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Background: The disruption of selenium metabolism has been associated with
tumor progression. However, the prognostic significance and underlying
molecular mechanisms of selenium metabolism in lung adenocarcinoma
(LUAD) remain inadequately understood. This study primarily aimed to identify
and validate prognostic genes related to selenium metabolism in LUAD patients.
Methods: Transcriptomic datasets from patients diagnosed with LUAD were
meticulously analyzed to identify differentially expressed genes associated
with selenium metabolism. The genes selected for the prognostic risk model
were determined through various analyses, including differential gene expression
assessment, univariate and multivariate Cox proportional hazards regression
analyses, as well as other relevant analytical methods. A systematic approach
was employed for functional enrichment analysis, characterization of the
immune microenvironment, somatic mutation analysis, and evaluation of drug
sensitivity to elucidate the mechanisms linked to prognostic genes and risk
categories. Finally, a reverse transcription quantitative PCR(RT-gqPCR) assay
was conducted to validate the expression levels of the identified
prognostic genes.

Results: F2, GPX3, KMO, and KYNU were identified as prognostic genes for
establishing a risk model. The functions of these LUAD prognostic genes were
influenced by DNA replication pathways, cell cycle regulation, and quiescent
CD4 memory T cells. In the high-risk group (HRG), KEAP1, TTN, and USH2A
exhibited the highest mutation rate at 48%, while TTN had an even higher
mutation rate of 52% in the low-risk group (LRG). Within the HRG cohort,
both cisplatin and gemcitabine demonstrated significant sensitivity. Ultimately,
RT-gPCR findings corroborated results obtained from bioinformatics analyses;
specifically compared to normal samples: GPX3, KMO, KYNU showed significant
downregulation in LUAD tissues while F2 was found to be upregulated in LUAD.
Conclusion: This study identified four prognostic genes in LUAD and examined
their associated mechanisms of action, which may contribute to the
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development of novel treatment strategies.

stratified therapy.

10.3389/fgene.2025.1655262

The integration of immune
characterization with drug sensitivity analysis offers valuable insights for
selenium metabolism, prognostic model, tumor

lung

adenocarcinoma,

microenvironment, immunotherapy response, drug sensitivity

1 Introduction

Lung cancer is one of the most prevalent forms of cancer
worldwide, with lung adenocarcinoma (LUAD) being the most
commonly diagnosed subtype (Huang et al., 2025). This disease
represents a significant threat to human health, accounting for over
700,000 deaths annually. The high incidence and mortality rates
associated with LUAD have made it a critical focus for global public
health initiatives. Despite advancements in early detection methods
and the continuous evolution of treatment modalities, including
surgery, radiotherapy, chemotherapy, targeted therapy, and
immunotherapy, the overall 5-year survival rate remains
alarmingly low at approximately 25%. This is primarily due to
elevated rates of recurrence and metastasis. Therefore, identifying
new prognostic biomarkers and therapeutic targets is essential for
improving patient outcomes in lung cancer (Goldberg and Herbst,
2023).

bioinformatics has enabled researchers to explore the relationship

In recent years, rapid progress in genomics and

between gene expression patterns and lung cancer prognosis (Dizon
and Kamal, 2024). By comparing gene expression profiles from
tumor tissues with those from normal tissues, several genes
associated with LUAD prognosis have been identified. Variations
in their expression levels reflect both the biological behavior of the
tumor and its clinical outcomes. A deeper understanding of these
genes’ functions as well as their roles in LUAD progression can
facilitate the development of novel treatment strategies aimed at
enhancing survival rates. Furthermore, studies indicate that the
immune status of LUAD patients is closely linked to the degree
of immune infiltration within tumors (Zhang et al., 2022), which
may influence tumor growth and metastasis (Zhang et al.,, 2021).
Consequently, characterizing the immune microenvironment of
LUAD, particularly regarding the distribution and functional
roles of immune cells within tumors, holds great promise for
designing personalized treatment plans. These studies underscore
the significance of public datasets and bioinformatics tools in the
identification of clinically relevant molecular targets.

Selenium is a crucial trace element that plays an integral role in
human metabolism, particularly within the antioxidant defense
system (Zhang et al, 2023). Selenium metabolism facilitates the
elimination of free radicals by forming the active center of
thereby
oxidative damage (Sun et al, 2023). Furthermore, selenium is

glutathione peroxidase, safeguarding cells against
closely linked to immune function and enhances the body’s
capacity to resist diseases (Luo et al., 2025). In cancer research,
adequate selenium intake has been associated with a reduced risk of
certain types of cancer. Consequently, elucidating the role and
impact of selenium metabolism in cancer biology may yield new
insights into prevention and treatment strategies. In the context of
LUAD the anti-tumor effects of selenium have attracted increasing

attention. Clinical and laboratory studies indicate that selenium
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deficiency may correlate with a heightened risk of tumor
development, while sufficient selenium intake could inhibit
tumor cell proliferation and improve patient outcomes (Liang
et al, 2024). Moreover, the anti-tumor effects attributed to
selenium metabolism may modulate multiple signaling pathways
such as PI3K/Akt and MAPK, influencing processes related to
cancer cell proliferation, apoptosis, and migration (Guo et al,
2022; Xiao et al, 2025). Therefore, investigating the precise
mechanisms underlying selenium metabolism in LUAD could
open new avenues for early diagnosis and personalized treatment
strategies, holding significant scientific and clinical implications.

In summary, while there has been notable progress in the
treatment of LUAD, challenges persist regarding early diagnosis
and prognosis. Gene expression and the immune microenvironment
are critical factors influencing tumor initiation and progression.
Selenium metabolism shows promise in modulating tumor
development through mechanisms such as oxidative stress
regulation and immune modulation. Investigating these elements
may facilitate the identification of new prognostic biomarkers and
therapeutic targets. This study primarily utilized transcriptome data
from public databases pertaining to LUAD patients, employing
bioinformatics techniques to construct and validate a novel
selenium metabolism-related risk model aimed at predicting early
recurrence in LUAD patients. Additionally, we analyzed the
biological pathways associated with these genes, along with their
relationships to clinical characteristics, somatic mutations, immune
microenvironment dynamics, immunotherapy responses, and drug
sensitivity. The expression levels of these prognosis-related genes
were validated using clinical samples, thereby supporting the
advancement of new chemotherapy regimens, immunotherapies,
and targeted therapies for LUAD.

2 Materials and methods
2.1 Data acquisition and preprocessing

A transcriptomic dataset was obtained from The Cancer
Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/,
accessed on 15 January 2025), which includes RNA sequencing
data along with clinical and pathological information for 530 LUAD
samples and 59 normal samples (TCGA-LUAD) (Liu et al., 2019).
Among these, a total of 517 LUAD samples contained complete
survival data, while 222 samples had comprehensive clinical
characteristics documented. An independent validation cohort,
GSE26939, was retrieved from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/), comprising
116 LUAD samples, 115 of which included survival information,
profiled using the GPL9053 expression profiling by array platform
(Song et al,, 2022). Furthermore, a curated list of 86 selenium
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metabolism-related genes (SMRGs) was compiled based on
published literature (Fu et al., 2023).

2.2 Investigation of differential gene
expression patterns in TCGA-LUAD

Differentially expressed genes (DEGs) that distinguish LUAD
from non-tumor specimens within the TCGA-LUAD dataset were
identified utilizing the R package “DESeq2” (v 1.4.2) (Love et al.,
2014). For the downloaded raw data, it was recalibrated into a count
matrix and filtered to retain genes exhibiting a total expression level
greater than ten across all samples, applying criteria of adjusted p <
0.05 and absolute log2-fold change (FC) > 1. Visualization was
conducted using the R package “ggVolcano” (v 0.0.2) (Wodrich
et al, 2021), resulting in the generation of a volcano plot.
Additionally, heatmap visualization was performed employing the
R package “ComplexHeatmap” (v 2.14.0) (Gu et al., 2016).

2.3 ldentifying candidate genes and
analyzing their functions

To identify candidate genes related to selenium metabolism, we
utilized the R package “VennDiagram” (version 1.7.3) (Chen and
Boutros, 2011) to visualize the intersection analysis between DEGs
and SMRGs, generating a Venn diagram. Subsequently, a functional
enrichment assay was performed to investigate the biological roles of
these candidate genes. Gene Ontology (GO) analysis was conducted
using the enrichGO function via the “clusterProfiler” package
(version 4.2.2) (Wu et al,, 2021), employing the “SYMBOL” gene
identifier sourced from the “org.Hs.e.g.,.db” annotation database
(version 3.18.0) (Qing et al., 2022) (adjusted p < 0.05). Furthermore,
for Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis, we applied the enrichKEGG function within the same R
package (“clusterProfiler”), focusing on human genome data with
organism set as “hsa,” while maintaining identical significance
thresholds of adjusted p < 0.05.

2.4 Protein-protein interaction (PPI)
network analysis

The STRING database was used to build PPI networks to
investigate the functional relationships among candidate genes
(confidence >0.4). Following this, Cytoscape software version
3.82 (Smoot et al, 2011) was utilized for visualizing these
interaction networks.

2.5 Development, assessment, and
verification of the risk score model

Utilizing the “survival” package (version 3.7.0) (Lei et al., 2023),
a univariate Cox regression analysis was conducted on LUAD
samples with comprehensive survival data, using candidate genes
as the basis for evaluation. Genes that met significance thresholds
(HR # 1, p < 0.05) and satisfied the proportional hazards (PH)
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assumption, assessed via the cox. zph function from the “survival”
package, were retained (p > 0.05). Subsequently, we employed the
“survival” package to construct a multivariable Cox regression
model utilizing its built-in functions for Cox regression analysis. A
bidirectional stepwise variable selection process was implemented
based on the Akaike Information Criterion (AIC), employing the
step function; additionally, an overall PH assumption test of the
model was performed (p > 0.05). Through this methodology,
prognostic  genes identified. Risk scores were then
calculated by applying coefficients derived from this final model

were

to determine risk associated with each prognostic gene in
constructing our risk model. In this context, “coef” refers to the
risk coefficient corresponding to each individual prognostic gene,
while “expr” indicates the expression intensity of each respective
prognostic gene.

risk score = Zcoef (gene,) x expr(gene,)
i=1

The optimal cutoff value derived from the surv_cutpoint
function in the R package “survminer” (version 0.4.9) (Liu et al.,
2021) was utilized to classify patients into high-risk groups (HRG)
and low-risk groups (LRG). Subsequently, principal component
analysis (PCA) was performed using the prcomp function to
visualize the separation of risk groups. Kaplan-Meier (KM)
survival plots and log-rank tests, facilitated by the R package
“survminer,” were employed to compare survival outcomes
between these groups. The software package “timeROC” (version
1.18.0) (Blanche et al,, 2013) was leveraged to generate receiver
operating characteristic (ROC) curves at three time points for
evaluating model precision. Following this, expression levels of
prognostic genes across both cohorts were examined utilizing the
“pheatmap” package (version 1.0.12) (Gu and Hiibschmann, 2022).
For external validation, data from GSE26939 were analyzed with
identical risk stratification methods to assess the robustness of
the model.

2.6 Development and validation of
the nomogram

A univariate Cox regression analysis was conducted on risk
scores alongside several clinical variables, including pathological
stages, gender, age, and T/N/M stages (p < 0.05, HR # 1);
additionally, a proportional hazards (PH) assumption test was
performed with p > 0.05 as an acceptance criterion. Variables
that met criteria in multivariate Cox regression analysis,
specifically those with p < 0.05, and passed PH assumption
testing were considered independent predictive factors for
Based on TCGA-LUAD data, we developed a
nomogram to forecast 1-, 3-, and 5-year survival probabilities

prognosis.

with the “regplot” package (version 1.1) (Sui et al, 2022).
Thereafter, we generated a calibration curve employing bootstrap
resampling techniques through two hundred iterations via the R
package “rms” (version 6.8.1) (Sachs, 2017), aimed at assessing
nomogram accuracy; proximity of slope values to one indicates
enhanced predictive accuracy of our model’s estimates for patient
outcomes over time.

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1655262

Chen et al.

Furthermore, we utilized the R package “ggDCA” version v (1.1)
(Duo et al., 2023) to create a comprehensive nomogram forecasting
1-,3-,and 5-year
diagnosed with LUAD.

survival ~ probabilities ~ for  patients

2.7 Examination of the relationship between
risk scores and the expression of prognostic
genes within clinical variables

To investigate the diagnostic efficiency of risk scores in relation
to clinical indicators, we analyzed correlations between risk scores
and the aforementioned clinical variables. The Wilcoxon test
(W-tests) was employed to compare varying risk scores and
prognostic genes across different clinical subgroups (p < 0.05).
Additionally, the survdiff function within the “survival” package
was employed to assess survival differences among risk groups for
each clinical indicator (p < 0.05).

2.8 Functional enrichment analysis

Within the TCGA-LUAD data collection, Gene Set Enrichment
Analysis (GSEA) was conducted to pinpoint biological pathways
linked to HRG and LRG. Initially, differential gene expression
analysis was performed between the two risk groups via the
“DESeq2” package (v 1.4.2), resulting in a ranked list of genes
ordered by their log,FC values from largest to smallest.
Subsequently, we retrieved a background gene set named “c2.
cp.kegg.v7.4. symbols.gmt” from the MSigDB for pathway
enrichment analysis utilizing the “clusterProfiler” package (v
4.2.2). Significant pathways were defined as those exhibiting a
normalized enrichment score ([NES|) > 1, p < 0.05, and false
discovery rate (FDR) < 0.25.

For Gene Set Variation Analysis (GSVA), we employed the
“GSVA” package (v 1.42.0) (Hianzelmann et al., 2013) to calculate
pathway activity scores across samples denoted as gsva_mat. A
design matrix was constructed using the model. matrix function
from the “limma” package (v 3.54.0) (Ritchie et al., 2015), followed
by an assessment of differential pathway activity between risk groups
through linear model fitting via ImFit and empirical Bayes
moderation using eBayes methods. Contrast matrices were
generated with makeContrasts function, allowing us to extract
altered with adjusted
p-values <0.05 through topTable function.

significantly pathways

2.9 Analysis of the tumor immune
microenvironment

The CIBERSORT method was employed to estimate the
proportions of 22 distinct immune cell subtypes (Newman et al.,
2015) within the tumor microenvironment of LUAD samples. Gene
expression matrices underwent preprocessing and were
subsequently submitted to the CIBERSORT platform, with
10 permutations and quantile normalization (QN) activated. To
compare the levels of immune cell infiltration among different risk
groups, W-tests were conducted (p < 0.05). The “psych” package (v
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2.1.6) (Correction to Lancet Psych, 2022, 2023) was utilized to
calculate Spearman correlation coefficients between differentially
abundant immune cells and risk scores, as well as between these
immune cells and prognostic genes (|correlation coefficient (cor)| >
0.3, p < 0.05).

2.10 Analysis of LUAD
immunotherapy response

The Tumor Immune Dysfunction and Exclusion (TIDE)
platform was used to assess mechanisms of immune evasion and
predict responses to immunotherapy. Pre-treatment gene
expression profiles from LUAD samples were standardized before
being submitted to TIDE for generating Dysfunction, Exclusion, and
TIDE scores. Dysfunction scores reflect the functional state of
effector T lymphocytes within the tumor microenvironment,
while Exclusion scores indicate barriers to immune cell infiltration.

Furthermore, a total of 47 immune checkpoint genes (e.g., LAG-
3, CTLA-4, PD-1) were extracted from relevant literature (Xue et al.,
2022). A differential expression analysis on these genes across risk

groups was performed using W-tests (p < 0.05).

2.11 Somatic mutation profiling

The TCGA database was queried to obtain somatic mutation
information for LUAD samples. Subsequently, the “Maftools”
package (v 2.18.0) (Mayakonda et al, 2018) was employed to
analyze the mutation annotation format (MAF) files and generate
oncoplots (waterfall plots) that illustrate the mutation landscape of
HRG and LRG. Entries with missing values were excluded following
the annotation and filtering of variant types and classifications. The
distribution of mutation types and allele-specific changes was
assessed. Thereafter, using the R package “ggplot2” (v 3.4.1)
(Gustavsson et al., 2022), we visualized the distribution of these
mutation types across HRG and LRG populations. Tumor
mutational burden (TMB), defined as the cumulative count of
somatic mutations per megabase, was calculated with statistical
significance set at p < 0.05. Meanwhile, the chi-square test was
used to analyze the differences in the top 10 mutation classifications,
different mutation types, and base changes between HRG and LRG
(p < 0.05). In addition, the somaticInteractions function in the
“Maftools” package (v 2.18.0) was utilized to perform co -
occurrence and mutual exclusivity analysis on the mutation data
of the high - risk and low - risk groups (p < 0.05).

2.12 Drug sensitivity analyses in risk groups

Drug sensitivity analyses were conducted utilizing the R package
“pRRophetic” (v 0.5) (Geeleher et al., 2014). This method used the
Genomics of Drug Sensitivity in Cancer (GDSC, also known as CGP
2016) as the reference training set to construct a drug sensitivity
prediction model. Specifically, we input the gene expression matrix
(FPKM) of the TCGA-LUAD cohort into the model, with
parameters set as tissueType = “lung” and dataset = “cgp 2016”.
Subsequently, the pRRopheticPredict () function was applied to
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calculate the predicted half-maximal inhibitory concentration
(IC50) of each drug for each patient. Initially, gene expression
data from the TCGA database were integrated with a well-
established drug sensitivity dataset known as cgp 2016; drugs
classified under LUAD by TCGA with an area under curve
(AUC) greater than 0.98 were selected as candidates for further
analysis. The half-maximal inhibitory concentration (ICs,) for each
drug were calculated using the pRRopheticPredict function,
followed by a W-test to identify disparities in IC5, values among
various drugs between HRG and LRG cohorts, establishing
statistical significance at p < 0.01. Additionally, we utilized the R
software package “pheatmap” to visually represent relationships
between first-line chemotherapeutic agents
genes in LUAD.

and prognostic

2.13 Validation of the expression of
prognostic genes in clinical samples

Drawing on TCGA-LUAD data, a W-test was first conducted to
evaluate the expression of prognostic genes in LUAD samples
relative to normal samples (p < 0.05). Boxplots were created with
the “ggplot2” package.

Ethical approval was obtained from the ethics committee of the
First People’s Hospital of Yunnan Province (approval number:
KHLL2022-KY159) before this experiment was conducted. Five
LUAD tissue samples and five adjacent non-tumor tissue samples
were obtained from participants at the First People’s Hospital of
Yunnan Province, all of whom provided informed consent. Initially,
50 mg of tissue was extracted from each sample and homogenized
with 1 mL of TRIzol (Vazyme, R401-01, China) to ensure thorough
mixing and grinding. After standing on ice for 10 min, 200 uL of
chloroform was added to facilitate RNA extraction from the aqueous
phase. Subsequently, an equal volume of chilled isopropanol was
incorporated for RNA precipitation. Following quantification,
reverse  transcription reactions commenced immediately
thereafter. The cDNA synthesis reaction system was established
strictly according to the manufacturer’s instructions for the
SweScript  First Strand c¢DNA Synthesis Kit (YEASEN,
11141ES60, China). Thereafter, qQPCR amplification consisting of
40 cycles was conducted using a CFX96 real-time fluorescence
quantitative PCR device (BIO-RAD, XLFZ006, United States).
The primer sequences are detailed in Supplementary Table SI. In
this study, glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was selected as the reference gene. In terms of experimental design,
five biological replicates were set up to reduce the interference of
individual sample differences, and three technical replicates were
performed for each sample to ensure the repeatability of detection;
after the completion of qPCR amplification, the cycle threshold (Ct
values) of target genes and the reference gene were obtained
simultaneously, and the melting curve was used to verify
amplification specificity, while the amplification curve was used
to evaluate amplification efficiency.

The expression levels of prognostic genes were evaluated
utilizing the 27" method (Cheng et al, 2020), with specific
steps as follows: first, the ACt value was calculated as the
difference between the Ct value of the target gene and that of
GAPDH (ACt = Ct_target gene - Ct_GAPDH); second, the AACt
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value was calculated by taking the ACt value of the control group as a
reference and finding the difference between the ACt value of the
experimental group and that of the control group (AACt = ACt_
experimental group - ACt_control group);finally, the relative
expression level of the target gene was obtained through
conversion using the 274 formula. All experimental data were
subjected to statistical analysis and visualization using GraphPad
Prism (v8.0) software (Chang et al., 2023): the t-test was used as the
statistical method, and a p < 0.05 was considered to indicate a
statistically significant difference.

2.14 Statistical analysis

All statistical analyses of data from public databases were
performed using R software (version 4.2.2). The Wilcoxon test
and chi-square test were used as the significance test method to
compare differences between different groups, and a p < 0.05 was
considered to indicate statistical significance. All network diagrams
were constructed using Cytoscape software (v 3.8.2). For RT-qPCR
experiments, the relative mRNA expression levels of prognostic
genes were calculated using the 274" method, and the t-test was
applied to compare differences in expression levels. A p < 0.05 was
regarded as statistically significant.

3 Results
3.1 Differential expression profiling

Comparative analysis of LUAD versus normal tissues revealed
a total of 14,694 DEGs (adjusted p < 0.05 and [log,FC| > 1),
11,390 3,304
downregulated genes (Figure 1A). The top 50 DEGs exhibiting

comprising upregulated  genes  and
the largest |logo,FC| values were visualized in a hierarchical
clustering heatmap (Figure 1B), which highlighted distinct
expression patterns between LUAD and normal tissue groups.
Intersection analysis between DEGs and survival-related gene sets

identified 40 candidate genes (Figure 1C) (Supplementary Table S2).

3.2 Functional enrichment characteristics

GO analysis of the candidate genes uncovered a total of
504 significant entries (adjusted p < 0.05), with antioxidant
activity (GO:0016209, p = 1.35e-15) and cellular oxidant
detoxification (GO:0098869, p = 8.44e-15) being the most
enriched categories (Figure 1D) (Supplementary Table S3).
Additionally,
enrichment across 29 pathways (adjusted p < 0.05). Notably

KEGG pathway analysis indicated significant
among these pathways were the complement and coagulation
cascades pathway (hsa04610, p = 4.83e-07) as well as the IL-17
0.000311) (Figure 1E)

(Supplementary Table S4). Furthermore, PPI network analysis

signaling pathway (hsa04657, p =

demonstrated interactions among proteins encoded by the
identified candidate genes; specifically, ALB, GPX3, GPX2, IL6,
APOB, APOAI1, and CRP exhibited interactions with several
other candidate gene products (Figure 1F). Collectively, this PPI
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Comparative analysis identified differentially regulated genes, verified by GO, KEGG and PPI analyses. Comparative analysis of LUAD vs. normal
tissues identified 14,694 DEGs, including 11,390 upregulated and 3,304 downregulated genes (A). The top 50 DEGs were visualized in a heatmap (B).
Intersection analysis revealed 40 candidate genes (C). GO analysis identified 504 significant entries, with antioxidant activity and oxidant detoxification as
the most enriched (D). KEGG analysis showed 29 enriched pathways, including complement/coagulation cascades and IL-17 signaling (E). PPI
network analysis demonstrated interactions among candidate gene-encoded proteins (F).

network provides valuable insights into the dynamic interactions
among proteins corresponding to these relevant genes at the
protein level.

3.3 Development and validation of the
prognostic model

Cox regression analysis was performed on 517 LUAD
samples from TCGA-LUAD to pinpoint genes significantly
associated with overall survival. ALOX5AP, CRP, F2, GPX3,
KMO, KYNU, SOD3, and TXNRD1 were ultimately retained
in the analysis; among these, ALOX5AP, CRP, and F2 were
identified as risk factors for LUAD (HR > 1) (Figure 2A). The
results of the proportional hazards assumption test were
illustrated using Schoenfeld residual plots; the trend lines of
the residuals did not show significant differences from one
0.05) S1A-H).
a multivariate Cox regression model was

another (p > (Supplementary  Figure
Subsequently,
constructed that ultimately screened four prognostic genes: F2,
GPX3, KMO, and KYNU (Figure 2B). The overall proportional
0.228,

indicating compliance with the proportional risk assumption

hazards assumption test for this model yielded p =

(Supplementary Figure S1I) (Supplementary Table S5). Risk
scores were determined using the coefficients associated with
these prognostic genes. As a result, the 517 LUAD patients were
divided into a HRG (n = 57) and a LRG (n = 460), based on an
optimal cut-off value of 1.705 (Figure 2C). Principal component
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analysis demonstrated distinct separation between PCl and
PC2 for HRG and LRG groups (Figure 2D).

Conversely, mortality rates were found to be significantly higher
within the HRG compared to LRG individuals (Figure 2E). The
Kaplan-Meier curve revealed substantial disparities in survival rates
between groups; those categorized as high-risk exhibited markedly
reduced survival probabilities (p < 0.001) (Figure 2F). Furthermore,
the ROC assessment of the risk model validated its effectiveness in
forecasting survival probabilities at 1-, 3-, and 5-year for LUAD
patients (AUC >0.6) (Figure 2G). The heat map illustrating
expression levels of prognostic genes indicated that F2 and
KYNU had elevated expression levels in HRG compared to other
groups (Figure 2H).

To assess the stability of the risk model, the same set of analyses
were carried out using the dataset of the validation set. The obtained
results were in line with those from the TCGA-LUAD. This
consistency effectively demonstrated that the prognostic model
developed in this research is capable of being utilized to predict
the prognosis of patients afflicted with LUAD (Figures 2I-N).

3.4 Establishment of the nomogram
A comprehensive univariate Cox proportional hazards
regression analysis was systematically conducted to examine the
impact of individual factors on prognosis. The analyses revealed a
significant association between specific factors and adverse clinical
outcomes (HR < 1, P < 0.05). Concurrently, a proportional hazards
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”‘ ” i 'P i

Univariate Cox regression analysis of 517 LUAD samples from TCGA-LUAD identified genes correlated with overall survival. ALOX5AP, CRP, F2, GPX3,
KMO, KYNU, SOD3, and TXNRD1 were found as risk factors (A). Schoenfeld residual plots confirmed proportional hazards (p > 0.05) (Supplementary
Figure SIA-H). A multifactorial Cox regression model screened four prognostic genes: GPX3, KMO, KYNU, and TXNRD1 (B). The model met the
proportional hazards assumption (p = 0.228) (Supplementary Figure S1I) (Supplementary Table S5). Risk scores were calculated, classifying patients

into high-risk (HRG) and low-risk (LRG) groups (C, I). PCA analysis showed distinct separation between HRG and LRG (D,J). Mortality rates were higher in
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HRG (E,K). The Kaplan-Meier curve revealed reduced survival in HRG (p < 0.001) (F,L). ROC analysis confirmed the model's predictive validity for
one-, three-, and 5-year survival (AUC >0.6) (G,M). The heat map showed elevated F2 and KYNU expression in HRG (H,N).

assumption test was performed, with the resulting p-value exceeding
0.05 indicating that the data met the proportional hazards
assumption, thereby ensuring the reliability and validity of the
univariate analysis results. Following this thorough evaluation,
three variables, namely, risk assessment score, pathologic T stage,
and pathologic N stage, were identified as potential prognostic
indicators (Figure 3A).

Further multivariate Cox regression analyses were conducted to
assess their independent predictive value. The multivariate analysis
(p < 0.05) provided statistical evidence underscoring the importance
of these variables. Additionally, another proportional hazards
assumption test further validated the appropriateness of the
model (p > 0.05). Collectively, these analyses robustly confirmed
that risk score, pathologic T stage, and pathologic N stage are
independent prognostic indicators (Figures 3B,C).

The nomogram illustrated that higher total points corresponded to
poorer survival likelihood in LUAD patients (Figure 3D). A calibration
plot was employed to assess the predictive accuracy of the nomogram;
notably, at time points of 1-, 3-, and 5 years post-diagnosis, the slopes of
these calibration plots closely aligned with reference lines, indicating an
excellent fit for our model (Figure 3E). Furthermore, decision curve
analysis curves demonstrated that the net benefit derived from using
this nomogram exceeded zero and surpassed those associated with “all”
or “none” options while generally outperforming both pathologic T/N
staging and risk scores alone (Figure 3F).

3.5 Assessment of clinical features

Differences in risk scores were observed across various clinical
features. Specifically, male patients exhibited a significantly higher
risk score than female patients (p = 0.0058). Notably, box plots
demonstrated significant differences in risk scores among different
subgroups of clinical features (T1 and T3, stage I and stage III,
N1 and N2, stage I and stage II, MO and M1, NO and N2, as well as
between stages I and IV) (p < 0.05) (Figure 4A). Further analysis of
prognostic genes within distinct clinical subgroups revealed that
GPX3 and KYNU exhibited higher expression levels in male patients
than in female patients; conversely, KMO and F2 showed the
opposite trend. Additionally, the expression of KYNU displayed
an increasing trend in cases of stage IV LUAD (Figures 4B-E).
Remarkably, among LUAD patients at stages III-IV, significant
survival disparities persisted between two groups. This was
particularly evident among patients with pathologic NO status as
well as those with pathologic T1-2 status across all age groups
(>60 years old vs. < 60 years old) (p < 0.001) (Figure 4F).

3.6 GSEA enrichment analysis of DEGs

To elucidate the signaling mechanisms underlying the DEGs
between the two groups, GSEA was performed. A total of
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50 pathway entries were identified through this analysis. Notably, in
the LRG, several pathways associated with immune modulation and
disorders were activated, including autoimmune thyroid disease,
allograft rejection, asthma, and the intestinal immune network for IgA
production. In contrast, the high-risk Group (HRG) exhibited significant
enrichment in multiple pathways related to cell proliferation, metabolism,
and gene regulation, specifically DNA replication, cell cycle progression,
spliceosome activity, and ribosomal function (Figures 5A,B). Subsequently,
GSVA was employed to further evaluate the activation or inhibition status
of these pathways within both groups (Figure 5C). In particular, certain
pathways in the HRG showed notable enrichment that suggests their
critical role in intestinal immunomodulation. Core genes within these
enriched pathways in the HRG, including MCM7, PCNA, and POLE, are
recognized as essential players in DNA replication and repair processes.
This observation implies a likely enhancement of cell proliferation activities
within the HRG. Furthermore, genes such as CDK6, CCNBI, and
CDK1 are known regulators of cell cycle progression; this finding
further substantiates that the HRG promotes cellular proliferation.

3.7 Tumor microenvironment
characterization

A heatmap was generated to illustrate the enrichment ratios of
22 distinct immune cell subtypes across various risk levels
(Figure 6A). Immune cells exhibiting diverse infiltration levels
between the two groups were categorized as differentially
infiltrating immune cells. Subsequently, a box-and-whisker plot
was utilized to depict the percentage of these differentially
infiltrating immune cells in both groups. Significant disparities
were observed in the infiltration percentages of ten types of
immune cells between the two groups, including CD8" T cells
and resting memory CD4" T cells (p < 0.05) (Figure 6B).

Further analysis using Spearman’s rank correlation revealed that
plasma cells and naive B cells exhibited a robust positive correlation
(cor =0.5825, p < 0.001), while resting NK cells demonstrated a strong
negative correlation with activated NK cells (cor = —0.4887, p < 0.001)
(Figure 6C) (Supplementary Figure SI). Notably, a heatmap
illustrating the correlation between risk scores and differential
immune cell populations indicated that both resting dendritic cells
and resting mast cells had positive correlations with monocytes (cor =
0.33; cor = 0.30; p < 0.05). In contrast, activated mast cells showed a
negative correlation with resting mast cells (cor = —0.44; p < 0.05)
(Figure 6D). This finding suggests that expression levels of prognostic
genes are closely associated with the presence of resting mast cells,
indicating that these genes may play a significant role in this
relationship. These results could enhance our understanding of
disease prognosis and underlying immunological mechanisms.

TIDE analysis showed that the dysfunction indicator in the HRG
was notably reduced compared with the LRG, suggesting a greater
potential for immune escape. Conversely, the value of Exclusion in the
HRG was markedly greater than that in the LRG, suggesting a reduced
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FIGURE 3

A comprehensive univariate Cox regression analysis examined the impact of individual factors on prognosis, revealing significant associations
between specific factors and adverse outcomes. A proportional hazards assumption test (p > 0.05) confirmed the reliability of the results. Three variables,
risk assessment score, pathologic T stage, and pathologic N stage, were identified as potential prognostic indicators (A). Subsequent multivariate analysis
(p < 0.05) underscored their independent prognostic significance, further validated by another proportional hazards test (p > 0.05) (B,C). The
nomogram indicated higher total points correlated with poorer survival in LUAD patients (D). A calibration plot showed excellent model fit at 1, 3, and
5 years post-diagnosis (E). Decision curve analysis demonstrated the nomogram'’s net benefit exceeded zero and outperformed other options (F).
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FIGURE 4

Risk scores varied across clinical features. Male patients had significantly higher risk scores than females. Box plots showed significant differences in
risk scores among subgroups (A). Prognostic gene analysis revealed GPX3 and KYNU were more highly expressed in males, while KMO and F2 showed the
opposite. KYNU expression increased in stage IV LUAD (B—E). Among stage IlI-IV LUAD patients, survival disparities existed, notably in pathologic NO and

T1-2 patients across age groups (>60 vs. < 60 years) (F).

probability of immune escape (Figure 6E). The immune checkpoint
mechanism plays a crucial role in evading detection and attack by T cells.
We examined and compared the expression patterns of genes associated
with immune checkpoints across different risk categories. Among the
47 immune checkpoint genes analyzed, 32 exhibited differential
expression among distinct risk groups (p < 0.05) (Figure 6F).
Notably, CD276 and TNFSF4 showed elevated expression levels in
the HRG compared to those in the LRG. In contrast, the remaining
30 genes demonstrated higher expression levels within the LRG when
compared to those in the HRG. The varying expressions of these genes
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provide a foundation for categorizing LUAD patients who may be
suitable candidates for immunosuppressive treatment.

3.8 Examination of somatic cell mutations
and assessment of drug sensitivity

The results from the somatic mutation analysis revealed a higher

mutation percentage in the HRG compared to the LRG) with rates of
98.21% versus 92.94%, respectively. Notably, KEAP1, TTN, and
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Gene Set Enrichment Analysis (GSEA) was conducted to elucidate gene expression differences. The low-risk group (LRG) showed activation of
immune-related pathways like autoimmune thyroid disease and asthma. The high-risk group (HRG) exhibited enrichment in pathways linked to cell
proliferation, metabolism, and gene regulation, including DNA replication and cell cycle progression (A,B). Gene Set Variation Analysis (GSVA) further
assessed pathway activation (C). HRG pathways, with core genes like MCM7 and PCNA, suggest enhanced cell proliferation. Genes like CDK6 and

CCNB1 also support HRG's role in promoting cellular proliferation.

USH2A exhibited the highest mutation rates within the HRG at
48%, while TTN displayed the highest mutation rate in the LRG at
52%. This suggests that TTN may be one of the genes most
frequently mutated in patients with LUAD (Figures 7A,B). A

detailed analysis of the mutation data indicated that
synonymous variants and missense variants occurred more
frequently in the LRG. Furthermore, single nucleotide

polymorphisms (SNPs) were also more prevalent in this
group. Interestingly, G > T and C > A base changes were
observed to be more common in the LRG as well. These
mutations showed statistical significance between HRG and
LRG. (Figures 7C-E). In addition, most of the top 20 mutated
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genes showed significant co-occurrence, and in particular, KRAS
and TP53 exhibited mutual exclusivity (p < 0.05) (Figure 7F).
Moreover, drug sensitivity analysis identified a total of
124 compounds exhibiting differential IC50 values between these
two groups (Supplementary Table S7). From this screening process,
five first-line chemotherapeutic agents for LUAD treatment were
highlighted: cisplatin, gemcitabine, docetaxel,
vinorelbine. The findings demonstrated a significant correlation
between KYNU and Docetaxel (p < 0.01) (Figure 7G). The
respective IC50 values for these drugs were lower in the HRG
cohort, indicating that individuals within this group exhibited
greater sensitivity to these therapeutic agents. Additionally,

etoposide, and
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FIGURE 6

Characterization of LUAD tumor microenvironment. A heatmap was generated to show the enrichment ratios of 22 immune cell subtypes across

risk levels (A). Immune cells with differing infiltration levels between groups were deemed differentially infiltrating. A box-and-whisker plot depicted their
percentages in both groups, revealing significant differences in ten immune cell types, including CD8" T cells and regulatory T cells (p < 0.05) (B).
Spearman’s rank correlation analysis showed plasma cells and naive B cells had a strong positive correlation (cor = 0.5825, p < 0.001), while resting

NK cells and activated NK cells showed a strong negative correlation (cor = —=0.4887, p < 0.001) ((C), Supplementary Figure S1). A heatmap indicated
resting dendritic cells and resting mast cells positively correlated with monocytes (cor = 0.33; cor = 0.30; p < 0.05), whereas activated mast cells
negatively correlated with resting mast cells (cor = —0.44; p < 0.05) (D). TIDE analysis revealed the dysfunction indicator in the high-risk group (HRG) was
lower than in the low-risk group (LRG), suggesting higher immune escape likelihood, while Exclusion was greater in HRG, indicating reduced immune
escape probability (E). Among 47 immune checkpoint genes, 32 showed differential expression across risk groups (p < 0.05) (F). CD276 and TNFSF4 were

elevated in HRG, while 30 genes were higher in LRG.

further confirmation was provided by observing that IC50 values for
these drugs remained consistently lower among those classified
within HRG; thus reinforcing their heightened responsiveness to
such treatments.

3.9 Expression validation

Expression validation confirmed the differential patterns of
prognostic genes. Compared to normal samples, GPX3 (p <
0.0001), KYNU (p < 0.05), and KMO (p < 0.0001) were found to
be downregulated in LUAD, while F2 exhibited significant
upregulation (p < 0.0001) (Figure 8A). The experimental results
obtained from RT-PCR demonstrated a high degree of consistency
with the predictions derived from bioinformatics analyses. In
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comparison to normal samples, GPX3, KMO, and KYNU were
significantly downregulated in LUAD, whereas F2 was upregulated
in this context (Figures 8B-E). The amplification curves (obtained
after 20 cycles) and melting curves (showing smooth, single peaks)
demonstrated good primer specificity and favorable amplification
efficiency (Supplementary Figure S2). These findings are consistent
with expression profiles derived from TCGA, thereby reinforcing the
biological relevance of the prognostic signature.

4 Discussion
Lung adenocarcinoma (LUAD), the predominant subtype of

non-small cell lung cancer, continues to present significant
challenges due to its heterogeneity and resistance to treatment
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FIGURE 7

Somatic mutation analysis showed a higher mutation percentage in the high-risk group (HRG) than in the low-risk group (LRG). KEAP1, TTN, and
USH2A had the highest mutation rates in HRG (48%), while TTN showed the highest rate in LRG (52%), suggesting TTN is frequently mutated in lung
adenocarcinoma (LUAD) patients (A,B). Detailed analysis revealed that synonymous and missense variants, along with single nucleotide polymorphisms
(SNPs), were more common in LRG. G > T and C > A base changes were also more prevalent in LRG (C—E). Drug sensitivity analysis identified
124 compounds with differential IC50 values between the two groups (Supplementary Table S7). The analysis of the mutual exclusivity or co-occurrence
of mutations revealed that several key genes showed significant interrelationships in the lung adenocarcinoma cohort. (F). Five first-line LUAD
chemotherapeutic agents were highlighted: cisplatin, gemcitabine, docetaxel, etoposide, and vinorelbine. A significant correlation was found between

KUNU and Docetaxel (p < 0.01) (G).

(Zheng et al., 2025). Therefore, it is crucial to promptly identify
patients at risk for recurrence and develop personalized treatment
strategies tailored to their needs. As a trace element, selenium plays
complex regulatory roles in various immune cells. In recent years,
there has been growing interest in the role of selenium metabolism-
related genes (SMRGs) in modulating tumor oxidative stress and
reshaping the However, their
prognostic significance and underlying molecular mechanisms

immune microenvironment.

remain largely unexplored (Fu et al., 2023; Ahmed et al.,, 2025).
This study employed bioinformatics analysis to establish a risk
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model based on selenium metabolism in LUAD and further
examined its relationships with the tumor microenvironment,
somatic mutations, and drug sensitivity. These findings enhance
our understanding of LUAD progression and provide valuable
insights for developing more precise therapeutic strategies.

In this research, we identified four hub genes associated with
selenium metabolism through regression analysis. Additionally, we
developed a risk model for calculating the selenium metabolism
score. The four SMRGs identified in this study represent potential
vulnerabilities in cancer cells, providing functional targets for novel
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FIGURE 8

Expression validation confirmed the differential patterns of prognostic genes. GPX3 (p < 0.0001), KYNU (p < 0.05), and KMO (p < 0.0001) were found

to be downregulated in LUAD, while F2 exhibited significant upregulation (p < 0.0001) (A). RT-PCR demonstrated that GPX3, KMO, and KYNU were
significantly downregulated in LUAD, whereas F2 was upregulated in this context (B—E).

Frontiers in Genetics 14 frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1655262

Chen et al.

therapies against LUAD. GPX3, a member of the glutathione
peroxidase family, inhibits ferroptosis by neutralizing lipid
peroxides. Its downregulation is correlated with poor survival
outcomes in high-risk patients characterized by elevated tumor
mutational burden (TMB) and KEAP1 mutation enrichment
(Shimada et al., 2022; Metlay et al., 1995; Zhang F. et al., 2025).
Enrichment analysis revealed that GPX3 is significantly associated
with antioxidant and peroxidase activities, suggesting that
dysregulated oxidative stress contributes to tumor progression.
Studies indicate that GPX3 may serve as a diagnostic biomarker
for oxidative stress-induced encephalitis; furthermore, GPX4,
another family member, regulates reactive oxygen species (ROS)
levels in breast cancer cells to resist ferroptosis (Lee et al., 2021). In
lung cancer specifically, GPX3 expression is silenced via
methylation, a phenomenon linked to and
in LUAD. It that

GPX3 expression correlates with clinical indicators such as

metastasis
chemotherapy resistance is plausible
disease stage and prognosis. Moreover, GPX3 emerges as a
promising prognostic marker and therapeutic target for both
LUAD and lung squamous cell carcinoma (LUSC) (Zhang et al.,
2025b; Chelchowska et al., 2025). KMO functions as kynurenine 3-
monooxygenase and plays a pivotal role in the kynurenine metabolic
pathway by catalyzing the conversion of kynurenine to 3-
hydroxykynurenine. This pathway has been implicated in
inflammation, oxidative stress, and neurotoxicity (Zhang M.
et al, 2025). Aberrant expression of KMO in tumors may
significantly influence immune regulation within the tumor
microenvironment. Research indicates that alterations in the
kynurenine pathway are associated with mechanisms of immune
evasion in cancer cells. Elevated KMO expression may modulate
immune cell activity by affecting metabolite levels, thereby
impacting patient outcomes (Chen et al, 2025). In stroke
research, KMO has been
autophagy, facilitating brain repair following a stroke (Wang
et al,, 2024). The differential expression of KMO between high-

and low-risk groups in this study may correlate with adverse

shown to inhibit mitochondrial

prognoses; furthermore, KMO has been identified as a protective
factor against recurrence in LUAD. Investigating compounds
involved in selenium metabolism could elucidate the role of
KMO in tumor immune escape and disease progression,
potentially identifying it as a target for combinational therapy.
KYNU, also known as kynureninase, is a key enzyme within the
kynurenine pathway responsible for converting kynurenine into
anthranilic acid. Dysregulation of KYNU has been observed across
various cancers and is closely linked to tumor initiation and
progression (Xu et al, 2025). Its metabolites can influence
cellular redox states, thereby affecting both cell
proliferation and apoptosis (Zhang et al, 2025d). Additionally,

tumor

changes in KYNU activity may impair immune cell function,
contributing to tumor immune escape (Xiang et al, 2024).
Within the risk model developed in this study, variations in
KYNU expression may serve as critical determinants of patient
prognosis. regulatory
pathways related to KYNU could uncover new therapeutic

Exploring upstream and downstream

avenues for treating LUAD. The F2 gene encodes coagulation
factor II (prothrombin), which plays a central role in the
coagulation cascade. Beyond its classical function in hemostasis,
emerging evidence links abnormalities involving coagulation factor
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II and related pathways to tumor metastasis (Teofilov et al., 2025),
angiogenesis (Kvasnicka et al., 2024), and disease severity (PMID:
39497411). Activation of the coagulation system by tumor cells
facilitates angiogenesis and metastasis. Altered expression of F2 may
influence these processes, potentially elucidating the poorer
outcomes observed in high-risk LUAD patients. For example,
F2 may play a role in microthrombosis formation within tumors
or regulate factors that drive angiogenesis. Clinically, evaluating
coagulation parameters such as D-dimer levels in LUAD patients
could provide insights into whether anticoagulant therapy
enhances prognosis.

Subsequently, we undertook a more comprehensive exploration
of the molecular characteristics associated with distinct risk
populations through GSEA. Pathway enrichment analysis in the
high-risk group revealed significant involvement of pathways related
to cell proliferation, metabolism, and gene regulation. Notably, these
included DNA replication, the cell cycle, spliceosome activity, and
ribosomal pathways. These findings are consistent with previous
studies that have documented uncontrolled cell cycle progression
and aberrant DNA replication in LUAD (Wu et al, 2025). In
contrast, the low-risk group demonstrated an enrichment of
immune-related pathways. These encompassed those linked to
asthma, autoimmune thyroid disease, transplant rejection, and
immunoglobulin A (IgA) production within the intestinal
immune network. Selenium intake has been associated with
asthma prevalence (Zajac, 2021) and plays a role in selenium
metabolism. Furthermore, serum selenium levels correlate with
thyroid disorders; specifically, selenium deficiency is known to
elevate the risk of autoimmune thyroid conditions (Troshina
et al.,, 2024).

Immune cell infiltration analysis revealed an increased
proportion of M2 macrophages and resting CD4 memory T cells
in high-risk tumors, whereas low-risk tumors exhibited elevated
levels of CD8" T cells and resting dendritic cells. These findings
corroborate previous studies regarding the roles of immune cells
within the tumor microenvironment. M2 macrophages and
neutrophils are known to promote tumor growth and facilitate
immune evasion (Zeng et al, 2025), while CD8" T cells and
dendritic cells are pivotal in driving anti-tumor immunity. The
differential expression of immune checkpoint genes across risk
groups indicates varying efficacies of immunotherapy (Jiang
et al,, 2025). In the realm of cancer immunity, selenium has been
shown to enhance lysosomal activity and cytotoxicity in CD8"
T cells (Chen et al, 2019). These results underscore the
in LUAD
progression and advocate for personalized immunotherapeutic
strategies. The development of selenium nanoparticles or
selenium-containing compounds may improve selenium protein

significance of the immune microenvironment

status in LUAD cells, thereby synergistically enhancing the
efficacy of immunotherapy.

For LUAD cases that lack driver gene mutations, chemotherapy
remains the primary treatment option, often in combination with
immunotherapy or anti-angiogenic agents. The first-line regimen
typically consists of platinum-based drugs alongside pemetrexed. In
this study, we analyzed the differences in chemosensitivity between
high-risk and low-risk LUAD patients. Notably, cisplatin demonstrated
significantly lower IC50 values in the high-risk group compared to the
low-risk group, indicating enhanced efficacy among high-risk patients.
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Cisplatin induces cytotoxicity by damaging tumor cell DNA and
activates the immune system through immunogenic cell death
(ICD). In high-risk patients, cisplatin may enhance antigen
presentation by dendritic cells via the release of immune-stimulatory
molecules such as calreticulin (CRT) and HMGBI, thereby activating
T-cell-mediated anti-tumor responses (Ma et al., 2025; Yasuda et al,
2025). Similarly, docetaxel, gemcitabine, and etoposide exhibit superior
efficacy in high-risk patients; this is likely attributable to their ability to
inhibit tumor angiogenesis, reverse epithelial-mesenchymal transition
(EMT), and exert immunomodulatory effects such as reducing Treg
activity (Massa et al., 2025; Obradovic et al., 2023) while promoting
M1 polarization of tumor-associated macrophages (TAMs) (Jiménez-
Cortegana et al, 2021). These agents also regulate the tumor
microenvironment to suppress angiogenesis (Al-Omar et al., 2025),
providing a rationale for combining chemotherapy with
immunotherapy in high-risk LUAD patients. Our analysis of
prognostic gene-drug associations revealed that GPX3 expression
significantly correlates with drug IC50 values. It is crucial to conduct
further research on how GPX3 interacts with selenium metabolism and
chemotherapy drugs to influence both the occurrence and
progression of LUAD.

This project systematically evaluated the pivotal role of SMRGs
in LUAD by integrating transcriptome data analysis. We developed
a risk score model based on these genes to distinguish high-risk
patients and predict their prognosis. At the mRNA level, we
conducted a preliminary validation of the four prognostic genes
through RT-qPCR in five pairs of LUAD and adjacent non-tumor
tissues. The expression difference patterns of the genes were
basically consistent with the trends of the TCGA-LUAD data.
However, it should be noted that the current validation only
focused on the “expression differences of the genes between
tumor and normal tissues”,and could only serve as preliminary
exploratory evidence that the genes screened out by bioinformatics
have real expression differences. The results suggest that patients in
the high-risk group may experience a more complex
immunosuppressive microenvironment. Future research could
further explore the related pathways enriched by these core genes
through cell and animal experiments to elucidate their specific
mechanisms in tumor progression and immune evasion.
Additionally, these genes hold potential as diagnostic and
therapeutic targets, which may facilitate the development of
novel selenjium metabolism therapies or precise nutritional
supply models, thereby providing new avenues for personalized
treatment and precision medicine in LUAD. However, certain
limitations must be acknowledged. Firstly, this study mainly
relies on bioinformatics analysis of public datasets. There are two
major deficiencies in the existing experimental validation: on the one
hand, the expression of prognostic genes was only verified through
RT-qPCR experiments on five pairs of LUAD and adjacent non-
tumor tissues. Although the trend is consistent with the TCGA
dataset and the authenticity of gene expression was preliminarily
explored, the clinical application value of the prognostic model was
not touched upon. On the other hand, due to the limitations of
clinical sample acquisition conditions, the current validation sample
size is only five pairs. Although technical repetition has ensured the
reliability of the results, the small sample size may still lead to
insufficient statistical power and cannot be widely promoted.
Secondly, there is a lack of in vitro and in vivo functional
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validation experiments, which makes the mechanism explanation
of the model insufficient. In addition, as this study is a retrospective
study, bias may be difficult to avoid; therefore, it is necessary to
further verify the findings of this study through prospective studies.

5 Conclusion

In conclusion, we have developed a risk model associated with
selenium metabolism genes to predict recurrence in patients
diagnosed with LUAD. The accuracy of this model was further
validated using an external validation cohort. This signature
demonstrates a robust prognostic predictive capability and can
be utilized to characterize the tumor microenvironment of LUAD.
The novel methodologies and key genes identified in our study
may offer valuable

insights for advancing precision

oncology in LUAD.
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