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Objectives: Oral squamous cell carcinoma (OSCC) has a highly incidence rate
andmortality rate all over the world. Hitherto, there are limited studies on survival
significance between disulfidptosis-related lncRNAs (DRLs) and OSCC.
Therefore, this study was conducted to investigate the potential role of these
DRLs and provide some theoretical support in the clinical treatment of OSCC.
Methods: OSCC-related lncRNAs and disulfidptosis-related genes (DRGs) were
retrieved from public databases. Using Pearson correlation, machine learning,
and expression profiling, we identified differentially expressed DRLs (DE-DRLs),
developed a DE-DRLs-based riskmodel and independent prognostic nomogram,
performed immunological and tumormicroenvironment analyses to explore DE-
DRLs regulatory mechanisms, predicted potential drugs for OSCC, and validated
bioinformatics findings.
Results: In this study, 9 DE-DRLs were identified that correlated with OSCC. The
riskmodel and nomogram showed good clinical utility for assessing the likelihood
of OSCC occurrence. Patients exhibiting elevated levels of eosinophils, activated
natural killer (NK) cells, or naïve CD4+ T cells experienced significantly poorer
overall survival (OS), and patients with high tumor mutational burden (TMB) had
worse prognosis. 12 drugs were identified for OSCC treatment, such as BMS-
754807_2171 and Foretinib_2040.
Conclusion:Our study identified 9 DE-DRLs correlated with OSCC, which will be
a personalized prediction tool for prognosis and immune responses in OSCC
patients.

KEYWORDS

oral squamous cell carcinoma, disulfidptosis, machine learning, drug, lncRNA, immune

1 Introduction

Oral squamous cell carcinoma (OSCC) is a common heterogeneous oral malignancy
(Wang. et al., 2021a). Smoking, excessive alcohol consumption, betel quid chewing, and
human papilloma virus are risk factors for OSCC (Nokovitch et al., 2023). Approximately
600,000 patients are deeply troubled by OSCC each year, representing about 4% of all
tumors (Pekarek et al., 2023). Oral cavity provides convenience for clinical examination,
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however the diagnosis of OSCC is in advanced stages due to
misdiagnosis by the doctor or ignorance by patients (Jagadeesan
et al., 2024). Meantime, the prognosis is unsatisfactory for patients
with OSCC, the 5-year survival rate is as low as 40%–50% (Chai
et al., 2020). Currently, the primary treatment modalities for OSCC
include surgery, chemotherapy, and novel cellular therapies. While
these are the mainstay of clinical management, their therapeutic
efficacy remains suboptimal due to strong side effects, high costs of
novel cellular therapies, and the propensity of OSCC cells
(Jagadeesan et al., 2024). Therefore, there is a pressing need to
increase survival rates and quality of life of OSCC patients by
developing new and reliable prognostic evaluation method.

Disulfidptosis is a novel type of regulated cell death, which is
associated with metabolic changes and has a strong effect on anti-
tumor immune response (Liu et al., 2023). In addition, themetabolism
of disulfides in cancer cells is connected with immune evasion,

metastasis, and resistance of tumor cells (Shrihari et al., 2022;
Wang et al., 2021b; Zhang et al., 2022a). As the source of
programmed cell death, disulfidptosis is expected to provide a new
approach to cancer therapy. So far, the role of disulfidptosis in OSCC
is still quite lacking. Meanwhile, long non-coding RNAs (lncRNAs)
are critical to the tumorigenesis and progression, and can be
considered key factor to promotion and suppression of tumor due
to their dysregulation in cancer (Ahmad et al., 2023; Kitajima et al.,
2023). Currently, studies on the cell death patterns of OSCC have
found that ferroptosis-related lncRNAs (Qiu et al., 2022), cuproptosis-
related lncRNAs (Gong et al., 2024), and pyroptosis-related lncRNAs
(Xin et al., 2022) are crucial prognostic biomarkers and therapeutic
targets for OSCC. However, there is a lack of research on the role of
disulfidptosis-related lncRNAs (DE-DRLs) in OSCC.

Here, we systematically structured a dependable DE-DRLs for
predicting prognosis of OSCC, and explored the relationship
between the prognostic model and clinicopathological
information and the tumor immune landscape, and investigate
the role of key DE-DRLs in OSCC. The implications of our
findings are expected to generate guidance for tailoring
personalized treatment strategies, and provide a foundation for
further research on the mechanism of disulfidptosis in OSCC.

2 Acquisition of data

The lncRNAs sequencing information, which exclude samples
origin from “hypopharynx”, “tonsil” or “larynx” of the TCGA-HNSC

GRAPHICAL ABSTRACT
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were acquired from the Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/), in which 14,071 lncRNAs were
identified for the further analysis. The TCGA-HNSC comprised
337 tumor samples along with 32 control samples, samples that
were not representative of the oropharyngeal region and that did
not affect the prognosis of HPV were excluded, the clinical
pathological information was shown in Supplementary Table S1.
Additionally, 18 DRGs were obtained from the literature (Dong
et al., 2023).

3 Statistical methods

3.1 Identification of DE-DRLs

Firstly, the DE-DRGs were analyzed utilizing Wilcoxon test
between tumor and control group in TCGA-HNSC (P < 0.05).
Among the 337 tumor samples in TCGA-HNSC, a Pearson
correlation was constructed to illustrate the obtain DE-DRLs
between the DE-DRGs and 14,071 lncRNAs (|correlation
coefficient (cor)|>0.4, P < 0.05). Following this, 337 tumor
samples were divided into 168 training dataset and 169 test
dataset (1 : 1), the univariate Cox regression analysis of signature
genes 1 was performed utilizing the survival (v 3.5.3) package

(Therneau and Lumley, 2015) (P < 0.05). Moreover, the LASSO
analysis with penalty parameters (lambda), β coefficient ≠ 0 and the
10-fold cross-validation was performed on signature genes 1 by
glmnet (v 4.1.4) package (Friedman et al., 2021) to further screen
signature genes 2. Lastly, multivariate Cox regression analysis and
Wilcoxon test were utilized to obtain DE-DRLs (P < 0.05).

3.2 Prognostic modeling and assessment

Furthermore, independent prognostic factors and their
coefficients were denoted through multivariate Cox regression
assessment before calculating individual case risk scoring, using:

Risk scoring � ∑Coxcoefi of lnRNA χi

× Scaled expression value of lncRNA χi

Where χi represented the expression level of DE-DRLs, and coefi
denoted the risk coefficient of the corresponding gene. Subsequently,
the GGally (v2.3.0) package was utilized to conduct a correlation
analysis on DE-DRLs and the risk coefficients of these DE-DRLs
were obtained through multivariate regression analysis. Following
the optimal cut-point method described by Mallardo et al. (2024),
337 brain tumor samples were divided into high- and low-risk

FIGURE 1
Wilcoxon test of 18 disulfidptosis-related genes (DRGs) between tumor and control group in TCGA-HNSC. “ns” indicates p > 0.05; “*” indicates p <
0.05; “**” indicates p < 0.01; “***” indicates p < 0.001; and “****” indicates p < 0.0001.
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groups based on the risk scores of DE-DRLs. Following this, the risk
model was evaluated by plotting the receiver operating characteristic
(ROC) curves with the utilize of timeROC (v 1.0.3) package (Blanche
and Blanche, 2019) for the reliability of model (area under curve
(AUC) > 0.6) and utilized the survminer (v 0.4.9) package, overall
survival (OS) endpoints across groups were comparatively analyzed
based on Kaplan–Meier curves in TCGA-HNSC tumor samples and
test dataset (hazard ratios (HR)≠1, 95% confidence intervals (CI)).

3.3 Construction of nomogram

Among the 337 tumor samples, the Wilcoxon test (P < 0.05) and
multifactor Cox regression analysis (survival (v 3.5.3) package) (HR ≠
1 and P < 0.05) were conducted to obtain the independent prognostic
factors of OSCC patients based on the risk score and 3 clinical
characteristics (age, gender, and stage) (P < 0.05). After that, a
nomogram was constructed based on the independent prognostic
factors to predict mortality in patients with OSCC by rms (v 6.5.0)
package (Harrell Jr et al., 2017). Additionally, the calibration curves by
PredictABEL (v 1.2.4) package (Kundu et al., 2020) were also plotted to
evaluate the accuracy of the predicted probabilities of the nomogram.

3.4 Immune microenvironment analysis

Normalized gene expression matrices, in conjunction with the
CIBERSORT algorithm, were utilized to estimate the proportions of
all 22 immune cell types between high - risk and low - risk group
(Newman et al., 2015). Kaplan-Meier curves were then generated to

assess the association of each significantly differentially abundant
immune cell type (P < 0.05) with OS. Correlation analysis was
utilized to demonstrate the correlation between DE-DRLs and
different immune cells. The estimate (v 1.0.13) package
(Yoshihara et al., 2016) was utilized to analysis the difference
between high - risk and low - risk group in ESTIMATEScore,
ImmuneScore, and StromalScore. The mutation profiles of the
two groups were visualized using the maftools package in R on
the entire dataset, and differences in TMB were evaluated via
unpaired t - tests.

3.5 Analysis of chemotherapeutic drug
sensitivity and immune checkpoints

The oncoPredict (v 0.1) package was employed to predict the
half maximal inhibitory concentration (IC50) values for cancer drug
response associated with OSCC treatment in each sample (IC50 < 5).
Subsequently, the constructed prognostic risk score model was
utilized to comparatively analyze the differences in the response
to these selected drugs between the high - risk and low - risk groups.
Moreover, the Wilcoxon test allowed transcriptomic expression
profiles for immune checkpoints together with linked ligands
across high-together with low-risk group for comparative
analyses (P < 0.05). Lastly, correlation analysis was utilized to
demonstrate the correlation between DE-DRLs and immune
checkpoints.

3.6 Expression analysis of DE-DRLs

Further analysis was conducted to verify the expression of
biomarkers through RT-qPCR. The OSCC tumor samples were
gained from the 10 patients in Shengjing Hospital of China
Medical University. And the adjacent tumor sample obtained from
4 healthy individuals were utilized as control samples. This study was
approved by Ethics Committee of Shengjing Hospital of China
Medical University (No. 2024PS802K). All individuals had signed
an informed consent form. Total RNA of each sample was separately
extracted using TRIzol (TIANGEN, Beijing, CHINA) according to the
manufacturer’s guidance. Reverse transcription of total RNA to cDNA
was carried out by using Hifair® Ⅲ 1st Strand cDNA Synthesis
SuperMix for qPCR (gDNA digester plus) (Yisheng, Shanghai,
China) based on the manufacturer’s instructions. RT-qPCR was
performed utilizing the Hieff® qPCR SYBR Green Master Mix
(Yisheng, Shanghai, China). The primer sequences for PCR were
shown in Supplementary Table S2. GAPDHwas an internal reference
gene. The 2−ΔΔCTmethod (Livak and Schmittgen, 2001) was utilized to
calculate the expression of biomarkers.

4 Results

4.1 Construction of a prognostic DE-DRLs
in OSCC

Firstly, the Wilcoxon test demonstrated 9 DE-DRGs significant
difference between tumor and control group (Figure 1). A total of

TABLE 1 Univariate Cox analysis showing the 16 prognostic DRlncRNAs.

uni_cox_sig_
genes

HR HR.95L HR.95H P.value

AC009226.1 1.216,731 1.005823 1.471,863 0.04341

AP001107.9 0.722,089 0.526,705 0.989,953 0.043105

KLF7-IT1 1.227,341 1.019247 1.47792 0.030689

AC104083.1 0.842,821 0.710,839 0.999,308 0.049076

AC108463.3 0.814,064 0.667,029 0.99351 0.042967

AL139035.1 1.204,356 1.001837 1.447,813 0.04776

SAP30L-AS1 0.657,227 0.498,327 0.866,796 0.002956

AC007406.3 0.799,589 0.678,707 0.942,002 0.007486

AC093278.2 0.802,042 0.660,801 0.973,472 0.025615

AC107959.1 0.721,176 0.557,822 0.932,366 0.012618

PTPRN2-AS1 0.84607 0.729,072 0.981,844 0.027718

TSPOAP1-AS1 0.800,445 0.676,088 0.947,676 0.009771

AP003559.1 0.835,448 0.711,548 0.980,923 0.028154

JMJD1C-AS1 0.78333 0.632,153 0.970,659 0.025603

AC079160.1 1.135,005 1.016611 1.267,187 0.024255

LINC02561 1.140,206 1.003612 1.295,391 0.043869

Frontiers in Genetics frontiersin.org04

Meng et al. 10.3389/fgene.2025.1650544

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1650544


334 DE-DRLs were identified based on Pearson correlation
analysis with |coefficient |> 0.4 and P < 0.001 (Dong et al.,
2023). Subsequently, we utilized univariate Cox analysis to
screen out 16 signature genes 1 with prognostic significance in
TCGA-HNSC (Table 1). Furthermore, 9 DE-DRLs with the
optimal prognosis were ultimately identified through LASSO
analysis, the multivariate Cox analysis, and Wilcoxon test
(Figures 2A–C, P > 0.05), which included AC009226.1,
AP001107.9, AC108463.3, SAP30L_AS1, AC007406.3,
PTPRN2_AS1, AP003559.1, JMJD1C_AS1, and AC079160.1.
Notably, they were all high expressed in OSCC samples (P <
0.05). The assigned a risk score to each sample by the given
equation: Risk Score = AC009226.1 * 0.16323 + AP001107.9 *
(−0.17272) + AC108463.3 * (−0.11501) + SAP30L_AS1
* −0.31715 + AC007406.3 * (−0.03145) + PTPRN2_AS1 *
(−0.05957) + AP003559.1 * (−0.28549) + JMJD1C_AS1 *

(−0.12380) + AC079160.1 * 0.07491. Pearson correlation
analysis revealed that positive correlations existed among the
majority of DE-DRLs. Specifically, KLF7_IT1 and
AL139035.1 exhibited relatively large positive coefficients,
which implies their positive correlation with the outcome
within the model. In contrast, TSPOAP1_AS1 and SAP30L_
AS1 showed negative or near-zero coefficients, indicating a
negative or weak association with the outcome (Figure 2C).
ROC curve analysis showed the DE-DRLs had a promising
predictive value in the in TCGA-HNSC (1-year AUC = 0.696,
3-year AUC = 0.658, 5-year AUC = 0.671, Figure 2D). In addition,
Kaplan-Meier analysis demonstrated a significantly worse
prognosis in the high-risk group in contrast to the low-risk
(cut-point = −3.273, P < 0.0001, Figure 2D). Consistent with
these findings, the DE-DRLs were validated in training and test
dataset (Figures 2E,F).

FIGURE 2
(Continued).
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4.2 Assessment of the relationship between
DE-DRLs and clinicopathological features
in OSCC

In TCGA-HNSC tumor samples, the association of DE-DRLs
with clinicopathological features were further analyzed. DE-
DRLs was significantly related to T stage of OSCC (P = 0.014,
Figure 3B), but not with the pathological stage (P = 0.052,
Figure 3A) and N stage (P = 0.89, Figure 3C). Moreover, the

multivariate Cox analysis demonstrated the risk score (HR =
2.67, 95% CI 1.80–3.80) was an independent prognostic factor for
OS in OSCC patients (Figure 3D). Combination with risk scores
and other clinicopathological parameters, a new nomogram were
developed to make a more comprehensive prediction of patient
survival at 1, 3, and 5 years (Figure 3E). Calibration curves
exhibited a good degree of concordance between the actual
outcomes and predicted survival probabilities for 1-, 3-, and
5-year survival rates (Figure 3F).

FIGURE 2
(Continued). Construction and validation of prognostic model. (A) The variation characteristics of the coefficient of variables and the selection
process of the optimum value of the parameter λ in the Lasso regression model by cross-validation method. (B) Multivariate Cox regression analysis of
DE-DRLs. (C)Wilcoxon test and Pearson correlation analysis of 12 DE-DRLs (P < 0.05). (D–F) Receiver operating characteristic (ROC) curves and Kaplan-
Meier (K–M) survival analysis, cut-point value in TCGA-HNSC, training and test dataset.
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4.3 Analysis of the association between
immune infiltration and DE-DRLs

After that, we further investigated the relationship between
tumor microenvironment and DE-DRLs in OSCC patients of
TCGA-HNSC. Significant discrepancies between the two groups
were observed in the proportion of immune cells including naïve
B cells, mast cells, regulatory T cells (Tregs), activated dendritic cells
and resting mast cells (Figure 4A). Kaplan-Meier analysis revealed
patients with high levels of eosinophils (P = 0.015), activated NK
cells (P = 0.021) or naïve CD4 T cells (P = 0.020) had significantly
worse OS (Figures 4B–D), whereas patients with a low level of Tregs
(P = 0.017) had poor OS (Figure 4E). Overall, the DE-DRLs could
reflect the immune microenvironment of OSCC patients,
furthermore, DE-DRLs were generally negatively correlated with
the majority of the differentiating immune cells (Supplementary
Table S3). The box plot results show that significant difference were

observed between high - risk and low - risk group in
ESTIMATEScore, ImmuneScore, and StromalScore, which all
highly expressed in low - risk group (P < 0.0001, Figure 4F).

4.4 Evaluation of the relationship between
mutation profiles and DE-DRLs

TMB can be utilized to predict patient’s sensitivity to tumor
immunotherapy. In this study, the TP53 gene mutation was highest
in the TCGA-HNSC tumor samples (69%) and in the high-risk group
(72%) and low-risk group (67%) (Figures 5A,B). Subsequently, as
showed in Figure 5C, MDN1 (OR = 0.187) had a high mutation
rate in the low-risk group, while high-risk group had high mutation
rates of MYCBP2 (OR = 3.723), TGFBR2 (OR = 3.723), PLEC (OR =
2.449), and NSB1 (OR = 2.811). Moreover, the TMB of each patients
(Median: 1.76/MB, Figure 5D) were calculated. There was significant

FIGURE 3
Differential expression analysis of clinicopathological features and construction and validation of nomogram. (A–C) Association of risk score with
stage, T stage, N stage. (D)Multivariate Cox analysis of independent prognostic factors. (E) Nomogram of risk score and independent prognostic factors.
(F) Calibration curves of nomogram at 1, 3 and 5 years.
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difference of TMBvalue between the high-and low-risk group (P = 7.7e-
05, Figure 5E). Meantime, patients with high TMB had worse prognosis
than those with low TMB (P = 0.015, Figure 5F).

4.5 Prediction of drug sensitivity and
chemotherapy response

As showed in the violin plots, a sum of 12 drugs showed significant
difference between different risk groups, of which 5 upregulated and
7 downregulated in high-risk group (P < 0.05, Figure 6A). Lastly, PD-

L1, PD-1, CTLA-4, HAVCR2, LAG3, and TIGIT demonstrated
significant difference between different risk groups, notably, they
were all high expression in low-risk group (P < 0.05, Figure 6B).
Meanwhile, DE-DRLs were generally positively correlated with the
majority of the immune checkpoints (Supplementary Table S4).

4.6 Verification of DE-DRLs expression

Previous studies revealed that 9 DE-DRLs were significantly
upregulated in OSCC samples across TCGA-HNSC (P < 0.05)

FIGURE 4
Immune microenvironment analysis. (A) Differences expression in infiltration levels. (B–E) K-M survival analysis in eosinophils, activated NK cells,
naïve CD4 T cells, and Tregs between high- and low-risk groups. (F) Differences expression in ESTIMATEScore, ImmuneScore, and StromalScore. “ns”
indicates p > 0.05; “*” indicates p < 0.05; “**” indicates p < 0.01; “***” indicates p < 0.001; and “****” indicates p < 0.0001.
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(Figure 2C). These findings prompted further validation of DE-
DRLs expression using RT-qPCR. Consistent with the initial results,
RT-qPCR demonstrated that AC009226.1, AC108463.3, SAP30L_
AS1, AC007406.3, AP003559.1, JMJD1C_AS1, JMJD1C_AS1, and
AC079160.1 expression were significantly higher (P < 0.05) in OSCC
tumor samples compared to control samples (Figure 7). These
results further underscored their reliability as biomarkers and
highlighted their potential utility in OSCC prognostic diagnosis
and therapeutic development.

5 Discussion

The OSCC patients face a poor prognosis, regulating
disulfidptosis in cancer is a promising therapeutic approach
(Yang et al., 2024). In this study, 9 DE-DRLs (AC009226.1,
AP001107.9, AC108463.3, SAP30L_AS1, AC007406.3, PTPRN2_
AS1, AP003559.1, JMJD1C_AS1, and AC079160.1) associated with
OSCC were accurately identified. A prognostic model showed high-
risk patients had lower survival. A nomogram integrating risk score
and clinical features had excellent predictive ability for patient
outcomes. DE-DRLs were linked to the OSCC immune
microenvironment, where high levels of certain immune cells
predicted poor survival. Additionally, 12 drugs differed in efficacy
between risk groups, and immune checkpoints were more highly
expressed in the low-risk group, pointing to potential
therapeutic targets.

To prevent overfitting, we used LASSO regression to reduce the
dimensionality of the data. We identified 9 DE-DRLs that were
closely associated with the OS of OSCC patients and all highly
expressed in tumor group of TCGA-HNSC. Several of the identified
DE-DRLs have been previously characterized and are strongly
associated with tumorigenesis and cancer progression.
Specifically, AC009226.1 has been established as a prognostic
biomarker for lung adenocarcinoma (LUAD), while
AC007406.3 has been validated as a prognostic target in clear cell
renal cell carcinoma (ccRCC). Both lncRNAs exhibit elevated
expression levels in tumor tissues compared to normal
counterparts, as reported in previous studies (Sun et al., 2023;
Zhang et al., 2023b). In addition, JMJD1C_AS1 and
AC079160.1 have been identified as potential prognostic
biomarkers for gastric cancer (GC) (Ahmadpour Youshanlui
et al., 2024; Guo et al., 2021). Notably, high expression of
AC079160.1 has been correlated with favorable survival outcomes
in GC patients, suggesting its role in predicting prognosis and
potentially informing treatment strategies. These findings
underscore the clinical relevance of these DE-DRLs across diverse
cancer types and highlight their potential utility in precision
oncology (Guo et al., 2021; Yang et al., 2022). Moreover,
emerging evidence demonstrates that SAP30L-AS1 exhibits
elevated expression levels in both prostate cancer (PCa) tissues
and cell lines. Functionally, SAP30L-AS1 suppresses the
upregulation of SAP30L in PCa, thereby exerting a tumorigenic
effect. These findings, as previously reported (Qin et al., 2019),

FIGURE 5
Tumormicroenvironment analysis. (A,B) Themutational status of TMB samples. (C) The odds ratio ofmutated genes between the high- and low-risk
group in forest plot. (D) Mutation burder curve of OSCC tumor samples. (E) Differences expression in mutation burder between high- and low-risk
groups. (F) K-M survival analysis of TMB between the high- and low-risk group.
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further highlighting its broad clinical relevance. PTPRN2_
AS1 displayed consistent result with Xiong et al. (2023). Notably,
this study represents the first report identifying AC108463.3 and
AP003559.1 as prognostic markers for cancer, thereby addressing a
critical void in the existing cancer prognosis literature. This
groundbreaking discovery significantly expands the current
knowledge base regarding potential cancer biomarkers. RT-qPCR
analysis revealed elevated expression levels of AP001107.9 in the
control group, diverging from the findings of prior investigations by
Shen et al. (2025). This discrepancy may stem from two main
factors: limited sample size causing heterogeneity and study-
specific epigenetic/post-transcriptional regulation of AP001107.9.
Uncharacterized regulatory mechanisms in prior research may

explain expression variability and result divergence. Exploring
DE-DRLs-prognosis correlations could offer new molecular
targets for OSCC.

Systematically analyzing the biological pathways that lncRNAs
may be involved in regulating will help us deepen our understanding
of the pathological process of OSCC from multiple dimensions,
from molecular mechanisms to clinical applications, providing dual
support for target selection and efficacy prediction in the precise
treatment of OSCC. Previous studies have shown that, the
downregulation of SAP30L by SAP30L_AS1 impairs the assembly
and enzymatic activity of the HDAC complex. This leads to
dysregulated histone deacetylation, subsequent transcriptional
repression of tumor-suppressor genes, and promotion of cancer

FIGURE 6
Drugs prediction and immune checkpoints analysis. (A) The half-maximal inhibitory concentration (IC50) of drugs and small molecule inhibitors
between the high- and low-risk group. (B) Differences expression in immune checkpoints.
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cell proliferation (Qin et al., 2019). PTPRN2_AS1 can adsorb miR-
145-5p through the ceRNAmechanism (Huang et al., 2021), thereby
relieving its inhibition on PTPRN2 and enhancing the activity of the
insulin signaling pathway, promoting tumor cell glycolysis (Meng
et al., 2019), which also crucial in the energy metabolism
reprogramming of OSCC. However, although no direct studies
have confirmed the involvement of AC009226.1, AP001107.9,
AC108463.3, AC007406.3, AP003559.1, JMJD1C_AS1, and
AC079160.1 in the physiological processes of OSCC, evidence
from the literature and the present study indicates that these
lncRNAs may participate in biological pathways related to tumor
proliferation (Cutilli et al., 2016), invasion (Wu et al., 2022),
immune regulation (Huang et al., 2024), and epigenetics (Tang
et al., 2021). DNA methylation is one of the most important
epigenetic mechanisms to regulate gene expression, aberrant
DNA methylation patterns are strongly associated with cancer,
such as lncRNAs can recruit or repel DNA modifiers to specific
gene targets and regulate the expression of DNA modifiers per se at
multiple levels (Huang et al., 2022; Shen et al., 2017). This not only
provides novel insights into the multi-dimensional regulatory
mechanisms underlying OSCC progression but also lays a
foundation for identifying potential prognostic biomarkers and
therapeutic targets for OSCC.

While the OSCC pathogenesis also involves complex host-
microenvironment interactions, and clinical challenges of
advanced OSCC further highlight the need to expand lncRNA-
related mechanism exploration to broader pathological and clinical
contexts. Furthermore, previous studies have shown that the
ecological imbalance of the oral microbiome caused by risk
factors such as tobacco use, alcohol consumption, betel nut
chewing, and HPV infections can lead to abnormal expression of
lncRNAs in the oral cavity, which are associated with inflammatory
mechanisms facilitating OSCC progression (Crispino et al., 2024;
Mishra et al., 2025). More importantly, since OSCC patients were
usually diagnosed at an advanced stage and are at risk of bone
metastasis, which indicate a poor outcome (Wang et al., 2024).
Nevertheless, there has been limited information on bone metastasis
in OSCC (Wang et al., 2024). According to previous research results,
inhibition of disulfidptosis can prevent osteoclast overactivation
and, consequently, reduce the risk of bone metastasis in patients
(Clézardin et al., 2021). This indicates that targeting disulfidptosis-
related lncRNAs is expected to regulate the balance of intracellular
disulfidptosis bond metabolism and the activity of osteoclasts at the
molecular level, thereby blocking the colonization and invasion of
tumor cells into bone tissue. This reminds us that by targeting the
disulfidptosis-related lncRNAs screened in this study, we can not

FIGURE 7
Validation of 9 DE-DRLs. RT-qPCR expression levels of JMJD1C_AS1 (A), AC079160.1 (B), SAP30L_AS1 (C), AC108463.3 (D), AC007406.3 (E),
AP003559.1 (F), AC009226.1 (G), PTPRN2_AS1 (H), and AP001107.9 (I). n = 3, “ns” indicates p > 0.05; “*” indicates p < 0.05; “**” indicates p < 0.01; “***”
indicates p < 0.001; and “****” indicates p < 0.0001.
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only inhibit the progression of the primary lesion of OSCC but also
reduce the risk of bone metastasis, providing a new therapeutic
target for improving the quality of life of patients with
advanced OSCC.

At present, incorporating prognostic models into routine
clinical practice can facilitate the estimation and quantification
of patient prognosis (Hoesseini et al., 2022). The AUCs of
prognostic genes for the OSCC by Li et al. at 1-year was 0.683
(Li et al., 2024) and Tang et al. was 0.752 (Tang et al., 2023), while
our study result was 0.754. The nomogram represents a key
medical advancement, addressing personalized healthcare needs
by enabling clinicians to evaluate individual risk factors and
prognosis for informed, tailored decisions (Balachandran et al.,
2015), the slope of the calibration curve in this study was
approximately equal to 1. This study validates the prognostic
model and nomogram for accurately predicting OSCC
outcomes. With high precision, these tools enhance risk
stratification and evidence-based treatment decisions, improving
patient management and personalized care.

Accumulating evidence from prior investigations has firmly
established the indispensable role of immune cell infiltration in
shaping the therapeutic response and clinical outcomes of patients
with OSCC. In the present study, mast cells, activated NK cells,
and Tregs emerged as key immune cell populations with
significant implications for OSCC immunobiology and
prognosis. This observation aligns with established literature
demonstrating that tumor-infiltrating mast cells can modulate
Treg activity to facilitate tumor progression, thereby undermining
the host’s antitumor immune response (Lv et al., 2024).
Consistently, elevated densities of activated NK cells and Tregs
within the tumor microenvironment have been repeatedly
associated with adverse clinical outcomes in OSCC patients (Lv
et al., 2024; Wu et al., 2020). Our findings also corroborate
previous reports indicating that a high TMB in OSCC patients
portends a poorer prognosis and serves as a valuable biomarker
for guiding treatment decisions in recurrent and metastatic
disease (Lv et al., 2024). Notably, differential expression
analysis revealed significantly higher levels of MYCBP2,
TGFBR2, PLEC, and NSB1 in the high-risk cohort, suggesting
potential roles for these genes in tumorigenesis and disease
progression. In thyroid cancer (TC), MYC binding protein 2
(MYCBP2) has been linked to inflammatory cell infiltration
and patient survival (Wang et al., 2022). TGFBR2, a central
transducer of TGF-β - mediated growth inhibitory signals, has
been implicated in the pathogenesis of multiple malignancies
(Huang et al., 2014). PLEC has been identified as a promising
biomarker and therapeutic target in pancreatic adenocarcinoma
(PAAD) (Ge et al., 2024), while amplification of NSB1 has been
shown to drive the pathobiology of uveal melanoma (UM)
(Banimohammad et al., 2025). Collectively, these findings
prompt the hypothesis that disulfidptosis may represent a
critical mechanism underlying immune resistance and tumor
immune escape in OSCC, offering novel insights into the
complex interplay between cell death pathways and tumor
immunobiology.

In recent years, cancer bioinformatics has emerged as a
transformative force, driving advancements in anticancer drug
development and personalized therapeutics while substantially

enhancing the accuracy of cancer therapeutic prediction (Lu
et al., 2017). Treatment resistance, a common occurrence in
OSCC, substantially diminishes patient survival rates and
profoundly impacts clinical treatment decisions (Cheng et al.,
2021). Consequently, a comprehensive assessment of drug
sensitivity in OSCC patients is imperative. In the present study,
five drugs, including BMS-754807_2171, AZD8055_1059,
Epirubicin_1511, Mitoxantrone_1810, and Foretinib_2040, were
identified as upregulated in the high-risk group. These findings
may help elucidate the mechanisms underlying the poor prognosis
observed in this subgroup. Previous research has shown that BMS-
754807 potentiates the efficacy of chemotherapeutic agents in lung
cancer cells by inducing autophagy, cell cycle arrest, and growth
inhibition, ultimately leading to synergistic cytotoxicity (Zhang
and Zhou, 2025). Similarly, Yin et al. (2024) reported consistent
IC50 expression of BMS-754807 in gastric adenocarcinoma
(STAD) in their study on lactylation-related gene sets and
mitochondrial functions in STAD (Yin et al., 2024).
AZD8055 is a potent, selective, and orally bioavailable ATP-
competitive mammalian target of rapamycin kinase inhibitor
with in vitro and in vivo antitumor activity (Chresta et al.,
2010), AZD8055_1059 had been verified as a drug treatment
target in non-small cell lung cancer (Shi et al., 2025). While,
the Epirubicin was already used in clinical research for non-
small cell lung cancer as early as 1997 by Colucci et al. (1997).
Furthermore, Foretinib, a multikinase inhibitor, has been clinically
employed in the treatment of breast carcinoma (BC) (Anitha et al.,
2023) and Mitoxantrone_1810 had also been proven to have a
higher expression level in the high-risk group of HNSCC (Zhu
et al., 2022). Collectively, the results of this study provide a
theoretical foundation for the development of personalized
treatment strategies for OSCC patients.

6 Conclusion

In the current investigation, transcriptomic data integrated
with advanced bioinformatics methodologies were utilized to
systematically identify 9DE-DRGs, namely, AC009226.1,
AP001107.9, AC108463.3, SAP30L_AS1, AC007406.3,
PTPRN2_AS1, AP003559.1, JMJD1C_AS1, and AC079160.1,
as differentially expressed in OSCC. A prognostic model and
nomogram showed strong predictive value for patient outcomes,
aiding clinical risk stratification. Immune microenvironment
analysis revealed interactions between cell death pathways and
tumor immunobiology. Drug prediction identified BMS-754807_
2171 and Foretinib_2040 as potential therapies. Limitations
include data quality, algorithm assumptions, and reliance on
RT-qPCR validation, necessitating independent clinical
validation across cohorts to confirm biomarkers utility in
OSCC management.
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