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Background: Infectious diseases pose a global health threat, with antimicrobial
resistance (AMR) exacerbating the issue. Considering Escherichia coli (E. coli) is
frequently linked to urinary tract infections, researching antibiotic resistance
genes in this context is essential for identifying and combating the growing
problem of drug resistance.

Objective: Machine learning (ML), particularly deep learning (DL), has proven
effective in rapidly detecting strains for infection prevention and reducing
mortality rates. We proposed aiGeneR 3.0, a simplified and effective DL model
employing a long-short-term memory mechanism for identifying multi-drug
resistant and resistant strains in E. coli. The aiGeneR 3.0 paradigm for identifying
and classifying antibiotic resistance is a tandem link of quality control
incorporated with DL models. Cross-validation was adopted to measure the
ROC-AUC, Fl-score, accuracy, precision, sensitivity, specificity, and overall
classification performance of aiGeneR 3.0. We hypothesized that the aiGeneR
3.0 would be more effective than other baseline DL models for antibiotic
resistance detection with an effective computational cost. We assess how well
our model can be memorized and generalized.

Results: Our aiGeneR 3.0 can handle imbalances and small datasets, offering
higher classification accuracy (93%) with a simple model architecture. The
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multi-drug resistance prediction ability of aiGeneR 3.0 has a prediction accuracy
of 98%. aiGeneR 3.0 uses deep networks (LSTM) with next-generation sequencing
(NGS) data, making it suitable for novel antibiotics and growing resistance
identification in the future.

Conclusion: This work uniquely integrates SNP-level insights with DL, offering
potential clinical utility in guiding antibiotic stewardship. It also enables a robust,
generalized, and memorized model for future use in AMR analysis.

KEYWORDS

deep learning, machine learning, next-generation sequencing, antimicrobial resistance,
antibiotic resistance genes

1 Introduction

One of the biggest concerns for global public healthcare is the
issue of diseases brought on by bacteria that are resistant to
antibiotics, often known as antimicrobial resistance (AMR).
According to estimates from the World Health Organization
(WHO), there were over 700,000 fatalities from drug-resistant
illnesses in 2019, and that number might increase to 10 million
deaths by 2050 (Sharma et al, 2024; Chandra et al, 2021).
Identifying antibiotic resistance genes (ARGs) is important for
discovering the patterns of AMR and plays a key role in
personalized treatment and drug discovery.

Urinary tract infections (UTIs) are among the many infectious
diseases that pose a serious threat to world health (Tan and
Chlebicki, 2016). Escherichia coli (E. coli) bacteria are the main
cause of UTIs, which affect millions of people each year (Vasudevan,
2014). If left untreated, many infections that affect the urinary
system carry the potential to cause consequences like kidney
damage. The problem is heightened by the advent of antibiotic
resistance in E. Coli strains (Totsika et al., 2012), which restricts
available treatments and calls into question accepted ideas of
antimicrobial stewardship (Niranjan and Malini, 2014). E. coli is
the primary cause of UTIs and provides a statistical analysis of other
bacteria that can cause UTIs, as shown in a short research conducted
in the northern region of India. E. coli (76.60%) was the most
common gram-negative bacterium among the 47 positive isolates
out of a total of 83 positive samples (Das et al., 2018). As shown in
Figure 1, E. coli is the main cause of UTI in more than 53% of the
cases, which is significant and needs to be addressed in the AMR
pattern, antibiotic-resistant strains, and ARGs in E. coli for further
effective drug development.

The robust identification of antibiotic resistance determinants
and their curation in specialized databases has been made possible
by the growing availability and affordability of whole-genome
sequencing data from clinical strains. Computational techniques
can then search these resources for known causative genes, given the
sequence from a new strain (McArthur et al.,, 2013; Zankari et al.,
2012; Stoesser et al., 2013). By detecting mutations, examining entire
genomes, and pinpointing particular resistance genes, the genetic
study of E. coli shows antibiotic resistance patterns. To effectively
tackle the global challenge of antibiotic resistance, this technique
aids in understanding the genetic basis of resistance, tracking its
spread, and predicting emerging patterns. This information guides
focused treatments for antibiotic stewardship (Truswell et al., 2023;
Wilson et al., 2016; Malekian et al.,, 2022). Antibiotic resistance,
particularly in bacteria like E. coli, makes urinary tract infections
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(UTIs) a serious concern to human health. UTIs are among the most
prevalent bacterial illnesses worldwide, with millions of cases
occurring yearly. UTIs can cause serious side effects such as
kidney infections, sepsis, and long-term harm to the urinary
system if they are not addressed. The danger is exacerbated by
introducing strains resistant to antibiotics, particularly in E. coli
(Reza Asadi et al., 2019; Jafri et al., 2014; Bryce et al., 2016).
Novel approaches are needed to address the growing epidemic of
antibiotic resistance in urinary tract infections (UTIs). Through
genetic insights, DNA data advances several sectors, including
disease diagnosis, customized medicine, AMR analysis, and
microbial diversity study (Satam et al., 2023). Due to its capacity
to handle high-dimensional data, identify intricate correlations, and
integrate various data sources, deep learning (DL) performs very well
when evaluating DNA sequencing data for the identification of
antibiotic resistance (Lueftinger et al., 2021; Shi et al,, 2019). DL is
a revolutionary method that reduces the need for wasteful antibiotic
treatment by providing precision medicine through the identification
of distinct resistance profiles (Bryce et al., 2016; Taylor et al., 2018).
Real-time decision assistance is empowered by DL, allowing for quick
and knowledgeable antibiotic selection decisions. Additionally, it
makes it easier to identify new resistance trends early on, which
supports preventative measures (Ren et al.,, 2022a; Ren et al., 2022b).
This work holds the potential to completely transform the way that
UTTs are managed and the identification of resistance patterns in
E. coli utilizing the next-generation WGS data, providing efficient
solutions to the ever-changing problem of antibiotic resistance. We

B Escherichia coli

W Klebsiella
pneumoniae

B Pseudomonas
aeruginosa

1 Proteus mirabilis

A\

FIGURE 1
Most UTI cases are with selected bacteria.
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FIGURE 2

The overall architecture of our study.

proposed our aiGeneR 3.0 model, which can identify the multidrug
resistance genes in E. coli. In our work, we deal with a highly
imbalanced and small dataset to assess the efficacy of our aiGeneR
3.0 model. We also compare the performance of aiGeneR 3.0 with
well-accepted state-of-the-art ML and DL models. The generalization
of our model boosts the adaptability and robustness. The simplified
architecture and less computational time are the major advantages of
our aiGeneR 3.0 model. We hypothesized that the aiGeneR 3.0 can
reduce the cost and time for multi-drug resistance identification
utilizing the WGS data. The dataset (NGS single-nucleotide
polymorphism (SNP) WGS) utilized in this work is small and
imbalanced; still, our aiGeneR 3.0 performs exceptionally well; the
ROC value achieved during the deployment phase has already proven
this. The detailed architecture of our study is shown in Figure 2.

The following describes the paper’s structure and major
contributions. The relevant work for classifying and identifying
E. coli antibiotic resistance is included in Section 2 to set up our
research pipeline. We go over the aiGeneR 3.0 content and overall
design in Section 3. The AI models and the experimental technique
are presented in Section 4. Section 5 has the experimental results
presentation. The validation and discussion of our aiGeneR
3.0 outcome are conducted in Section 6 and Section 7,
respectively. We benchmarked our aiGeneR 3.0 in Section 8, and
Section 9 held the conclusion.

2 Literature surveys

Researchers Moradigaravand et al. (2018) used gradient-boosted
decision trees to achieve a 91% success rate in predicting antibiotic
resistance in 1,681 Escherichia coli strains. Researchers found that
using population structure and gene content greatly improved
prediction accuracy. Based on these findings, machine learning
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(ML) shows promise as a clinical tool for identifying antibiotic
resistance. Introduced by Arango-Argoty et al. (2018), the
DeepARG-SS model outperformed conventional approaches with
arecall of 91% and an accuracy of 97% over 30 antibiotic categories.
Applying the DeepARG-LS model to the MEGARes database
confirmed its great recall and accuracy. When used in conjunction
with the DeepARG-DB database, these models allow for more precise
gene identification by producing predictions of antibiotic resistance
genes. The difficulties and limits of using ML to forecast antibiotic
resistance were addressed by Boolchandani et al. (2019). In order to
improve the accuracy of predictions, the study highlighted the necessity
for extensive databases that connect resistance genes to test results. The
significance of continuously improving computational methods to
combat antibiotic resistance was highlighted by recognizing
Resfams, Resfinder, and CARD as effective techniques for finding
resistance genes. Among the multi-label classification models used by
Ren et al. (2022a) to forecast E. coli multi-drug resistance, the ECC
model proved to be the most accurate. In order to have a whole picture
of resistance, the study stressed the significance of non-chromosomal
genetic variables. Researchers Gunasekaran et al. (2021) used DL
methods to classify DNA sequences, successfully determining the
origins of viruses and DNA mutations with a high degree of
accuracy. This research proved that DL could be useful for a
variety of genetic analysis, drug discovery, and viral identification
tasks. The accuracy of antimicrobial resistance predictions for
underrepresented groups was greatly enhanced by the deep transfer
learning model put forth by Ren et al. (2022b) while dealing with tiny,
imbalanced datasets. Rapid diagnosis and focused therapies could both
benefit from this strategy.

Over the last decade, various tools, quality control pipelines, and
AI models have been gaining attention in AMR analysis. The AMR
mechanism is too complex and requires trained manpower to access
the laboratory test for the identification of resistance patterns,
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resistance strains, and multi-drug resistant percentages. In addition
to this, the procedure of resistant strain identification is associated
with massive cost and time. However, Al models have been found to
perform well compared to traditional approaches for resistant strain
identification. It was also found that existing AI studies for resistant
strain identification lack a comparative analysis that includes
ensemble and simplified model architectures. In addition to this,
the computational cost associated with the resistant strain
identification is still an open issue. This study aims to bridge this
gap and provide evidence for the superiority of ensemble-based DL,
transfer learning, and solo simplified architecture-based DL models
regarding prediction accuracy and computational cost. Additionally,
it is observed from the literature that researchers used transfer
learning (TL) on a small dataset to identify the resistant strains.
We aim to achieve a more effective outcome with less model
complexity and computational time. Interventional studies
involving animals or humans, as well as other studies that
require ethical approval, must list the authority that provided
approval and the corresponding ethical approval code.

In this section, where applicable, authors are required to disclose
details of how generative artificial intelligence (GenAI) has been
used in this paper (e.g., to generate text, data, or graphics, or to assist
in study design, data collection, analysis, or interpretation). The use
of GenAl for superficial text editing (e.g., grammar, spelling,
punctuation, and formatting) does not need to be declared.

3 Materials and methods

The methods, resources, and materials used in this study to
accomplish the study’s goals are described in this section. This
section seeks to present a clear and thorough explanation of the
experimental design, data collection, and data analysis methods.

3.1 Dataset

The E. coli WGS dataset utilized in this study is openly available
and was collected from GitHub (2025), and Moradigaravand et al.
(2018). Both these datasets have the susceptible and resistant
information of the WGS of the E. coli K-12 strain. Due to the
common association between these mutations and increased
antibiotic resistance in both environmental and clinical contexts,
the double-mutated E. coli genome dataset was chosen for its
practical and clinical importance. The genetic variety of resistant
strains is reflected in this dataset, which captures changes linked to
resistance to several classes of antibiotics. This provides valuable
insights into the complicated processes of resistance. Previous
studies have mostly concentrated on single mutations or
resistance genes specific to individual isolates; this work fills a
significant void by shifting the focus to double mutations.

3.2 Dataset collection

We employed two datasets of E. coli in this study, which
included WGS, SNP, and resistance-susceptible data for four
antibiotics: gentamicin (GEN), cefotaxime (CTX), ciprofloxacin
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TABLE 1 Strain distribution to all the studied antibiotics.

Antibiotics GEN C1z CTX CIP
# Susceptible 188 276 358 366
# Resistance 621 533 451 443

Total 809 809 809 809

(CIP), and ceftazidime (CTZ), as shown in Table 1. The first
dataset has 809 E. Coli strains, which are generated by Ren et al.
(2022b). Clinical samples from both humans and animals were used
to get the isolates. Using the VITEK® 2 system (bioMérieux,
Nurtingen, Germany), antimicrobial susceptibility testing was
carried out, and results were evaluated by EUCAST criteria. The
proportion of isolates resistant to CTX, GEN, CTZ, and CIP is 23%,
44%, 34%, and 45% in that sequence.

It is observed from Figure 3 that the dataset utilized in our work
has a high imbalance ratio of resistance-susceptible strains for GEN
and CTZ antibiotics, with a slight improvement in the case of
inconsistency for CTX and CIP antibiotics. There is a significant
imbalance ratio in susceptible (S): resistant (R) of 1:3 and 1:2 in the
case of GEN and CTZ antibiotics, respectively. While considering all
four antibiotics, the ratio of S: R is 1:2 (1,188:2048).

3.3 Quiality control

Data quality is the key to various Al model performances (Nayak
et al,, 2022; Nayak et al.,, 2023; Swain et al,, 2023). Ren, Y. et al.
developed the dataset (GitHub, 2025) to preprocess the raw WGS
data; it uses BWA-MEM, and clean reads were mapped to the E. coli
reference genome (E. coli K-12 strain, MG1655) after low-quality
reads were filtered using fastp (v0.23.2) (Chen et al., 2018). By
extracting reference and variant alleles and combining isolates
reference allele single-nucleotide
polymorphisms (SNPs) were found using bcftools (v1.14)
(Danecek et al, 2011; Li and Durbin, 2009). Preserving alleles
that were found to be variations in more than half of the

according to positions,

samples and creating an SNP matrix. One-hot encoding
transformed the matrix into a binary format for further ML analysis.

3.4 Data preparation

This phase is the most crucial and contributes the most toward
the model’s performance (Nayak et al., 2024; Mohanty et al., 2023).
We utilized the dataset developed by GitHub (2025) for our study.
Hence, we restructured the dataset to meet our study objective. The
one-hot encoding in the original data ranges from 1-4, while in our
study, we modified this to 0.25-1. In addition, we aim to study the
effect of this one-hot encoding on computational costs.

3.5 Proposed model aiGeneR 3.0

To identify E. coli strains that have gained resistance, we created
the state-of-the-art aiGeneR 3.0 model; this model is based on DL
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and ML. The approach we have created is multi-staged and uses
modern techniques to boost accuracy and robustness. Beginning
with processed Next-Generation Sequencing (NGS) WGS data
(GitHub, 2025), which
comprehensive inquiry, we use it as our primary source. To

offers a solid foundation for
prepare the dataset, we use the quality control (QC) pipeline that
we developed before (Nayak et al., 2022). In the final phase, highly-
trained deep neural networks (LSTM) and Linear regression (LR)
are used to reliably identify susceptible and resistant bacteria and to
forecast the likelihood of multi-drug resistance in any given strain
that shows resistance to any of the four antibiotics under
investigation. The design and execution of aiGeneR 3.0 are
depicted in Figure 4. To describe the association between gene
regulation variables and resistance extent, we used Linear Regression
with least-squares optimization to reduce prediction errors and
identify resistance-associated markers. Linear Regression provided
a baseline prediction framework for deep learning model
making the aiGeneR 3.0 pipeline robust in
multidrug resistance categorization. Ultimately, a comprehensive

comparison,

evaluation of its efficacy using a predetermined set of assessment
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measures ensures the model’s reliability. Biological confirmation
also adds credence to its real-world utility. The aiGeneR 3.0 model is
an all-inclusive and potent tool that could change the game when
finding E. coli antibiotic resistance.

3.6 Algorithm: the proposed model
aiGeneR 3.0

Step 1 Read the data
Gather E. coli whole-genome sequencing data using NGS.
Use fastp for sequencing reads and quality assurance
(Chen et al., 2018).
Align the filtered reads using BWA-mem.
Adopt Bfctools for calling variants (Danecek et al., 2011).
Sort and filter the aligned reads using Samtools (Li and
Durbin, 2009)
Let ED Dbe the processed dataset
SNPs. ED = {ed;,ed,,eds, ... ... sed,}

Step 2 Preparing the data

containing
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FIGURE 5

Local architecture of the LSTM deployed in our study.

Align up (A) the data and eliminate duplicates.
A = allign ED
To remove duplicates, A = remove dul picates (A)
Step 3 Data Engineering
Use a one-hot encoding method (OHg) as OHp =
OneHotEncoade (A).
Decide on normalized values between 0.25 and 1 as
follows: Equation, =0.25+0.75X M%% R
where OH is the normalized one-hot encoding data.
Step 4 Split the train and test
Split the data into sets for training and testing.
Step 5 aiGeneR 3.0 application (train data)
Customize the model by aiGeneR3.0 = Initialize,,oqe (6)

Utilizing the training set
aiGeneR3.0¢4ined = Train (aiGeneR3.0, Xirains Y train)s
Training the aiGeneR 3.0 model.

Acquire the predictive

model. aiGeneR3.0predictive = AiGeneR3.0rained (X,yum)
Find out what percentages of the various types are resistant

to antibiotics with the Equation
Sfes = %2111 ()A/truin,i = resistunt), Where j’train,i =
resistant is the indicator function, which has

values J,,.... = resistant = { 01’1.}f j}y tr?irf’iilsssfcsés}:zge
> train,i
Step 6 Multi-drug resistant prediction and identification of
resistant strains (test data)

Determine which strains are resistant in the test data by
following the Equation.

)A}test = aiGenER?’-opredictive (Xtest)-

Estimate the resistance of strains to multiple drugs as per the
following Equation, Syuti-drug = Estimate_Res (Y os). Where
Estimate_Res() determines multi-drug resistant by comparing
the predicted resistance probability Yiest against a threshold T';.
The follows  the  rule
Lif Yiesti = Tres (multi — drug resistant)
0, otherwise (non — resistant)

rule for identification

below, S,uiti-drugi = {

Achieve outcomes with S_Reigsification = Classify (J,,q)

as susceptible-resistant strains.

" 1(9,pq;=resistant) .
Sresistant = z’ﬂ+, determine the percentage of

bacterial strains that are resilient to antibiotics.
Step 7 Assessment of the Model
Analyze aiGeneR 3.0’s effectiveness.
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3.7 Architecture and parameter

The primary step in using aiGeneR 3.0 is careful data
preprocessing. The genomic sequences of different strains of
bacteria are encoded into numerical formats that are suitable for
input into neural networks. Enabling further calculation usually
involves converting categorical genetic data into a numerical
format using methods like one-hot encoding (Dahouda and Joe,
2021). The proposed architecture consists of a total of eight layers,
and four types of layers are utilized, out of which three are dense, two
are dropout, and one each for regularization, flattening, and softmax
make up the model’s architecture. The first, second, and third dense
layers contain 64, 64, and 32 neurons, respectively. Comparably, our
work employs many values for the dropout and regularization layers.
The different regularization values experimented with in our work are
0.01, 0.001, and 0.0001, and the dropout rates are 0.25, 0.5, 0.7, and
0.9. Our proposed local architecture of the LSTM model with other
added layers utilizing the random search is shown in Figure 5.

The main objective of this study is to examine and compare the
effectiveness of our proposed aiGeneR 3.0 model with different
parameters to achieve the best classification accuracy for identifying
the resistant strains utilizing the WGS E. coli NGS data. Thus, we
adopt several changes during the implementation phase to the
parameters of aiGeneR 3.0. We discuss some key phases of our
experiments in the following sub-sections and the updation in
several parameters of our implemented model, among which a
few are shown in Table 2.

4 Experimental setup and
implementation

The proposed aiGeneR 3.0 is a complete package of DL and ML
models for identifying resistant strains and predicting multidrug
resistance in strains. The architecture of aiGeneR 3.0 is simple and
less complex than that of previously proposed DL models for resistant
strain identification. In our experimental setup, we implemented
several versions of aiGeneR 3.0 with different model parameters
and finally proposed the architecture that consumes less
computational time and produces the most significant results. In
this section, we discuss a few of the several implementation versions of

aiGeneR 3.0 with different hyperparameters.
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TABLE 2 All the phases of model implementations have different parameter
configurations.

Phases Train- Regularization Dropout K-fold
test
1 70:30 0.01 0.25 3
2 80:20 0.001 0.5 5
3 90:10 0.0001 07 10
4 70:30 0.001 05 5
5 80:20 0.01 0.25 5
6 80:20 0.0001 05 5
7 80:20 0.001 07 10

*Bold showing the best result.

4.1 Experiment |: high learning rate with
smaller training data

During the initial development phase, we are refining the
aiGeneR 3.0 model, which employs an LSTM architecture, for
our analysis. A softmax layer was incorporated to facilitate
classification tasks. A learning rate of 0.01 and a dropout rate of
0.25 were utilized to optimize the training process and mitigate
overfitting. To conduct a comprehensive assessment of the model’s
performance, we partitioned the dataset into two distinct subsets: the
training set and the testing set. The ratio of the train-test split was 70:
30. Furthermore, a K-fold cross-validation technique was employed
with K = 3 to assess the model’s ability to generalize. Through
iterative training and evaluation on various subsets of the dataset, we
successfully enhanced the accuracy and dependability of the model
in identifying resistant strains in the data.

4.2 Experiment |l: moderate learning rate
with increasing training data

In this implementation phase, we continued our research by
iteratively improving the aiGeneR 3.0 model by changing several
critical hyperparameters. We adjusted the learning rate to 0.001 to
address overfitting and raised the dropout rate to 0.5. These changes
should promote more regularization. To keep the assessment
process consistent, we partitioned the dataset at an 80:20 train-
test split ratio. We also used a K-fold cross-validation method with
K =5 to strengthen our model evaluation and thoroughly examine
its generalizability capabilities, which improved the validation
procedure. The model’s training dynamics were fine-tuned using
these improvements so that it could better use features from the
NGS data to identify resistant bacteria.

4.3 Experiment lll: low learning rate with
maximum training data

During this experiment phase, we kept tweaking the
hyperparameters of the aiGeneR 3.0 model to make it even
better. Now, we are trying to find the sweet spot by gradually
adjusting the model weights during training with a learning rate
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of 0.0001. We raised the dropout rate to 0.7 to improve model
regularization and alleviate overfitting worries; this should lead to
more diverse and resilient learned representations. To keep things
uniform throughout the assessment, we kept the train-test split ratio
at 90:10. To further evaluate the model’s efficacy across different
data subsets, we also used a more stringent K-fold cross-validation
method with K =
validation strategy.

10. This broadened the scope of our

We consistently obtained the best performance metrics with an
8:2 train-test ratio throughout all stages of our model, aiGeneR 3.0,
as shown in Table 2. This ratio consistently produced the best
outcomes, even with changing parameter combinations during the
different phases. After training on 80% of the data and testing on the
remaining 20%, our model showed exceptional accuracy, precision,
sensitivity, and specificity. This strategy ensured that generalization
and model complexity were balanced, enabling reliable performance
on several splits of the datasets. Furthermore, at each step,
rates, and K-fold cross-
validation were methodically investigated to

regularization strategies, dropout
improve the
performance of our models. Notably, the 8:2 train-test ratio was
a stable base for attaining optimal outcomes across all of our
implementations, even though changes to the parameters affected
the model’s behavior.

In addition to the above experiments, we also implemented our
aiGeneR 3.0 in several other phases, with the model parameters fine-
tuned. We also take the different train-test splits to the above
experiments and add various other possible dropout rates.
However, we observe different model matrices with each of these
implementation phases of our aiGeneR 3.0 and consider the best
performance, which is described in sections 5 (results) and 6

(discussions).

5 Performance evaluation

This section presents a thorough performance evaluation of
aiGeneR 3.0 and discusses the various evaluation processes adopted
in our study. Our study employs a distinct blend of methodologies:
power analysis, empirical analysis, and evaluation of model
generalization. Empirical analysis assesses the practical value of
the model in real-world situations, while power analysis evaluates
its ability to detect meaningful effects. The analysis of model
generalization focuses on its ability to acquire knowledge from
training data and adjust to various unseen datasets. This
comprehensive evaluation technique will unveil the intricate
complexities of aiGeneR 3.0, providing into its
effectiveness and robustness.

insights

5.1 Power analysis

Power analysis is a statistical method employed to ascertain the
minimal sample size necessary for a study to attain a specified degree
of statistical power (Nayak et al., 2024; Jamthikar et al., 2020). Power
analysis is essential in the realm of deep learning models as it allows
for the estimation of the required sample size to effectively detect
significant impacts or disparities in the model’s performance while
maintaining a desired level of confidence.
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We conducted a power analysis to determine the minimum
sample size needed to calculate a population proportion with
precision and accuracy. The experiments were conducted
utilizing the methodology described in (Jamthikar et al., 2019;
Skandha et al, 2020). The formula for sample size calculation,
represented by the symbol Sn, is shown in Equation 1:

In this context, MoE represents the margin of error, p denotes
the estimated proportion of the feature in the population, and z*
refers to the Z-score linked to the relevant confidence level. The
MOoE2 was calculated by using half of the width of the confidence
interval. We selected a ratio of 0.5 and a confidence level of 95%
for our experiment. The power analysis is conducted using
MedCalc (Medcalc, 2025) and demonstrates that the study has
a sample size (809) that exceeds the required amount to achieve
the intended degree of statistical power and correct classification.
The minimum sample size for the dataset utilized is 271 (68 are
susceptible and 203 are resistant), which is smaller than the
available data.

5.2 Empirical analysis

The confusion matrix, a real-to-anticipated-class matrix with
multiple evaluation standards, is the primary target of performance
parameters. TP and FP stand for true positives and false positives,
respectively, in the confusion matrix. Similarly, TN and FN
represent true negatives and false negatives, respectively. There
are four types of predictions: TP, which accurately predicts that
samples with resistance will be resistant; TN, which accurately
predicts that samples without resistance will be susceptible; FP,
which inaccurately predicts that susceptible samples will be resistant;
and FN, which inaccurately predicts that resistant samples will be
susceptible.

Measures such as accuracy (Acc), precision (Pre), specificity
(Spe), sensitivity (Sen), Fl-score (F1), Matthews Correlation
Coefficient (MCC), and area under the curve (AUC) are some of
the classification performance measures that were studied in this
study. The total number of input samples divided by the number of
valid predictions is the “processor, ranging from 1 to 4 (dataset A),
while the second dataset consists of one-hot encoding. We call the
recall the percentage of positive observations that were projected to
be positive compared to the total number of positive observations.
F1 is the weighted mean of precision and recall. All the model
metrics are calculated based on the following equations
(Equations 2-7).

Accuracy (Acc) = T +(17;: : §§)+ o) (2)
. Tp
Precision (Pre) = TotFy (3)
Sensitivity (Sen) = S (4)
(Tp + Fy)
Specificity (Spe) = _Tr (5)
(Tn +Fn)
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Precision* |
F1 Score < 2* I’e(.II?IOIl Recal ©)
Precision + Recall
MCC = TPXTN—FPXFN (7)
N (Tp +Fp)(Tp + Fx)(Ty + Fp) (Tx + Fn)
6 Results

The Anaconda environment and Jupyter Notebook are used to
the model
configuration. The learning models are implemented in Python

carry out architecture design and parameter
(version 3.7) (Python, 2025). Here, we present the findings from
the exploratory data analysis, together with a discussion of the
results obtained using the suggested methodology. Our study
optimized K-Nearest Neighbors (KNN), Decision Tree (DT),
Support Vector Machine (SVM), VGG-19, 1-Dimensional
Convolutional Neural Network (1-D CNN), and ResNet-50 to
ensure resilient performance. Grid search found the best k for
KNN, balancing classification accuracy and computing economy.
DT used a Gini impurity-based criterion with a maximum depth to
avoid overfitting. SVM utilized an RBF kernel with optimized
hyperparameters C and y by cross-validation. Transfer learning
adjusted VGG-19 and ResNet-50 architectures were adapted to gene
expression data, where both models were trained from scratch with
customized input layers and trained using the Adam optimizer.
Convolutional, pooling, and dense layers were added to the 1-D
CNN architecture with sequential data pattern kernel sizes and
activation functions. All models were hyperparameter-tuned and
evaluated for optimal performance.

We used a grid search to optimize the learning rate, batch size,
hidden layers, and neuron counts hyperparameters for aiGeneR 3.0;
we then tested each combination using 5-fold cross-validation to
make sure it generalized well and did not overfit. The input data was
meticulously preprocessed to remove duplicates, remove samples
with too many missing values, and impute missing entries using
nearest-neighbor averaging. The magnitude-driven biases in deep
learning models were mitigated by scaling numerical features to
0.25-1. To classify resistance, we used a 0.5 threshold to turn
projected probabilities into binary calls, and we fine-tuned for
unbalanced medicines using ROC to maximize Fl-score and
minority-class detection. Stable training, repeatable performance,
and accurate resistance strain prediction were all achieved by means
of this integrated technique.

The proposed aiGeneR 3.0 architecture was constructed using
two different machines. The main machine, also known as machine-
1, is a workstation running Ubuntu 20.04 that has an Intel Core
i7 CPU, 32 GB of RAM, and 1 TB of solid-state drive storage, among
other characteristics. The second machine, called Machine-2, is
equipped with an Intel Core i5 processor, ranging from 1 to 4
(dataset A), while the second dataset consists of one-hot encoding,
utilizing two different datasets. The first dataset consists of the one-
hot encoding, ranging from 1 to 4 (dataset A), while the second
dataset consists of one-hot encoding, ranging from 0.25 to 1 (dataset
B). The comparison of the two systems computing time
performance using the implemented model is presented in Table 3.

From the above table, we observed notable variations in the
computation times of different deployed models when they were
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TABLE 3 Computational time taken by all the studied models.

Dataset A (us)

10.3389/fgene.2025.1651917

Dataset B (0.25-1) (us)

Machine-1 Machine-2 Machine-1 Machine-2
SVM + RBF 250 420 90 114
DT 241 495 120 151
KNN 306 570 122 142
VGG-19 320 640 120 148
1D-CNN 250 426 95 113
ResNet-50 296 580 123 146
CNN TL 300 620 126 146
CNN Ensemble 380 592 117 141
aiGeneR 3.0 207 370 87 97

The bold values show the best performance result in our study.

assessed during both the training and testing stages, including
aiGeneR 3.0. Notably, our suggested aiGeneR 3.0 model leads
other studied models in terms of efficiency for the two datasets,
consuming just 207 us for machine-1 and 87 s for machine-2. Due
to its better hardware, machine-1 constantly shows faster
computational times than machine-2; yet, aiGeneR 3.0 is the
most effective model, with quick processing times that boost
output and facilitate quick decision-making. On the other hand,
other models like SVM + RBF, DT, KNN, VGG-19, 1D-CNN,
ResNet-50, CNN TL, and Ensemble approaches have significantly
longer training and testing times on both the datasets studied. All
things considered, aiGeneR 3.0’s effectiveness highlights how
quickly it can train and assess models, which shows its potential
for quick learning capacity. We evaluate our aiGeneR 3.0 with a
previously developed TL model. Ren et al. (2022b) and found that it
consumes a remarkably less computational time of 31% and 45% in
machine-1 for dataset A, and similarly takes 40% and 38% less in
machine-2 for dataset B, as seen in Table 3. In addition to this, it can
be seen from the table that the one-hot encoding approach adopted
in our study (dataset B) shows a remarkably lower computational
time compared to dataset A (Ren et al., 2022b) for producing the
classification result for all the studied models.

This section quantifies and thoroughly examines the accuracy of
the proposed framework, aiGeneR 3.0. Regarding its simple bending
model architecture and predictive abilities, aiGeneR 3.0 performs
admirably in various tasks, including prediction and classification.
The pipeline of aiGeneR 3.0 is the adaptation of the LR and LSTM
algorithms. Through an in-depth evaluation of its accuracy, we aim
to gain insight into how well aiGeneR 3.0 works when it comes to
resistance strain classification with limited computational
capabilities and unbalanced data. This section discusses the
outcome of our work in the following manner,

A. The ability of our aiGeneR 3.0 model to identify resistant
strains by utilizing a single antibiotic.
B. The performance outcome of aiGeneR 3.0 on all four
antibiotics taken together to identify the resistant strains.

C. Comparison of all the studied AT models
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D. The aiGeneR 3.0 and multi-drug resistance prediction

A: We assess the performance of all our studied models on four
different antibiotics. The antibiotics considered for our work are
CTX, GEN, CTZ, and CIP. We observed better model metrics while
we deployed our proposed model on the CIP dataset, as this dataset
is quite balanced compared to other datasets. The detailed model
metrics for the CIP dataset of implementations are shown in
Table 4 below.

The identification of resistant strains by our proposed aiGeneR
3.0, utilizing the CIP dataset, has an accuracy of 93%, which is higher
than that of all the studied models. In addition to this, our proposed
approach achieves higher sensitivity and specificity of 90% and 95%,
respectively, as shown in Figure 6.

We also evaluate our proposed model on the CTX, CTZ, and
GEN antibiotics datasets. aiGeneR 3.0 achieves the highest
classification accuracy of 82%, 88%, and 80% for CTX, CTZ, and
GEN data, respectively. It is observed that the GEN dataset is highly
imbalanced and contains a susceptible-to-resistant ratio of 4:1, and
notably, our aiGeneR 3.0 reaches the highest classification accuracy
of 80% among all the studied models. In addition to this, aiGeneR
3.0 sustains good specificity and sensitivity values for all three
antibiotics, which shows its potential to classify the resistant
strains with a very minimal false negative rate. The model
metrics for CTX, GEN, and CTZ are summarized in Table 5
below. However, among all the studied models, CNN ensemble,
CNN TL, and 1D CNN perform better compared to other models in
terms of classification accuracy.

The performance of aiGeneR 3.0, while we are utilizing the CTX,
CTZ, and GEN antibiotics, excels in terms of classification accuracy,
sensitivity, and specificity. In addition to this, we obtained a notable
sensitivity and specificity while deploying our aiGeneR 3.0 on these
three datasets. This result showcases the potential of aiGeneR 3.0 to
identify the resistant strains in E. coli and can further be tested with
other bacterial agents causing antibiotic resistance. The performance
of the top-4 models on CTX, CTZ, and GEN datasets based on the
accuracy (A), precision (P), sensitivity (Se), specificity (Sp), and F
score (F) is visualized in Figure 7.
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TABLE 4 Performance metrics of all the studied models on the CIP dataset.

10.3389/fgene.2025.1651917

Model Acc (%) Pre (%) Sen (%) Spe (%) F1 (%) MCC (%) AUC (%)
SVM + RBF 86 87 86 94 86 81 94
DT 83 84 83 78 83 61 94
KNN 83 83 83 82 83 65 94
ResNet-50 90 90 90 90 90 80 96
VGG-19 82 84 83 91 83 75 90
1D-CNN 86 88 83 88 86 76 91
CNN TL 91 91 89 91 91 82 97
CNN Ensemble 92 92 90 92 91 84 97
aiGeneR 3.0 93 96 920 95 92 920 929
The bold values show the best performance result in our study.
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Studied Models
mAcc(%) =Pre(%) ®Sen (%) = Spe(%) ®F1(%)
FIGURE 6

Performance metrics of all the deployed models on the CIP dataset.

B: We evaluate the efficacy of our proposed aiGeneR 3.0 to
predict the resistance strains by taking all four antibiotics. This
pipeline is designed by taking all the strains of the dataset along with
all four antibiotics. We refined the dataset by keeping the original
susceptible strains and updating the strain resistance to more than
two antibiotics as multidrug resistance.

Based on our evaluations with a dataset that included all antibiotics,
a learning rate of 0.01, a dropout rate of 0.5, and k-fold cross-validation
with k = 5, we found that the aiGeneR 3.0 model performed significantly
better than other models. The model metrics for all the studied models
are shown in Table 6 below and can be visualized in Figure 8. With an
impressive 92% accuracy, 92% precision, 91% sensitivity, and 95%
specificity, the model accurately identified resistant strains while
reducing false positives and negatives. Additionally, aiGeneR

Frontiers in Genetics

3.0 demonstrated excellent discriminative ability in differentiating
between susceptible and resistant strains with an impressive AUC
value of 0.99. These results highlight the efficacy of our model
architecture and training methodology, confirming that it is suitable
for precise antibiotic resistance prediction and indicating that it may
prove to be a helpful tool for improving therapeutic strategies in clinical
settings. In addition to this, the classification accuracy of our proposed
aiGeneR 3.0 model is 3% higher than that of the previously studied
CNN TL model (Ren et al, 2022b). On the highly unbalanced all-
antibiotic dataset, the highest Matthews Correlation Coefficient (MCC)
obtained by aiGeneR 3.0 is 87%, while the lowest MCC acquired by DT
is 28%. Because the CIP dataset is more balanced than the all-antibiotic
datasets, the MCC on this dataset is excellent across all models that have
been assessed.
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TABLE 5 Performance metrics of all the studied models on the CTX, CTZ, and GEN datasets.

SVM + RBF 77 77 77 78 77 82 82 81 84 82 74 62 75 20 85
DT 67 67 68 67 67 74 75 78 68 75 66 73 80 34 76
KNN 74 73 75 73 74 79 79 82 73 79 72 79 83 44 81
ResNet-50 75 75 75 75 75 78 79 78 79 78 63 60 88 37 71
VGG-19 72 71 72 71 72 67 70 65 76 62 75 86 77 46 85
1D-CNN 73 73 71 75 74 82 82 87 75 84 79 80 78 50 81
CNN TL 79 81 80 78 80 83 84 88 79 79 79 79 77 47 85
CNN 80 81 79 80 80 83 83 89 79 81 80 85 80 60 86
Ensemble
aiGeneR 3.0 82 83 93 82 83 88 90 90 84 90 80 91 84 62 87
The bold values show the best performance result in our study.
N A(%) = P(%) BN Se(%) W Sp(%) W F (%)
(a) GEN (b) CTX

79 81 80 ;g 80 80 81 79 80 80

(c) CTZ
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FIGURE 7

Performance metrics of the top-4 studied models on (a) CTX, (b) CTZ, and (c) GEN datasets.

C: Comparison of studied models. The studied NGS E. coli WGS
includes 810 strains and 14,972 SNPs. Our study made use of all
14,972 SNPs with data standardization. With a ratio of 8:2,
648 samples were used for training, and 162 samples were used
for testing. The complexity and processing demand of each strategy
were evaluated as we explored different models for resistant strain
identification using NGS E. coli WGS. DT has the potential to overfit
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as the depth increases, while SVM with RBF kernels is
computationally demanding and produces higher classification
accuracy compared to DT and KNN, as shown in Table 4. When
it comes to prediction, KNN requires more memory and has more
computational complexity (Kuang and Zhao, 2009)Thus, we
observed a higher computational time for KNN in Table 3. The
CNNss like ResNet-50 and VGG-19 deployed in our study have
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TABLE 6 Model metrics of all the studied models utilizing the dataset with cases having resistance/susceptibility to all four antibiotics.

Model Acc (%) CEVA) Sen (%) Spe (%) F1 (%) MCC (%) AUC Brier score
SVM + RBF 86 86 86 73 86 56 0.92 0.040
DT 75 75 75 59 75 28 0.72 0.140
KNN 86 86 86 80 86 65 0.89 0.055
ResNet-50 87 87 86 73 86 57 0.90 0.049
VGG-19 82 82 81 76 82 57 0.92 0.047
aiGeneR 1.0 89 88 86 82 89 70 0.93 0.035
1D-CNN 88 88 86 85 88 73 0.98 0.010
CNN Ensemble 89 89 86 87 89 76 0.97 0.015
CNN TL 91 91 91 93 90 84 0.97 0.015
aiGeneR 3.0 92 92 91 95 91 87 0.99 0.005

The bold values show the best performance result in our study.

1D-CNN ECNN Ensemble

FIGURE 8
Performance of the top 5 models on all the antibiotics data.

complex architecture and consume more memory and
computational cost, as shown in Table 3. The level of complexity
in aiGeneR 1.0 is moderate (Nayak et al., 2024). Despite its
simplicity, the 1D-CNN still requires a lot of resources. CNN
Ensemble adds complexity by combining different models (Zhang
et al, 2020) and consumes the highest computational time
compared to all the studied AI models, as shown in Table 3.
Despite keeping complexity high, CNN TL shortens training
time. The proposed aiGeneR 3.0 strikes the perfect balance
between processing time and significant classification accuracy,
especially due to its streamlined LSTM architecture.

The overall performance of all the models is assessed in terms of
classification accuracy, precision, sensitivity, and specificity, as

discussed in the performance evaluation section. In addition to
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this, we consider computational time to be one of the major
performance parameters used to evaluate all the studied models.
We observe that our proposed model, aiGeneR 3.0, achieves higher
performance metrics compared to all other studied models. There is
a slight increasing trend in the classification accuracy of aiGeneR
3.0 compared to the previously deployed CNN TL model. Ren et al.
(2022b) with a remarkable AUC of 0.99. The most powerful aspect
of our aiGeneR 3.0 model is the computational cost; it consumes
very little computational power compared to all other studied

models. The overall architecture and one-hot encoding
techniques adopted by aiGeneR 3.0 make it robust and
computationally  cost-effective.  The multi-drug  resistant

prediction is one of the significant contributions of aiGeneR
3.0 compared to previous works (Ren et al., 2022a), and it will be
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discussed in the next section. Additionally, the computational time
taken by our aiGeneR 3.0 is much lower compared to all other
studied models. The average learning time taken by aiGeneR 3.0 is
86us less taken from all the studied models together and 83ps less
compared to the previously studied TL model.

6.1 The aiGeneR 3.0 and multi-drug resistant
prediction

Our proposed aiGeneR 3.0 model’s experimental results show
potential in predicting multi-drug resistant (MDR) in E. coli
strains. We considered the strain that resists more than two
antibiotics to be in the multidrug-resistant category. We used
the prediction model of logistic regression (Vermeiren et al,
2007) to estimate the percentage of bacteria resistant to four
frequently given antibiotics: CIP, CTX, CTZ, and GEN. The
percentage of resistance to each antibiotic is determined by
counting the number of antibiotics that the strain is resistant
to; the range is 0.25 for resistance to one antibiotic and 1 for
resistance to all four antibiotics. The performance of our deployed
resistant prediction model achieves a prediction accuracy of 98%,
and the other model metrics for all the studied models are shown
in Table 7.

The experimental result for MDR prediction witnessed a 98%
accuracy rate; our model demonstrated exceptional predictive
performance and resilience in detecting variations in MDR. The
model’s lowest mean squared error (MSE) during training (0.00054)
was found during the model performance evaluation, demonstrating
how closely the predicted resistance percentages matched the actual
values. Moreover, the high R-squared value of 0.9940 indicates that
our model may explain a considerable amount of variability in the
resistance percentages across strains. The model’s accuracy for
predicting levels of resistance is further demonstrated by the root
mean squared error (RMSE) of 0.02327.

Our model’s active predictive capacity was tested using fresh
data, and its MSE of 0.00051 confirmed its generalizability and
dependability in practical settings. Together, these findings highlight
the precision and effectiveness of our suggested aiGeneR 3.0 model
in identifying multi-drug resistance in E. coli strains, providing
crucial data for directing antibiotic treatment procedures and
battling antibiotic resistance. As we obtained the best version of
our proposed aiGeneR 3.0 with a moderate learning rate, with an
increase in training data (80%), we intended to keep this for multi-
drug identification. In addition to this, the model parameters like
learning rate, CV, train-test split, and dropout rate of aiGeneR
3.0 are 0.001, 5, 8:2, and 0.5, respectively.

7 Validation

Accurate evaluation of model performance is a crucial
component in building reliable and efficient prediction models.
The ability to assess how well a model performs is an important
indicator of its suitability for solving practical issues in many fields,
including ML and scientific inquiry (Bellazzi and Zupan, 2008). In
this section, we take a close look at our proposed models and
evaluate them thoroughly, taking into account many criteria so
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TABLE 7 Predictive model metrics for MDR (all studied models).

Model MSE (Train) R? RMSE MSE (new data)
SVM + RBF 0.00349 0.920 0.059 0.00380
DT 0.00680 0.800 0.082 0.00700
KNN 0.00300 0.930 0.055 0.00320
ResNet-50 0.00288 0.940 0.053 0.00300
VGG-19 0.00379 0.910 0.062 0.00400
aiGeneR 1.0 0.00141 0.960 0.037 0.00160
1D-CNN 0.00090 0.980 0.030 0.00100
CNN Ensemble 0.00081 0.985 0.028 0.00090
CNN TL 0.00070 0.990 0.027 0.00080
aiGeneR 3.0 0.00054 0.994 0.023 0.00051

The bold values show the best performance result in our study.

that users can understand their strengths and weaknesses. We
examine numerous critical aspects to evaluate the model’s
performance in different contexts. Each section delves into a
different facet of the model’s performance and thoroughly
analyzes its efficacy.

7.1 Effect of Training size

The comparison of classification accuracy on test data and all
conceivable train-test splits on the used dataset is shown in Table 8.
According to the PE (section 4), the objective is to monitor the effect
of data size on the model’s performance. As the proportion of
training data increases, the accuracy of the aiGeneR 3.0 classification
model rapidly increases. It is observed that the model achieves its
highest accuracy of 92% when the train-to-test split ratio is 80:20, as
shown in Table 8.

During our experiments, we observed that the studied AT models
require more training data for generalization compared to our
proposed aiGeneR 3.0 model. If we set the performance
threshold as classification accuracy, then our aiGeneR 3.0 takes
only 70% (567 unseen cases) of the data to achieve this trademark.
Similarly, all of the implemented ML and DL models take 80% of the
the standard. The
generalization of our aiGeneR 3.0 requires 10% less unseen data

unseen data to obtain generalization
to obtain the best classification accuracy, proving that our model can

be generalized by utilizing fewer strains than all other

studied models.

7.2 Confusion matrix

The matrix shown in Figure 9 has significant diagonal
dominance, indicating that the model predicted the proper class
with few misclassifications. Most GEN-resistant strains (142 of 154)
were correctly classified, with only a few CTZ and CTX
misassignments. The model also predicted CIP, a smaller class,
with great accuracy (148 out of 156 properly classified),
demonstrating its class imbalance resilience. The confusion
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TABLE 8 Minimum unseen cases and samples are required for the
generalization of individual models.

Model # Unseen samples ‘ # Cases
SVM + RBF 80 648
DT 80 648
KNN 80 648
ResNet-50 80 648
VGG-19 80 648
aiGeneR 1.0 80 648
1D-CNN 80 648
CNN Ensemble 80 648
CNN TL 80 648
aiGeneR 3.0 70 567

The bold values show the best performance result in our study.

matrix yielded class-wise measurements. Each class has good
precision, sensitivity (recall), and specificity, indicating that the
model minimized false positives and negatives. Minority class
CIP had good sensitivity and specificity, showing that the model
did not underperform on underrepresented categories, a major
antimicrobial resistance prediction difficulty.

The model for GEN has lower specificity (76%) than sensitivity
(93%), suggesting reliable identification of susceptible strains but a

True Label
CTZ GEN

CTX

CIP

GEN cTZ

10.3389/fgene.2025.1651917

little probability of under-detection of resistant isolates. CTZ had
91% sensitivity and 85% specificity, recognizing resistant bacteria
with minimal false-positive rates. CTX and CIP had a stable finding,
with sensitivity and specificity exceeding 92%, indicating robust
class classification. CIP’s sensitivity (93%) and specificity (94%) were
the best, detecting resistant bacteria and identifying vulnerable ones.
These results show that aiGeneR 3.0 consistently supports better
specificity while maintaining excellent sensitivity, ensuring reliable
detection of minority resistant strains without inflating misleading
resistance predictions. The confusion matrix confirms that aiGeneR
3.0 demonstrated balanced predictive performance among
antibiotics, with ~92% accuracy, 92% precision, 91% sensitivity,
95% specificity, 91% F1-score, and 87% MCC.

7.3 Receiver operating curves

The Receiver Operating Characteristic (ROC) curve is an
essential metric for evaluating the effectiveness of a classification
model. In this study, we conduct a performance analysis of our
suggested aiGeneR 3.0 model in comparison to other studied
models, with a significance level of p 0.001.
validation is employed to determine the variation in the accuracy
of each model as the quantity of training data changes.

K-5 cross-

The ROC performance of all the studied models is shown in
Figure 10. The proposed model, aiGeneR 3.0, has achieved a
significant milestone by achieving a strong Area Under the Curve
(AUC) value of 98.48%. Nevertheless, when compared to other
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FIGURE 9
Confusion matrix of aiGeneR 3.0 on all four antibiotics.

Frontiers in Genetics

14

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1651917

Nayak et al.

10.3389/fgene.2025.1651917

ROC curves for all the studied models

0.8 1

0.6 1

0.4 1 -

True Positive Rate

0.2 1 1~

0.0 1

1-D CNN - AUC : 0.9347 (p-value<0.001)
aiGeneR 1.0 - AUC : 0.9371 (p-value<0.001)
DT - AUC : 0.9510 (p-value<0.001)

CNN Ensemble - AUC : 0.9554 (p-value<0.001)
ResNet-50 - AUC : 0.9582 (p-value<0.001)
VGG-19 - AUC : 0.9603 (p-value<0.001)
SVM-RBF - AUC : 0.9623 (p-value<0.001)
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FIGURE 10
ROC-AUC of all the studied models with p-value <0.001.

TABLE 9 Characteristics of the validation dataset.

Antibiotics

# Susceptible 1,651 1,670 1,476 1,508
# Resistance 284 265 ‘ 459 427
Total 1,935 1,935 ‘ 1,935 1,935

classification models, the ROC value of the 1-D CNN is the lowest
(93.47%). Compared to the previously developed CNN TL model
and despite the hurdles posed by the imbalance and small dataset,
our proposed aiGeneR 3.0 achieves the highest AUC value in the
identification of the resistant strains.

7.4 Model generalization

In the validation phase of our aiGeneR 3.0 model, we utilize an
openly available and highly imbalanced dataset (Moradigaravand et al.,,
2018). The detailed characteristics of the dataset are summarized in
Table 9. There is a high imbalance in the susceptible-to-resistant ratio
in all four antibiotics taken for validation of our aiGeneR 3.0 model. It
can be seen from the table that the ratio is very high in the case of CTZ
and GEN (=1:7) there is a slight increase in the ratio for CTX and CIP
(=1:4). We perform the model validation in two different phases first,
we have considered four different datasets based on four individual
antibiotics and secondly, prepare the dataset by combining all the four
antibiotics into one dataset.

We tested the efficacy of our proposed model on the four
individual antibiotics considered for our experiments in the
publicly available data, and aiGeneR 3.0 holds the consistency
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and remains the best performer in terms of classification
accuracy, specificity, and sensitivity. In Table 10, we summarize
the performance of aiGeneR 3.0 on individual datasets.

It is observed from the above table that, during validation of
aiGeneR 3.0 with individual antibiotics data, we obtained a
higher classification accuracy in the case of CTX, and this is
due to the higher strain ratio compared to the other three
antibiotics datasets. aiGeneR 3.0 achieves the second-highest
classification accuracy in the case of CTZ (90%), followed by
CIP and GEN (89%).

Similarly, while we tested aiGeneR 3.0 along with other studied
models on the dataset that combines all four antibiotics, we observed
that aiGeneR 3.0 achieves the highest classification accuracy (90%),
as shown in Table 11. The sensitivity and specificity of aiGeneR
3.0 are 97% and 76%, respectively, which is the highest among all the
studied models, and this is due to the one-hot encoding we adopt in
our study. In addition to this, the SVM, aiGeneR 1.0, CNN TL, CNN
ensemble, and ResNet-50 achieve a remarkable sensitivity of more
than 90%, whereas CNN TL and ResNet-50 achieve a specificity just
higher than 70%. The studied model metrics of the validation phase
are shown in Figure 11. However, in the validation phase, we
observed that the ResNet-50, CNN ensembled, and TL performed
better than aiGeneR 1.0. This is due to the effectiveness and
automated feature extraction techniques with these models
compared to our previously developed aiGeneR 1.0, which is
based on traditional feature selection techniques. This validation
outcome may provide insight into the use of automated and effective
feature selection techniques, especially DL, for future resistant strain
identification.

The performance of the designed model on every conceivable
train-test split and the comparison of classification accuracy on test
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TABLE 10 Validation model metrics of aiGeneR 3.0.

10.3389/fgene.2025.1651917

Dataset Acc (%) Pre (%) Sen (%) Spe (%) F1 (%) MCC
cIp 89 94 92 70 93 0.60
CTX 93 98 94 88 96 0.74
crZ 90 97 91 79 94 0.60
GEN 89 96 91 77 94 0.59

TABLE 11 Model metrics of all the studied models on the validation dataset
(all four antibiotics).

Models  Acc(%) Pre(%) Sen(%) Spe(%) F1(%)
KNN 68 68 84 45 75
DT 73 72 88 51 79
SVM 75 72 90 53 80
VGG-19 75 75 87 83 81
aiGeneR 1.0 76 75 91 55 80
1D-CNN 77 79 88 57 83
CNN Ensemble 77 75 92 56 82
CNN TL 87 85 96 71 90
ResNet-50 88 87 95 72 91
aiGeneR 3.0 90 89 97 76 92

The bold values show the best performance result in our study.

data were also explored in this study. The learning model is
impacted by the amount of training data, which also helps the
model generalize effectively to new data. Using a dataset with
various train-test splits, we assess our suggested model,
aiGeneR 3.0, and the four other classifiers employed in
this investigation. It has been noted that while other models
require a more significant number of cases for generalization,
aiGeneR 3.0 requires a small number of cases. This section
thoroughly explains how data size affects our suggested model.
Figure 12 displays the comparison of classification accuracy on
test data as well as all conceivable train-test splits on the
utilized dataset.

It can be observed from the figure that the ML models require
more training samples to obtain generalization in classification
accuracy than the DL models. While we compare the top three
ML (SVM + DT + KNN) with the top three DL (CNN TL +
aiGeneR 1.0 + aiGeneR 3.0) models, there is a significant
difference in the train-test split for learning models to achieve
their best results. Compared to the top three DL models, the top
three ML models take 65.9% more data to be generalized. The
other DL models studied in this work take a range of 55%-75%
unseen cases to obtain their generalization. In addition to this,
our proposed aiGeneR 3.0 requires 70% (567 cases) of data to
generalize and obtain a stable classification accuracy. This
performance outcome of aiGeneR 3.0 showcases the model’s
generalization ability with a very small number of unseen
data, which leads to its chances of better performance with
real-time data.
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8 Discussion

The results show that the aiGeneR 3.0 model effectively detects
resistance strains without using any known resistance strains during
model training. However, there are some limitations to be aware of
due to variations in dataset sizes and methods. We implemented our
suggested aiGeneR 3.0 model using a basic model architecture and
then applied it to a publicly available, imbalanced, and noisy dataset.
When given balanced antibiotic data, learning models perform
much better in terms of accuracy, and we fine-tuned aiGeneR
3.0 to consistently classify each drug. In comparison to other
conventional ML models used in our study, aiGeneR 3.0’s
computational time is much lower.

We observed that, because typical one-hot encoding introduces
a relative scale with numbers like 1, 2, 3, and 4, higher numerical
values may inadvertently dominate or introduce bias during the
learning process in certain deep learning models. Using bigger
numerical representations may result in learning disparities in
certain deep learning models, especially those that are sensitive to
input magnitudes (models that ineffectively normalize weights),
even if one-hot encoding is categorical and theoretically scale-
invariant. By limiting the range to 0.25-1, biases resulting from
magnitude are less likely to occur, and a more consistent expression
is assured. We found that scaling to a smaller range improved
training convergence and made the gradient updates of our models
more reliable.

The deployed aiGeneR 3.0 model has a straightforward design
that can deliver good classification accuracy. Among the most
advanced ML and DL models we tested, aiGeneR 3.0 yielded the
best classification accuracy. The following is a list of some of the
major study findings we came across while doing this work: a
simple and effective model architecture can achieve better

minimal
(AMR)
resistance strain identification.

classification accuracy, computational cost,

antimicrobial resistance analysis, and antibiotic

o The proposed aiGeneR 3.0 has a simple deep network
architecture and has the potential of a good learning model
by providing relatively higher classification accuracy to
identify the resistant strains.

o The aiGeneR 3.0 requires less computational time compared
to all the studied models in this work.

o The multi-drug prediction ability with significant minute
errors is a major contribution of our

aiGeneR 3.0 model.

o The aiGeneR 3.0 can effectively identify the resistant strains

proposed

with a classification accuracy of 92% which is the highest
among all the studied models.
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Performance of all the studied models with different train-test splits.

o Model generalization of aiGeneR 3.0 persists in its
classification potential and proves the ability of our
proposed model to handle imbalanced and unseen data.

8.1 Claim

Our cutting-edge study reveals that aiGeneR 3.0 is an excellent
resource for identifying strains of antibiotic resistance; it can handle

Frontiers in Genetics

imbalanced and constrained datasets with ease. Through the
utilization of sophisticated DL algorithms, aiGeneR 3.0 achieves

better classification accuracy, as shown in Table 12.

By minimizing variance and keeping feature scaling consistent,

this method stabilizes the training process, which in turn produces

smoother gradients and avoids problems like bursting gradients (dos
Santos and Papa, 2022). We found that our studied DL models

17

performed much better when we used a one-hot encoding range of
0.25-1 rather than 1-4. With a 2% increase in specificity and a 1%
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TABLE 12 Benchmarking parameters of the studied state-of-the-art ML and DL techniques for AMR analysis.

Authors

Objective

Techniques

Performance
evaluation

10.3389/fgene.2025.1651917

Limitations

Pesesky et al. (2016)

Predict AR patterns in
Bacilli

Genome
Sequence

ML and Rule-based
approaches

Acc (Resfams = 94.9%,
Resfinder = 85.9%,
CARD = 57.7%

The accuracy and generalizability of
estimations are affected by constraints such as
small sample sizes

Moradigaravand
et al. (2018)

Identify AR in E. coli
bacteria

E. coli strains

LR, RF, Gradient
Boosting

Acc = 97%, Precision = 93%,

Recall = 83%

A high false negative rate caused by
undetected SNPs in specific locations and the
accessory genome

Kavvas et al. (2018) | Detecting microbial Sequence Pan-genome AUC = 0.80 The challenges include reference bias, data
tuberculosis ARG. Analysis, SVM, LR selection bias, and the necessity for
experimental validation
Liu et al. (2020) Predicting the AR in A. Genome SVM, SCM Tet (Acc = 97%), Amp(Acc = | Problems with the size of the dataset, biases,
pleuropneumonia sequence 100%), Sul (Acc = 100%) and the generalizability of the model
Green et al. (2022) Prediction of WGS CNN AUC for MD-CNN = 91.2% A higher computational cost is required to
M.tuberculosis ARGs AUC for SD-CNN = 93.8% validate the results
Li et al. (2022) Identification of new Sequence AMPIify, Bi-LSTM, Acc = 93.71%, F1-Score = Inadequate training data is the reason for the
antimicrobial peptides RNN, CNN 93.66%, AUROC = 98.37% difficulties in training AMP models
Florensa etal. (2022) | Identifying ARGs in NGS = NGS data ML, NGS - An issue with the study’s findings is that it
data lacks any data for the ResFinder tool’s
performance parameters, such as sensitivity,
specificity, and precision
Ren et al. (2022b) Predicting AMR. WGS (E. coli) | CNN CIP (Acc = 91%), CTX (Acc = | Issues with computing resources,
78%), GEN (Acc = 78%) interpretability, external validation, and
dataset size
Grey et al. (2023) UTI current condition - Culture, AT Acc = 93.22%-98.80% This study fails to determine treatment

review accuracy and ARG identification

Almaghrabi et al. Analyze resistance genes =~ WGS Web-based tools MDR = 77.1% This study lacks the ability to draw clear

(2024) in P. aeruginosa epidemiological connections between
environmental and clinical isolates

Jin et al. (2024) AMR prediction in E. coli = WGS RF, SVM, LR, CNN F1-Sc:82%, MCC:48%, The learning rate of the model is very low

AUC:77%

Gao et al. (2024) AMR in A. baumannii Sequence ML model Acc = 96% The analysis limits may affect the model’s
generalizability, misbalancing, etc.

aiGeneR Predict MDR and WGS (E. coli) = ML/DL Acc = 93%, Sen = 90%, Spe = | Data augmentation and advanced

antimicrobial-resistant
strains

3.0 [Proposed]

improvement in precision, our empirical data demonstrated better
accuracy and generalizability on both the validation and test sets. In
addition, our model was able to generalize well to a different dataset
(Moradigaravand et al., 2018), which further proves how effective
and resilient this proposed normalized feature range is for the
learning of the deployed DL models.

The validation confirms the edge of aiGeneR 3.0, demonstrating
its capacity to surpass rivals with small input data. Its processing cost
is minimized, and its simple design gives it the ability to run on
typical personal computers and laptops, ensuring better
classification accuracy. Furthermore, a comprehensive power
analysis reveals aiGeneR 3.0°s capacity to surpass the desired
number of training cases, underscoring its potential for further
refinement and expansion. Additionally, the significant AUC
value of 98.48% shows the potential of our aiGeneR 3.0 toward
its adaptability and learning capacity with imbalanced datasets.
Overall, our research shows that aiGeneR 3.0 is an innovative

breakthrough that will change how we diagnose diseases and,
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95%, ROC = 99% computational techniques, such as a
transformer, may play a crucial role in

increasing classification accuracy

more generally, not just when identifying strains of antibiotic
resistance.

8.2 Special notes

We designed the cutting-edge aiGeneR 3.0 model, a DL-based
AMR analysis tool, to use double-mutated gene data to predict
multi-drug resistance and detect antibiotic resistance strains
without prior knowledge of known ARGs. The powerful DL
model, LSTM, and LR combination in aiGeneR 3.0 advances
AMR analysis, particularly multi-drug prediction. The primary
notable accomplishments of our aiGeneR 3.0 framework are
as follows:

o We proposed aiGeneR 3.0, an AI model with a simple and

robust architecture that can handle imbalances and small
genomics data.
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o TheaiGeneR 3.0 can predict the resistant strain from a double-
mutated gene sequence with higher classification accuracy
compared to previous studies.

« aiGeneR 3.0 offers an ultimate ability to predict the multi-drug
resistance in strains with 98% prediction accuracy.

o The generalization and scientific validation of aiGeneR
3.0 prove its potential to handle small and imbalanced
(curse of dimensionality) gene data.

o The benchmarking of aiGeneR 3.0 with other state-of-the-art-
Al adaptability ~ for
implementation.

models enhance its real-time

This proposed aiGeneR 3.0 model has the ability to identify
E. coli bacteria that are resistant to antibiotics, which could be useful
for antimicrobial stewardship initiatives. The approach has the
potential to lower the usage of inefficient medicines and limit the
use of broad-spectrum antibiotics by offering early insights about
resistance profiles, which could support antibiotic selection that is
tailored to individual patients. Subject to medical validation, the fast
prediction capacity suggests real-time clinical decision support.
Hospital monitoring systems can benefit from aiGeneR 3.0,
which could have applications beyond individual patient care and
bolster initiatives to combat new resistance tendencies. However,
before these applications are widely used in ordinary practice, more
clinical trials

multicenter and prospective validation must

be conducted.

8.3 Limitations

This highly motivated study focuses on identifying resistant
strains utilizing imbalances and small datasets. Data augmentation
can be used to further this study and potentially improve model
performance. However, because it is medically incorrect, experts do
not advise using this approach (the augmentation of medical data).
Better model metrics might be obtained if the model were trained
using synthetic data. Further study could address a few biases in our
model, such as (i) smaller studies are found related to our work, (ii)
SNP filtering threshold applied during preprocessing, which may
have influenced the set of variants included for model training (iii)
the use of data augmentation, (iv) comparisons with other ML and
recently trending DL models like deep network with an attention
mechanism. (v) a summary of the benchmarking studies and (vi) no
remarks regarding the clinical validation (Paul et al., 2022; Eskofier
et al., 2016; Hu et al., 2021).

In addition to the above, AiGeneR 3.0 has a few limitations
despite its better predictive accuracy. First, despite balancing and
preprocessing, the datasets had class imbalances that potentially bias
predictions toward the majority class. The model may learn dataset-
specific artifacts instead of generalizable biological patterns when
training on short or noisy datasets, increasing the risk of overfitting.

8.4 Extension
This work focuses on applying DL and AI models to resistant

strain identification and classification. The proposed aiGeneR 3.0 is
now considered a benchmark in the field of AMR analysis due to its
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great improvement in detecting resistant strains. The aiGeneR
3.0 model performs highly compared to earlier research (Ren Y.
et al.,, 2022) on resistant strain identification. Furthermore, cross-
validation and unseen implementations show the system’s
endurance, domain flexibility, and capacity to function well in
domains other than the one on which it was trained. In
extension, the application of other DL models, especially
and DI

model hyper-parameter optimization may be adopted to validate

transformer architecture with attention mechanism,

their efficacy in identifying multi-drug resistance in double-mutated
genome sequences.

Despite aiGeneR 3.0’s capabilities, small or imbalanced datasets
risk overfitting, when the model learns training data-specific
patterns or noise rather than generalizable correlations. Even
high accuracy on the training set may not guarantee accurate
predictions on unseen data. Imbalanced class distributions bias
the model toward majority classes, making unusual antibiotic-
resistant organisms harder to detect. Additional variability can
worsen model performance in real-world deployment. Different
laboratory techniques, sample preparation methods, sequencing
platforms, and batch effects introduce systematic variances that
may not be in the training data. Sequencing errors or missing data
can skew input features, and variable sample distributions across
populations may produce patterns the model has not learnt, raising
misclassification risk. Parameters and techniques like Cross-
validation, data augmentation, and regularization (dropout,
weight decay, and early stopping) need to be tested in a wider
range. Finally, ongoing retraining with new datasets adapts the
model to changing data distributions, ensuring robustness and
reliability in clinical or laboratory contexts. Future research
should use explainable AI methods like feature attribution or
pathway-level analysis to identify resistance-predicting genes or
biological markers. For clinical implementation, the model needs
to be verified across larger, multi-center cohorts to account for
sequencing procedures, sample handling, and patient demographics.
To maintain accuracy and dependability in clinical operations,
rigorous benchmarking, seamless software interfaces, real-time
processing, and constant retraining with new resistance data
are needed.

9 Benchmarking

At its core, our study centered on identifying resistant strains
using a DL model that combined advanced techniques with a simple
design. Along with this, we also want to make sure that our pipeline
does not lose consistency when applied to small or imbalanced
datasets. Research shows that few studies have used DL models to
identify resistance strains in double-mutated WGS. This set of Al
models was constructed by merging several deep networks. Hence, it
is essential to evaluate our method for previous AI models. In light of
this, we choose to tackle the benchmarking efforts head-on by
comparing our proposed models to earlier DL/ML models used
in AMR for resistant strain classification and other disease
investigations.

Our suggested aiGeneR 3.0 has a higher classification accuracy
of 93% and can manage imbalanced data because of its streamlined
model architecture. Furthermore, the computing time required for
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both the learning phase and the prediction of resistant strains in
aiGeneR 3.0 is significantly lower compared to previously examined
DL models. Furthermore, the validation of aiGeneR 3.0 establishes it
as a strong and versatile model for classifying antibiotic-resistant
strains and predicting multidrug resistance.

10 Conclusion

In this work, we used double-mutated E. coli NGS WGS data to
show how effective aiGeneR 3.0 is in identifying bacteria that are
resistant to antibiotics. Additionally, it presents the multi-drug-
resistance patterns identified in the resistant strains. aiGeneR 3.0 is a
hybrid computational method that employs advanced LSTM
architecture and NGS data to discern resistant and susceptible
strains within small and highly unbalanced datasets. Primarily,
our aiGeneR 3.0 model enhances the accuracy of classification
and prediction compared to earlier investigated models. The
remarkable performance of our proposed pipeline is evidenced by
aiGeneR 3.0, achieving a 92% accuracy, with a sensitivity of 91% and
a specificity of 95% in finding resistant strains. aiGeneR 3.0 attains a
98% prediction accuracy in multi-drug identification, accompanied
by a minimal MSE of 0.00054 and an RMSE of 0.02327.

Our study emphasizes the promise of predictive modelling
utilizing NGS data and DL techniques to tackle the escalating
problem of antibiotic resistance, perhaps leading to the creation
of novel therapies. The ability of aiGeneR 3.0 to consistently and
extensively generate models indicates its prospective usefulness in
AMR research moving forward. Antibiotic resistance is emerging as
a critical concern in the field of infectious diseases. Our research
enhances our comprehension of the issue, enables us to predict its
future trajectories, and eventually aids in addressing it. Due to the
numerous constraints in identifying resistance patterns across
different strains resulting from the limited number of strains, we
want to employ deep learning models on whole genome sequencing
with various augmentation techniques in our future research to find
resistant strains.
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