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Chromosomes 3 and 8 harbor genes essential for neurodevelopment, skeletal
formation, and metabolic regulation. We report a case of two half-siblings with
neurodevelopmental delay and intellectual disability who inherited a derivative
chromosome 3 from their asymptomatic mother. Chromosomal microarray
analysis first identified a 7.12 Mb deletion in 3p26.3-p26.1 and a 48.86 Mb
duplication in 8g22.1-g24.3, and findings were further characterized by whole
genome sequencing and manual structural interpretation. The 3p deletion
involved four pathogenic genes (CHL1, CNTN6, CNTN4, ITPR1) associated
with cognitive impairment, ataxia, and motor dysfunction. The 8q duplication
affected 50 dosage-sensitive genes implicated in developmental and
neurological disorders. Together, these chromosomal imbalances explain the
siblings’ phenotype and underscore the contribution of gene dosage effects to
neurodevelopmental disease. This case highlights the utility of combining
chromosomal microarray and genome sequencing in the diagnosis of
complex rearrangements and emphasizes the importance of early genetic
counseling and intervention.

derivative chromosomes, WGS, neurodevelopmental disorders, 3p deletion syndrome,
8q duplication, case report, chromosomal rearrangement, structural variation

Introduction

Chromosome 3 and chromosome 8 play crucial roles in human development,
containing genes essential for neurological, skeletal, and metabolic functions. The short
arm of chromosome 3 (3p) harbors genes associated with neurodevelopmental processes,
and deletions in this region have been linked to developmental delay, intellectual disability,
and congenital anomalies (Shoukier et al., 2013). The long arm of chromosome 8 (8q)
harbors genes essential for craniofacial development, skeletal growth, and metabolic
regulation. Duplications within this region have been associated with syndromic
phenotypes, including intellectual disability and characteristic facial dysmorphism
(Hancarova et al, 2013). Understanding the combined impact of genetic
rearrangements in cases of neurodevelopmental disorders is crucial as these changes
can result in a disruption of the dosage-sensitive genes that are essential for brain
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TABLE 1 ISCN/HGVS of mother and siblings.

Individual  ISCN annotation (GRCh37)

HGVS annotation (GRCh37)

10.3389/fgene.2025.1662915

Notes/Interpretation

Mother seq [GRCh37] der (3)del (3) (pterp26.1)ins (3;
8) (p26.1; qterq24.12)ins (3; 8) (p26.1;
q23.3q23.2q)ins (3; 8) (p26.1; q23.1q23.1)ins
(3; 8) (p26.1; q22.1q23.1)ins (3; 8) (p26.1;
q24.12q24.12)ins (3; 8) (p26.1; q23.1q23.1),
der (5)del (5) (q34q34)ins (5; 3) (q34;
p26.1p26.1)ins (5; 3) (q34; p26.2p26.2)ins (5;
3) (q34; p26.2p26.2)ins (5; 8) (q34;
q24.11q23.3)ins (5; 8) (q34; q24.11q24.11)ins
(5; 8) (q34; q24.11q24.11), der (8)del (8)
(q22.1qter)ins (8) (p22.1q23.1q23.1)ins (8; 3)
(p22.1; p26.2pter)

Siblings seq [GRCh37] der (3)del (3) (p26.1)ins (3; 8)
(p26.1; qterq24.12)ins (3; 8) (p26.1;

q23.3q23.2q)ins (3; 8) (p26.1; q23.1q23.1)ins

NC_000003.11 :g.pter_7232050delins
[NC_000008.10:g.119049296_qterinv;
2.109547907_115172261inv;
g.109095070_109274778; g.97173775_108683653;
g.118533099_119049035;
2.108683654_109094620inv] NC_000005.9:
£.161588676_161589010delins [NC_000003.11:
g.4813706_7230653; g.3317057_3374290;
2.3313386_3317057; NC_000008.10:
g.115172261_117950918inv;
2.118401588_118532987;
¢.117950918_118400962inv] NC_000008.10:
2.97171651_gterdelins [g.109274819_109546541inv;
NC_000003.11:g.pter_3313336inv]

NC_000003.11:g.pter_7232050delins
[NC_000008.10:8.119049296_qterinv;
g.109547907_115172261inv;

Complex chromosomal rearrangement involving
chromosomes 3, 5, and 8, including multiple
insertions and deletions

Maternally inherited derivative chromosome
3 with 3p26.3-p26.1 deletion and
8q22.1-q24.3 duplication

(3; 8) (p26.1; q22.1g23.1)ins (3; 8) (p26.1;
q24.12q24.12)ins (3; 8) (p26.1;
q23.1q23.1)mat

2.109095070_109274778; g.97173775_108683653;
g.118533099_119049035;
£.108683654_109094620inv]

development, neuronal connectivity, cognitive function, and motor
development (Basilicata and Valsecchi, 2021). The importance of
understanding these genetic abnormalities in neurodevelopmental
disorders may lead to early diagnosis, early intervention, and genetic
counseling for the patients.

(der)

rearrangements,

result from structural

including

Derivative  chromosomes

chromosomal translocations,
insertions, or deletions. These aberrations can occur de novo or
be inherited from a balanced carrier parent, leading to variable
clinical manifestations depending on the genes disrupted (Higgins
et al, 2020). The phenotypes of derivative chromosomes are
influenced by multiple factors, including the size and genomic
location of the affected regions, as well as the functional
relevance of the altered genes (Zhang et al, 2019). Inherited
derivative chromosomes can be particularly challenging to
characterize due to their potential to segregate differently in
offspring, leading to variable expressivity and incomplete
penetrance (Kruszewski et al., 2021). Their identification is
crucial in clinical genetics as they correlate with congenital
anomalies, developmental delays, and intellectual disabilities.

This is a case of two half-siblings with developmental delay and
intellectual disability linked to a maternally inherited derivative
chromosome 3, which has not been reported before. ISCN/HGVS
description is shown in Table 1. This case underscores the
importance of chromosomal microarray analysis in diagnosing

neurodevelopmental disorders and guiding clinical management.

Case report

In this case, two siblings were referred to our genetic outpatient
clinic with gross motor delay and intellectual disability. The eldest,
an 11-year-old female born at 37 weeks, experienced severe neonatal
respiratory distress (HP:0006485), requiring a 2-week NICU
admission (HP:0002095). She exhibited significant gross motor
delay (HP:0001270), sitting at 12 months and walking at
36 months, along with intellectual disability (HP:0001249),
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diminished strength (HP:0003676, 4/5), left ptosis (HP:0000598),
bilateral hypertrichosis (HP:0000990), poor dentition (HP:
0000250), and onychomycosis (HP:0002329). The youngest, an 8-
year-old male born at 36 weeks, had no perinatal complications but
showed a similar developmental pattern, sitting at 9 months and
walking at 5 years, with intellectual disability (HP:0001249),
diminished strength (HP:0003676, 3/5), poor dentition (HP:
0000250), and onychomycosis (HP:0002329). Despite preserved
mobility (HP:0002368), neither sibling’s weakness improved with
physical therapy. Despite some differences in their motor milestones
and strengths, both siblings exhibited similar phenotypic features
such as intellectual disability (HP:0001249), diminished strength
(HP:0003676), and other developmental delays (HP:0001263). Their
mother is asymptomatic, and while they share the same mother, they
have different fathers who are not in contact.

Molecular analysis

Genome-Scan Chromosomal microarray analysis (CMA) was
performed for both siblings using different SNP-based array
platforms. The siblings were analyzed with a 180K aCGH + SNP
array containing ~180,000 probes (120,000 aCGH probes and
60,000 SNP probes), which enabled the genome-wide detection of
copy number variations (CNVs), including large deletions and
duplications, as well as unbalanced rearrangements. The findings
in the siblings prompted parental testing. The mother was tested
using the Invitae Chromosomal Microarray platform, which
employs an Illumina SNP array with ~1.8 million probes,
providing tenfold higher probe density and an average resolution
of ~1.5 kb. This platform includes targeted enrichment of over
4,800 clinically relevant genes with high exonic coverage, allowing
for more precise detection of smaller CNVs and regions of
homozygosity, in addition to improved sensitivity for mosaicism.

These results showed that the mother carried a smaller, non-
identical deletion on chromosome 3, but no copy number alterations
were found on chromosome 8. This indicated that there may be a

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1662915

Ledn et al.

10.3389/fgene.2025.1662915

Der(3)
3-3 3-5

p3

Ders) 3 o [ s ]

5-1

Der(5) < ows }-]

=)

de-z

[ | [
5 | s ) i
— o
per® = . >2-1000 kb
S ¢ d e f g h k | mn o P
Chig < ona l o2 - oa I“I”I"I w0 | sn [onfeuee] s ) I 1-2kb
e 8-3 8-6 8-9 813 815 87 == <1kb
: . @ Deleted
segment
| d
T :r‘i,:r::::tion
FIGURE 1

Mother’s Derivative chromosomes. Subway plot of the mother’s derivative chromosomes. The schematic shows deleted regions and the
arrangement between different loci. The figure shows that the mother had 3 derivative chromosomes involving a complex rearrangement between

chromosomes 3, 5, and 8.

more complex rearrangement in the mother, causing the genetic
variants in the two children. This in turn led to the decision to
perform whole-genome sequencing.

Whole-genome sequencing was performed for the mother and
son to further characterize the structural variants. Genomic DNA
was extracted using the Qiagen Minikit (Qiagen, Hilden, Germany),
and sequencing libraries were prepared with the Illumina TruSeq
DNA PCR-Free kit. Libraries were sequenced on the NovaSeq X
platform (Illumina, San Diego, CA, United States). Raw sequencing
reads were aligned to the GRCh37 reference genome, and
bioinformatic analysis was conducted following the workflow
described by Stranneheim et al. (2021). Copy number alterations
were manually interpreted using CytoSure Interpret Software
(Oxford Gene Technology, Oxfordshire, United Kingdom), and
the rearrangement structure was delineated using the Integrative
Genomics Viewer (IGV). The mother’s derivative chromosome
arrangement is shown in Figure 1 and the comparison between
the mother and the siblings derivative chromosomes is shown
in Figure 2.

Pathway enrichment analysis was performed to investigate the
biological significance of the genes located within the deleted
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chromosomal region (3p26.3-3p26.1). The list of deleted or
duplicated  genes §1,82) for each
chromosome was submitted to SRplot, an online bioinformatics
platform that integrates functional annotation with multiple

(Supplementary Table

databases. Enrichment was assessed across the Gene Ontology
(GO) categories—biological process (BP), cellular component
(CO), (MF)—as well as Kyoto
Encyclopedia of Genes (KEGG) pathways.
Enrichment results were considered significant based on adjusted

function
and Genomes

and molecular

p-values provided by the tool (Tang et al., 2023). The analysis
highlighted  pathways
neurodevelopment, synaptic signaling, and calcium channel

and functional clusters related to

regulation, which are consistent with the clinical features
observed in the patients. These results are shown in Figure 3.

Discussion

In this case report, we present the clinical description of a
derivative chromosome 3 resulting from a rearrangement
between chromosomes 3 and 8 (Figure 2). This rearrangement
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FIGURE 2

Siblings derivative chromosomes and Copy Number Track. The schematic represents the derivative chromosomes present in the mother and in the
siblings (only the son’s schematic shown). It shows the complex rearrangement in the mother and the inheritance of the derivative 3 chromosome to the
siblings that led to the symptoms discussed. Copy number tracks are shown at the bottom of the figure, indicating CNVs in both the mother and

the siblings.

leads to the deletion of the 3p26.3-3p26.1 region and the duplication
of the 8q22.1-8q24.3 region. This is shown in Figure 2, and by
comparing CNVs from the mother to the siblings, we can see that
they have a greater deletion pattern in the 3p region. Table 1 shows
the ISCN/HGVS description,
rearrangement in the mother and the inherited derivative

showing the complex triple

chromosome 3 in the siblings. The molecular analysis revealed a
7.12 Mb deletion in the 3p26.3-3p26.1 region in both siblings,
affecting 14 genes, of which four were identified as pathologically
significant. These genes are CHL1, CNTN6, CNTN4, and ITPR1,
and they are associated with neurodevelopmental disorders,
developmental delays, cerebellar ataxia, motor impairment, and
diminished muscle strength. The specific function of each gene
can be found in the Supplementary Tables S1,52. The correlation
between the function of these genes and the clinical manifestations
observed in the siblings is explained by Figure 3. The pathway
enrichment analysis showed that the 3p deleted region has a higher
impact on neurodevelopmental consequences, as it shows that these
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genes are heavily related to neurological functions and pathways. On
the other hand, 8q duplication showed some neurological
association, but also showed enrichment in other pathways that
could be related to muscle disorders in the patients. This may
explain why the symptomatology is more associated with other
cases of 3p deletions like 3p deletion syndrome. This highlights the
importance of genetic analysis in patients with complex phenotypes.
The siblings also exhibit a 48.86 Mb duplication in the
8q22.1-8q24.3 region (Supplementary Table S1). This duplication
affects 193 genes, of which 50 were identified as being of pathological
significance. Figure 3 shows that the selected genes are implicated in
neurodevelopmental disorders, motor development delay, and
hypertrichosis, all of which are observed in the patients.

These clinical manifestations may result from gene dosage effects,
Supplementary Tables S1,52 show the HI (Haploinsufficiency) scores
indicate whether having only one functional copy of a gene can cause a
phenotype, while TS (Triplosensitivity) scores indicate if having three
copies of a gene (two copies plus an extra one) causes a phenotype,
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Integrating pathway enrichment. This is the data obtained from the integrating pathway enrichment analysis. The figures show Gene Ontology (GO)
categories—biological process (BP), as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Cellular component (CC), and molecular
function (MF) were not shown. (A) shows GO BP and KEGG pathways for derivative chromosome 3, while (B) shows GO BP and KEGG for derivative

chromosome 8.

nevertheless, many genes didn’t have information for their HI and TS
scores, which shows importance of research involving WGS to
understand deeper genetic routes that are being affected. Gene
dosage effects is a mechanism that has been implicated in various
syndromes.
symptomatology through mechanisms such as gene product

Gene dosage alterations can lead to abnormal

Frontiers in Genetics

0

aggregation, degradation, chaperone overload, or insufficient
transcription factor availability, all of which have been linked to
developmental disorders, including those described in this case
(Basilicata and Valsecchi, 2021). In the context of the described
chromosomal rearrangement involving a deletion of the 3p26.3-
3p26.1 region and duplication of the 8q22.1-8q24.3 region, gene
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dosage effects are particularly pertinent. The deletion on chromosome
3 results in haploinsufficiency, where a single functional copy of a gene
does not produce sufficient gene products for normal function. Similar
cases, like the 3p deletion syndrome shown to be autosomal dominant,
which explains the penetrance and presentation of symptoms in the
siblings. The mother does not have the same phenotype, as it shows a
balanced-like translocation in Figure 1. This mechanism has been
implicated in several human diseases, as some genes are dosage-
sensitive and require a strict level of expression to maintain cellular
processes (Rice and McLysaght, 2017).
chromosome 8 may lead to overexpression of genes, potentially

The duplication on

causing detrimental effects due to an imbalance in gene product
concentrations. For instance, duplications of the PMP22 gene are
known to cause Charcot-Marie-Tooth type 1A disease by increasing
gene dosage, leading to peripheral nerve dysfunction (Lupski and
Stankiewicz, 2005). Furthermore, gene dosage imbalances can
disrupt the formation and function of protein complexes as the
relative proportions of subunits become skewed. This disruption can
impair cellular networks and lead to dominant phenotypes associated
with various genetic disorders (Veitia et al,, 2013).

Duplications within the 8q region have been reported previously.
For the specific duplication described here, only one other case has
been published, in which the main manifestations were cleft lip, palate,
and neurodevelopmental disorders; however, that duplication
occurred on a derivative chromosome 22 (Rezek et al, 2014).
Additional reports of 8q22.2-8q24 duplications have described
clinical phenotypes overlapping with those of our patients,
intellectual ~ disability
(Concolino et al, 2011) (Supplementary Table S2). Similarly,

including  developmental delay and

deletions in the 3p region have been reported in approximately
60 cases of familial del (3p) syndrome, with variable deletion sizes
but consistent phenotypes such as ptosis, neurodevelopmental
disorders, and motor delay (Fu et al., 2021). One report involving
the same 3p26.3-3p26.1 region described overlapping symptoms with
our patients, with the expectation that additional features may appear
over time (Martins et al., 2021). While these rearrangements have
been documented independently, to our knowledge, this is the first
report of a single derivative chromosome simultaneously carrying a
3p26.3-p26.1 deletion, and an 8q22.1-q24.3 duplication, and the first
time such a rearrangement has been shown to be inherited from an
otherwise asymptomatic parent. This highlights the novelty of our
case and underscores the importance of comprehensive testing
strategies, such as chromosomal microarray and WGS, in detecting
cryptic but clinically significant rearrangements. Early identification
of these abnormalities can provide critical information for prognosis,
genetic counseling, and targeted interventionsConclusion.

Conclusion

In conclusion, this case highlights the critical role of
chromosomal microarray analysis and WGS in diagnosing
complex neurodevelopmental disorders caused by structural
chromosomal rearrangements. The identification of a maternally
inherited derivative chromosome 3, with a deletion of the 3p26.3-
3p26.1 region and duplication of the 8q22.1-8q24.3 region,
underscores the importance of genetic testing in uncovering the
underlying genetic causes of developmental delay and intellectual
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disability. This report not only expands the understanding of gene
dosage effects in the context of chromosomal aberrations but also
emphasizes the need for early genetic counseling and intervention in
affected families.
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