimate was 1.2 Gb (Supplementary Figure S3). This compilation of
genome size estimates can facilitate calculations for genome
coverage and sequencing costs for further projects.

3.3 Structural and functional annotations

The annotation with BRAKER resulted in 23,878 predicted
protein-coding genes with a median length of 2,027 bp. Protein
sequences of the predicted genes showed a BUSCO completeness of
91.4% (Table 1B). Among the protein-coding genes, 99%
(28,458 genes) could be functionally annotated with at least one
of the applied methods, but GO terms could be found for 60% of the
sequences (Supplementary Table S4).

3.4 Comparisons to other Aedes genomes

The size of the nuclear genome assembly of Ae. j. japonicus is
comparable to those of other genomes within Aedes (Supplementary

TABLE 1 (Continued) Genome assembly (A) and annotation statistics (B) of selected Aedes spp. genomes. Calculations of contiguity statistics by a custom
script. CDS: coding exon regions. Total gene space: sum of all nucleotides that are annotated as a gene. Single CDS mRNA: number of mRNAs that only
have a single coding exon.

(B) Annotation statistics

Aedes species j. japonicus
This study

koreicus
GCA_024533555.2

albopictus
GCF_035046485.1

aegypti
GCF_002204515.2

Fragmented 2.8 2.8 0.2 0.2

Missing 5.8 16.0 1.3 0.4
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Table S1). The Ae. j. japonicus assembly has slightly better statistics
than the publicly available assembly (GCA_034211315.2) regarding
continuity and BUSCO completeness (Table 1A). The GC content is
the same as in the GCA_034211315.2 assembly and comparable to
the sister species Ae. koreicus (Table 1A). For the threeAedes species,
a comparable number (60%–70%) of integrated virus sequences
could be detected (Supplementary Table S4; Supplementary Figure
S5). The slightly lower number of viruses that could be recovered in
the Ae. japonicus annotation is explainable by the lower quality of
the scaffold-level Ae. j. japonicus genome compared to that of the
chromosome-level genomes of Ae. albopictus and Ae. aegypti or the
selection of the input virus database. A biological reason could be the
species-specificity of viral integrations.

4 Dataset usage and availability

4.1 Dataset re-use potential

The dataset presented here can be used in subsequent analyses
regarding phylogeny, evolution of diapause and invasiveness,
adaptation to non-native habitats, and the search for genetic
targets of vector control measures. It is the first time that
individuals from the native range of Ae. j. japonicus were
sequenced (nuclear and mitochondrial genomes), allowing
comparative studies regarding differences between native and
invasive populations of the species. Differences could occur due
to the adaptation to the new environment during the invasion
process. Important phenotypic traits such as diapause, heat
tolerance, or insecticide resistance could be altered during
invasion. The dataset presented here also fills a gap of knowledge
regarding comparative studies between well-studied primary (Ae.
aegypti and Ae. albopictus) and understudied secondary (Ae. j.
japonicus and Ae. koreicus) vector species regarding their
different competences for arboviral transmission.
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